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Abstract Relatively early in the history of fMRI, research
focused on issues of power and reliability, with an important
line concerning the establishment of optimal procedures for
experimental design in order to maximize the various statisti-
cal properties of such designs. However, in recent years, tasks
wherein events are defined only a posteriori, on the basis of
behavior, have become increasingly common. Although these
designs enable a much wider array of questions to be answered,
they are not amenable to the tight control afforded by designs
with events defined entirely a priori, and little work has
assessed issues of power and reliability in such designs. We
demonstrate how differences in numbers of events—as can
occur with a posteriori event definition—affect reliability, both
through simulation and in real data.

Keywords Neuroimaging . Design and analysis . Statistical
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Recently, a great deal of attention has been paid to statistical
issues in fMRI. Although several reports have focused on the
validity of various results (e.g., Power, Barnes, Snyder,
Schlaggar, & Petersen, 2011; Van Dijk, Sabuncu, & Buckner,
2012), the majority have expressed concerns about the reliabil-
ity of various methods or results (e.g., Carp, 2012; Eklund,
Andersson, Josephson, Johannesson, & Knutsson, 2012; Vul,
Harris, Winkielman, & Pashler, 2009). The reliability of fMRI
itself has a long history of study (e.g., McGonigle, 2012;
McGonigle et al., 2000; Miller et al., 2002). However, in order
to interpret this work, we need to define what we mean by
reliability. Traditionally, the term “reliability” has been used in
reference to a particular scale or measure designed to assess

some trait or phenomenon.1 In contrast, most previous research
on fMRI reliability has focused on the replicability or trust-
worthiness of some particular result. However, our estimate of
reliability depends on factors including the reliability of the
underlying cognitive processes, the degrees of within- and
between-subjects variation in brain activity, the metric that
we use to measure reliability, and myriad other factors distinct
from the reliability of the result per se (Gorgolewski, Storkey,
Bastin, Whittle, & Pernet, 2013).

In the present work, we define reliability as the measured
similarity of a pattern of results obtained under (ideally)
identical conditions;2 although there may be better names
for this property, we use “reliability” because of its historical
use in the field. Although we focus on reliability at the level
of a single run, this will of course impact reliability at higher
levels of analysis as well. Conceptually, it is important to
disambiguate our ability to estimate the replicability of a
result from the true replicability of that result. The former is
affected by concerns such as statistical power or the propor-
tion of activity, whereas the latter is independent of such
factors, a point to which we will return in the Discussion.

For the majority of researchers, reliability is an abstract
ideal—that is, a desirable property, but not one that directly
impacts the interpretation of any given (nonreplication) study.
For such a researcher, the problem is that there is no simple
correspondence between, for example, p values and replicability
(cf. the debate over prep; Killeen, 2005a, 2005b). Therefore, our
goal for these researchers is to provide guidance as to how
representative their results are of the true (unobservable) under-
lying result, under the assumption that results that more faith-
fully capture the truth ought to be more replicable.

1 Of course, the reliability of fMRI has an upper bound as a measure-
ment tool, but this is a property of the physics underlying fMRI.
2 Interpreted at different levels, this definition encompasses several
popular methods of assessing reliability, including the intraclass corre-
lation coefficient (which assesses the stability of a pattern of scores or
statistics across participants), overlap metrics (the degree to which the
same decision regarding the null hypothesis was made on a voxelwise
basis), and correlation (the degree of similarity of the patterns of
relative activity across voxels).
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A smaller subset of researchers are interested in reliability
in a muchmore concrete way—namely, those researchers who
study inter- (or intra-) individual variability (often termed
“individual differences analysis”). Although these researchers
will typically quantify reliability in a different way than we
do here—for instance, by using an intraclass correlation
(Caceres, Hall, Zelaya, Williams, & Mehta, 2009)—the sta-
bility of a result within an individual is an important consid-
eration as well. That is, for these researchers, any result must
be interpreted through the lens of the reliability of their statis-
tical tests. Our goal relative to these researchers is to provide
direct evidence of design factors that might impact their
analyses—and that must be therefore accounted for as nui-
sance factors in these analyses—as well as to point out that
measures of reliability are themselves subject to a degree of
estimation error.

