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Abstract In recent years, the variability of the blood-
oxygen level dependent (BOLD) signal has received atten-
tion as an informative measure in its own right. At the
same time, there has been growing concern regarding the
impact of motion in fMRI, particularly in the domain of
resting state studies. Here, we demonstrate that, not only
does motion (among other confounds) exert an influence on
the results of a BOLD variability analysis of task-related
fMRI data—but, that the exact method used to deal with
this influence has at least as large an effect as the motion
itself. This sensitivity to relatively minor methodological
changes is particularly concerning as studies begin to take
on a more applied bent, and the risk of mischaracterizing the
relationship between BOLD variability and various individ-
ual difference variables (for instance, disease progression)
acquires real-world relevance.

Keywords Individual differences · Correlation analysis ·
FMRI analysis methods · Confound correction

Introduction

As the field of fMRI research has moved beyond simply
characterizing the mean activity associated with the per-
formance of various tasks, the variability of the BOLD
signal has begun to receive greater attention. For instance,
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a series of related studies by Grady and colleagues (Garrett
et al. 2010; 2011; 2012; 2013) have investigated the variabil-
ity of the BOLD timeseries, and the relationship between
variability in different regions and various individual differ-
ence measures. Among the findings reported in this line of
papers: that BOLD variability represents a largely orthog-
onal source of information from BOLD mean, and that
variability shows a reliable relationship with age across a
number of brain regions (Garrett et al. 2010); that overall
BOLD variability seems to correspond with more optimal
task performance (Garrett et al. 2011); and, that BOLD vari-
ability is linked to mental set (e.g., task vs. rest), and the
degree of higher-order variability (i.e., variability of vari-
ability across conditions) is related to task performance
(Garrett et al. 2012).

Other researchers have likewise begun to investigate
BOLD variability as a measure of interest, both as a way to
understand the brain activity underlying particular processes
or tasks, and as a way to investigate changes in the brain
associated with, e.g., aging or disease processes. Several
such investigations have moved beyond simply examin-
ing the variance of the BOLD timeseries. For instance, He
(2011) examines the degree to which the BOLD signal in
different areas follows a power-law in its spectral properties,
and how this relates to task or rest. Using a different method
of characterizing BOLD timeseries variability—namely,
approximate entropy, a measure of signal complexity—Liu
et al. (2013) demonstrate that BOLD signal complexity
decreases with age, and that this decrease is related to
cognitive decline in a group of participants with famil-
ial Alzheimer’s disease. Similarly, Samanez-Larkin et al.
(2010) show that variability in the nucleus accumbens (mea-
sured by mean squared successive difference; see also Mohr
and Nagel 2010) mediates the degree of age-related loss of
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optimality in making risky choices in a financial decision-
making task. Using the same measure, Leo et al. (2012)
report that several brain areas evince greater variability in
blind individuals compared to sighted individuals across
two tactile tasks. Finally, Wutte et al. (2011) report that
variability in the human motion complex (as assessed by fit-
ting a generative model) is associated with discrimination
thresholds in a motion discrimination task.

Interest in BOLD variability has increased exponentially
with the rise in interest in characterizing resting state activ-
ity. In most resting state studies, there is no task structure
that can be used to quantify activity, which has led to
the search for intrinsic markers of meaningful activity (as
opposed to mere noise or background activity). One of the
most widely used of these new measures is the amplitude
of low-frequency fluctuations (ALFF) measure introduced
by Zang et al. (2007), and its close cousin, fractional ALFF
(fALFF; Zou et al. 2008), which compares the power in fre-
quency bands putatively associated with signal against the
full power spectrum. Because the spectral power of a sig-
nal is proportional to its variance, this method is in the same
family as those discussed above, even if it is not always
couched in the same language. It is beyond the scope of
this paper to present the hundreds of results discovered with
these measures, but they have each been associated with
countless individual difference factors.

Concurrently with the rising interest in BOLD signal
variability, the issue of motion-related artifacts has gained
attention as a methodological problem. Although the bulk
of the research into the influence of motion artifacts has
been associated with resting state functional connectivity
(e.g., Power et al. 2012, 2014; Satterthwaite et al. 2012,
2013; Van Dijk et al. 2012), motion artifacts will of course
increase most measures of variability (and generally reduce
data quality; Yan et al. 2013), though using a model-
based approach, as in Wutte et al. (2011), may ameliorate
some of this influence. Although other sources of noise—
including physiological, thermal, measurement error, and so
forth—are also present in fMRI, these are generally less
well-studied and currently more difficult to correct for than
motion.

