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A B S T R A C T

As humans age, cognition and behavior change significantly, along with associated brain function and
organization. Aging has been shown to decrease variability in functional magnetic resonance imaging (fMRI)
signals, and to affect the modular organization of human brain function. In this work, we use complex network
analysis to investigate the dynamic community structure of large-scale brain function, asking how evolving
communities interact with known brain systems, and how the dynamics of communities and brain systems are
affected by age. We analyze dynamic networks derived from fMRI scans of 104 human subjects performing a
word memory task, and determine the time-evolving modular structure of these networks by maximizing the
multislice modularity, thereby identifying distinct communities, or sets of brain regions with strong intra-set
functional coherence. To understand how community structure changes over time, we examine the number of
communities as well as the flexibility, or the likelihood that brain regions will switch between communities. We
find a significant positive correlation between age and both these measures: younger subjects tend to have less
fragmented and more coherent communities, and their brain regions tend to change communities less often
during the memory task. We characterize the relationship of community structure to known brain systems by
the recruitment coefficient, or the probability of a brain region being grouped in the same community as other
regions in the same system. We find that regions associated with cingulo-opercular, somatosensory, ventral
attention, and subcortical circuits have a significantly higher recruitment coefficient in younger subjects. This
indicates that the within-system functional coherence of these specific systems during the memory task declines
with age. Such a correspondence does not exist for other systems (e.g. visual and default mode), whose
recruitment coefficients remain relatively uniform across ages. These results confirm that the dynamics of
functional community structure vary with age, and demonstrate methods for investigating how aging
differentially impacts the functional organization of different brain systems.

1. Introduction

Humans experience notable changes in cognitive ability and
behavior as they age, often in situations involving memory encoding,
memory retrieval, and executive control functions (Balota et al., 2000;
Grady and Craik, 2000; Cepeda et al., 2001; West et al., 2002; Treitz
et al., 2007). Over the past few decades, advances in brain imaging have
made it possible to observe and quantify neural changes associated
with advanced age. One of the most widely-reported phenomena
associated with aging is the loss of segregation between neural systems:
many networks become less internally coherent, while at the same time
they become more similar to other networks. This result has been
reported using a number of methodological approaches, including

whole-brain ICA (Onoda et al., 2012), whole-brain parcel-based
functional connectivity methods (Betzel et al., 2014; Chan et al.,
2014; Song et al., 2014; Ferreira et al., 2015; Geerligs et al., 2015) as
well as similar analyses confined to a subset of systems (Grady et al.,
2016; Ng et al., 2016), whole brain voxel-wise analyses (Tomasi and
Volkow, 2012), and seed-based methods (Zhang et al., 2014) (for
reviews, see Dennis and Thompson (2014), Contreras et al. (2015) and
Sala-Llonch et al. (2015)). Moreover, these changes have been tracked
longitudinally within participants (Ng et al., 2016), have been shown to
affect various properties theoretically associated with the efficiency and
efficacy of information processing in the brain (Sala-Llonch et al.,
2014; Gomez-Ramirez et al., 2015), and have been associated with
behavioral effects (Ng et al., 2016; Sala-Llonch et al., 2014).
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Although the dominant change associated with aging is one of
decreased intra-network connectivity and increased inter-network
connectivity, this pattern varies across networks. The loss of intra-
network connectivity is found most consistently in the default mode
network (DMN), even among those studies that consider brainwide
connectivity (Onoda et al., 2012; Tomasi and Volkow, 2012; Wang
et al., 2012; Song et al., 2014; Ferreira et al., 2015; Geerligs et al.,
2015; Ng et al., 2016). Some studies also report similar decreases in
networks associated with higher cognitive functions (Onoda et al.,
2012; Wang et al., 2012; Chan et al., 2014; Geerligs et al., 2015; Ng
et al., 2016). However, other networks consistently show no change, or
even an increase in intra-network connectivity, especially those asso-
ciated with sensory functions (Tomasi and Volkow, 2012; Song et al.,
2014; Geerligs et al., 2015). Similarly, connectivity between the DMN
and other networks tends to increase (or, equivalently, the uniqueness
of the networks decreases) (Ferreira et al., 2015; Ng et al., 2016).