Although much of the recent attention paid to problems
with fMRI reliability has taken the form of a focus on high
false alarm rates, this is only part of the equation in determin-
ing reliability. A number of researchers have previously made
this point: that the reliability of a result depends on statistical
power, as well as on the intrinsic reliability of the phenomenon
being studied, the degree of individual difference, and so forth
(Bennett & Miller, 2010; Gorgolewski et al., 2013). Our
intention is not to dismiss or diminish the seriousness of
inflated false alarm rates; on the contrary, this line of research
is essential to defining good practices for fMRI design and
analysis. Instead, we wish to point out other, more pedestrian
reasons why any particular result may fail to replicate, or more
precisely, why that result may yield low reliability metric
estimates—including a lack of appropriate statistical power
(see also Button et al., 2013).

Although the power of a test is partially determined by
factors beyond the experimenter’s control, over one factor the
experimenter does have some direct, a priori control: namely,
sample size. Previous work has investigated this issue at the
level of the number of scans per functional run and the number
of participants per experiment (Desmond & Glover, 2002;
Mumford&Nichols, 2008), as well as in terms of what number
and spacing of events3 will yield optimal power—among sev-
eral other criteria that researchers may want to optimize—for
different sorts of contrasts or analyses (Dale, 1999; Friston,
Zarahn, Josephs, Henson, & Dale, 1999; Liu & Frank, 2004;
Liu, Frank, Wong, & Buxton, 2001; Wager & Nichols, 2003).

However, it is common in cognitive neuroscientific ex-
periments for events to be defined a posteriori on the basis
of participant behavior, which limits the direct applicability
of much of this work. For instance, consider a standard

recognition memory experiment. During the retrieval phase,
the experimenter can dictate on which repetition times (TRs)
studied or new items occur, but events are frequently de-
fined in the signal detection theoretic framework (Green &
Swets, 1974; Macmillan & Creelman, 2005) as hits, misses,
false alarms, or correct rejections—labels that depend on the
participants’ responses. In these situations, the number of
events of a particular type is stochastic, and imbalances in
the numbers of events (and therefore in event-specific con-
trast power) are almost inevitable.

The relationship between numbers of instances and power
is not one to one. It is not the case, for instance, that the
number of events factors in any direct way in the computation
of degrees of freedom for statistical tests, and when the pop-
ular convolution-based general linear model (GLM) is used in
an analysis (Worsley & Friston, 1995), the number of events
has a nonlinear relationship even with the standard errors of
the estimators. Although it is possible in some situations to
analytically derive solutions for how event imbalances will
affect reliability, our goal is to use simulation and simple
analyses in real data to demonstrate the relationship between
numbers of events and reliability across a range of situations
likely to be encountered by researchers.

Method

In order to demonstrate the effects of varying numbers of
events on reliability, we took two approaches. The first was
a simulation analysis, which we used in place of analytic
derivations in order to make the results accessible to a wider
audience. The second was an analysis on a rich real data set,
comprising multiple repeated measurements within individ-
uals across a year. Because this experiment used a posteriori
event definition, a range of numbers of events occurred for the
different types, which allowed for an investigation of the
impact of event number on reliability in real data. In the
simulations, we focused on a direct contrast between two
events to make the point that the lesser number of events
primarily drives reliability. For the real data, we focused
instead on event-unique contrasts (i.e., vs. baseline) for con-
ceptual simplicity, in order to address other issues that come
with using real data (e.g., how differences in the numbers of
events between runs impact reliability). As an approximation,
the average number of events across classes from the simula-
tion analyses served in a role similar to the average number of
events across sessions from the real-data analyses.

Simulation analysis

Our primary goal in doing the simulations was to establish
estimates for reliability as a function of a number of empiri-
cally observable factors, including the extent of activation (in

3 We will use the terminology “class” or “event type” when referring to
a broad label—for instance, “hits”—and “events” or “instances” when
referring to instantiations of a particular event type—for instance, a
“hit” on some particular TR.
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terms of proportions of active voxels), the signal-to-noise ratio
(SNR), and—our primary focus, due to its being under exper-
imental control to some degree—the number of instances of
events of different classes. We additionally examined the
impact of the underlying stability of the pattern of activity,
which is a factor that is not directly observable empirically, but
that certainly contributes to our estimates of reliability; in fact,
in many instances, this is what reliability analyses are
attempting to measure. We carried out two sets of simulations:
The first (corresponding to the scenario described below) was
meant to establish the relationship between number of events
and reliability under ideal conditions, whereas the second was
designed to demonstrate the impact of differences in underly-
ing stability in more realistic circumstances. Both of these are
described in more detail below.

