Characteristics of male attractiveness for women

D S Maisey, E L Vale, P L Cornelissen, M J Tovée

The finding that body-mass index (BMI weight scaled for height) was the primary determinant of female physical attractiveness—and sparked a lively discussion on the nature of attraction in the national and international media. Columnists have suggested that women’s choice of men cannot be so easily explained. To explore this hypothesis we replicated the experiments on female attractiveness, but substituting male bodies and female raters.

30 female undergraduates (average age 20·6 [SD 1·4]) rated colour pictures of 50 men in front view. For each man we measured their waist-chest ratio (WCR, a measure of upper body shape), their waist-hip ratio (WHR, a measure of lower body shape), and their BMI. To ensure there was an equal range of variation of BMI, WCR, and WHR within the image set, we first measured these characteristics from a sample of 214 young men. We then chose 50 pictures representing a range of SD 1·7 either side of the mean of the distributions of BMI, WCR, and WHR in our sample. The heads of the images were obscured. The images were presented in random order, and the individuals saw the full set of images to familiarise them with the range, before they rated them.

The relationship between attractiveness and BMI, WHR, and WCR is shown in figure A. Simple regression procedures showed that, individually, all three characteristics were significant contributors to attractiveness rating. Multiple-polynomial regression was used to identify the characteristics that were the best predictors of attractiveness while controlling for the age of the images. WCR was the principal determinant of attractiveness and accounted for 56% of the variance; whereas BMI accounted for only 12·7% of the additional variance. WHR was not a significant predictor of attractiveness in the model. The best-fit model is:

\[y = 2·776x - 0·0607 \times x_{-13} \times 0·007 \times x_{-16} - 796 \]

where \(y \) predicted attractiveness, \(x \) is BMI, BMI, and WCR, respectively. The strong correlation of attractiveness with WCR is illustrated in the figure. Even small changes in WCR will significantly alter the attractiveness rating of a male body.

The results show that a woman’s ratings of male attractiveness can be explained by simple physical characteristics, in particular the WCR. However, unlike female physical attractiveness, it is shape that is important for male attractiveness and not size. Women prefer men whose torso has an “inverted triangle” shape (ie, a narrow waist and a broad chest and shoulders). This is a shape consistent with physical strength and muscle development in the upper body. The BMI of the body is comparatively unimportant. By contrast, female attractiveness the BMI accounts for more than 74% of the variance and WCR does not even reach significance. This is unlikely to be the result of differences in the way males and females rate the attractiveness of images, because women rate female bodies in exactly the same way that men do, with BMI as the primary determinant of attractiveness.

Evolutionary psychologists have suggested that a person’s sexual attractiveness is based on cues of reproductive potential. Men have evolved to find optimally attractive women of a particular BMI range that is a good predictor of optimal health and reproductive potential. It seems that the cues to male attractiveness serve a different function. For men, a body shape indicative of physical strength seems to be more important than simple body mass.

This research was funded by grants to M J Tovée from the Strasser Foundation and Newcastle University.

RESEARCH LETTERS

Department of Paediatrics, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK (D B Dunger e-mail: david.dunger@paediatrics.ox.ac.uk); MRC Unit, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK; Unit of Paediatric and Perinatal Epidemiology, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK; and Mothercare Unit of Clinical Genetics and Fetal Medicine, Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK