
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/266945018

Regional	White	Matter	Variation	Associated	with
Domain-specific	Metacognitive	Accuracy

ARTICLE		in		JOURNAL	OF	COGNITIVE	NEUROSCIENCE	·	OCTOBER	2014

Impact	Factor:	4.09	·	DOI:	10.1162/jocn_a_00741	·	Source:	PubMed

READS

147

5	AUTHORS,	INCLUDING:

Benjamin	Baird

University	of	Wisconsin–Madison

16	PUBLICATIONS			512	CITATIONS			

SEE	PROFILE

Matthew	Cieslak

University	of	California,	Santa	Barbara

10	PUBLICATIONS			45	CITATIONS			

SEE	PROFILE

Jonathan	Smallwood

Max	Planck	Institute	for	Human	Cognitive	an…

88	PUBLICATIONS			4,296	CITATIONS			

SEE	PROFILE

Jonathan	Schooler

University	of	California,	Santa	Barbara

151	PUBLICATIONS			7,803	CITATIONS			

SEE	PROFILE

Available	from:	Benjamin	Baird

Retrieved	on:	06	January	2016

https://www.researchgate.net/publication/266945018_Regional_White_Matter_Variation_Associated_with_Domain-specific_Metacognitive_Accuracy?enrichId=rgreq-3dc61702-6e90-458a-bc4e-3fea1e1783b6&enrichSource=Y292ZXJQYWdlOzI2Njk0NTAxODtBUzoxNTMzODc3Nzc2NjI5NzZAMTQxMzU4MTkwNDI2OQ%3D%3D&el=1_x_2
https://www.researchgate.net/publication/266945018_Regional_White_Matter_Variation_Associated_with_Domain-specific_Metacognitive_Accuracy?enrichId=rgreq-3dc61702-6e90-458a-bc4e-3fea1e1783b6&enrichSource=Y292ZXJQYWdlOzI2Njk0NTAxODtBUzoxNTMzODc3Nzc2NjI5NzZAMTQxMzU4MTkwNDI2OQ%3D%3D&el=1_x_3
https://www.researchgate.net/?enrichId=rgreq-3dc61702-6e90-458a-bc4e-3fea1e1783b6&enrichSource=Y292ZXJQYWdlOzI2Njk0NTAxODtBUzoxNTMzODc3Nzc2NjI5NzZAMTQxMzU4MTkwNDI2OQ%3D%3D&el=1_x_1
https://www.researchgate.net/profile/Benjamin_Baird?enrichId=rgreq-3dc61702-6e90-458a-bc4e-3fea1e1783b6&enrichSource=Y292ZXJQYWdlOzI2Njk0NTAxODtBUzoxNTMzODc3Nzc2NjI5NzZAMTQxMzU4MTkwNDI2OQ%3D%3D&el=1_x_4
https://www.researchgate.net/profile/Benjamin_Baird?enrichId=rgreq-3dc61702-6e90-458a-bc4e-3fea1e1783b6&enrichSource=Y292ZXJQYWdlOzI2Njk0NTAxODtBUzoxNTMzODc3Nzc2NjI5NzZAMTQxMzU4MTkwNDI2OQ%3D%3D&el=1_x_5
https://www.researchgate.net/institution/University_of_Wisconsin-Madison?enrichId=rgreq-3dc61702-6e90-458a-bc4e-3fea1e1783b6&enrichSource=Y292ZXJQYWdlOzI2Njk0NTAxODtBUzoxNTMzODc3Nzc2NjI5NzZAMTQxMzU4MTkwNDI2OQ%3D%3D&el=1_x_6
https://www.researchgate.net/profile/Benjamin_Baird?enrichId=rgreq-3dc61702-6e90-458a-bc4e-3fea1e1783b6&enrichSource=Y292ZXJQYWdlOzI2Njk0NTAxODtBUzoxNTMzODc3Nzc2NjI5NzZAMTQxMzU4MTkwNDI2OQ%3D%3D&el=1_x_7
https://www.researchgate.net/profile/Matthew_Cieslak2?enrichId=rgreq-3dc61702-6e90-458a-bc4e-3fea1e1783b6&enrichSource=Y292ZXJQYWdlOzI2Njk0NTAxODtBUzoxNTMzODc3Nzc2NjI5NzZAMTQxMzU4MTkwNDI2OQ%3D%3D&el=1_x_4
https://www.researchgate.net/profile/Matthew_Cieslak2?enrichId=rgreq-3dc61702-6e90-458a-bc4e-3fea1e1783b6&enrichSource=Y292ZXJQYWdlOzI2Njk0NTAxODtBUzoxNTMzODc3Nzc2NjI5NzZAMTQxMzU4MTkwNDI2OQ%3D%3D&el=1_x_5
https://www.researchgate.net/institution/University_of_California_Santa_Barbara?enrichId=rgreq-3dc61702-6e90-458a-bc4e-3fea1e1783b6&enrichSource=Y292ZXJQYWdlOzI2Njk0NTAxODtBUzoxNTMzODc3Nzc2NjI5NzZAMTQxMzU4MTkwNDI2OQ%3D%3D&el=1_x_6
https://www.researchgate.net/profile/Matthew_Cieslak2?enrichId=rgreq-3dc61702-6e90-458a-bc4e-3fea1e1783b6&enrichSource=Y292ZXJQYWdlOzI2Njk0NTAxODtBUzoxNTMzODc3Nzc2NjI5NzZAMTQxMzU4MTkwNDI2OQ%3D%3D&el=1_x_7
https://www.researchgate.net/profile/Jonathan_Smallwood?enrichId=rgreq-3dc61702-6e90-458a-bc4e-3fea1e1783b6&enrichSource=Y292ZXJQYWdlOzI2Njk0NTAxODtBUzoxNTMzODc3Nzc2NjI5NzZAMTQxMzU4MTkwNDI2OQ%3D%3D&el=1_x_4
https://www.researchgate.net/profile/Jonathan_Smallwood?enrichId=rgreq-3dc61702-6e90-458a-bc4e-3fea1e1783b6&enrichSource=Y292ZXJQYWdlOzI2Njk0NTAxODtBUzoxNTMzODc3Nzc2NjI5NzZAMTQxMzU4MTkwNDI2OQ%3D%3D&el=1_x_5
https://www.researchgate.net/institution/Max_Planck_Institute_for_Human_Cognitive_and_Brain_Sciences?enrichId=rgreq-3dc61702-6e90-458a-bc4e-3fea1e1783b6&enrichSource=Y292ZXJQYWdlOzI2Njk0NTAxODtBUzoxNTMzODc3Nzc2NjI5NzZAMTQxMzU4MTkwNDI2OQ%3D%3D&el=1_x_6
https://www.researchgate.net/profile/Jonathan_Smallwood?enrichId=rgreq-3dc61702-6e90-458a-bc4e-3fea1e1783b6&enrichSource=Y292ZXJQYWdlOzI2Njk0NTAxODtBUzoxNTMzODc3Nzc2NjI5NzZAMTQxMzU4MTkwNDI2OQ%3D%3D&el=1_x_7
https://www.researchgate.net/profile/Jonathan_Schooler?enrichId=rgreq-3dc61702-6e90-458a-bc4e-3fea1e1783b6&enrichSource=Y292ZXJQYWdlOzI2Njk0NTAxODtBUzoxNTMzODc3Nzc2NjI5NzZAMTQxMzU4MTkwNDI2OQ%3D%3D&el=1_x_4
https://www.researchgate.net/profile/Jonathan_Schooler?enrichId=rgreq-3dc61702-6e90-458a-bc4e-3fea1e1783b6&enrichSource=Y292ZXJQYWdlOzI2Njk0NTAxODtBUzoxNTMzODc3Nzc2NjI5NzZAMTQxMzU4MTkwNDI2OQ%3D%3D&el=1_x_5
https://www.researchgate.net/institution/University_of_California_Santa_Barbara?enrichId=rgreq-3dc61702-6e90-458a-bc4e-3fea1e1783b6&enrichSource=Y292ZXJQYWdlOzI2Njk0NTAxODtBUzoxNTMzODc3Nzc2NjI5NzZAMTQxMzU4MTkwNDI2OQ%3D%3D&el=1_x_6
https://www.researchgate.net/profile/Jonathan_Schooler?enrichId=rgreq-3dc61702-6e90-458a-bc4e-3fea1e1783b6&enrichSource=Y292ZXJQYWdlOzI2Njk0NTAxODtBUzoxNTMzODc3Nzc2NjI5NzZAMTQxMzU4MTkwNDI2OQ%3D%3D&el=1_x_7


Un
co
rre
cte
d
Pr
oo
f

Regional White Matter Variation Associated with
Domain-specific Metacognitive Accuracy

Benjamin Baird1, Matthew Cieslak1, Jonathan Smallwood2,
Scott T. Grafton1, and Jonathan W. Schooler1

Abstract

■ The neural mechanisms that mediate metacognitive ability
(the capacity to accurately reflect on oneʼs own cognition and
experience) remain poorly understood. An important question
is whether metacognitive capacity is a domain-general skill sup-
ported by a core neuroanatomical substrate or whether region-
ally specific neural structures underlie accurate reflection in
different cognitive domains. Providing preliminary support for
the latter possibility, recent findings have shown that individual
differences in metacognitive ability in the domains of memory
and perception are related to variation in distinct gray matter
volume and resting-state functional connectivity. The current
investigation sought to build on these findings by evaluating
how metacognitive ability in these domains is related to varia-
tion in white matter microstructure. We quantified metacogni-
tive ability across memory and perception domains and used

diffusion spectrum imaging to examine the relation between
high-resolution measurements of white matter microstructure
and individual differences in metacognitive accuracy in each
domain. We found that metacognitive accuracy for perceptual
decisions and memory were uncorrelated across individuals
and that metacognitive accuracy in each domain was related
to variation in white matter microstructure in distinct brain
areas. Metacognitive accuracy for perceptual decisions was
associated with increased diffusion anisotropy in white matter
underlying the ACC, whereas metacognitive accuracy for mem-
ory retrieval was associated with increased diffusion anisotropy
in the white matter extending into the inferior parietal lobule.
Together, these results extend previous findings linking meta-
cognitive ability in the domains of perception and memory to
variation in distinct brain structures and connections. ■