Our simulations are framed by the following hypothetical
scenario: A researcher has run an experiment comprising
approximately 300 TRs, and being only interested in the
direct contrast, has included 150 instances of each of two
classes of events, per the recommendations of Friston et al.
(1999), although without any constraints on the events’
ordering, maximum stimulus onset asynchrony, or any other
parameter (except that only one event can occur per TR).
However, in this experiment, a participant’s behavior par-
tially determines how each event will be treated during
analysis, in a manner akin to that described above for many
recognition memory experiments. For both the ideal and
realistic simulations, we made the simplifying assumption
that under replication, the exact same number of events
would be observed for each type. Deviations from this
would generally serve to reduce the observed similarity
(see the Results for the real-data analyses).

Generating data

To simulate fMRI data, we used a multivariate extension of the
method described in Mumford, Turner, Ashby, and Poldrack
(2012). Briefly, given N1 events of Class 1 and N2 events of
Class 2, N1 TRs were assigned to Class 1, N2 were assigned to
Class 2, and the remainder (320 – N1 – N2) were blank. In each
voxel, a simulated time course was generated by constructing
a boxcar whose heights for Class 1 TRs were drawn from the
Class 1 distribution (see below), and likewise, Class 2 TRs
had heights drawn from the Class 2 distribution. After con-
volving this boxcar with a double-gamma hemodynamic re-
sponse function (HRF; generated using the FMRIB Software
Library [FSL]), noise distributed as N(0, σ2wn) was added,
generating the final observed time course for that voxel. This
process was repeated independently for each voxel to yield a
full volume of 10,000 voxels. No spatial smoothing was
applied, because the range of SNRs chosen for the simulation
(which, as we discuss below, dictated our choice of σ2wn) was
based on a range observed empirically after spatial smoothing;

applying smoothing to these data would therefore change the
SNR from its intended value.

In order to capture randomness at multiple levels, we
used a two-stage procedure for generating distributions of
boxcar heights: The first stage was used to sample means for
the distributions used at the second stage. To allow for
varying degrees of similarity between two simulated runs,
we used multivariate (specifically, bivariate) distributions, in
which the two dimensions of the variable represented the
two runs and the degree of covariance between the dimen-
sions dictated their similarity. For simplicity in subscripting,
we will use scalar (rather than vector) notation in the fol-
lowing description, except when denoting covariance matri-
ces; note that the procedures are identical and symmetric
with respect to the two runs.

For both sets of simulations, P voxels were designated as
“active” and Q (that is, 10,000 – P) as “inactive.” For both
sets of voxels, the mean of the Class 1 distribution was
distributed as N(0, Σidl), where the covariance matrix Σidl

encodes the within-run (across-voxel) variance of 4 and the
across-run (within-voxel) covariance of 3.2. However, the
Class 2 distribution depended on set membership: Letting
Am denote the sampled value for Class 1 in voxel m, for the
ideal simulations, active voxels had mean Class 2 activity
equal to Am + 3, and inactive voxels to Am. Because we
focused on the contrast between these events, this translated
to contrast values of 3 in active voxels and 0 in inactive
ones. For the realistic simulations, the mean Class 2 activity
within a voxel was distributed probabilistically as Am + N(3,
Σac) in active voxels, where Σac encodes the within-run
variance of 1 and the across-run covariance of σ2sim, and
as Am + N(0, Σinac) in inactive voxels, where Σinac encodes
the within- and across-run variance and covariance of 1 and
0, respectively. Finally, the actual heights of each individual
boxcar were distributed as N(μm,c, 0.5

2), where μm,c denotes
the value drawn from the relevant distribution of means for
voxel m and class c.4

Parametric analysis

As described above, our primary focus was on the impact of
number of events, being the parameter among those whose
impact we investigated that is most directly under experimen-
tal control (even if only imprecisely, due to its dependence on
participant behavior). Therefore, each simulation included
variation across numbers of events, realized by holding all
other elements constant (e.g., specific instantiations of noise,
event onset vectors, and boxcar heights) and repeating

4 The second simulation procedure embodied the Gaussian mixture
model assumption underlying fMRI analysis techniques such as ICA;
the first simulation was an extension of that logic to a noiseless case.
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analyses with numbers of events per class ranging from 10 to
150 (ideal) or 100 (realistic), in steps of size 10.