In parallel with this line of research on how the brain's functional
architecture changes with age, a largely separate effort has sought to
extend connectivity methods by accounting for the fact that the brain is
not static (for a review, see Calhoun et al. (2014)). To the contrary, this
work has demonstrated that patterns of connectivity are quite variable
(Gonzalez-Castillo et al., 2014), which can be characterized as con-
stituting a series of transitions between fairly well-defined brain states
(Hansen et al., 2015). It has been proposed that the greatest variability
occurs in regions that serve to connect fairly well-segregated systems
(Zalesky et al., 2014), and that a small set of networks may modulate
the organization across a large number of others (Di and Biswal, 2015).
The time-resolved approach adds yet another dimension for investigat-
ing age-related effects; for example, Qin et al. (2015) report increased
variability in connectivity across networks including DMN and cere-
bellum, and decreased variability between those two and within the
cingulo-opercular network, as a function of age.

Having established these aging-related changes in functional con-
nectivity—along with some general principles of dynamic connectiv-
ity—in the resting state, an obvious next question is how the results
differ during task performance. “Task-free” paradigms dominate
studies of functional connectivity. Incorporating a task could affect
connectivity, including its relationship with age and its dynamics, in a
number of ways. For instance, compensatory strategies employed by
older—but not younger—adults could drive the connectivity profiles of
the two groups even further apart; alternatively, the presence of an
extrinsic input could impose structure on the systems that have become
homogenized in older adults. Indeed, Dubois (2016) demonstrated
widespread changes in the relationship between age and connectivity
across resting and task scans, with the largest effects being a weakening
in the age–connectivity relationship during tasks compared with rest.
Likewise, connectivity between and within networks could change as
participants learn, change strategies, or even simply become fatigued.

For the present study, we used a memory task that incorporated a
strong element of cognitive control. In particular, after studying a list of
items, participants were presented with the studied items, along with
novel (unstudied) items, and instructed to indicate whether each item
was studied or not. Items occurred in one of two contexts: a “liberal”
context indicating that each item in that context was likely to have been
studied (70% of items were studied items) or a “conservative” context
indicating that each item was unlikely to have been studied (30% of
items studied). In the face of imperfect memory evidence, participants
must exert cognitive control—adjusting the criterion they use to
endorse an item as studied—in order to perform well on this task.
Given that the domains of memory and cognitive control are funda-
mental in human cognition, and are associated with changes over the
lifespan (Jacoby et al., 2005), this task is an appealing choice for
studying how the brain's architecture changes with age when not at
rest. Previous results with this task revealed wide individual differences
in adaptability (Aminoff et al., 2012), and implicated a network of
regions including lateral prefrontal and lateral posterior parietal cortex

in performing this task (Aminoff et al., 2015).
Although the brain regions associated with the performance of this

task are well documented, these results are derived from the standard
mass-univariate GLM analysis of BOLD data, and therefore give little
basis for predictions in terms of network-level dynamics. In fact, by
definition, these existing results assume stationarity and consider each
voxel as independent. Even results derived from methods that explicitly
model the spatiotemporal nature of brain activity (e.g., ICA) would
require a theoretical framework in order to define regions of interest in
the context of how network dynamics relate to other factors, such as
age. Thus, there remains a gap in understanding of the neural
processes related to performance of this task on the level of dynamic
interactions between large-scale brain regions and networks. Our
current understanding of these processes, based on existing theories
and results, is specified on a very different level from the target of our
current investigation. Our goal in this work is to apply a data-driven
analysis method to investigate the dynamics of these regions and
networks, which allows us to uncover age-related changes at scales at
which it is difficult to make specific hypotheses based upon existing
literature.

We apply a dynamic community detection method to quantify
several higher-order aspects of task-based functional connectivity and
their dependence on age. This method and other network science
approaches have proved successful in distilling the information in fMRI
data into intuitive, descriptive, and predictive network characteristics
(Bassett et al., 2012; Davison et al., 2015; Siebenhühner et al., 2013;
Bullmore and Sporns, 2012; Bassett et al., 2009, 2011, 2015). While
previous results suggest that static community structure will mean-
ingfully differ on a group level between older and younger adults at rest
(Meunier et al., 2008), we ask whether the dynamic changes in these
communities are affected by age during task-based cognition, and how
such effects vary across individual participants. We quantify the size
and number of functional brain communities, the degree to which
brain regions flexibly switch between communities, and the association
of the community structure with known intrinsic functional connectiv-
ity networks or systems, in order to determine whether these systems
are differentially involved in age-related changes.