Moreover, there may be other changes associated with,
for example, aging or disease processes, that trivially influ-
ence variability (see, e.g., Kannurpatti et al 2011). Aging
in particular has been associated with a number of well-
documented changes to factors known to influence the
BOLD signal (see, e.g., Shen et al. 2008, for a summary
on the relationship of many of these factors with BOLD
signal), including reduced glucose metabolism (Knopman
et al. 2014); reduced cerebral metabolic rate of oxygen con-
sumption and cerebral blood flow and increased oxygen

extraction fraction (in most, but not all, of cortex; Aanerud
et al. 2012); and decreased cerebral blood volume (Marchal
et al. 1992).

If a researcher’s goal is simply to develop a biomarker
for detecting processes associated with aging or disease,
then such confounds may be acceptable (in much the same
way that a police department could monitor ice cream
sales, rather than actual reports of crime, to determine how
many officers to put on patrol). However, such confounds
still increase the risk of misinterpretation—for instance, if
some measure is artifactual and scanner-dependent, patients
scanned elsewhere may be misdiagnosed. Moreover, if the
goal is to learn something about the processes or under-
lying neural activity per se, then these confounds might
completely mask the true relationships of interest.

Here, we illustrate these issues in a dataset resembling
many of those used in the studies discussed above: partic-
ipants aged 18–75 were scanned while they performed a
recognition memory task. However, rather than presenting
the empirical results, we instead demonstrate the impact of
a variety of analysis choices, with a focus on attempts to
control for the influence of motion. As should be clear, our
intention was not an exhaustive, quantitative comparison of
every possible method, but rather an illustrative demonstra-
tion of the issue using a small sampling of possible methods
spanning a range of novelty and complexity. In particu-
lar, we examine three approaches for correcting for motion,
representing the methodological cutting-edge (Patel et al.
2014); a variant of the most widely-used approach in the
field (i.e., nuisance regression; Satterthwaite et al. 2013);
and a method common in cognitive psychology more gen-
erally (i.e., partial correlation; Fisher 1924). The empirical
effect we chose to focus on is the relationship between age
and variability, which is among the most studied effects in
the fledgling domain of BOLD variability research (Garrett
et al. 2013).

As expected, subtle changes in preprocessing or analysis
strategy can profoundly change the qualitative story told by
the data—for example, from a map showing only regions of
positive correlation between age and BOLD variability to
one showing only regions of negative correlation. In addi-
tion to this illustrative result, we quantified the impact of
motion and pipeline choice and found that—at the levels of
motion we observed in our sample—the choice of how to
correct for motion can influence the results to at least as
large a degree as motion itself. Although this sort of sen-
sitivity to choices should be familiar to researchers in the
fMRI field (see, e.g., Carp 2012, for an excellent exploration
of this issue from a broader stance), there is an especial need
to respect these issues as fMRI—and BOLD variability in
particular—comes to be increasingly used as a biomarker.
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Methods

Participants

A total of 126 individuals were recruited from the UCSB
and greater Santa Barbara communities. However, due to
technical issues, metal screening issues, claustrophobia, and
attrition, 17 participants were not included in the analyses
presented here. Three age groups were assessed with the
final sample consisting of 37 late adolescents (19 females,
18 males; age: 18 years), 36 young adults (17 females,
19 males; Mage = 28.47 years; age range: 25–33 years),
and 36 older adults (19 females, 17 males; Mage = 67.28
years; age range: 60–75 years). Most participants were
right-handed and native English speakers (one young adult
reported being ambidextrous; one young adult and one older
adult learned English in early childhood). All participants
were free of memory complaints beyond what is common to
other normal individuals in their age range and had a Mini-
Mental State Examination (Folstein et al. 1975) score of
27 or higher. Informed written consent was obtained from
each participant prior to any experimental procedures, all of
which were approved by the University of California, Santa
Barbara Human Subjects Committee.

Procedure

The data presented here come from a two-day study. Day
1 involved behavioral assessments and neuropsychologi-
cal testing and will not be discussed here. All structural
and functional MRI scanning occurred during Day 2. The
functional MRI data were collected during a recognition
memory task involving criterion shifting. Prior to scanning,
participants studied 153 words, presented one at a time at
the center of the screen in white font on a black background
for a duration of 1.5 s, and were instructed to remember as
many of the words as they could, using whatever strategy
they believed would best accomplish that goal.