In addition, we sought to establish the impacts of several other
variables that affect certain measures of reliability—namely,
SNR and the proportion of active voxels. SNR was varied by
choosing different values of the white noise variance σ2wn from
the set {0.52, 12, 22, 42, 82}; the proportion of active voxels P
ranged from 0 to .5, spanning either the entire interval in steps of
.05 (ideal) or only a subset thereof ({.05, .10, .20, .40}, realistic).
Both ranges were chosen to cover the range of values likely to be
encountered by researchers in real data. For each simulation, all
other variables were held constant across changes in the levels of
these two parameters, allowing for an inspection of the impact of
each uniquely.

Lastly, for the ideal simulations, the similarity between the
underlying sample of effect size means was always identical,
but for the realistic simulations, we parametrically varied the
similarity, testing values of σ2sim from the set {0.32, 0.62, 0.92}.
The first set of simulations would give boundary conditions:
These are theoretical upper limits on reliability (i.e., measures
of reliability—the true reliability is perfect) across a range of
parameters. The second set would demonstrate the relationship
between true reliability and estimates of that reliability, and
how this relationship depends on other variables.5

We fully crossed all variables within each simulation type,
and conducted 50 (ideal) or 100 (realistic) simulations. To
measure similarity, we used the Spearman correlation, as well
as the Jaccard overlap, between the two statistical parametric
mappings (SPMs) resulting from analyzing the simulated data
using the standard GLM. For the former, we calculated
Spearman’s rho on the unthresholded t-statistic maps from a
contrast of the two types of events for the two runs (using the
MATLAB Statistics Toolbox). For the latter, we computed the
overlap on the thresholded versions of the same SPMs,
thresholded at p = .05, uncorrected for multiple comparisons.
Under the null hypothesis of no true similarity, Spearman’s rho
should be zero, and the Jaccard overlap with an uncorrected
threshold of p = .05 should be .052/(1 − .052) .= .026.

Real-data analysis

It is always important to establish that the results observed in
simulations hold for real data. The real data that we used for this
purpose here came from a study of recognition memory (the

first part of which was published in Miller, Donovan, Bennett,
Aminoff, & Mayer, 2012). In this study, 12 participants were
tested five times each over the course of a year, undergoing two
encoding and two retrieval scans during each test session—
one pair in each of two imageability conditions—along with
structural and resting-state scans. This data set allowed for the
assessment of a variety of factors contributing to reliability
(Bennett & Miller, 2013), in addition to an investigation of
empirical questions about recognition memory (Turner,
Donovan, & Miller, 2013).

Here, this data set will be used only to establish the rela-
tionship between number of events and reliability. To this end,
we first analyzed each functional run with a standard GLM
analysis using FSL version 4.1. Standard preprocessing, in-
cluding brain extraction, motion correction, spatial smoothing
with a 5-mm full-width-at-half-maximum Gaussian kernel,
high-pass filtering with σ = 50 s, and grand-mean scaling,
was run on each functional scan. The data were then analyzed
using the standard GLM approach, with regressors for subse-
quently remembered or forgotten words (for encoding scans)
or hits, misses, false alarms, and correct rejections (for retriev-
al scans), constructed by convolving a boxcar (with a 1 for any
TR with the corresponding label, and 0 otherwise) with a
model HRF (gamma; phase = 0 s, sigma = 3 s, peak = 6 s),
in addition to the temporal derivatives of each regressor.
Additional nuisance regressors were included for motion pa-
rameters (translation in x, y, z, along with rotations about each
axis) and their temporal derivatives.

Per FSL’s defaults, the data were prewhitened prior to
analysis, and the design matrix was temporally filtered in the
same way as the data. The contrasts of interest were simple
unique-event contrasts for each event type, yielding a total of
12 SPMs per participant per session—two encoding and four
retrieval SPMs in each of the two conditions. These SPMs
were aligned to the high-resolution anatomical image from the
first scanning session for each participant; there was no need
to align to standard space or resample to a resolution other
than the acquisition resolution, because all correlations were
performed for the whole brain (without reference to particular
regions of interest) and within subjects.