INTRODUCTION

Metacognition refers to reflection on or analysis of oneʼs
own cognitive processes. The ability “to doubt what one
knows, to deny or affirm oneʼs beliefs, to judge oneʼs
ownmemories andpercepts, to comment ononeʼs dreams,
to recollect and reflect on oneʼs own past” (Terrace &
Metcalf, 2004, p. 2) represent several of the core abilities
commonly referred to under the umbrella term of meta-
cognition (Metcalfe & Shimamura, 1994). Metacognition
may be viewed as a general category that encompasses
these processes, as well as introspection, which has been
proposed to be a special case of metacognition involving
specifically conscious content as the object of reflection
(Fleming, Dolan, & Frith, 2012; Overgaard & Sandberg,
2012). However, metacognition appears to be distinct from
other potentially related constructs such as intelligence, as
individual differences in metacognitive ability are uncor-
related with general fluid intelligence (g; Fleming, Huijgen,
& Dolan, 2012).
Despite the seeming immediacy with which we reflect

on our minds, a central insight that has emerged from
research in the cognitive sciences over the past 40 years

is that our access to our minds is noisy and subject to
inaccuracies and dissociations (e.g., Schooler & Schreiber,
2004; Schooler, 2002). Metacognitive awareness is par-
ticularly compromised for causal-explanatory theorizing
about the reasons for actions or decisions (Hall, Johansson,
Tärning, Sikström, & Deutgen, 2010; Johansson, Hall,
Sikström, & Olsson, 2005; Gazzaniga & LeDoux, 1978;
Nisbett & Wilson, 1977). For example, classic studies
revealed that individuals whose choice preferences are
biased through priming or position effects are generally
unaware of these effects and confabulate reasons for their
selections (Nisbett & Wilson, 1977). Other research has
illustrated the frequent dissociations that occur in meta-
cognitive monitoring of the ongoing state of oneʼs mind.
One striking (and perhaps relatable) example is that indi-
viduals often fail to notice that their minds have wandered
to unrelated topics during reading or sustained attention
tasks, even in the context of experiments in which they
are specifically instructed to remain vigilant for such lapses
and report them as soon as they occur (Schooler et al., 2011;
Christoff, Gordon, Smallwood, Smith, & Schooler, 2009;
Smallwood, McSpadden, & Schooler, 2008; Schooler,
Reichle, & Halpern, 2004).

The cognitive and neural mechanisms that mediate
the fidelity of metacognitive awareness remain poorly1University of California, Santa Barbara, 2University of York

© Massachusetts Institute of Technology Journal of Cognitive Neuroscience X:Y, pp. 1–13
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understood. Recent research has exploited individual
differences in metacognitive accuracy in healthy individ-
uals as one approach to elucidating the neural mechanisms
underlying the capacity to accurately reflect on particular
cognitive processes (Baird, Smallwood, Gorgolewski, &
Margulies, 2013; McCurdy et al., 2013; Fleming, Weil, Nagy,
Dolan, & Rees, 2010). These studies converge with prior
work in documenting a primary role of pFC in metacog-
nition, particularly the anterior pFC (aPFC; see Fleming &
Dolan, 2012, for a review). However, it remains equivocal
whether metacognitive ability is a domain-general skill sup-
ported by a single neuroanatomical substrate or whether it
varies across different processes or cognitive domains. On
the one hand, the fact that metacognition has been linked
to a “higher-order” brain region in pFC might suggest
that it is supported by brain mechanisms that supersede
cognition-level processing in a given domain, supporting
a domain-general rather than domain-specific account
(Song et al., 2011). On the other hand, if metacognitive
ability depends on the integration between pFC and cog-
nition-level processing, it is also plausible that multiple
brain networks linking domain-specific processing in
posterior regions to frontal cortex could underlie meta-
cognitive capacity in a particular domain (Shimamura,
2000; Nelson & Narens, 1990).

Patient populations display greater impairment for
some types of metacognitive tasks compared with others,
potentially because they are supported by distinct neural
structures. For instance, schizophrenic patients appear to
have a relatively preserved capacity to make retrospective
metacognitive judgments of their memory as well as trial-
by-trial judgments of their performance accuracy, despite
showing significant impairment in metacognitive judg-
ments of their own agency as well as a generalized impair-
ment in insight into their disorder (David, Bedford, Wiffen,
& Gilleen, 2012; Metcalfe, Van Snellenberg,DeRosse, Balsam,
& Malhotra, 2012). Furthermore, preliminary studies in
healthy individuals have suggested that theremaybedomain
specificity in the neural basis of metacognitive ability in dis-
tinct cognitive domains. Specifically, two recent studies
found that individualsʼ metacognitive accuracy in percep-
tion and memory tasks were related to differential neural
substrates. McCurdy et al. (2013) found that gray matter
volume in the distinct regions of the lateral aPFC and pre-
cuneus covaried withmetacognitive accuracy in perception
and memory domains, respectively. Furthermore, Baird
et al. (2013) found that individual differences in meta-
cognitive accuracy in each domain were associated with
resting-state functional connectivity in distinct brain net-
works. Metacognitive accuracy for perceptual decisions
was linked to greater connectivity between lateral aPFC
and the right dorsal ACC (dACC) and dorsal striatum,
whereas metacognitive accuracy for memory retrieval was
related to greater connectivity between medial aPFC and
the right precuneus and inferior parietal lobule (IPL).

In the current investigation, we sought to build on these
findings by evaluating how metacognitive ability in percep-

tual and mnemonic domains is related to individual dif-
ferences in anatomical connectivity strength. We first
quantified metacognitive accuracy in perception and mem-
ory domains and assessed intraindividual covariance in
metacognitive accuracy. We then used diffusion spectrum
imaging (DSI; Schmahmann et al., 2007; Wedeen,
Hagmann, Tseng, Reese, & Weisskoff, 2005) to examine
the relation between high-resolution measurements of
white matter microstructure and individual differences
in metacognitive accuracy for perceptual decisions and
mnemonic judgments. Most previous studies examining
the relationship between cognitive abilities and variation
in whitematter anatomy have relied on the diffusion tensor
model and specifically averaged fractional anisotropy (FA),
which is limited in its ability to model the crossing-fiber
architecture of white matter that is ubiquitous in the brain
( Jones, Knösche, & Turner, 2013). Specifically, diffusion
tensor imaging (DTI) significantly underestimates the
actual distribution of fiber pathways and can be inaccurate
in regions of partial volumes of cerebrospinal fluid or gray
matter (Vos, Jones, Viergever, & Leemans, 2011; Oouchi
et al., 2007; Alexander, Hasan, Lazar, Tsuruda, & Parker,
2001). In the current study, we therefore used DSI with
its much higher angular resolution to offset these prob-
lems, allowing us to examine the relation between high-
resolution measurements of white matter structure and
individual differences in metacognitive ability. On the basis
of the previous findings discussed above, we hypothesized
that regional variation of white matter microstructure
would underlie individual differences in metacognitive
ability in each cognitive domain.

METHODS

Participants

Forty-two participants completed the experiment (20 men,
age range = 18–47 years, mean age = 21.5 years). Four
participants who completed the cognitive testing com-
ponent were excluded from the brain imaging analysis:
one participant because he was left-handed, one partici-
pant because of suboptimal quantitative anisotropy (QA)
thresholding, and two participants because they had a
metal oral appliance that created a large artifact in the
DSI scan. Signed informed consent was obtained from all
participants before completing the study, and ethical
approval for the study was obtained from the University of
California, Santa Barbara, Institutional Review Board. All
participants in the final sample (n= 38) were right-handed,
had normal or corrected-to-normal vision, and had no
history of neurological or psychiatric disease.

Stimuli

Stimuli and tasks were programmed in MATLAB version
7.9 (The Mathworks Inc., Natick, MA) using the Psycho-
physics Toolbox version 3.0 (Kleiner et al., 2007; Brainard,

2 Journal of Cognitive Neuroscience Volume X, Number Y
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1997). Stimuli for the perceptual decision task consisted of
visual displays composed of six Gabor gratings arranged
in a circle around a fixation point at an eccentricity of 6.5
visual degrees (Figure 1A). Each grating subtended 2.8
visual degrees and consisted of vertical alternating light
and dark bars modulated at a spatial frequency of 2.2 cycles
per visual degree at a contrast of 20%. Stimuli were pre-
sented in a darkened room at a viewing distance of approx-
imately 60 cm.
Stimuli for the memory retrieval task consisted of 320

neutral-valence noncomposite nouns selected from the
Medical Research Council Psycholinguistic database (Wilson,
1988). All stimuli were five characters in length and had a
word frequency between 1 and 800 per million.

Tasks and Procedure

Participants performed two experimental sessions: an
MRI session in which DSI scans were acquired and a
behavioral session in which they were asked to make
metacognitive evaluations of perceptual decisions and
mnemonic judgments. A schematic outline of the meta-
cognitive tasks is shown in Figure 1. Task order was
counterbalanced across participants.