During the test session, the 153 old/studied words were
intermixed with 153 new (i.e., unstudied) words. The test
session was broken down into three separate tests, each
containing 51 old words and 51 new words. A separate func-
tional MRI scan was acquired during each test. Each test
cycled through alternating blocks of high- and low-target-
probability conditions with 5–7 words in each probability
context (9 high- and 9 low-target-probability contexts per
test). 70.6 % of the words across all high-target-probability
blocks were old, while 29.4 % of the words across all
low-target-probability blocks were old. During test, words
were presented one at a time at the center of the screen.
The font color varied to denote context: blue font for one

target probability context and orange font for the other con-
text (color/probability association counterbalanced across
participants). Word and fixation stimuli (a horizontally cen-
tered crosshair of the same height as the word stimuli and
same color as the current context) were presented sequen-
tially for a duration of 1600 ms, with each word being
separated by 1–4 fixation trials. Participants were instructed
to indicate whether each test word was old or new by using
a two-button response box. They were explicitly informed
that one font color indicated that a word had a 70 % likeli-
hood of being old, while the other font color indicated that
there was a 30 % likelihood, and were encouraged to use
that contextual information to help guide their old/new deci-
sion. Performance results are not the focus of this paper and
will not be discussed here.

fMRI data acquisition

Scans were acquired at the UCSB Brain Imaging Center
using a 3T Siemens TIM Trio MRI system with a standard
12-channel head coil. Foam cushions were placed around
the head to minimize head motion. Stimuli were projected
on a screen behind the participant and were viewable via a
mirror mounted on the head coil. Functional runs consisted
of a T2*-weighted single shot gradient echo, echo-planar
sequence (interleaved, 3 mm thickness, 3 × 3 mm in-plane
resolution) sensitive to BOLD contrast (TR = 1.6 s; TE =
30 ms; FA = 90◦) with generalized autocalibrating partially
parallel acquisitions (GRAPPA). Each volume consisted of
30 slices acquired parallel to the AC-PC plane, although the
angle was slightly adjusted to optimize for frontal acqui-
sition if necessary. A total of 316 volumes were acquired
for each test run, comprising 102 stimulus trials and 214
fixation trials. A high-resolution anatomical image was col-
lected at the beginning of the scanning session for each
participant using an MPRAGE sequence (TR = 2.3 s; TE =
2.98 ms; FA = 9◦; 160 slices; 1.1 mm thickness). In
addition to the functional and high resolution anatomical
scans, diffusion-tensor imaging and resting state scans were
acquired but are not included in the present analysis.

fMRI data analysis

Although our focus here is on the impact of different
analysis choices (in a descriptive, qualitative sense, rather
than a prescriptive, quantitative sense), there were a num-
ber of preprocessing steps common to all of the analysis
pipelines. Below, we describe these common steps, fol-
lowed by each of the analysis variants in turn. In addition
to sharing preprocessing, each of the analyses shares a
common form: after computing voxelwise variability on a
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participant-by-participant basis, these variability measures
were correlated (across participants) with participant age. In
general, the variants were inspired by various attempts to
ameliorate concerns regarding motion, although we include
an uncorrected variant as well, as not all investigations of
variability have attempted to control for motion (or other
noise) effects. An overview of all pipelines is given in
Table 1.

Initial preprocessing

Prior to all analysis pipelines, the functional data from
each functional run were preprocessed separately in FEAT,
including brain extraction, spatial smoothing with a 5 mm-
FWHM Gaussian kernel, motion correction, and grand-
mean intensity normalization. Although this last step is
default (and strongly recommended for the standard gen-
eral linear model analyses for which FEAT was designed),
its multiplicative nature will affect both the mean and vari-
ance of the BOLD data. Therefore, differences in BOLD
grand mean will result in differences in this normalizing
factor, which we refer to as the “GMIN factor”, for Grand
Mean Intensity Normalization factor (it is equal to 10000

µBOLD
).

That is, although the grand mean intensity normalization
carried out by FEAT ensures that all participants’ data have
the same mean after preprocessing, the multiplicative factor
used to achieve this differs, which may influence variabil-
ity; nor does not normalizing guarantee that this problem is
solved, because we do not know whether the phenomenon
driving these differences in mean across participants is also
artifactually affecting variance. To preview our results, we
observed differences in BOLD grand mean across individu-
als; moreover, these differences reliably covaried with age,
a point to which we return in our Discussion.

Following computation of participant-level variability
maps (see below), the maps were always transformed to
standard space; a single transformation matrix was gen-
erated for each functional run per participant (based on
the minimally-preprocessed data), and this matrix was used
by FLIRT for all of the transformations described below
across every pipeline, preventing differences in registration

that might drive any of the differences observed between
pipelines. We chose FLIRT rather than a (possibly more
appropriate) nonlinear method such as FNIRT for simplicity
(and to avoid the debate surrounding nonlinear transforma-
tion methods; Klein et al. 2009).

Minimally processed variants

The first set of pipelines simply used the preprocessed data
just described with no additional denoising. We did carry
out a regression that included only regressors for each of the
context blocks, which we convolved with FEAT’s default
gamma-function HRF, along with temporal derivatives. This
step was taken to remove the contribution of task-driven
variability to our estimates of BOLD variability, akin to the
demeaning done by Garrett et al. (2010). The regression was
run using FEAT, with the additional preprocessing step of
temporal filtering (σ = 50.0 s); the regressors were tempo-
rally filtered to match the data. We took the residuals of this
analysis as the data on which we computed our variability
maps.