Next, we computed the Spearman correlation6 between each
pair of SPMs across sessions but within participants, condi-
tions, and contrasts (see Miller et al., 2012, for related analyses
of inter-, rather than intra-, individual variability in the first
session of this experiment). With ten pairwise combinations

5 Note that due to our simulation method, σsim differed from the
correlation across the entire volume, and unlike those whole-volume
correlations, was independent of the proportion active: The values of
σ2sim only dictated the reliability within active voxels (the covariance
was always zero for inactive voxels), but the active and inactive sets
stayed constant. Therefore, across levels of proportions active (ignor-
ing the trivial value of 0 for a proportion active of 0), the correlations
between the true effect sizes across the entire set of voxels ranged from
.29 to .54 for a nominal σ2sim of .32, from .32 to .75 for σ2sim = .62, and
from .33 to .83 for σ2sim = .92.

6 We used correlations rather than overlap because the former, being
“soft” statistics, are less susceptible to minor errors in alignment.
Specifically, spatial smoothing tends to cause statistics in neighboring
voxels to take on similar values, which means that misalignment would
cause only a small drop in correlations, but where these values fell relative
to a statistical threshold would not be systematically affected by smooth-
ing; thus, misalignment could cause changes in overlap that would be
more sharp than the smooth changes likely to be seen with correlations.
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across the five sessions (per subject, contrast, and condition),
this resulted in a total of 1,440 correlation values. For compar-
ison with the simulation results, we further defined each pair of
scans on the basis of characteristics including SNR, proportion
of activity, and numbers of events. For the last of these, we took
as variables the minimum number of events across the session
pair (denoted by nmin), along with the absolute difference in
numbers of events (ndif). Note that because our simulations
always included the same number of events across replications,
neither of these mapped directly onto the number-of-events
variable from the simulation. However, nmin tends to be the
limiting factor in determining replicability, and as we speculat-
ed above, ndifmight reasonably be expected to impact similarity
(e.g., in active voxels, as the number of events increases, the
mean and variance of the noncentral t from which the observed
t statistic comes will increase as well).

For the other two variables, we had to account for the fact that
unlike in the simulation, in which we could manipulate all of the
variables independently, our estimation procedures for SNR and
proportion active might depend on the number of events. To
correct for this, we did the following: For each unique contrast,
we calculated the alpha level that would result in power equal to
the mean power across all contrasts, assuming equal effect sizes
and noise variances for all contrasts.7 This resulted in alpha
values (after using FSL’s voxelwise correction for multiple com-
parisons) between .0001 and .1360, which we used to set the
whole-brain threshold. Next, individually for each contrast, we
applied that contrast’s threshold and calculated the SNR as the
mean parameter value across suprathreshold voxels, divided by
the mean standard deviation of the residuals for the same voxels
(Mumford et al., 2012). Likewise, the proportion of active voxels
was calculated as the number of suprathreshold voxels divided
by the total number of voxels within the brain mask (as created
by FSL). In order to relate these to the correlation for a given
SPMpair, we took the average of the SNR values for each pair as
the SNR value for that pair, and likewise for the proportion
active. Note that these are both in the same units as in the
simulation, allowing a direct comparison between the two anal-
yses (conditioned on the success of our correction for the
nonindependence between the variables).

Results

Simulation results

The results from the ideal simulation are presented in Fig. 1,
which shows the effects of number of events across different

levels of SNR and proportions of active voxels on reliability,
as measured by Spearman’s rho, in the idealized case in which
the underlying amounts of activity are identical across simu-
lated runs. Figure 2 shows the same results using Jaccard
overlap as the reliability metric. Using our slightly more
realistic simulation methodology yielded the results shown
in Fig. 3, for Spearman’s rho, and Fig. 4, for Jaccard overlap,
with the error bands representing differing levels of underly-
ing reliability. All of the figures demonstrate similar trends—
namely, that the effect of number of events depends on the
proportion of activity as well as on the SNR, such that the
largest effects are seen for relatively higher proportions of
activity and relatively lower levels of SNR. With lower pro-
portions, the differences in numbers of events exert an influ-
ence over less of the volume, and therefore have a muted
effect (although differentially for Spearman’s rho and
Jaccard overlap, as might be expected); as for SNR, the
number of events has almost no effect at high levels, because
the signal is saturated, whereas at low levels, adding increas-
ingly more small events overcomes the noise fairly slowly.