The perceptual task was adapted from Song et al.
(2011) and Fleming et al. (2010). Each trial (n = 320)
consisted of a presentation of a 250-msec visual stimulus
display consisting of six Gabor gratings arranged in a circle
around central fixation, followed by an ISI of 500 msec
during which only the fixation cross remained on the
screen, followed by a second 250-msec stimulus display
consisting of six Gabors arranged around fixation (Fig-
ure 1A). In one of the two stimulus displays, the orienta-
tion of one of the Gabor patches was tilted slightly from the
vertical axis. The display interval in which this “pop-out”
Gabor occurred as well as its spatial location on the screen
varied randomly across trials. The orientation tilt of the
pop-out Gabor was adjusted using a 2-up 1-down adaptive
staircase procedure (Fleming et al., 2010; Levitt, 1971) de-
signed to result in a convergence on 70% accuracy for indi-
vidual performance. Two consecutive correct responses
resulted in a reduction of the orientation parameter by
one step (0.25°), whereas one incorrect response resulted
in an increase of the orientation parameter by one step.
Following the offset of the second stimulus presentation,
participants made unspeeded 2-choice discriminations as
to whether the pop-out Gabor occurred in either the first
or second stimulus display. Participants then rated their
confidence in the accuracy of their response on a scale of

Figure 1. Experimental paradigm. Participants completed two tasks in a counterbalanced order. (A) Perceptual discrimination task. Each trial
(n = 320) consisted of a visual display of six Gabor gratings, followed by an ISI of 500 msec, followed by a second visual display of six Gabor gratings.
In one of the two displays, the orientation of one randomly selected Gabor patch was tilted slightly from the vertical axis (indicated here with a
dashed circle that was not present in the actual display). The orientation angle of this pop-out Gabor was adjusted using a 2-up 1-down adaptive
staircase procedure. Participants made unspeeded 2-choice discrimination judgments as to whether the “pop-out” Gabor occurred in either the first
or second stimulus display and then rated their confidence in the accuracy of their response on a scale of 1 (low confidence) to 6 (high confidence).
(B) Memory retrieval task. The memory task consisted of a classic verbal recognition memory paradigm. During encoding, participants viewed
160 words randomly selected from a set of 320 words. During recognition, participants were presented with each word from the full list of stimuli
in a random order (half of which were presented during encoding and half of which were new) and were asked to make unspeeded 2-choice
discrimination judgments as to whether the stimulus was old or new and then rated their confidence in their response.

Baird et al. 3
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1 (low confidence) to 6 (high confidence; Fleming et al.,
2010). All responses were made using the number pad
on the keyboard.

The memory task consisted of two phases: encoding
and recognition. Before beginning the encoding phase,
participants were informed that a recognition phase
would follow in which their memory for the presented
words would be tested. During encoding, participants
viewed 160 words randomly selected from the full set
of 320 words presented sequentially in the center of
the screen. Words were displayed for 1500 msec and
were separated by an ISI of 1000 msec in which a fixation
cross was displayed. During recognition, participants
were presented with each word from the full list of
stimuli in a random order (half of which were presented
during encoding and half of which were new) and were
asked to make unspeeded 2-choice discriminations as to
whether the stimulus was old or new. Participants then
rated their confidence in the accuracy of their response
on a scale of 1 (low confidence) to 6 (high confidence).
All responses were made using the number pad on the
keyboard.

Quantification of Metacognitive Ability

Signal detection theory (SDT; Green & Swets, 1966) was
used to compute estimates of metacognitive accuracy,
here quantified as the ability of an individual to discrim-
inate between their own correct and incorrect perceptual
decisions or mnemonic judgments with confidence rat-
ings on a trial-by-trial basis. A primary concern in any
metacognitive (“Type II”) analysis is to separate estimates
of Type II sensitivity from the potential confounding
influence of sensitivity on the primary (“Type I”) task
(e.g., Galvin, Podd, Drga, & Whitmore, 2003). Type II
sensitivity refers to an individualʼs ability to discriminate
between their own correct and incorrect responses,
whereas Type I sensitivity refers to an individualʼs ability
to discriminate between stimulus alternatives (i.e., their
capacity to distinguish old items from new items in a rec-
ognition memory task; Higham, Perfect, & Bruno, 2009;
Clarke, Birdsall, & Tanner, 1959). SDT approaches can
quantify metacognitive accuracy independent of an
observerʼs decision strategy or cognitive ability on the
primary task, which have been shown to confound other
methods of estimating metacognitive ability (Fleming &
Lau, 2014; Maniscalco & Lau, 2012).

Metacognitive accuracy on the perceptual task was
quantified using the computational methods outlined in
Fleming et al. (2010). Because performance on the per-
ceptual task is held constant with an online thresholding
procedure, it is possible to compute a measure of meta-
cognitive accuracy that is unconfounded by Type I per-
formance directly from the empirical Type II receiver
operating characteristic (ROC) curve. The Type II ROC
curve reflects the relationship between the accuracy of
visual discriminations and an observerʼs confidence rat-

ings. To plot the ROC, p(confidence = i | correct) and
p(confidence = i | incorrect) were calculated for each
level of confidence i, transformed into cumulative prob-
abilities and used to construct each x,y point on the
empirical ROC curve (Fleming et al., 2010; Kornbrot,
2006; Galvin et al., 2003). ROC curves were anchored at
[0,0] and [1,1]. The Type II ROC curve thus reflects the
probability of being correct for each level of confidence.
An ROC curve that rises steeply off the diagonal axis
indicates that the likelihood of being correct increases
with increasing confidence level, whereas a flat ROC
along the major diagonal indicates a weak relationship
between confidence and accuracy. When several points
on the Type II ROC are available, an empirical estimate
of the area under the ROC may be obtained, yielding a
nonparametric measure of Type II sensitivity (Kornbrot,
2006). The area under the Type II ROC curve (Aroc) when
performance is held constant provides a robust estimate
of metacognitive discrimination that is independent of
Type I sensitivity. Type I sensitivity (d0) was calculated as
d0 = z(H) − z(FA), where z represents the inverse of the
cumulative normal distribution and H = p(response = 1 |
interval = 1) and FA = p(response = 1 | interval = 2).
Quantification of metacognitive accuracy in the mem-

ory task required a computational approach that explicitly
accounts for Type I performance. A model-based SDT
approach to account for variance in primary task perfor-
mance in the computation of Type II sensitivity has
recently been described and validated (McCurdy et al.,
2013; Maniscalco & Lau, 2012). This method has been
discussed at length elsewhere (Maniscalco & Lau, 2012).
Briefly, the approach exploits the link between Type I and
Type II SDT models to express observed Type II sensi-
tivity at the level of the Type I SDT model (termed
meta d0). Maximum likelihood estimation is used to deter-
mine the parameter values of the Type I SDT model that
provide the best fit to the observed Type II data. A mea-
sure of metacognitive ability that controls for differences
in Type I sensitivity is then calculated by taking the ratio of
meta d0 and the Type I sensitivity parameter d0: Mratio =
meta d0/d0. The most straightforward approach to com-
puting Mratio involves an equal variance SDT model in
which the variances of internal distributions of evidence
for categorizing an item as “old” or “new” in the Type I
model are assumed to be equal. However, this assump-
tion is violated for 2-choice old/new recognition memory
tasks (Mickes, Wixted, & Wais, 2007; Swets, 1986). We
therefore computed Mratio under an unequal variance
SDT model, which uses the slope of the Type I zROC to
infer the ratio of the standard deviations of the Type I
distributions (s) underlying the two response categories
and then holds this parameter constant in the estimation
of Mratio. Type I sensitivity (d0) was calculated as d0 =
z(H ) − z(FA), where z represents the inverse of the
cumulative normal distribution and H = p(response =
old | stimulus = old) and FA = p(response = old |
stimulus = new).

4 Journal of Cognitive Neuroscience Volume X, Number Y
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MRI Acquisition

DSI and T1-weighted anatomical scans were collected on
a 3.0-T Siemens Tim Trio scanner equipped with high-
performance gradients at the University of California,
Santa Barbara Brain Imaging Center. DSI scans sampled
257 directions with a maximum b value of 5000 and an
isotropic voxel size of 2.4 mm (axial acquisition, 1 b0
image, repetition time = 11.4 sec, echo time = 138 msec,
51 slices, field of view = 231 × 231 × 123 mm). Before the
diffusion-weighted scan, a high-resolution T1-weighted
structural image was acquired using an MPRAGE pulse
sequence (repetition time = 2300 msec, echo time =
2.98 msec, flip angle = 9°, field of view = 256 mm, acqui-
sition voxel size = 1 × 1 × 1.1 mm).

DSI Data Processing

DSIdatawere reconstructed inDSI Studio (www.dsi-studio.
labsolver.org) using q-space diffeomorphic reconstruction
(QSDR; Yeh & Tseng, 2011). This technique first non-
linearly spatially normalizes an individualʼs DSI data and
reconstructs spin density functions (SDFs) in standard
space. Normalization was performed by registering indi-
vidual anisotropy maps to the fMRI of the brain (FMIRB)
1 mm template (FSL, Oxford, UK) using a nonlinear regis-
tration implemented in DSI Studio (Ashburner & Friston,
1999). Goodness-of-fit was assessed evaluating the R2 sta-
tistic between the warped image and the template image
(Yeh, Tang, & Tseng, 2013). All participants had R2 above
.6, indicating good registration accuracy. QSDR on DSI
data are able to reconstruct many complex fiber tract
configurations, including crossing fibers. QSDR parameters
were mean diffusion distance of 1.25 mm and three fiber
orientations per voxel.
Deterministic fiber tracking was performed identically

to Cieslak and Grafton (2014) using DSI Studio. The
parameters included an angular cutoff of 55°, step size
of 1.0 mm, minimum length of 10 mm, smoothing of
0.0 mm, maximum length of 400 mm, and a QA threshold
determined by DWI signal in the CSF. Tracking with a
modified FACT algorithm was performed until 100,000
streamlines were reconstructed for each individual.
Streamlines were labeled according to which the pair of
regions in which they terminated. If a streamline did not
intersect a labeled voxel within 5 mm of its endpoint,
then the streamline was not considered for analysis.