To generate these variability maps, we calculated the
standard deviation of the BOLD timeseries in a voxelwise
manner for every functional run for each participant, and
then took an average across functional runs (within partic-
ipants) to generate a single variability map per participant.
After transforming these variability maps into standard MNI
space using FLIRT (12-degree affine transform), we gener-
ated a group-level correlation map by computing voxelwise
(for every voxel with a variability measure for all partic-
ipants) the Spearman correlation between participant age
and variability (pipeline 1a). We converted these ρ values
to z values, and thresholded the resulting map using cluster-
based thresholding with a z threshold of ±2.3 and a cluster
p threshold of 0.05.

In addition to this most minimal pipeline, we examined
two variants that were identical up to the point of corre-
lating variability with age across participants, but deviated
thereafter. We generated the first of these variant correlation
maps (pipeline 1b) by computing the partial Spearman cor-
relation between participant age and variability, partialing

Table 1 Pipeline descriptions
(see text for additional
information)

Pipeline Wavelet denoising Nuisance regression Confounds partialed out

1a No Task only None

1b No Task only GMIN factor

1c No Task only GMIN factor & mean motion

2a No Task & nuisance GMIN factor

2b No Task & nuisance GMIN factor & mean motion

3 Yes Task & nuisance GMIN factor
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out GMIN factor (that is, the average GMIN factor cal-
culated by FEAT across each participant’s three functional
runs). These partial correlation values were again converted
to z values and thresholded as above. The second vari-
ant (pipeline 1c) was identical to the previous except that
the partial Spearman correlation between age and variabil-
ity was calculated by partialing out both GMIN factor and
motion (that is, the average across functional runs of the
“mean relative motion” estimated by FLIRT per functional
run); the resulting map was again converted to z values and
thresholded.

Nuisance regression variants

The next set of pipelines was similar to the above, except
that the preprocessed data were processed further using
a nuisance regression. In particular, the preprocessed data
were regressed on an extended version of the model
described earlier that included motion parameters, mean
CSF signal, and context regressors. The motion parameters
were the six motion parameters returned by FEAT (transla-
tion and rotation) and their temporal derivatives. The CSF
regressor was derived by segmenting each participant’s high
resolution T1 anatomical, thresholding the resulting proba-
bilistic CSF map at 0.9, aligning and reslicing the thresh-
olded map to match each of the participant’s functional runs
(the transformation matrices were generated by register-
ing the anatomical image with each of the mean functional
images using FLIRT with a 7-degree affine transform, and
then these matrices were applied to the thresholded CSF
map using trilinear interpolation), thresholding again at
0.9 (to correct for the fact that some of the larger vox-
els in functional space may have overlapped only partially
with above-threshold voxels in the higher-resolution space),
and calculating the mean timeseries across all remaining
suprathreshold voxels. Although there are many possible
choices for the exact formulation of a nuisance regression
(see, e.g. Satterthwaite et al. 2013), this form was chosen to
match that recommended by Patel et al. (2014), which forms
the basis of our last set of pipelines (see below).

Once again, the residuals from this regression were used
to compute the variability maps, by computing the voxel-
wise standard deviation on the residuals for each functional
run for each participant. As above, the resulting maps were
averaged across functional runs (within participants), and
we generated final age–variability correlation maps in two
ways. For the first (pipeline 2a), we computed the par-
tial correlation between age and variability with GMIN
factor alone partialed out, while for the second (pipeline
2b), we partialed out both GMIN factor and motion (as
described earlier). For each of these, the resulting maps were
converted to z values and thresholded as above.

Wavelet-based variant

For the final pipeline, we used the wavelet-based method of
Patel et al. (2014) to denoise the data. We chose this method
for several reasons: first, as described in their paper, it com-
pares favorably with other means of “despiking” data (e.g.,
using thresholds on DVARS or framewise displacement;
Power et al. 2012; Van Dijk et al. 2012, Satterthwaite 2013);
second, it should be expected to have a more nuanced
impact on variance than wholesale removal of motion TRs
(i.e., because the amplitude of those TRs is reduced to
exactly the mean using a traditional despiking approach,
which removes their influence on the variance completely,
while the amplitude will generally be attenuated but still not
equal to the mean using the wavelet-based approach); and
third, it represents a relatively novel solution to the prob-
lem of motion artifacts, which fulfills our goal of covering
a spectrum of possible methods here. Our major results on
the influence of methodology do not depend critically on the
choice of any particular denoising strategy, including this
one.