2. Materials and methods

2.1. Participants

126 participants were recruited from the UCSB and Santa Barbara
communities and scanned at the UCSB Brain Imaging Center. 22
subjects were not included in this analysis due to technical issues,
metal screening issues, claustrophobia, and attrition. The 104 partici-
pants assessed here came from three separate age groups: 35 adoles-
cents (age 18, 18 female), 34 young adults (ages 25–33, mean age 28.5,
16 female), and 35 older adults (ages 60–75, mean age 67.2, 18
female). All subjects had a history of normal memory ability for their
age, and a Mini-Mental State Examination score of 27 or above (Turner
et al., 2015; Folstein et al., 1975). All subjects gave informed written
consent prior to experimental procedures and were paid for their
participation. All procedures were approved by the University of
California, Santa Barbara Human Subjects Committee.

2.2. Stimuli and procedure

Subjects performed a recognition memory task designed to test
memory for words and to measure how participants strategically use
probabilistic information as a supplemental guide to memory (Aminoff
et al., 2012). During a study session (which occurred inside the
scanner, immediately before beginning scanning), subjects were asked
to memorize a list of 153 common English words. Subjects were then
scanned during three consecutive test sessions, each consisting of 102
trials (each spanning a single TR) in which subjects were shown a word
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and asked to indicate whether they had seen that word in the study
session, interspersed with 214 blank jitter TRs.

The test session word stimulus in each trial was presented with
probabilistic information about the correct response; words of one color
(blue or orange, counterbalanced across subjects) had a 70% probability
of having been presented in the study session, and words of the other
color a 30% probability. These probability contexts were presented in a
blocked fashion, such that the probability context changed every 5–7
trials. Half of the trials in each functional run (51 words) were studied,
while the other half were unstudied. A schematic of the task design is
shown in Fig. 1 (Aminoff et al., 2012). For more information on the
details of the procedure, see Ref. Turner et al. (2015).

2.3. Imaging acquisition and preprocessing

Subjects were scanned with a 3T Siemens TIM Trio MRI system
with a standard 12-channel head coil. Functional data were collected
with a T2*-weighted echo-planar sequence (30 interleaved slices, 3 mm
thickness, 3 × 3 mm in-plane resolution; TR=1.6 s; TE=30 ms; FA=90)
with generalized autocalibrating partially parallel acquisitions
(GRAPPA). A high-resolution anatomical image was collected at the
beginning of the scanning session for each participant using an
MPRAGE sequence (TR=2.3 s; TE =2.98 ms; FA=9°; 160 slices;
1.1 mm thickness). Additionally, diffusion-tensor imaging and resting
state fMRI scans were acquired but are not considered further here.

The data were preprocessed using FEAT v6.0, part of FSL
Jenkinson et al., 2012. Preprocessing included motion correction with
MCFLIRT, non-brain removal with BET, spatial smoothing
(FWHM=5 mm), high-pass temporal filtering (σ=50 s), and grand
mean intensity normalization. The mean relative motion across all
TRs, averaged across functional runs, was also recorded for each
subject. It has previously been established that motion varies reliably
with age (Turner et al., 2015), so all subsequent analyses are conducted
with mean motion partialed out.

The data were then processed further using a nuisance regression
with the following regressors: the six relative motion correction terms
returned by MCFLIRT, their temporal derivatives, and the mean signal
timecourse from cerebrospinal fluid (generated by segmenting the high
resolution T1 image, thresholding the CSF probability image at 0.9, and
taking an average over all in-mask voxels). The model also included
regressors for each probability context block, which were modeled as a
boxcar of duration equal to the context, convolved with an HRF
(gamma model, phase=0 s, standard deviation=3 s, mean lag=6 s),
plus temporal derivatives. To generate the final denoised data, we took
the residuals of this model with respect only to the motion and CSF
regressors. Finally, the denoised data were registered to MNI space
using FLIRT. First, the high resolution T1 image was registered to the
MNI template (12 df affine transformation), then the functional data
were registered with the high resolution image (6 df affine transforma-
tion, trilinear interpolation), and the transformations were combined.

