Reprint Requests

Found 34 results
Author [ Title(Desc)] Type Year
Filters: Author is Ashby, F G.  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Ashby, F. G., & Valentin V. V. (2018).  The categorization experiment: Experimental design and data analysis. In E. J. Wagenmakers & J. T. Wixted (Eds.), Stevens handbook of experimental psychology and cognitive neuroscience, Fourth Edition, Volume Five: Methodology. New York: Wiley. 307-.
Soto, F. A., & Ashby F. G. (2015).  Categorization training increases the perceptual separability of novel dimensions. Cognition. 139, 105-129.
Ashby, F. G. (2018).  Computational cognitive neuroscience. In W. Batchelder, H. Colonius, E. Dzhafarov, & J. Myung (Eds.), New handbook of mathematical psychology, Volume 2. NY: Cambridge University Press. 223-270.
Crossley, M. J., Maddox W. T., & Ashby F. G. (2018).  Increased cognitive load enables unlearning in procedural category learning. Journal of Experimental Psychology: Learning, Memory, & Cognition. 44, 1845-1853.
Ashby, F. G. (2015).  An introduction to fMRI. In B. U. Forstmann & E.-J. Wagenmakers (Eds.), An introduction to model-based cognitive neuroscience. 91–112.
Ashby, F. G., & Soto F. A. (2015).  Multidimensional signal detection theory. In: J. R. Busemeyer, Z. Wang, J. T. Townsend, & A. Eidels (Eds.), Oxford handbook of computational and mathematical psychology. 13–34.
Cantwell, G., Crossley M. J., & Ashby F. G. (2015).  Multiple stages of learning in perceptual categorization: evidence and neurocomputational theory. Psychonomic Bulletin & Review. 22(6), 1598-1613.
Ashby, F. G., & Valentin V. V. (2017).  Multiple systems of perceptual category learning: Theory and cognitive tests. In H. Cohen and C. Lefebvre (Eds.), Handbook of Categorization in Cognitive Science (Second Edition). 157–188.
Ashby, F. G., & Soto F. A. (2016).  The neural basis of general recognition theory. In J. W. Houpt & L. M. Blaha (Eds.), Mathematical models of perception and cognition: A Festschrift for James T. Townsend (pp. 1 - 31). New York: Psychology Press. 1-31.
Ashby, F. G., & Rosedahl L. (2017).  A neural interpretation of exemplar theory. Psychological Review. 124(4), 472-482.
Paul, E. J., J Smith D., Valentin V. V., Turner B. O., Barbey A. K., & Ashby F. G. (2015).  Neural networks underlying the metacognitive uncertainty response. Cortex. 71, 306-22.
Soto, F. A., & Ashby F. G. (2019).  Novel representations that support rule-based categorization are acquired on-the-fly during category learning. Psychological Research. 83, 544-566.