To apply the wavelet-based method, the preprocessed
data were entered as a single four-dimensional input directly
into the WaveletDespike function from the BrainWavelet
Toolbox v1.1 with all defaults left unchanged. This func-
tion returns two 4D volumes per input: one representing
signal, the other noise. Using the signal component, we then
carried out nuisance regression per the recommendations
of Patel et al. (2014), as described above, with the addi-
tional inclusion of the convolved task regressors. As before,
we computed the standard deviation across the residuals of
this regression, averaged across functional runs, and finally
computed the age–variability correlation map by comput-
ing the partial correlation between age and variability with
GMIN factor partialed out (pipeline 3a). The resulting map
was converted to z values and thresholded as above.

Quantifying relative effects of motion versus pipeline

It is of course well-established that both motion and pipeline
affect the final result of any analysis (Yan et al. 2013).
However, the relative magnitude of the influence of each
has never been established, at least as it relates to BOLD
variability analyses. We therefore examined the interaction
between motion and pipeline in two ways—within partici-
pants at the level of the participant-specific variability maps
(i.e., prior to computing age–variability maps), and between
participants at the level of the age–variability maps; in both
cases, we examined the unthresholded maps, as thresholding
can exaggerate dissimilarity and is dependent on the choice
of a (somewhat arbitrary) threshold. Each of these analyses
is described further below.
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Within-participants effect of motion

In order to get the cleanest possible estimate of the influence
of motion on the variability maps themselves, we computed
the pairwise similarity of the variability maps from each
pair of functional runs (i.e., run 1 with run 2, run 1 with
run 3, and run 2 with run 3) within participants using η 2

(see, e.g., Cohen et al. 2008, for a definition of this statis-
tic for fMRI SPMs). Because this is within-participants,
many possible sources of noise are eliminated compared to
a between-participants approach. For each pair of functional
runs, we compared the dissimilarity across variability maps
(i.e., 1 − η2) with the difference in mean relative motion
(see above) between the two scans. Note that there are three
sets of variability maps (forming the bases of pipelines 1a–
1c, 2a–2b, and 3, respectively). For each set of variability
maps, we correlated these pairwise variability map dissimi-
larity values against the squared difference in mean relative
motion between scans.

Between-participants effect of motion

Having established the effect of motion on variability maps,
we next sought to determine the impact of motion on our
results at the level of our primary focus—that is, the age–
variability relationship—and to compare this impact with
the impact of the analysis pipelines themselves (indepen-
dent of motion). To this end, we subsetted our sample in
two ways, in order to attempt to isolate the influence of
either pipeline or motion, and calculated the similarity of
the group-level age–variability maps across subsets (again
using η2).

In order to estimate the influence of motion on our
results, we subsetted our data according to each partici-
pant’s mean relative motion—that is, we performed a simple
median split on mean relative motion to form low- and
high-motion groups. In order to maximize the influence
of motion, we computed the similarity between the age–
variability maps derived by pipeline 1a. After computing
the age–variability maps as described above (i.e., correlating
age with variability voxelwise within the subset and con-
verting the resulting correlation coefficients to z values) for
each subset, we calculated the dissimilarity between the two
resulting maps as 1 − η2 for the pair.

In order to estimate the influence of pipeline, indepen-
dent (as much as possible) of motion, we subsetted our
data by ordering participants according to mean relative
motion, and then taking every other participant to be in
one or the other group. Because we have an even num-
ber of participants, we end up with equal-sized groups
that differ only very slightly on mean (across the subset)
motion. Then, we computed age–variability maps using all
of the pipelines described in Table 1; note that because the

partial correlations used in all pipelines except 1a are meant
to be computed using the full range of each confound vari-
able, we first partialed the corresponding confounds out of
the full group (that is, we separately regressed age and the
voxelwise variability across subjects on the relevant set of
confounds, and used the residuals of each of these regres-
sions for subsequent steps). However, rather than comparing
across subsets only within pipeline, we calculated the dis-
similarity (using 1 − η2) between the subsets from every
pair of pipelines—for example, comparing the “even” group
(participants 2, 4, 6, . . . in order of mean relative motion)
from pipeline 1a with the “odd” group (participants 1, 3, 5,
. . . ) from pipeline 1b and vice versa, and so forth for every
pair of pipelines.

Results

Confounds with age

As we described above, there are a number of factors that
influence BOLD variability and covary with age, such that
changes in BOLD variability may in fact reflect the influ-
ence of these confound variables. One of these, participant
motion, has been studied extensively, and is nearly univer-
sally recognized as a potential problem for certain types
of analyses; Fig. 1 shows the relationship between age and
mean relative motion (Spearman’s ρ = 0.51) in our sample.
A second factor is a change in mean BOLD (of course, hold-
ing scanner, sequence, etc. constant) with age; Fig. 2 shows
the relationship between age and GMIN factor (which, as
we described above, is inversely proportional to the BOLD
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Fig. 1 Scatterplot demonstrating the relationship between age and
mean relative motion. The distinct banding on the age axis is due to
the discontinuity in age ranges for our three groups
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Fig. 2 Scatterplot demonstrating the relationship between age and
GMIN factor

grand mean—that is, GMIN factor increases with age, while
BOLD grand mean decreases with age; Spearman’s ρ =
0.43).