2.4. Creating dynamic brain networks

In order to investigate the large-scale network structure of brain
activity, a dynamic network was constructed separately from each
subject's measured functional activity. Each network is defined as
containing n nodes, treated as constant over time. Here these nodes
consist of the n=194 regions of a “hybrid” anatomical atlas, an
adaptation of the multi-resolution Lausanne2008 atlas minimizing
cross-brain and inter-subject variability in region size (Davison et al.,
2015; Hagmann et al., 2008). This atlas was registered to MNI space.
Node-specific time series from each functional run were generated for
each node by averaging the time series of all voxels within the node
(Davison et al., 2015).

Each network has e n n= ( − 1)/2 edges, each with a real-valued,
non-negative connection weight that may change dynamically over
time, taking on a new value in each of T sequential time windows
spanning the experiment. The weight of an edge between nodes i and j
in a given time window l, denoted Aijl, is defined as the mean low-
frequency (0.06–0.125 Hz) wavelet coherence between the BOLD time
series of i and j within time window t Grinsted et al., 2004. Edge
weights are always valued in [0, 1]. In this study, we investigate two
separate time window sizes. We focus primarily on windows containing
52 time samples (18 windows in total), with each window representing
approximately 80 s or 1.3 min. We also analyze for comparison the
results from more temporally coarse-grained windows containing 316
time samples (3 windows in total), with each window representing
approximately 500 s or 8.4 minutes, the length of a single functional
run of the experiment. Note that these window sizes are both
significantly longer than individual trials (each of which contains one
word stimulus and one decision, and lasts for approximately 2 s), as
well as blocks of trials belonging to each of the two probability
conditions (which contain about six trials each and are approximately
12 s long); we make this choice in order to ensure that each window
contains sufficient time sampling statistics to provide a reliable
estimate of the coherence or edge weight within that window
(Davison et al., 2015; Bassett et al., 2015, 2011).

2.5. Detecting dynamic community structure

To study the time-evolving modular structure of these networks, we
identify distinct communities, or sets of brain regions with strong
intra-set functional coherence, and quantify how these communities
change over time. For each subject's dynamic network, a community
partition is determined by maximizing the multislice modularity Q, a
function indicating the quality of the modular structure of a given
partition of the network, in comparison to that expected of a
randomized “null” network (Mucha et al., 2010). The multislice
modularity of a network partition is given by

∑Q
μ

A γ P δ ω δ δ g g= 1
2

{( − ) + } ( , ).
ijlr

ijl l ijl lr jlr ij il jr
(1)

Here, the Kronecker delta δ g g( , )il jr is equal to 1 when the community
assignment of node i in window l (gil) is the same as the community
assignment of node j in window r (gjr); otherwise, it takes a value of 0.
Aijl is the edge weight between nodes i and j in time window l, as
defined above; Pijl is the corresponding edge weight in the null
network, with a spatial resolution factor γl determining the relative
weight of the null model within in each time window (see Section 2.1 of
Appendix for details). Thus, the first term in brackets provides a
positive contribution to Q, for each pair of nodes assigned the same
community in the same time window, proportional to the difference
between the actual edge weight between the pair and that in the
weighted null model. The second term in the brackets includes a time
resolution factor ωjlr for each node j and each pair of time windows l
and r (see Section 2.1 of Appendix for details). This term provides a

Fig. 1. Memory task structure. A schematic depiction of the word memory task design.
During a study session, subjects study a list of common words. They are then scanned
during the study session, in which they are shown a new set of words and asked to decide
whether each word has been seen before in the study session. Words in the test session
are colored to provide probabilistic information about their likelihood of having been
seen in the study session.
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positive contribution of ω to Q, for each node j and each pair of time
windows l and r, when j is assigned to the same community in both
time windows. μ is a normalizing factor given by μ κ= ∑ ,jl jl

1
2 where

κ c k= +jl jl jl, c ω ωT= ∑ =jl r jlr , and k A= ∑jl i ijl, or the weighted
degree of node j in time window l (Mucha et al., 2010).