Structural (T1) Data Processing

Cortical surface reconstruction was performed on T1
scans using FreeSurfer (Han et al., 2006; Jovicich et al.,
2006; Fischl, Salat, et al., 2004; Fischl, van der Kouwe,
et al., 2004; Segonne et al., 2004; Fischl et al., 2002;
Fischl, Liu, & Dale, 2001; Fischl & Dale, 2000; Dale,
Fischl, & Sereno, 1999; Fischl, Sereno, & Dale, 1999;

Fischl, Sereno, Tootell, & Dale, 1999). Affine transforma-
tion from b0 space to T1 volume was calculated using
Boundary-Based Registration (BBRegister; Greve &
Fischl, 2009). Anatomical scans were segmented using
the connectome mapping toolkit (Hagmann et al., 2008).
The Lausanne 2008 scale 33 (83 regions) atlas was regis-
tered and mapped to the b0 volume from each subjectʼs
DSI data. The b0 to Montreal Neurological Institute (MNI)
voxel mapping produced via QSDR was then used to map
region labels fromnative space toMNI coordinates. Regions
were dilated by 4 mm in each direction to cover the gray/
white matter boundary. Dilation was performed identically
to Cieslak and Grafton (2014).

White Matter Microstructure (Diffusion Anisotropy)
Data Processing

To examine the relationship between metacognitive abil-
ity and white matter microstructure, we computed two
high-resolution measures of diffusion anisotropy from
DSI scans: generalized FA (GFA) and QA. These mea-
sures extend the FA measure from DTI, which has been
used extensively as a measure of white matter micro-
structure, with changes due to either differences of mye-
lination, axonal density, or degree of fiber crossing (e.g.,
Kraus et al., 2007; Kubicki et al., 2005). Lower FA values
indicate that diffusion is more isotropic (i.e., undirected),
whereas higher values indicate that diffusion has a stronger
directional orientation. However, as noted above, FA is
hindered by the substantial limitations of DTI reconstruc-
tion, particularly the partial volume effect (e.g., Barrick &
Clark, 2004). Specifically, estimates of FA are influenced
by the presence of crossing fibers and partial volumes of
other structures/tissues within a voxel such as CSF, which
can lead to inaccurate measures of anisotropy (Vos et al.,
2011; Oouchi et al., 2007; Alexander et al., 2001). GFA
presents an extension of FA to high-angular resolution
diffusion-weighted image that is capable of measuring
anisotropy across multiple diffusion directions (Tuch,
2004). GFA is computed by dividing the standard deviation
by the root mean square of the SDF. It thus reflects a sim-
ilar measure of anisotropy to FA but is generalized across
multiple fiber orientations (Cohen-Adad, Descoteaux, &
Wald, 2011). Unfortunately, GFA is also not totally immune
from the partial volume effect (Yeh, Verstynen, Wang,
Fernández-Miranda, & Tseng, 2013; Fritzsche, Laun,Meinzer,
& Stieltjes, 2010). QA, on the other hand, reflects the aniso-
tropy of the peak orientations of the SDF (Yeh, Wedeen, &
Tseng, 2010). QA is calculated by subtracting the back-
ground isotropic diffusion component from the SDF value
at the resolved fiber orientation (Yeh et al., 2010). In the
current study, we examined QA for the peak fiber orienta-
tion at each voxel. QA is less susceptible to the partial vol-
ume effect, but it is susceptible to other sources of MR
acquisition noise (Yeh, Verstynen, et al., 2013). Each mea-
sure therefore has its relative strengths and both measures
present an extension in high-resolution diffusion-weighted
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imaging to classical FA measures of white matter micro-
structure.

GFA and QA values were computed from QSDR recon-
structed SDFs in MNI space. Because our previous inves-
tigation (Baird et al., 2013) found right lateralization to
neural structures underlying metacognitive ability, we ini-
tially focused our analysis of the relationship between
metacognitive ability and white matter microstructure
in the right hemisphere. To restrict the search volume
to white matter, white matter masks were extracted from
FreeSurfer parcellation, eroded by 1 voxel, and warped to
MNI space using the diffeomorphic mapping computed
from QSDR reconstruction. Masks were then averaged
across participants and thresholded at .9 to produce an
average white matter mask. QA and GFA images were
also smoothed with a 4 mm FWHMGaussian kernel before
group-level analysis.

Statistical Analysis

Statistical analysis was conducted using the general linear
model (GLM) framework implemented in SPM8 (Wellcome
Trust Department of Imaging Neuroscience, University
College London). For both QA and GFA, we performed
voxelwise multiple regression analyses with metacogni-
tive accuracy scores and nuisance covariates for age and
gender. Cluster-size tests were used to test for significant
regions using a cluster-forming threshold of p < .005
and a cluster size threshold of p < .05 (FWE corrected).
Because the assumption of uniform smoothness (station-
arity) is violated for warped structural images, standard
cluster-size tests under random field theory are not valid
(Hayasaka, Phan, Liberzon, Worsley, & Nichols, 2004;
Worsley, Andermann, Koulis, MacDonald, & Evans, 1999).
We therefore applied a nonstationary cluster extent cor-
rection, in which clusters are adjusted according to local
smoothness, using the parametric random field theory
nonstationarity correction implemented in the NS toolbox
(fmri.wfubmc.edu/cms/software#NS). Accounting for
nonstationarity is critical as not performing this correction
can lead to invalid conclusions in analysis of structural
images (Moorhead et al., 2005). Significant clusters are
displayed on FSLʼs FMRIB58_FA_1mm standard template
using MRIcro software (www.cabiatl.com/mricro/mricro/
mricro.html).

RESULTS

Behavioral Results

In a counterbalanceddesign, participants (n=42) completed
a perceptual discrimination task and verbal recognition
memory task in which they made 2-choice discriminations
and then rated their confidence in the accuracy of their
responses on a trial-by-trial basis (Figure 1; McCurdy
et al., 2013; Fleming et al., 2010). The perceptual task was
performed at an individually determined threshold using

a 2-up 1-down adaptive staircase procedure that results in
a convergence on 70% accuracy at the limit for individual
performance (Fleming et al., 2010; Levitt, 1971). Analysis
revealed that performance accuracy was well controlled
by the staircase for all participants (M = 0.707, SD = 0.02,
range = 0.67–0.73). Overall, performance on the memory
task was good and had similar mean accuracy (M = 0.69,
SD = 0.08, range = 0.58–0.93).
A linear mixed model with participant included as a

random effect revealed that RT significantly predicted
confidence at the trial level in both the perceptual deci-
sion task (t = −34.75, p < .001; int = 3.76, estimate =
−0.40) and memory retrieval task (t = −28.45, p < .001;
int = 4.39, estimate = −0.17), indicating that more con-
fident decisions were associated with faster responses.
Overall, mean confidence was higher in the memory re-
trieval task (M= 4.01, SD= 0.59) compared with the per-
ceptual decision task (M = 3.27, SD = 0.96) [t(41) =
5.32, p < .001], which may be attributed to the relative
difficulty of the perceptual task, which was performed at
an individually determined perceptual threshold. Mean
confidence level also showed a significant correlation
within individuals across the two tasks, r(42) = 0.41, p <
.01. Together these results replicate previous findings
(Baird et al., 2013; Fleming, Dolan, et al., 2012; Song
et al., 2011) and suggest that confidence level reflects both
a task-independent general level of confidence particular
to an individual as well as a task-dependent level of confi-
dence an individual has toward performance on a particular
cognitive task.
SDT (Green & Swets, 1966) was used to quantify indi-

vidual differences in metacognitive ability (“Type II sensi-
tivity”); here quantified as the ability to accurately link
confidence with performance (see Quantification Of
Metacognitive Ability). SDT enables computational ap-
proaches to the quantification of Type II sensitivity that is
independent of the potential confounding influence of
Type I sensitivity (d0) on the primary task. Analysis con-
firmed that metacognitive ability in both the perceptual
decision task (Aroc) and recognition memory task (Mratio)
were uncorrelated with Type I performance (Aroc: r(40) =
0.07, p= .67; Mratio: r(40) = −0.29, p = .06). Additionally,
orientation discrimination threshold in the perceptual task
was uncorrelated with perceptual Aroc, r(40) =−0.11, p=
.49, indicating that Aroc estimates were not confounded
with variance in perceptual acuity. SDT estimates of meta-
cognitive ability were thus confirmed to be independent of
variance in primary task performance, allowing for a direct
comparison ofmetacognitive ability across process domains.
Analysis revealed that metacognitive accuracy for percep-
tual decisions (Aroc) and mnemonic judgments (Mratio)
were uncorrelated across individuals, r(40) = 0.15, p =
.34, indicating an intraindividual dissociation in meta-
cognitive ability across process domains (Figure 2). To
ensure that this result was not an artifact of the fact that
metacognitive ability for memory and perception were in
different units (Mratio and Aroc), we calculated Mratio for the
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perceptual discrimination task and correlated it with Mratio

for the memory task. These measures were also uncor-
related across individuals, r(40) = −0.07, p = .64, indicat-
ing that the lack of correlation between perceptual and
mnemonic metacognitive ability in our data cannot be
attributed to differences in the computational approach
or numerical scale between Mratio and Aroc. This result rep-
licates two recent experiments using identical tasks and

behavioral experimental designs (Baird, Mrazek, Phillips,
& Schooler, 2014; Baird et al., 2013). However, given that
this finding is a null result, it nevertheless must be inter-
preted cautiously given the limited statistical power of
each individual experiment. To increase the statistical
power of this test, we therefore aggregated the data
across these multiple studies to create a pooled sample
of 135 participants. Integrated data analysis of this aggre-
gated sample also revealed no correlation between meta-
cognitive ability across memory and perception tasks,
r(133) = 0.05, p = .57.

