Reprint Requests

Found 34 results
Author Title Type [ Year(Asc)]
Filters: Author is Ashby, F G.  [Clear All Filters]
Ashby, F. G., & Valentin V. V. (2018).  The categorization experiment: Experimental design and data analysis. In E. J. Wagenmakers & J. T. Wixted (Eds.), Stevens handbook of experimental psychology and cognitive neuroscience, Fourth Edition, Volume Five: Methodology. New York: Wiley. 307-.
Ashby, F. G. (2018).  Computational cognitive neuroscience. In W. Batchelder, H. Colonius, E. Dzhafarov, & J. Myung (Eds.), New handbook of mathematical psychology, Volume 2. NY: Cambridge University Press. 223-270.
Crossley, M. J., Maddox W. T., & Ashby F. G. (2018).  Increased cognitive load enables unlearning in procedural category learning. Journal of Experimental Psychology: Learning, Memory, & Cognition. 44, 1845-1853.
Soto, F. A., Vucovich L. E., & Ashby F. G. (2018).  Linking signal detection theory and encoding models to reveal independent neural representations from neuroimaging data. PLOS Computational Biology. 14(10), e1006470.
Crossley, M. J., Roeder J. L., Helie S., & Ashby F. G. (2018).  Trial-by-trial switching between procedural and declarative categorization systems. Psychological Research. 82, 371-384.
Crossley, M. J., Paul E. J., Roeder J. L., & Ashby F. G. (2016).  Declarative strategies persist under increased cognitive load. Psychonomic Bulletin & Review. 23(1), 213-22.
Soto, F. A., Bassett D. S., & Ashby F. G. (2016).  Dissociable changes in functional network topology underlie early category learning and development of automaticity. NeuroImage. 141, 220-241.
Valentin, V. V., Maddox W. T., & Ashby F. G. (2016).  Dopamine dependence in aggregate feedback learning: A computational cognitive neuroscience approach. Brain & Cognition. 109, 1-18.
Crossley, M. J., Horvitz J. C., Balsam P. D., & Ashby F. G. (2016).  Expanding the role of striatal cholinergic interneurons and the midbrain dopamine system in appetitive instrumental conditioning. Journal of Neurophysiology. 115(1), 240-54.
Ashby, F. G., & Soto F. A. (2016).  The neural basis of general recognition theory. In J. W. Houpt & L. M. Blaha (Eds.), Mathematical models of perception and cognition: A Festschrift for James T. Townsend (pp. 1 - 31). New York: Psychology Press. 1-31.
Ashby, F. G., & Vucovich L. E. (2016).  The role of feedback contingency in perceptual category learning. Journal of Experimental Psychology: Learning, Memory & Cognition. 42(11), 1731-1746.
Roeder, J. L., & Ashby F. G. (2016).  What is automatized during perceptual categorization?. Cognition. 154, 22-33.