This multislice modularity is larger for community partitions that
group together nodes with comparatively strong pairwise edge weights
(as compared to the null network) within each window, and that group
more nodes in the same community as themselves across multiple time
windows. In this study we use the Newman-Girvan null model, in

which P =ijl
k k

m2
il jl

l
and m A2 = ∑l ij ijl; this commonly used choice of null

model treats the measured edge weights as randomly distributed
within each window while preserving the node degree distribution.
We maximize Q over partitions with a Louvain-like locally greedy
algorithm (Mucha et al., 2010; Blondel et al., 2008). Due to the
stochasticity of the algorithm and the expected high degeneracy of
solutions near the maximum value of Q, we use a community
consensus procedure to distill a statistically representative partition
from an ensemble of 100 solutions (Bassett et al., 2013).

2.6. Brain network community structure diagnostics

2.6.1. Basic community structure
We use several measures to quantitatively describe the dynamic

community structure of each network, and to compare subjects' net-
works to each other.

The first set of metrics involves the number of distinct communities
in a subject's brain network. The number of dynamic communities is
evaluated over the entire dynamic network, and counts each commu-
nity that appears in at least one time window. Communities which
stretch over several time windows, but are associated together under
the same community label, are counted as only one dynamic commu-
nity. (Note that the community detection algorithm automatically
identifies communities in each window with those that have similar
membership in other time windows, and assigns them the same label;
this self-identification is enforced to an extent controlled by the
strength of the inter-window coupling parameter ω). In contrast, the
number of static communities is evaluated within each time window
separately, counting each distinct, dynamically detected community
appearing within that time window once, regardless of whether that
community spans multiple time windows. Because communities may
appear or disappear between windows, the dynamic community
number and the static community numbers need not be equivalent.

The flexibility f of a node i within a network is defined as the number
of times that node switches communities between all distinct pairs of
time windows, normalized by the total possible number of switches:

∑f i
T T

δ g g( ) = 1
( − 1)

[1 − ( , )].
t t

it it
≠ ′

′
(2)

Here, t and t′ both run from 1 to T, the total number of time windows;
δ g g( , )it it′ equals 1 if node i is assigned to the same community in time
window t and time window t′, and 0 otherwise. A node with high
flexibility changes communities in every or nearly every time window and
has a flexibility at or near 1, while a node with low flexibility may remain
in the same community in all windows and have a flexibility of 0. We
further define the community flexibility as the mean flexibility of all
nodes in a particular community.

This method of computing “categorical” flexibility compares nodes
between every possible pair of time windows, in contrast to “time-
ordered” flexibility, which compares only time-adjacent windows.
While many applications of categorical flexibility are used to compare
communities across categories or tasks, we use categorical flexibility
here to emphasize the consistency of nodes across long time windows
which are statistically identical in terms of task design (for 500-s
windows) or nearly so (for 80-s windows), without an assumed change

in brain dynamics over time in the experiment. All results reported in
this work are essentially unchanged when using time-ordered flexibility
(see Section 2.2 of the Appendix).

2.6.2. Comparing communities to functional systems
To understand how the community structure of this data corre-

sponds to known functional brain systems, we compare the community
partitions to a basic functional system partition of the nodes. Based on
the primary functional roles of different anatomical brain areas as
reported in the literature, and as detailed in Gu et al. (2014) and
Bassett et al. (2014), each node is assigned to one of ten functional
systems: auditory, cingulo-opercular, default mode, dorsal attention,
fronto-parietal, somatosensory, subcortical, ventral attention, visual,
and other. These systems have been distilled using a network-based
clustering approach (Power et al., 2011) and used to describe and
quantify system-specific functional interactions in the brain (Power
et al., 2013; Cole et al., 2013, 2014). The relationship of these
functional systems to the community structure is described by the
following quantitative metrics.

The recruitment coefficient of a given node is a measure of the
consistency with which that node is grouped in the same community as
other nodes within its own functional brain system. It is given by

∑R i
n s

P i j δ s s( ) = 1
( ) − 1

( , ) ( , ),
i j i

i j
≠ (3)

where δ s s( , )i j equals 1 if the system of node i (denoted si) and the
system of node j (denoted sj) are the same, and 0 otherwise;
n s δ s s( ) = ∑ ( , )i j i j , or the number of nodes in system si; and P i j( , ) is
the frequency with which node i and node j are grouped in the same
community (Gu et al., 2014; Bassett et al., 2014). Specifically, P i j( , ) is
computed as the observed proportion of instances (i.e. time windows or
modularity-optimizing partitions) in which i and j are placed in the
same community.