White Matter Microstructure and
Tractography Results

We next evaluated the relationship between white matter
microstructure (diffusion anisotropy) and metacognitive
ability for memory and perception. As shown in Figure 3A
and Table 1, metacognitive accuracy for perceptual deci-
sions (Aroc) was associated with significantly increased
GFA in the white matter underlying the right ACC ( p <
.05, FWE corrected; voxelwise threshold p < .005). No
suprathreshold clusters were observed between Aroc and
QA. As shown in Figure 3B and Table 1, metacognitive
accuracy for memory retrieval (Mratio) was associated with
increased QA in the white matter extending into the IPL
in the region of the angular gyrus ( p< .05, FWE corrected;

Figure 3. White matter microstructure (diffusion anisotropy) associated with metacognitive ability for memory and perception. (A) Metacognitive
accuracy for perceptual decisions is associated with increased GFA in the white matter underlying the right ACC. (B) Metacognitive accuracy for
memory retrieval is associated with increased QA in the white matter extending into the IPL. All clusters significant at p < .05, FWE corrected
(height threshold, p < .005). Scatterplots show the correlations between metacognitive accuracy scores and median anisotropy values of significant
clusters. R = right; WM = white matter.

Figure 2. Scatterplot of zero-order correlation between metacognitive
ability for perceptual decisions (Aroc) and mnemonic judgments (Mratio)
[r(42) = 0.15, p = .34].
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voxelwise threshold p < .005). No suprathreshold clusters
were observed between Mratio and GFA. Additionally, no
significant regions were observed linking variation in white
matter microstructure in the left hemisphere to either
metacognitive variable, and no significant regions were
observed in which white matter microstructure negatively
correlated with metacognitive ability in either domain.

We followed up this analysis by examining the anatom-
ical connections of IPL and ACC white matter regions. For
each cluster, we collected all streamlines that passed
through the cluster, grouping the tracts according to

the cortical regions they connected (see DSI Data Pro-
cessing). We considered pairs of regions to be connected
through the cluster if greater than 70% of the sample had
streamlines connecting these regions passing through
the cluster. As shown in Figure 4A, results revealed that
ACC white matter cluster connected three pairs of regions:
right anterior superior frontal gyrus (aSFG) to the right
caudal ACC, right aSFG to left aSFG, and right aSFG to left
caudal ACC. As shown in Figure 4B, the IPL white matter
cluster connected 10 pairs of regions: right IPL to right
caudal middle frontal gyrus (MFG), right IPL to right pre-
central gyrus, right IPL to right postcentral gyrus, a within-
area right IPL connection to right supramarginal gyrus, right
IPL to right inferior temporal gyrus, right IPL to middle
temporal gyrus, right IPL to the banks of the STS, right pre-
central gyrus to right inferior temporal gyrus, right pre-
central gyrus to right middle temporal gyrus, and right
supramarginal gyrus to right middle temporal gyrus.

DISCUSSION

Replicating our previous studies (Baird et al., 2013, 2014),
we found that the capacity of an individual to make accu-
rate metacognitive evaluations of perceptual decisions
and memory were uncorrelated, indicating an intraindi-
vidual dissociation in metacognitive ability across domains.
This finding bolsters previous evidence for the notion that
metacognitive skill in one domain may not necessarily
translate to another (David et al., 2012; Metcalfe et al.,
2012; Pannu & Kaszniak, 2005; Schnyer et al., 2004).
Furthermore, our results indicate that metacognitive
accuracy in each domain was related to regional differences
of white matter microstructure. Metacognitive ability in
the perceptual domain was associated with increased

Figure 4. Tractography of
ACC and IPL white matter
regions in a representative
subject. (A) The right ACC white
matter cluster connected the
right aSTG to the right caudal
ACC (orange/red), right aSTG
to left aSTG (turquoise), and
right aSTG to left caudal ACC
(purple). (B) The right IPL
white matter cluster contained
prominent tracts connecting
IPL to MFG (orange/red), IPL
to precentral gyrus (yellow), IPL
to postcentral gyrus (green),
IPL to superior/middle/inferior
temporal lobe (purple), and
within-area connections in IPL
(dark blue) and supramarginal
gyrus (light blue). Images are
displayed in radiological
convention: The left side
of the brain reflects the
right hemisphere.

Table 1. White Matter Microstructure Associated with
Metacognitive Ability in Memory and Perception Domains

Region
Volume
(mm3)

Peak MNI

Z ValueX Y Z

QA

Memory (Mratio)

R IPL white matter 93 42 −48 27 3.85

Perception (Aroc)

No suprathreshold cluster N/A N/A N/A

GFA

Memory (Mratio)

No suprathreshold cluster N/A N/A N/A

Perception (Aroc)

R ACC white matter 78 12 30 33 3.48

All clusters significant at p < .05, FWE corrected (height threshold,
p < .005).
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GFA in the white matter underlying the right ACC, whereas
metacognitive ability in thememory domain was associated
with increased QA in the white matter extending into the
right IPL.1 Together, these results extend previous findings
linking metacognitive ability in the domains of perception
and memory to differences in distinct gray matter volume
(McCurdy et al., 2013) and resting-state functional connec-
tivity (Baird et al., 2013).
Tractography analysis of the right ACC white matter

cluster associated with increased metacognitive ability
on the perceptual task revealed that this region connected
right aPFC (specifically the aSFG) to the right caudal ACC,
right aPFC to left aPFC, and right aPFC to left caudal ACC.
These results overlap with a recent connectivity-based par-
cellation of the human cingulate cortex, which revealed
that this region has prominent anatomical connections to
lateral aPFC, as well as the dorsal striatum (caudate nucleus
and putamen; Beckmann, Johansen-Berg, & Rushworth,
2009). The finding that metacognitive ability on the per-
ceptual discrimination task was linked to increased white
matter anisotropy underlying ACC therefore provides con-
vergent evidence with our recent finding that metacogni-
tive accuracy in this same task is associated with increased
resting-state functional connectivity between lateral aPFC
and the dACC and dorsal striatum (Baird et al., 2013). This
finding also converges with other work linking metacog-
nitive ability in the perceptual domain to the anatomically
adjacent dACC, particularly the observation that lateral
aPFC and dACC show increased activation during metacog-
nitive assessments of visual discriminations and that the
strength of activation in these regions duringmetacognitive
judgments correlates with reported confidence (Fleming,
Dolan, et al., 2012; Fleming, Huijgen, et al., 2012). A previ-
ous DTI study also found a positive association between
perceptual metacognitive ability and FA in the anterior
callosum linking left and right aPFC (Fleming et al., 2010).
Although we did not observe a direct relationship between
metacognitive ability and diffusion anisotropy in the ante-
rior callosum, our tractography analysis revealed that the
significant white matter cluster observed in our study
contains fibers that pass through the anterior callosum
connecting left and right aPFC, consistent with this previous
result.
In the memory domain, we found that the ability to

make accurate metacognitive judgments was associated
with increased diffusion anisotropy in tracts extending
into right IPL in the region near the angular gyrus. This
finding is consistent with a broad range of studies doc-
umenting a primary role of IPL in meta-memory (e.g.,
Elman, Klostermann, Marian, Verstaen, & Shimamura, 2012;
Chua, Schacter, & Sperling, 2009; Chua, Schacter, Rand-
Giovannetti, & Sperling, 2006). For instance, greater activity
in a network including anterior prefrontal, mid/posterior
cingulate, and lateral parietal regions is observed during
memory monitoring in both feeling-of-knowing and retro-
spective confidence tasks (e.g., Chua et al., 2006, 2009).
Moreover, IPL also shows greater activation for high-

confidence hits in meta-memory tasks (Kim & Cabeza,
2007; Wheeler & Buckner, 2004) as well as strong “feeling-
of-knowing” judgments for semantic and episodic infor-
mation (Elman et al., 2012). Finally, patients with parietal
lesions produce fewer high-confidence recognition re-
sponses during retrieval (Simons, Peers, Mazuz, Berryhill,
& Olson, 2010; Davidson et al., 2008). This finding is also
consistent with our recent observation that metacognitive
ability for memory is associated with increased functional
connectivity in a network including medial aPFC, MFG,
and IPL (Baird et al., 2013). Tractography analysis of the
significant IPL white matter cluster revealed that it con-
tained prominent anatomical tracts connecting inferior
parietal regions to the MFG, temporal lobe, and precentral
gyrus, indicating a partial overlap in anatomical and func-
tional networks underlying mnemonic metacognitive skill.

Altogether, the current findings converge with previ-
ous results in support of the proposal that an individualʼs
capacity to accurately reflect on their cognitive processes
is at least partially dependent on the type of cognitive
process they are reflecting upon. Within this context,
one possibility is that metacognitive evaluations in per-
ceptual discrimination tasks primarily involve the capacity
to monitor active representations. This type of meta-
cognition may be best conceived of as an online monitor
that integrates information over short timescales and may
be linked to the related construct of cognitive control
(Fleming&Dolan, 2012; Fernandez-Duque, Baird, & Posner,
2000). Indeed, white matter microstructure in the region of
the anterior cingulate has also been linked to cognitive
control (Metzler-Baddeley et al., 2012), and meta-analysis
of functional imaging studies indicates that the anatomi-
cally adjacent dACC supports key control functions such
as conflict and error detection (Beckmann et al., 2009;
see Ridderinkhof, Ullsperger, Crone, & Nieuwenhuis,
2004, for a review). If metacognitive ability in perceptual
discrimination tasks involves the accessibility of perfor-
mance monitoring information in dACC to a wider network
(Baird et al., 2013; Fleming et al., 2012), then microstruc-
ture in this region should play a key role. The current
results are therefore consistent with a hypothesis put
forward by Fleming and Dolan (2012) and Fleming et al.
(2012) that metacognitive assessment of perceptual dis-
criminations depends on the accessibility of information
pertaining to the monitoring of immediate decisions
(including errors and conflict, encoded in regions such as
the dACC) to aPFC, which governs the transfer that infor-
mation to a global frame of reference for metacognitive
report.