These results are summarized in Table 1 in the form of
average values ofN1 andN2, such that reliability attained 90%
of its eventual maximum, given particular levels of SNR and
proportion active, separately for each of our two simulations.
This is useful because, as is obvious from Figs. 1 and 2,
including additional trials produces diminishing returns, espe-
cially at higher SNRs. Table 1 also highlights the fact that as
SNR improves, the dramatic flattening of the reliability curves
as a function of N1 and N2 observable in Figs. 1 and 2 yields
earlier and earlier points at which these curves reach 90 % of
maximum.

Note, too, that these are mathematically nearly worst-case
scenarios within our simulation framework: That is, because
the path that we traversed in (N1, N2) space maximized
imbalance between the two events (±20 because of our
discrete step size), any value (N1 + N2)/2 = M in Table 1
reflects the reliability attained with N1 near the minimum
possible, given the constraints of M and Ntotal events. In
other words, if Table 1 indicates a N90%ile of 80, this was
calculated with N1 = 10 and N2 = 70; the reliability would be
higher for N1 = N2 = 40, because as is shown in Figs. 1 and
2, the lesser number of events (in a contrast involving two
events) is the primary limiting factor driving reliability, a
point to which we shall return later.

Real-data results

Our attempts to unconfound SNR, proportion active, and
number of events were at least partially successful. The
mean proportion-of-similarity values from each stratum of
SNR belonging to the corresponding stratum of proportions,
or vice versa, ranged from .31 to .52—in other words, the
variables covaried somewhat (the proportions should be

7 The power of a t test depends on the effect size, the noise variance,
the design matrix, and alpha; by assuming equal values for the first two
and using the actual design matrices applied in the analyses for the
third, it was possible to solve for the fourth for a fixed value of 1 – β.
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around .25 by chance, assuming equally sized strata), but
not significantly so (all ps > .07 for binomial tests on shared
proportions). The relationships remaining between nmin and
the other variables were approximately equally strong. The
Spearman correlation values were –.42 between nmin and
SNR, –.34 between nmin and proportion active, and –.17
between nmin and ndif.

8 Moreover, the fact that a range of
values of nmin was represented at each stratum of these vari-
ables allowed for a relatively unbiased investigation of how
the variables interact (i.e., SNR is definitionally independent
of nmin or ndif across the panes of Fig. 6, for example).

The similarities that we observed in our real data, stratified
separately by SNR and proportions of active voxels, are shown
in Figs. 5, 6, 7 and 8. (We decided against simultaneously

stratifying by both variables, due to sample size: Although our
simulations afforded us tens or hundreds of thousands of values
andwere balanced evenly across every combination of variables,
we only had 1,440 correlations for the real data.) Although the
panes showing the highest values for SNR and proportion active
with nmin skew heavily toward pairs with low values (as is shown
in the densities in the lower panels, for the reasons described
above), and so should be treated cautiously, the other three panes
in Figs. 5 and 6 follow the same pattern as for the simulations: no
clear effect of number of events at the lowest levels of SNR or
proportion active, and an increasingly stronger relationship be-
tween the two as SNR or proportion active increases. Note that
the ranges tested in the simulations span a superset of the ranges
seen in our real data—0.375–6.0 for SNR, and 0–.5 for pro-
portions active in simulation, as compared with (using the 5th
and 95th percentiles as robust estimates of range) 1.56–2.31 for
SNR and .01–.96 for proportion active.

No result from the simulations, in which the numbers of
events were always the same across the two sessions, corre-
sponds to that shown in Figs. 7 and 8. However, the result was
as anticipated: Issues of reliability aside, when the numbers of
events in two scans are widely divergent, the resulting SPMs
will tend to be dissimilar, particularly in this case of an upper

8 The last relationship can be understood algebraically: As nmin in-
creases, because there is an upper limit on the total number of events
within a session, the range of possible values for ndif shrinks. For the
first two, the relatively high negative correlations are driven almost
entirely by inflated SNR and proportion active values for session pairs
with small numbers of events; after removing all pairs for which nmin
fell below 20 (336 of the total number of pairs, or roughly 23 % of all
pairs), these correlations dropped dramatically, to –.07 and –.08 for
SNR and proportion active, respectively.