We further define the self-recruitment Ψ of a given system S as the
average recruitment coefficient of all nodes in the system, given by

∑Ψ S
n S n S

P i j δ s S δ s S( ) = 1
( )( ( ) − 1)

( , ) ( , ) ( , ).
ij i j

i j
, ≠ (4)

This measures the extent to which nodes in system S are cohesively
grouped together in the same community (Gu et al., 2014; Bassett
et al., 2014).

Fig. 2. Memory task performance measures. Distributions of d-prime and criterion shift
scores for N=104 subjects. These measures characterize overall accuracy and the extent
to which subjects switched strategies between probability contexts, respectively. Subjects
are colored by age: blue indicates adolescents (age 18), green young adults (ages 25–33),
and red older adults (ages 60–75). There is no apparent correlation between these
measures (Pearson's r = −0.060, p > 0.1).
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2.6.3. Correcting for mean relative motion
As mentioned above, subject age is correlated with mean relative

motion in these data (Spearman's ρ = 0.48, p = 1.80 × 10−6), as found
previously in ref. Turner et al. (2015). Thus, all subject-wise correla-
tions presented here are performed with mean relative subject motion
partialed out – i.e., each correlation variable was first regressed
separately on mean relative motion, and we assessed the correlation
between the residuals of these regressions, to ascertain the extent of
their relationship that could not be explained by motion. Since subject
age is significantly correlated with mean relative motion, it is possible
that motion also affects the correspondence measures of community
dynamics and age, and potentially other performance and demographic
measures as well, due to the broad and non-uniform distribution of
ages in our sample. Section 2.5 of the Appendix provides further details
on the results of this correction.

3. Results

In this section, we present the characteristics of dynamic commu-
nity structure within individuals, and evaluate their correspondence
with age and recognition memory performance.

For assessing correlations with age throughout this section, we use
the Spearman rank correlation, due to the non-continuity and non-
uniformity of the ages in our subject sample. However, we use the
Pearson correlation for assessing correlations with all performance
measures, which are continuously and approximately normally dis-
tributed. We partial out mean relative motion from all subject-wise
correlations, as discussed in Methods, and apply a Bonferroni correc-
tion for multiple comparisons on the set of overall and system-specific
correlations for each pair of measures (e.g. age and flexibility, age and
community number, criterion shift score and flexibility, etc.).

3.1. Word memory performance

We examine two behavioral measures of performance on the word
memory task: d-prime, an indicator of overall accuracy on all memory
trials; and criterion shift score, which describes the extent to which
subjects change their response strategies in the face of probabilistic
information about the correct responses (Aminoff et al., 2012). A more
positive criterion shift score indicates that the subject made a
comparatively large shift from a liberal to a conservative strategy when
responding to high- and low-probability targets, respectively. A more
negative criterion shift score indicates the opposite strategy shift (from
conservative responses on high-probability targets to liberal responses
on low-probability targets). Very few subjects displayed this objectively
worse strategy. A criterion shift score of 0 indicates no strategy
difference between high- and low-probability targets. We find that
among all subjects in this study, the d-prime and criterion shift scores
are approximately normally distributed, and they are not significantly
correlated with each other (Fig. 2). In addition, neither measure shows
any significant correlation with subject age Turner et al., 2015. Upon
exclusion of two apparent outliers in Fig. 2, these results and the
significance of other task performance correlations reported in the
paper are not affected (see Section 2.4 of Appendix for details).

Fig. 3. Number of communities. Color indicates the number of communities detected
within each 80-s time window in each subject. Subjects (on the vertical axis) are ordered
by age. Notable individual differences exist between subjects, but community number
changes comparatively little over the course of the experiment within individual subjects.