In contrast, accurate metacognitive evaluations of
memory may be understood to involve an appraisal of
information pertaining to the content of memory, such
as assessing the strength of a memory trace (Nelson &
Narens, 1990). As noted above, functional imaging stud-
ies of recognition memory and metamemory frequently
observe activation in IPL alongside activation in the
medial-temporal lobe across a wide array of stimuli and
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test conditions (e.g., Elman et al., 2012; Chua et al., 2006,
2009; Kim & Cabeza, 2007; Wheeler & Buckner, 2004).
Although specifying the precise function of this region
is a topic of active research, at least four different theories
all implicate IPL in some form of coding of information
pertaining to memory or in directing attention to memory
representations (for reviews, see Olson & Berryhill, 2009;
Cabeza, Ciaramelli, Olson, & Moscovitch, 2008; Wagner,
Shannon, Kahn, & Buckner, 2005). For instance, IPL has
been proposed to serve as an accumulator for the strength
of evidence for or against a memory decision (Wagner
et al., 2005) to dynamically represent retrieved informa-
tion as an output buffer (Vilberg & Rugg, 2008; Vilberg,
Moosavi, & Rugg, 2006; Baddeley, 2000) or to support
the subjective experience of the vividness of memories
(Ally, Simons, McKeever, Peers, & Budson, 2008). Accord-
ingly, the finding that increased anisotropy in the white
matter extending into IPL underlies enhanced metacog-
nitive ability for memory may reflect the accessibility of
memory information in IPL in the form of buffered epi-
sodic information, a memory strength signal, or memory
vividness. Further elucidating the functional significance of
this finding will be an important topic for future research.

As noted above, the finding that metacognitive ability
across mnemonic and perceptual tasks did not correlate
across individuals replicates two recent experiments
using identical tasks and behavioral experimental designs
(Baird et al., 2013, 2014). Furthermore, integrative data
analysis of these studies combined with the current data
indicates that the aggregated sample of participants from
these studies (n = 135) also revealed no correlation be-
tween metacognitive ability across domains. Although we
think that these results are clear and convincing, we
nevertheless note that drawing firm conclusions regard-
ing the behavioral stability of metacognitive accuracy
across cognitive domains at the present time would still
be premature. Aside from the current results and the two
studies noted above, which all used identical tasks, only
one other study (McCurdy et al., 2013) has compared
metacognitive ability for perceptual and mnemonic judg-
ments within individuals. As discussed above, the voxel-
based morphometry findings of McCurdy et al. converge
with Baird et al. (2013) and the current study in suggest-
ing that individual differences in metacognitive ability for
perception and memory relate to distinct features of
brain architecture, and offer mutual support for some of
the primary candidate brain regions. However, despite the
dissociation at the neural level, McCurdy et al. reported
a positive correlation between behavioral scores for per-
ceptual and mnemonic metacognitive ability. One pos-
sibility is that this discrepancy could be attributed to
differences between the tasks. For example, the memory
task used in the current experiments involved a longer
retention interval than the task used in McCurdy et al.
Additionally, the memory task used in McCurdy et al. was
a 2-alternative forced-choice (2AFC) task whereas our
experiments have employed a 2-choice old/new discrimi-

nation task, and there are differences between these two
types of memory tests in the recruitment of recollection
(Cook,Marsh, &Hicks, 2005). Therefore, whereasMcCurdy
et al. employed a 2AFC design for both tasks, the current
study used a 2AFC task for the perceptual task and a
2-choice old/new discrimination task for the memory task.
Whether or how this difference in task structure across
cognitive domains impacts individual performance and
thus the stability of metacognitive accuracy across domains
remains unclear. It will therefore be important for future
research to examine the effect of manipulating the type
and uncertainty of the Type I discrimination to observe
whether there are some circumstances that are more
conducive to observing a generalized metacognitive ability.
Additionally, although the present findings and those

of Baird et al. (2013) and McCurdy et al. (2013) call into
question a strict homogeneity of metacognition at the
neural level, it is important to bear in mind that the indi-
vidual differences approach used in these studies iden-
tifies differences that underlie the capacity for accurate
metacognitive assessment rather than a comprehensive
account of the neural processes that contribute to meta-
cognitive judgments. The regional specificity observed in
white matter microstructure, gray matter volume and
functional connectivity identified across these studies
should therefore primarily be regarded to reflect cross-
sectional differences that underlie the capacity for accu-
rate metacognition, rather than an exhaustive account of
the neural processes that contribute to metacognitive
judgments in either domain. Indeed, it remains plausible
that some domain-general regions may be recruited
across different types of metacognitive tasks, a possibility
that is supported by task-based comparisons of confi-
dence judgments in memory and perception tasks using
fMRI (Fleck, Daselaar, Dobbins, & Cabeza, 2006).
In conclusion, the current findings demonstrate that

the ability to make accurate metacognitive evaluations
in perceptual and mnemonic domains relate to regional
differences of white matter microstructure and lend sup-
port to the recent finding that metacognitive ability in
each of these domains is linked to the strength of func-
tional coupling within distinct cortical networks (Baird
et al., 2013). These findings also illustrate how the inves-
tigation of white matter structure with high-resolution
DSI can capture anatomical variation in white matter con-
nection strengths (which may be inaccessible to other
techniques) that are important to higher-order cognitive
functions.

UNCITED REFERENCES

Andrews-Hanna, Reidler, Sepulcre, Poulin, & Buckner, 2010
Buckner, Andrews-Hanna, & Schacter, 2008
Makris et al., 2005
McCaig, Dixon, Keramatian, Liu, & Christoff, 2011
Oishi et al., 2008

10 Journal of Cognitive Neuroscience Volume X, Number Y



Un
co
rre
cte
d
Pr
oo
f

Rushworth, Behrens, & Johansen-Berg, 2006
Schmahmann, Smith, Eichler, & Filley, 2008
Seltzer & Pandya, 1984
Vincent et al., 2006

Acknowledgments

We thank Philip Beach, Mario Mendoza, Michael Mrazek,
and Benjamin Mooneyham for assistance in conducting the
research. We acknowledge support from the Center for Scientific
Computing at the CNSI and MRL: NSF MRSEC (DMR-1121053)
and NSF CNS-0960316. B. B. was supported by a National Science
Foundation Graduate Research Fellowship under Grant DGE-
0707430. This research was supported by a grant from the U.S.
Department of Education (Grant R305A110277) awarded to
J. W. S. The content of this article does not necessarily reflect
the position or policy of the U.S. Government, and no official
endorsement should be inferred.

Reprint requests should be sent to Benjamin Baird, Department
of Psychological and Brain Sciences, University of California,
Santa Barbara, CA 93106-9660, or via e-mail: baird@psych.
ucsb.edu.

Note

1. The finding that metacognitive ability on each task was
related differentially to QA and GFA is not fully understood, and
this differential effect was unexpected. At the current time,
there is insufficient knowledge about the underlying tissue
structure to predict when they will provide the same or
different results. At this point, they are complementary
techniques. Furthermore, given that GFA and QA are suscep-
tible to different sources of MR noise (i.e., receiver gain or B1
inhomogeneity), we cannot rule out that the differential effect
on GFA and QA may be related to differences in the sensitivity
of these measures across different brain regions (Yeh, Verstynen,
et al., 2013).

REFERENCES

Alexander, A. L., Hasan, K. M., Lazar, M., Tsuruda, J. S., &
Parker, D. L. (2001). Analysis of partial volume effects in
diffusion-tensor MRI. Magnetic Resonance in Medicine, 45,
770–780.

Ally, B. A., Simons, J. S., McKeever, J. D., Peers, P. V., & Budson,
A. E. (2008). Parietal contributions to recollection:
Electrophysiological evidence from aging and patients with
parietal lesions. Neuropsychologia, 46, 1800–1812.

Andrews-Hanna, J. R., Reidler, J. S., Sepulcre, J., Poulin, R., &
Buckner, R. L. (2010). Functional-anatomic fractionation of
the brainʼs default network. Neuron, 65, 550–562.

Ashburner, J., & Friston, K. J. (1999). Nonlinear spatial
normalization using basis functions. Human Brain Mapping,
7, 254–266.

Baddeley, A. (2000). The episodic buffer: A new component of
working memory? Trends in Cognitive Sciences, 4, 417–423.

Baird, B., Mrazek, M., Phillips, D. T., & Schooler, J. W. (2014).
Domain-specific enhancement of metacognitive ability
following meditation training. Journal of Experimental
Psychology: General.

Baird, B., Smallwood, J., Gorgolewski, K. J., & Margulies, D. S.
(2013). Medial and lateral networks in anterior prefrontal
cortex support metacognitive ability for memory and
perception. The Journal of Neuroscience, 33, 16657–16665.

Barrick, T. R., & Clark, C. A. (2004). Singularities in diffusion
tensor fields and their relevance in white matter fiber
tractography. Neuroimage, 22, 481–491.

Beckmann, M., Johansen-Berg, H., & Rushworth, M. F. (2009).
Connectivity-based parcellation of human cingulate cortex
and its relation to functional specialization. The Journal of
Neuroscience, 29, 1175–1190.

Brainard, D. H. (1997). The Psychophysics Toolbox. Spatial
Vision, 10, 433–436.

Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008).
The brainʼs default network: Anatomy, function, and
relevance to disease. Annals of the New York Academy of
Sciences, 1124, 1–38.

Cabeza, R., Ciaramelli, E., Olson, I. R., & Moscovitch, M.
(2008). The parietal cortex and episodic memory: An
attentional account. Nature Reviews Neuroscience, 9,
613–625.

Christoff, K., Gordon, A. M., Smallwood, J., Smith, R., &
Schooler, J. W. (2009). Experience sampling during fMRI
reveals default network and executive system contributions
to mind wandering. Proceedings of the National Academy of
Sciences, 106, 8719–8724.

Chua, E. F., Schacter, D. L., Rand-Giovannetti, E., &
Sperling, R. A. (2006). Understanding metamemory:
Neural correlates of the cognitive process and subjective
level of confidence in recognition memory. Neuroimage,
29, 1150–1160.

Chua, E. F., Schacter, D. L., & Sperling, R. A. (2009). Neural
correlates of metamemory: A comparison of feeling-of-
knowing and retrospective confidence judgments. Journal of
Cognitive Neuroscience, 21, 1751–1765.

Cieslak, M., & Grafton, S. T. (2014). Local termination pattern
analysis: A tool for comparing white matter morphology.
Brain Imaging and Behavior, 8, 292–299.

Clarke, F. R., Birdsall, T. G., & Tanner, W. (1959). Two types of
ROC curves and definitions of parameters. The Journal of
the Acoustical Society of America, 31, 629–630.

Cohen-Adad, J., Descoteaux, M., & Wald, L. L. (2011). Quality
assessment of high angular resolution diffusion imaging data
using bootstrap on Q-ball reconstruction. Journal of
Magnetic Resonance Imaging, 33, 1194–1208.

Dale, A. M., Fischl, B., & Sereno, M. I. (1999). Cortical surface-
based analysis. I. Segmentation and surface reconstruction.
Neuroimage, 9, 179–194.

David, A. S., Bedford, N., Wiffen, B., & Gilleen, J. (2012). Failures
of metacognition and lack of insight in neuropsychiatric
disorders. Philosophical Transactions of the Royal Society,
Series B, Biological Sciences, 367, 1379–1390.

Davidson, P. S. R., Anaki, D., Ciaramelli, E., Cohn, M., Kim,
A. S. N., Murphy, K. J., et al. (2008). Does lateral parietal
cortex support episodic memory?: Evidence from focal lesion
patients. Neuropsychologia, 46, 1743–1755.

Elman, J. A., Klostermann, E. C., Marian, D. E., Verstaen, A.,
& Shimamura, A. P. (2012). Neural correlates of
metacognitive monitoring during episodic and semantic
retrieval. Cognitive, Affective & Behavioral Neuroscience,
12, 599–609.

Fernandez-Duque, D., Baird, J. A., & Posner, M. I. (2000).
Executive attention and metacognitive regulation.
Consciousness and Cognition, 9, 288–307.

Fischl, B., & Dale, A. M. (2000). Measuring the thickness of
the human cerebral cortex from magnetic resonance images.
Proceedings of the National Academy of Sciences, U.S.A.,
97, 11050–11055.

Fischl, B., Liu, A., & Dale, A. M. (2001). Automated manifold
surgery: Constructing geometrically accurate and
topologically correct models of the human cerebral cortex.
IEEE Transactions on Medical Imaging, 20, 70–80.

Baird et al. 11



Un
co
rre
cte
d
Pr
oo
f

Fischl, B., Salat, D. H., Busa, E., Albert, M., Dieterich, M.,
Haselgrove, C., et al. (2002). Whole brain segmentation:
Automated labeling of neuroanatomical structures in the
human brain. Neuron, 33, 341–355.

Fischl, B., Salat, D. H., van der Kouwe, A. J., Makris, N.,
Segonne, F., Quinn, B. T., et al. (2004). Sequence-
independent segmentation of magnetic resonance images.
Neuroimage, 23(Suppl. 1), S69–S84.

Fischl, B., Sereno, M. I., & Dale, A. M. (1999). Cortical surface-
based analysis. II: Inflation, flattening, and a surface-based
coordinate system. Neuroimage, 9, 195–207.

Fischl, B., Sereno, M. I., Tootell, R. B., & Dale, A. M. (1999).
High-resolution intersubject averaging and a coordinate
system for the cortical surface. Human Brain Mapping, 8,
272–284.

Fischl, B., van der Kouwe, A., Destrieux, C., Halgren, E.,
Segonne, F., Salat, D. H., et al. (2004). Automatically
parcellating the human cerebral cortex. Cerebral Cortex,
14, 11–22.

Fleck, M. S., Daselaar, S. M., Dobbins, I. G., & Cabeza, R. (2006).
Role of prefrontal and anterior cingulate regions in decision-
making processes shared by memory and nonmemory tasks.
Cerebral Cortex, 16, 1623–1630.

Fleming, S. M., & Dolan, R. J. (2012). The neural basis of
metacognitive ability. Philosophical Transactions of the
Royal Society of London, Series B, Biological Sciences, 367,
1338–1349.

Fleming, S. M., Dolan, R. J., & Frith, C. D. (2012).
Metacognition: Computation, biology and function.
Philosophical Transactions of the Royal Society, Series B,
Biological Sciences, 367, 1280–1286.

Fleming, S. M., Huijgen, J., & Dolan, R. J. (2012). Prefrontal
contributions to metacognition in perceptual decision
making. Journal of Neuroscience, 32, 6117–6125.

Fleming, S. M., & Lau, H. C. (2014). How to measure
metacognition. Frontiers in Human Neuroscience, 8, 443.

Fleming, S. M., Weil, R. S., Nagy, Z., Dolan, R. J., & Rees, G.
(2010). Relating introspective accuracy to individual
differences in brain structure. Science, 329, 1541–1543.

Fritzsche, K. H., Laun, F. B., Meinzer, H.-P., & Stieltjes, B.
(2010). Opportunities and pitfalls in the quantification of
fiber integrity: What can we gain from Q-ball imaging?
Neuroimage, 51, 242–251.

Galvin, S. J., Podd, J. V., Drga, V., & Whitmore, J. (2003). Type 2
tasks in the theory of signal detectability: Discrimination
between correct and incorrect decisions. Psychonomic
Bulletin & Review, 10, 843–876.

Gazzaniga, M. S., & LeDoux, J. E. (1978). The integrated mind.
New York: Plenum.

Green, D. M., & Swets, J. A. (1966). Signal detection theory and
psychophysics. Wiley.

Greve, D. N., & Fischl, B. (2009). Accurate and robust brain
image alignment using boundary-based registration.
Neuroimage, 48, 63.

Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey,
C. J., Wedeen, V. J., et al. (2008). Mapping the structural core
of human cerebral cortex. PLoS Biology, 6, e159.

Hall, L., Johansson, P., Tärning, B., Sikström, S., &
Deutgen, T. (2010). Magic at the marketplace: Choice
blindness for the taste of jam and the smell of tea. Cognition,
117, 54–61.

Han, X., Jovicich, J., Salat, D., van der Kouwe, A., Quinn, B.,
Czanner, S., et al. (2006). Reliability of MRI-derived
measurements of human cerebral cortical thickness: The
effects of field strength, scanner upgrade and manufacturer.
Neuroimage, 32, 180–194.

Hayasaka, S., Phan, K. L., Liberzon, I., Worsley, K. J., & Nichols,
T. E. (2004). Nonstationary cluster-size inference with

random field and permutation methods. Neuroimage, 22,
676–687.

Higham, P. A., Perfect, T. J., & Bruno, D. (2009). Investigating
strength and frequency effects in recognition memory using
type-2 signal detection theory. Journal of Experimental
Psychology: Learning, Memory, and Cognition, 35, 57.

Johansson, P., Hall, L., Sikström, S., & Olsson, A. (2005). Failure
to detect mismatches between intention and outcome in a
simple decision task. Science, 310, 116–119.

Jones, D. K., Knösche, T. R., & Turner, R. (2013). White matter
integrity, fiber count, and other fallacies: The doʼs and donʼts
of diffusion MRI. Neuroimage, 73, 239–254.

Jovicich, J., Czanner, S., Greve, D., Haley, E., van der Kouwe, A.,
Gollub, R., et al. (2006). Reliability in multi-site structural
MRI studies: Effects of gradient non-linearity correction on
phantom and human data. Neuroimage, 30, 436–443.

Kim, H., & Cabeza, R. (2007). Trusting our memories:
Dissociating the neural correlates of confidence in veridical
versus illusory memories. The Journal of Neuroscience, 27,
12190–12197.

Kleiner, M., Brainard, D., Pelli, D., Ingling, A., Murray, R., &
Broussard, C. (2007). Whatʼs new in Psychtoolbox-3.
Perception, 36, 1.1–1.16.

Kornbrot, D. E. (2006). Signal detection theory, the approach of
choice: Model-based and distribution-free measures and
evaluation. Perception & Psychophysics, 68, 393–414.

Kraus, M. F., Susmaras, T., Caughlin, B. P., Walker, C. J.,
Sweeney, J. A., & Little, D. M. (2007). White matter integrity
and cognition in chronic traumatic brain injury: A diffusion
tensor imaging study. Brain, 130, 2508–2519.

Kubicki, M., Park, H., Westin, C., Nestor, P., Mulkern, R.,
Maier, S., et al. (2005). DTI and MTR abnormalities in
schizophrenia: Analysis of white matter integrity. Neuroimage,
26, 1109–1118.

Levitt, H. (1971). Transformed up-down methods in
psychoacoustics. The Journal of the Acoustical Society of
America, 49, 2-467.

Makris, N., Kennedy, D. N., McInerney, S., Sorensen, A. G.,
Wang, R., Caviness, V. S., et al. (2005). Segmentation of
subcomponents within the superior longitudinal fascicle in
humans: A quantitative, in vivo, DT-MRI study. Cerebral
Cortex, 15, 854–869.

Maniscalco, B., & Lau, H. (2012). A signal detection theoretic
approach for estimating metacognitive sensitivity from
confidence ratings. Consciousness and Cognition, 21,
422–430.

McCaig, R. G., Dixon, M., Keramatian, K., Liu, I., & Christoff, K.
(2011). Improved modulation of rostrolateral prefrontal
cortex using real-time fMRI training and meta-cognitive
awareness. Neuroimage, 55, 1298–1305.

McCurdy, L. Y., Maniscalco, B., Metcalfe, J., Liu, K. Y., de Lange,
F. P., & Lau, H. (2013). Anatomical coupling between distinct
metacognitive systems for memory and visual perception.
The Journal of Neuroscience, 33, 1897–1906.

Metcalfe, J., Van Snellenberg, J. X., DeRosse, P., Balsam, P.,
& Malhotra, A. K. (2012). Judgements of agency in
schizophrenia: An impairment in autonoetic metacognition.
Philosophical Transactions of the Royal Society, Series B,
Biological Sciences, 367, 1391–1400.