Analysis variant results

Below, we present the rendered thresholded maps yielded by
each of the analysis variants described above. As a reminder,
the threshold was held constant, and there were no changes
made to the baseline—that is, all differences are due to the
impact of the choices made in each pipeline.

Figure 3 shows the results obtained with the minimal
pipeline (1a) without partialing out any possible confounds.

Note that there are extensive regions of positive correlation
between age and variability. When GMIN factor is par-
tialed out (pipeline 1b), the resulting map is as shown in
Fig. 4; now, many of the regions that were suprathreshold
in the uncorrected correlation are subthreshold, yielding a
substantially sparser map. However, the most drastic differ-
ence for this pipeline comes when motion is additionally
partialed out (pipeline 1c), resulting in the map shown in
Fig. 5.

When nuisance regression is applied prior to computing
the correlation maps, the results are broadly similar to the
minimal results, particularly when motion is partialed out.
Figure 6 shows the analogous map to Fig. 4, with nuisance
regression and partialing out GMIN factor (pipeline 2a). The
positive regions are very similar between these two, but the
nuisance regression has revealed a set of regions of negative
correlation. Figure 7 likewise shows the nuisance regres-
sion analogue to Fig. 5, partialing out both GMIN factor
and mean relative motion (pipeline 2b). Both figures show
extensive areas of negative correlation, and the differences
between the figures are minimal.

Finally, when wavelet despiking and nuisance regression
are both applied prior to computing the correlation maps,
the results are as shown in Fig. 8. A pattern similar to some
of those observed previously obtains here: Fig. 8 reveals
regions of positive and negative correlation, in line with
Fig. 6.

Effects of motion on within-participant variability maps

There was a strong, significant relationship between the
squared difference in mean relative motion between func-
tional runs and the dissimilarity between the resulting

Fig. 3 Thresholded correlation
map between age and variability
using the minimal processing
pipeline and partialing out no
confounds (pipeline 1a)
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Fig. 4 Thresholded correlation
map between age and variability
using the minimal processing
pipeline with GMIN factor
partialed out (pipeline 1b)

variability maps on a within-participants basis. For the
minimally-processed variability maps (those that were used
in pipelines 1a–1c), the Pearson correlation between the
squared difference in mean relative motion for a pair of
scans and the dissimilarity of the corresponding variability
maps was r = 0.90, p < 0.001 (all p-values calculated
using df s equal to the number of participants to conser-
vatively correct for nonindependence introduced by each
participant having contributed three values); removal of the
highest-leverage participant still resulted in a correlation of
r = 0.72, p < 0.001.

The correlations for the other two sets of variability maps
are similar; for the nuisance-regression variability maps

(used for pipelines 2a–2b), the correlation was r = 0.92,
p < 0.001 (r = 0.78, p < 0.001 with highest-leverage
participant removed), and for the wavelet-based variability
maps (used for pipeline 3), the correlation was r = 0.92,
p < 0.001 (r = 0.75, p < 0.001 with highest-leverage
participant removed).

However, using the correlation coefficient masks some
of the influence of pipeline on the form of the motion–
dissimilarity relationship, in particular the slope and inter-
cept. Therefore, we repeated each of the above using a
simple regression analysis to quantify whether the different
analysis methods in fact changed the influence of motion.
Because we are not adding any regressors, we will not

Fig. 5 Thresholded correlation
map between age and variability
using the minimal processing
pipeline with both GMIN factor
and mean relative motion
partialed out (pipeline 1c)
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Fig. 6 Thresholded correlation
map between age and variability
using the nuisance regression
(but no wavelet despiking)
pipeline with GMIN factor
partialed out (pipeline 2a)

restate the inferential statistics for each of the slope betas
(which will be identical to the corresponding correlation p-
values given above). For the minimal pipeline, the slope
between squared mean relative motion difference (scaled by
100) and dissimilarity was 0.048—that is, every 0.01 unit
change in squared mean relative motion difference results in
an increase in dissimilarity of 0.048—with an intercept of
0.010. For the nuisance-regression pipeline, this slope was
0.038, with an intercept of 0.006; and for the wavelet-based
pipeline, this slope was 0.033, with an intercept of 0.009.