Fig. 4. Community size distributions. A and B show histograms of community sizes within individual time windows, for the observed data and averaged over 100 null networks,
respectively. Values are plotted individually for each subject, each represented by one color. The inset shows the data in A restricted to the same axes as B for comparison. C and D show
histograms of the sizes of dynamic communities across the whole experiment, also comparing observed data (C) to an average over 100 null networks (D). Community sizes tend to be
larger at maximum and to be distributed much more evenly in functional brain networks than in randomized null models.
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3.2. Functional communities in the brain

We focus primarily on the dynamic community structure of
individual functional brain networks composed of time windows
containing 52 time samples each. The experiment contains a total of
18 such time windows; each window represents functional connectivity
within an approximately 80-s period. Community dynamics on time
scales between 60 and 200 s provide relatively fine time resolution
while retaining sufficient time sampling statistics within each window,
and have been shown to contain relevant information about brain
function in previous studies (Davison et al., 2015; Bassett et al., 2015,
2011). The 80-s windows used here are significantly longer than
individual trials (approximately 2 s each) or blocks of trials sharing
the same probability condition (approximately 12 s each). While they
cannot resolve functional dynamics related to a specific word or
probability condition, these windows are expected to capture the
cognitive control and memory processes that are active over the course
of several strategy blocks in the task.

For comparison, we also investigate the community dynamics of
networks composed of much longer time windows, each containing 316
time samples and corresponding to one functional run of the experi-

ment. The time windows in these networks capture dynamics over a
longer time scale, with each window representing approximately 500 s
or 8.4 min of brain activity, and a total of only three windows across the
experiment. The results in these 500-s networks are in general
qualitatively similar to results from 80-s networks, although the
correspondences between demographics or performance measures
and community dynamics are often much weaker. This suggests that
shorter (80-s) time windows resolve the relevant dynamics better than
longer windows. The shorter time windows are also somewhat closer in
length to the timescales of cognitive function demanded by the task
setup (although still not identical or aligned with blocks of probability
context or other specific task features). Therefore, in this Results
section we focus on networks with 80-s time windows, except where
explicitly noted. Results from 500-s time windows are presented in
Section 1 of the Appendix.

3.2.1. Number and size of communities
Fig. 3 shows the number of static communities identified in each

80-s time window of the functional brain networks during the memory
task in each subject. (Here “static communities” refers to the number of
distinct, dynamically detected communities present in a single given
time window, while “dynamic communities” counts the total number of
communities identified by dynamic community detection in all time
windows.) For almost all subjects, the number of static communities
remains fairly stable across time windows, and the number of dynamic
communities is only slightly larger than the number in any one
window. This indicates that few communities appear or disappear,
and that community number is a measure with more meaningful
individual, inter-subject differences than time-dependent intra-subject
differences.

Each subject has between 7 and 24 total dynamic communities
(mean=12.7). The correlations with community number in the re-
mainder of this work use each subject's dynamics community number
as the primary measure, since it corresponds closely with static
community number throughout the experiment.

Note that in Fig. 3, two subjects in particular appear to have much

Fig. 5. Brain region flexibility. A: Flexibility of the 194 brain regions used as network
nodes (mean over N=104 subjects). Visual cortex and somatosensory regions in
particular have exceptionally low mean flexibility. B: Scatter plot of mean region
flexibility against variance in region flexibility across subjects. Brain regions that are
more flexible on average have a strong tendency to also display lower cross-subject
variability in flexibility.

Fig. 6. Total community number and null distributions. Total number of communities
identified in the brain network of each subject (solid black line) compared with total
number of communities identified in each of 100 overall-connectivity-preserving null
model networks for the same subjects (dashed colored lines). Subjects are sorted by
overall connectivity (OC). The numbers of communities identified in the data are very
different for most subjects from those found in null distributions with identical OC,
suggesting that the communities detected are driven largely by characteristics of the
underlying connectivity structure that cannot be explained by OC. The relationship
between OC and number of communities appears to be nonlinear, with large and small
OC tending to lead to numbers of communities that are more strongly driven by the OC
value (i.e., more similar to the null model that preserves OC alone).
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higher static community numbers than the others, and are potential
outliers in this regard. Nearly all results pertaining to the correspon-
dence between age, performance, and community structure reported
herein remain unchanged when these subjects are removed from the
analysis. One discrepancy is noted below and further details are
provided in Section 2.4 of the Appendix.

Figs. 4A and C show the distribution of community sizes for each
individual, both within individual time windows and across the entire
experiment. Community sizes are relatively uniformly distributed, save
for an excess of communities of very small size. Results with single-
node communities, or “singletons,” excluded from the analysis do not
differ substantially from those reported here; see Section 2.3 of the
Appendix for further details on singletons.