Metcalfe, J. E., & Shimamura, A. P. (1994). Metacognition:
Knowing about knowing. Cambridge, MA: MIT Press.

Metzler-Baddeley, C., Jones, D. K., Steventon, J., Westacott, L.,
Aggleton, J. P., & OʼSullivan, M. J. (2012). Cingulum
microstructure predicts cognitive control in older age and
mild cognitive impairment. The Journal of Neuroscience, 32,
17612–17619.

Mickes, L., Wixted, J. T., & Wais, P. E. (2007). A direct
test of the unequal-variance signal detection model of

12 Journal of Cognitive Neuroscience Volume X, Number Y



Un
co
rre
cte
d
Pr
oo
f

recognition memory. Psychonomic Bulletin & Review, 14,
858–865.

Moorhead, T. W. J., Job, D. E., Spencer, M. D., Whalley, H. C.,
Johnstone, E. C., & Lawrie, S. M. (2005). Empirical comparison of
maximal voxel and non-isotropic adjusted cluster extent results
in a voxel-based morphometry study of comorbid learning
disability with schizophrenia. Neuroimage, 28, 544–552.

Nelson, T. O., & Narens, L. (1990). Metamemory: A theoretical
framework and new findings. The Psychology of Learning
and Motivation, 26, 125–141.

Nisbett, R. E., & Wilson, T. D. (1977). Telling more than we can
know: Verbal reports on mental processes. Psychological
Review, 84, 231.

Oishi, K., Zilles, K., Amunts, K., Faria, A., Jiang, H., Li, X., et al.
(2008). Human brain white matter atlas: Identification and
assignment of common anatomical structures in superficial
white matter. Neuroimage, 43, 447–457.

Olson, I. R., & Berryhill, M. (2009). Some surprising findings on
the involvement of the parietal lobe in human memory.
Neurobiology of Learning and Memory, 91, 155–165.

Oouchi, H., Yamada, K., Sakai, K., Kizu, O., Kubota, T., Ito, H.,
et al. (2007). Diffusion anisotropy measurement of brain
white matter is affected by voxel size: Underestimation
occurs in areas with crossing fibers. American Journal of
Neuroradiology, 28, 1102–1106.

Overgaard, M., & Sandberg, K. (2012). Kinds of access: Different
methods for report reveal different kinds of metacognitive
access. Philosophical Transactions of the Royal Society,
Series B, Biological Sciences, 367, 1287–1296.

Pannu, J. K., & Kaszniak, A. W. (2005). Metamemory experiments
in neurological populations: A review. Neuropsychology
Review, 15, 105–130.

Ridderinkhof, K. R., Ullsperger, M., Crone, E. A., & Nieuwenhuis,
S. (2004). The role of the medial frontal cortex in cognitive
control. Science Signaling, 306, 443.

Rushworth, M. F., Behrens, T. E., & Johansen-Berg, H. (2006).
Connection patterns distinguish 3 regions of human parietal
cortex. Cerebral Cortex, 16, 1418–1430.

Schmahmann, J. D., Pandya, D. N., Wang, R., Dai, G., DʼArceuil,
H. E., de Crespigny, A. J., et al. (2007). Association fibre
pathways of the brain: Parallel observations from diffusion
spectrum imaging and autoradiography. Brain, 130, 630–653.

Schmahmann, J. D., Smith, E. E., Eichler, F. S., & Filley, C. M.
(2008). Cerebral white matter. Annals of the New York
Academy of Sciences, 1142, 266–309.

Schnyer, D. M., Verfaellie, M., Alexander, M. P., LaFleche, G.,
Nicholls, L., & Kaszniak, A. W. (2004). A role for right medial
prefrontal cortex in accurate feeling-of-knowing judgments:
Evidence from patients with lesions to frontal cortex.
Neuropsychologia, 42, 957–966.

Schooler, J. W., & Schreiber, C. A. (2004). Experience, meta-
consciousness, and the paradox of introspection. Journal of
Consciousness Studies, 11, 7–8.

Schooler, J. W. (2002). Re-representing consciousness:
Dissociations between experience and meta-consciousness.
Trends in Cognitive Sciences, 6, 339–344.

Schooler, J. W., Reichle, E. D., & Halpern, D. V. (2004). Zoning
out while reading: Evidence for dissociations between
experience and metaconsciousness. In Thinking and seeing:
Visual metacognition in adults and children (pp. 203–226).

Schooler, J. W., Smallwood, J., Christoff, K., Handy, T. C.,
Reichle, E. D., & Sayette, M. A. (2011). Meta-awareness,
perceptual decoupling and the wandering mind. Trends in
Cognitive Sciences, 15, 319–326.

Segonne, F., Dale, A. M., Busa, E., Glessner, M., Salat, D., Hahn,
H. K., et al. (2004). A hybrid approach to the skull stripping
problem in MRI. Neuroimage, 22, 1060–1075.

Seltzer, B., & Pandya, D. (1984). Further observations on
parieto-temporal connections in the rhesus monkey.
Experimental Brain Research, 55, 301–312.

Shimamura, A. P. (2000). The role of the prefrontal cortex in
dynamic filtering. Psychobiology, 28, 207–218.

Simons, J. S., Peers, P. V., Mazuz, Y. S., Berryhill, M. E., & Olson,
I. R. (2010). Dissociation between memory accuracy and
memory confidence following bilateral parietal lesions.
Cerebral Cortex, 20, 479–485.

Smallwood, J., McSpadden, M., & Schooler, J. W. (2008). When
attention matters: The curious incident of the wandering
mind. Memory & Cognition, 36, 1144–1150.

Song, C., Kanai, R., Fleming, S. M., Weil, R. S., Schwarzkopf,
D. S., & Rees, G. (2011). Relating inter-individual differences
in metacognitive performance on different perceptual tasks.
Consciousness and Cognition, 20, 1787–1792.

Swets, J. A. (1986). Form of empirical ROCs in discrimination
and diagnostic tasks: Implications for theory and
measurement of performance. Psychol Bull, 99, 181–198.

Terrace, H. S., & Metcalf, J. S. (2004). The missing link in
cognition: Origins of self-reflective consciousness. Oxford
University Press.

Tuch, D. S. (2004). Q-ball imaging. Magnetic Resonance in
Medicine, 52, 1358–1372.

Vilberg, K. L., & Rugg, M. (2008). Memory retrieval and the
parietal cortex: A review of evidence from a dual-process
perspective. Neuropsychologia, 46, 1787.

Vilberg, K. L., Moosavi, R. F., & Rugg, M. D. (2006). The
relationship between electrophysiological correlates of
recollection and amount of information retrieved. Brain
Research, 1122, 161.

Vincent, J. L., Snyder, A. Z., Fox, M. D., Shannon, B. J.,
Andrews, J. R., Raichle, M. E., et al. (2006). Coherent
spontaneous activity identifies a hippocampal-parietal
memory network. Journal of Neurophysiology, 96,
3517–3531.

Vos, S. B., Jones, D. K., Viergever, M. A., & Leemans, A. (2011).
Partial volume effect as a hidden covariate in DTI analyses.
Neuroimage, 55, 1566–1576.

Wagner, A. D., Shannon, B. J., Kahn, I., & Buckner, R. L. (2005).
Parietal lobe contributions to episodic memory retrieval.
Trends in Cognitive Sciences, 9, 445–453.

Wedeen, V. J., Hagmann, P., Tseng, W. Y. I., Reese, T. G.,
& Weisskoff, R. M. (2005). Mapping complex tissue
architecture with diffusion spectrum magnetic resonance
imaging. Magnetic Resonance in Medicine, 54,
1377–1386.

Wheeler, M. E., & Buckner, R. L. (2004). Functional-anatomic
correlates of remembering and knowing. Neuroimage, 21,
1337–1349.

Wilson, M. (1988). MRC Psycholinguistic Database: Machine-
usable dictionary, version 2.00. Behavior Research Methods,
Instruments, & Computers, 20, 6–10.

Worsley, K., Andermann, M., Koulis, T., MacDonald, D., &
Evans, A. (1999). Detecting changes in nonisotropic images.
Human Brain Mapping, 8, 98–101.

Yeh, F. C., Tang, P. F., & Tseng, W. Y. I. (2013). Diffusion MRI
connectometry automatically reveals affected fiber pathways
in individuals with chronic stroke. Neuroimage: Clinical, 2,
912–921.

Yeh, F.-C., Verstynen, T. D., Wang, Y., Fernández-Miranda, J. C.,
& Tseng, W.-Y. I. (2013). Deterministic diffusion fiber
tracking improved by quantitative anisotropy. PloS One, 8,
e80713.

Yeh, F.-C., Wedeen, V. J., & Tseng, W.-Y. (2010). Generalized-
sampling imaging. Medical Imaging, IEEE Transactions on,
29, 1626–1635.

Baird et al. 13



Un
co
rre
cte
d
Pr
oo
f

AUTHOR QUERIES

AUTHOR PLEASE ANSWER ALL QUERIES

During the preparation of your manuscript, the questions listed below arose. Kindly supply the necessary
information.

1. Yeh & Tseng, 2011; Cook, Marsh, & Hicks, 2005, were cited in the body but not in the reference list.
Please check.

2. Please provide volume and page numbers of Baird et al., 2014.
3. Please provide publisher location of Green & Swets, 1966; Terrace & Metcalf, 2004.
4. Please provide publisher name and location of Schooler et al., 2004.
5. Please insert citations of the following references in the body: Andrews-Hanna, Reidler, Sepulcre,

Poulin, & Buckner, 2010; Buckner, Andrews-Hanna, & Schacter, 2008; Makris et al., 2005; McCaig,
Dixon, Keramatian, Liu, & Christoff, 2011; Oishi et al., 2008; Rushworth, Behrens, & Johansen-Berg,
2006; Schmahmann, Smith, Eichler, & Filley, 2008; Seltzer & Pandya, 1984; Vincent et al., 2006.

END OF ALL QUERIES