Across the sets of maps, we therefore see that the
strength of the relationship is approximately equal (all r-
values between 0.90 and 0.92, or 0.72 and 0.78 using the
more conservative estimate). However, the slope of this

Fig. 7 Thresholded correlation map between age and variability using
the nuisance regression pipeline with both GMIN factor and mean
relative motion partialed out (pipeline 2b)

relationship—that is, the amount of additional dissimilarity
per unit of additional squared difference in mean motion—
gets progressively shallower across methods, while the
intercept—that is, the dissimilarity between maps with iden-
tical amounts of motion—stays almost constant near 0.01.

Effects of motion and pipeline on age–variability maps

When we split our sample in low- and high-motion sub-
sets, our low-motion subgroup has a mean relative motion
(across the subgroup) of 0.054 (standard deviation = 0.01),
and our high-motion subgroup has a mean of 0.134 (sd
= 0.07), for a difference in mean motion between groups
of 0.080. Using the approach described in the Methods—
that is, separately computing age–variability maps in each
subgroup, then computing the dissimilarity between the
two—we get a dissimilarity of 0.2731. Although we cannot
quantify the impact of differing amounts of motion as we
did for the within-participant analysis, we will use 0.2731
as a benchmark against which to compare the impact of
pipeline.

When we instead split our sample to approximately
match motion, our “odd” subgroup has a mean relative
motion of 0.092 (sd = 0.06), while our “even” subgroup has
a mean of 0.096 (sd = 0.07), indicating that we achieved
our goal (i.e., the group means differ by only 0.004 in
motion). The results of each pairwise dissimilarity com-
putation (averaged across both orderings of the pipeline
pair, i.e., “odd” pipeline A with “even” pipeline B and vice
versa, under the presumption of symmetry) are presented in
Table 2; because the dissimilarity between subgroups within
any given pipeline varies substantially, we also present
“corrected” dissimilarities (above the diagonal), which we
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Fig. 8 Thresholded correlation
map between age and variability
using the wavelet despiking
pipeline with GMIN factor
partialed out (pipeline 3)

generated by subtracting the average within-pipeline dis-
similarity for each pipeline-pair from the between-pipeline
dissimilarity for the pair. This removes the intrinsic dissimi-
larity associated with any particular pipeline and leaves only
the dissimilarity added by comparing across pipelines.

Note that compared to the dissimilarity observed in our
low- vs. high-motion analysis, the between-pipeline dissim-
ilarities range from almost zero to much higher than the
dissimilarity due to motion. Moreover, the within-pipeline
dissimilarity for pipeline 1a (which we used to estimate
dissimilarity in the low- vs. high-motion analysis) is only
0.0271 in our analysis of the effect of pipeline, consistent
with our intuition that a lower motion difference between
groups (0.004 rather than 0.080) should result in lower
dissimilarity.

Discussion

Our results demonstrate several key ideas. Perhaps most
importantly, they reveal that there is some consistent struc-
ture to the patterns in our data. Across the (admittedly finite)

range of variants we tested, there were ensembles of regions
which, when suprathreshold, always evinced either a posi-
tive or negative correlation between variability and age—for
instance, when it appears on a map, precuneus always shows
a negative correlation, and likewise, the subcortical regions
visible on several maps always have a positive correlation.
Therefore, our point is not that there is no underlying truth,
or that our results are so flexible that the endeavor is fruit-
less. However, it is also clear that there is some ambiguity
as to the exact truth.

This second idea, of course, is our broader point. Any
researcher who used one of these pipelines, in ignorance of
the other possible results, might simply accept whichever
map came out at the end. Unfortunately, as demonstrated
above, the qualitative picture of how variability relates to
age depends critically on the exact pipeline used. Some of
the pipelines are more defensible than others, but even two
that on the face seem to have very similar goals and to
be reasonable—e.g., Figs. 7 and 8, which take two differ-
ent approaches to dealing with residual motion artifacts not
corrected by nuisance regression—yield substantially dif-
ferent conclusions. In one case, there is extensive negative

Table 2 Dissimilarity in age–variability maps between pipelines. Values above diagonal (in bold) denote corrected values, while values on
diagonal and below denote uncorrected values; for example, the corrected dissimilarity between pipelines 1a and 1b is .0285, which is equal to
.1410 − .0271+.1980

2 (i.e., the uncorrected between-pipeline dissimilarity minus the average of the within-pipeline dissimilarities)
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correlation between the two variables, with no regions
showing the opposite pattern, while in the other, there is
approximately equal representation of brain areas showing
positive and negative correlations, with much less of the
brain showing any pattern at all.