Fig. 1 Effects of signal-to-noise ratio (SNR), proportion active, and number of events on reliability for each of two simulated classes, as measured by
Spearman’s rho, for idealized simulations. Lines show the means, with error bounds of ±1 SD, from across the simulations

620 Cogn Affect Behav Neurosci (2013) 13:615–626



Fig. 2 Effects of signal-to-noise ratio (SNR), proportion active, and number of events on reliability for each of two simulated classes, as measured
by Jaccard overlap, for idealized simulations. Lines show the means, with error bounds of ±1 SD, from across the simulations

Fig. 3 Effects of signal-to-noise ratio (SNR), proportion active, and
number of events on reliability for each of two simulated classes, as
measured by Spearman’s rho, for realistic simulations. Solid lines show

the mean reliabilities given an underlying reliability of .6, and error
bounds show the same given an underlying reliability of .3 (lower) or
.9 (upper)
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limit on the number of events (i.e., a large disparity must result
from one scan having near the maximum number of events,
and the other near the minimum; in the limit of zero power, all
ts will be drawn from the null distribution and will reflect run-
specific—presumably nonreplicable—noise, whereas with
high power, all ts will come from the noncentral t distribution
dictated by the effect size in each particular voxel). Lending
support to this interpretation is the fact that the relationships

between ndif and reliability are almost identical across all
values of SNR and proportion active. In other words, rather
than depending on these variables, the phenomenon reflects a
stable relationship between ndif and reliability, such that higher
values of ndif yield lower estimates of reliability.

Discussion

It is intuitively obvious to most researchers that the reliability
of a result will depend on the number of events available for
deriving that result. However, the exact relationship between
the two—and how this relationship is affected by other factors
such as the SNR or extent of activation—has never been
investigated. This issue has grown in importance with the rise
in popularity of a posteriori event definition, which mitigates
the usefulness of some of the earlier work on “detection
power” and “estimation efficiency.” Our results from both
simulations and real-data analyses confirm that the number
of events has a strong effect on reliability, and that this effect
depends on other factors in a complex way.

Moreover, the results from our analyses of real and simu-
lated data correspond to a relatively high degree. For example,
at similar levels of SNR, both show that reliability depends in
similar ways on the number of events, and likewise, the pro-
portion of activity exerts an influence in both. However, some

Fig. 4 Effects of signal-to-noise ratio (SNR), proportion active, and
number of events on reliability for each of two simulated classes, as
measured by Jaccard overlap, for realistic simulations. Solid lines show

the mean reliabilities given an underlying reliability of .6, and error
bounds show the same given an underlying reliability of .3 (lower) or
.9 (upper)

Table 1 Average Nclass values at which reliability (Spearman’s rho)
reached 90 % of its maximum, conditioned on signal-to-noise ratio and
proportion active (given as ranges; e.g., >.05), separately for the ideal
and realistic simulations

N90%ile

SNR Ideal Realistic
>.05 =.05 Z{.10, .20} =.40

0.375 130 90 90 90

0.75 105 75 75 80

1.5 85 65 65 65

3.0 10 15 20 20

6.0 10 10 10 10

These are within-simulation maxima: The ideal simulation considered
designs with up to 150 events per class, whereas the realistic simula-
tion considered designs with only up to 100 events, so the conditional
maximum levels of reliability differ between the two
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differences are noticeable: Most obviously, the reliabilities
observed in the real data exceed what would be predicted on
the basis of the simulations, given the relatively low propor-
tions of activity that we observed. Although the mean trends
from our real analyses bear a striking resemblance in form to
those from the simulations, the individual pairwise reliability
measures are much more variable, with values ranging from
below –.1 to above .5. These differences may be due to mis-
matches between our simulation assumptions and the real data
or to quirks in the real data.9

In light of these differences, although our results may be
useful as a rough guide to the reliability of a particular result
given the number of events, SNR, and extent of activation,
they should be only a part of such a consideration. Firstly,
both our simulation and real-data results depend on specific
choices—for instance, on how we simulated our data or
what preprocessing steps we applied in the real-data analy-
sis. Moreover, certainly other factors contribute to reliability
(Bennett & Miller, 2010; Gorgolewski et al., 2013), and

although many of these were hopefully subsumed in our
manipulation of SNR, other aspects are certainly specific to
a particular task or contrast. Lastly, reliability measures are
themselves subject to estimation error, so that even if a
contrast perfectly matched the assumptions used in our
simulations, it would be possible to obtain an estimated
reliability above the upper bound that we reported.