There are several aspects of the results from our quan-
tification of the relative impacts of motion and pipeline that
are worth highlighting. From the within-participant analy-
ses, perhaps the most striking result is the high degree of
consistency across functional runs in the presence of low
amounts of motion. At the limit of no difference in motion
between the scans, the amount of dissimilarity between vari-
ability maps for all three methods we tested was 0.01 or
below (and roughly equal across methods, suggesting that
none of the methods overcorrects or introduces dissimilarity
in the absence of motion). Granted, this is a very high-level
measure, and any particular area of the brain may in fact be
much less consistent across functional runs, but the whole-
brain pattern within an individual (at the very short delay
interval we used in this study) is markedly stable. Moreover,
motion exerts an extremely reliably influence on dissimilar-
ity, accounting for approximately 52–61 % of the variance
in dissimilarity measures even after removing outliers, cor-
responding to an increase of 0.03–0.05 in dissimilarity for
every increase of 0.01 in squared difference in mean rela-
tive motion. Lastly, the pipelines seem to be at least partially
achieving their goals of ameliorating motion’s influence, as
each successive processing step reduced the slope of that
relationship.

Turning to our analysis of the impact of motion and
pipeline at the level of age–variability maps, we found that
the dissimilarity between the age–variability maps of the
low- and high-motion subsets of our sample was 0.27; nor
was the difference in motion especially larger or smaller
than would be expected in any study that included a cohort
known to have high motion (in our case, older adults): the
two groups differed in mean relative motion by 0.08. On
the one hand, it is encouraging to note (as we pointed out
qualitatively above) that the age–variability maps are still
fairly similar, even when trying to maximize dissimilarity
due to motion. However, the more worrying result is the
dissimilarity between pipelines, when trying to minimize
the influence of motion. There, across pairs of pipelines,
we see corrected dissimilarities ranging between 0.00 and
0.69, with a median corrected dissimilarity of 0.16, and a
range of 0.69 between the most and least dissimilar pairs of
pipelines. In other word, at the levels of motion observed
in our sample, the choice of pipeline exerts a (potentially
substantially) larger impact on the resulting age–variability
maps than motion itself.

One other result that warrants additional attention is
the relationship between GMIN factor and age. It is
often the case that for real-world Gaussian-distributed (or

approximately Gaussian-distributed) variables, changes in
mean are accompanied by changes in variance. When the
BOLD grand mean differs between participants systemat-
ically, any differences in variance may therefore be arti-
factual, such that the grand-mean intensity normalization
corrects for this artifact. However, it may be that such dif-
ferences in variance (even if they accompany differences
in mean) are “true” differences, in which case the multi-
plicative scaling in fact masks the truth. Here, we chose
to perform the normalization, but to partial out the GMIN
factor in most of our analyses. We stress that this phe-
nomenon is distinct from FEAT or use of grand-mean inten-
sity normalization—rather, we observed that mean BOLD
varies with age, and we are simply using the GMIN factor
as a proxy for this phenomenon, to correct for its influ-
ence on variability. However, this effect requires additional
investigation, as it was not the focus of the present study.

Considering that we included only a small sample of
closely related analysis streams, it should be evident that
there is considerable uncertainty regarding what the true
pattern is. The issue is even more complicated when
denoising methods that allow some degree of subjectivity—
e.g., ICA-based denoising with manual selection of noise
components—are included, or if researchers try multiple
analyses and choose the “right” one post hoc, unblind to
the results. For variability analyses in particular, there is the
additional complicating issue of global mean BOLD vary-
ing reliably with age; although we are agnostic to whether
accompanying changes in variability are ephiphenomenal,
this is an effect which, to our knowledge, has not been previ-
ously described, and which should be considered in analyses
of BOLD variability.

It is unlikely that additional analysis steps (e.g., partial
least squares) or different choices of individual covariates
(e.g., behavioral measures rather than age) would amelio-
rate the concerns raised here. That is, the inconsistency we
observe across pipelines does not reflect the exact choices
we made here, in terms of the relationships we investigated,
or the exact measures used to investigate them. Indeed, our
point is that this flexibility is an unavoidable property of
these sorts of analyses, and that researchers should care-
fully consider any choices they make. Moreover, although
we only demonstrated a relationship between mean BOLD
and age here, there may be other variables with which mean
BOLD covaries.

Ultimately, these issues become more important as
research takes on a more applied focus. Although there are
theoretical ramifications to drawing incorrect conclusions—
for instance, whether variability increases with age and
reflects compensatory mechanisms (as suggested in a dif-
ferent modality by, e.g., Cabeza et al. 1997, 2002), or
rather decreases with age and reflects loss of flexibility
(as suggested by, e.g., Garrett et al. 2011)—the stakes are
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higher when these theoretical constructs are appropriated
as biomarkers. If high (or low) variability in some region
is used as an indicator of pathology—and particularly if
the exact method by which that variability is computed
is not applied canonically—the possibility of subjecting
individuals to needless worry or unnecessary treatments
becomes almost a certainty. Therefore, it is critical that
any result considered for applied use be highly robust
and repeatable—which, given the disagreement in the lit-
erature and the inconsistency demonstrated here, BOLD
variability’s relationship with age clearly is not.
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