These caveats notwithstanding, our results may be useful
in a more qualitative way. For instance, they demonstrate the
idea that the impact of number of events depends on the
SNR and the extent of activity of the measured effect. In
particular, outside of a certain range on these factors, num-
ber of events has almost no impact—or conversely, within a
certain other range, the number of events has a marked
effect (see also Table 1). In our simulations, the impact of
number of events was small for proportions of activity
below roughly .05, and also for SNRs above roughly 3
(although these factors interacted, so that we still found a
noticeable impact for low proportions at low SNRs, and
likewise for high proportions at high SNRs). Our real-data
results were largely in line with these trends, although we
did not observe as wide a range of SNRs or proportions
of activity, and so the predicted pattern could only be
partially confirmed. Likewise, without placing too much
credence in the largely descriptive curves in Figs. 5 and 6,

9 A few obvious possible differences between the two include the
spatial autocorrelation in the real data—which may inflate reliability
measures, or cause our measures of proportions active in the two
situations to have slightly different meanings—and the all-or-none
“active” versus “inactive” nature of the simulation, as opposed to the
gradation that is sure to exist in real data.
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Fig. 5 Upper panels: Effects of the minimum number of events across
a session pair for real data, stratified by proportions active. For this and
all subsequent figures, individual pairwise correlations are shown as

light gray dots; the darker lines give robust loess curves, fit continu-
ously to 20 % of the data. Lower panels: Density estimates showing the
amount of data at each point on the x-axis of each stratum
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the point at which the curves reach 90 % of their maxima
seems to be near the values suggested by Table 1—that
is, ~65 events.

Additionally, our results give an idea as to the magnitude of
the impact of number of events. Although it is hard to quantify
the unique impact of each factor that we investigated, due to
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Fig. 7 Upper panels: Effects of the difference in numbers of events across a session pair for real data, stratified by proportion active. Lower panels:
Density estimates showing the amount of data at each point on the x-axis of each stratum
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Fig. 6 Upper panels: Effects of the minimum number of events across a session pair for real data, stratified by signal-to-noise ratio (SNR). Lower
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their interactions, number of events exerted an influence on
the same order of magnitude as that of SNR or proportion
active (looking in realistic ranges of each variable, and like-
wise holding the others at realistic levels, in our simulations
reliability changed by roughly .5 with a fourfold change in
SNR, by .6 with a tenfold change in proportion active, and by
roughly .4 with a tenfold change in number of events). This
serves both to emphasize the need for the best design
possible and to point out the importance of accounting
for differences in numbers of events when comparing
results. However, researchers should keep in mind that
these are single-run reliabilities; the reliability of any
result at the experiment-wide level will of course de-
pend on the number of runs per participant, the number
of participants, and so forth, as has been described
elsewhere (Mumford & Nichols, 2008).

The results of our real-data analyses reveal additional impact
of the number of events, one which is particularly relevant to
researchers studying individual differences, or to anyone rely-
ing on single-run results: As predicted, Figs. 7 and 8 show that
reliability decreases as a function of the difference in numbers
of events between two scans. Unlike the effect of number of
events above, this effect appears to be largely independent of
proportion of activity and SNR, and somight constitute more of
a general principle to which researchers must always be sensi-
tive. As we discussed in the Results, this phenomenon may be

due here to the fact that a large difference necessarily means
that one run had many events and the other had near zero. In
other words, the difference in the numbers of events per se is
not what matters, but rather, the difference in the two scans in
terms of where they lie on the power function. That is, two
hypothetical scans with 600 and 700 events will probably not
be as different as two scans with 10 and 110. However, our
results do not speak to the exact cause of this effect, so we
merely highlight the issue and recommend that researchers
proceed with caution in such situations.

Given the increasingly common use of a posteriori event
definition, the role played by the number of events under-
lying a result has gained new importance. Researchers can
no longer rely strictly on earlier work guiding experimental
design for achieving certain levels of estimation efficiency
or contrast power. Not only this, but our results demonstrate
that even under ideal conditions, and even with sufficient
numbers of events, the reliability of a single-run-level SPM
may be quite low. Of course, most researchers operate with
group-level results (but cf. Miller et al., 2009, for a discus-
sion of the remarkable amount of dissimilarity possible
between group- and individual-level results), but if one
event is systematically more or less common than another,
these effects on reliability will carry up to the group level.
Therefore, any result, whether or not it is principally
concerned with intra- and interindividual reliability per se,
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Fig. 8 Upper panels: Effects of the difference in numbers of events across a session pair for real data, stratified by signal-to-noise ratio (SNR).
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must be considered through the lens of the number of events
on which that result is based.
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