3.2.2. Flexibility
Fig. 5A shows the flexibility of each of the n=194 brain regions,

averaged over N=104 subjects, for networks with 80-s time windows.
Regions in the occipital lobe, most of which are in visual cortex, tend to
show relatively low flexibilities, as do some motor-associated regions in
the dorsal anterior frontal and posterior parietal lobes. Most other
brain regions have a somewhat higher flexibility. Consistent with
previous work (Bassett et al., 2011), we find notably greater variation
in flexibility across subjects than across brain regions.

We find that the regions with lower mean flexibility across subjects
tend to have a higher cross-subject variance, as shown in Fig. 5B; in
other words, highly flexible nodes are very consistently flexible across
subjects, while nodes with lower mean flexibility (such as those in
visual and motor cortex) show greater individual differences in
dynamics.

This effect differs strikingly from the flexibility patterns seen on
longer timescales, in networks composed of 500-s time windows. The
identities of the brain regions with the lowest mean flexibility and the
variance of those regions are very similar with both 80-s and 500-s time
windows. However, with 500-s time windows, the cross-subject
variance of the high-flexibility (non-visual, non-motor) regions is much
higher than that of the same regions in networks with 80-s time
windows, and consistently higher than the variance of low-flexibility
regions as well (see Appendix for further discussion).

3.2.3. Dependence of community structure on overall brain
connectivity

In our sample, we find considerable variation in the density of
subjects' functional networks, computed as the sum of all functional
connectivity weights between brain region pairs. That is, some subjects
have higher overall brain connectivity or coherence than others. In
addition, we find that this overall connectivity (OC) is significantly
correlated with subject age (Spearman's ρ = −0.50, p < 0.001).

To ensure that the community structures we identify are not
primarily driven by OC alone, but instead capture underlying dynamics
in functional connectivity, we construct a null model in which we
destroy the underlying connectivity structure in each subject by
redistributing network edge weights among region pairs uniformly at
random, preserving only the symmetry of the edge matrix, the lack of
self-edges, and the total sum of edge weights (i.e., overall connectivity)
in each time window of each subject's network. Note that this null
model also destroys the inherently constrained structure of the
coherence matrix, such that the randomly permuted matrices are not
necessarily examples of coherence matrices, as the original networks
are. This null model thus cannot speak to the inherent effect of
coherence structure on community structure, but can only elucidate
density effects.

We create 100 randomly permuted null networks for each subject,
and analyze the communities identified therein. As shown in Fig. 6, the
null distributions of total community number are relatively uniform
across subjects, save the two subjects with the highest OC, who display
consistently lower community number across null networks. A non-
linear relationship between OC and the number of communities
identified is evident here–in contrast to this behavior at high OC, the
number of communities increases with increased OC at the low-OC end
of the distribution.

For most subjects, the number of communities identified in Fig. 6 is
smaller and differs fundamentally from the number identified in
randomized networks. There is no significant correlation between a
subject's number of communities and the mean number of commu-
nities identified in the corresponding networks. However, if the two
outlier subjects with high OC are excluded, the number of communities
in null models preserving only by OC does significantly correspond to
the mean number of communities in subjects’ brain networks
(Pearson's r=0.32, p < 0.001).

The distributions of community sizes for each subject, shown in
Figs. 4A and C, are in general relatively uniform, save for elevated
numbers of communities of small sizes. Null networks (Figs. 4B and D)
show very different community size distributions, which include a clear
peak at intermediate sizes and much smaller maximum community
sizes. These stark differences show that while some aspects of the
community structure are related to OC, others are driven by character-
istics of the underlying connectivity structure that cannot be explained
by OC alone.

3.3. Relationship of functional community structure to age and
performance

Analysis of community number and flexibility distributions reveals
that both measures vary across subjects notably more than across time

Table 1
Correlations between subject age and community measures. Spearman rank correlation ρ values and associated p-values for correlations between age and each of three community
metrics: community number, flexibility, and age. Mean relative motion has been partialed out of all correlations. Italics indicate correlations that are not significant p( > 0.05) after
family-wise error rate correction for multiple comparisons within each column; all non-italicized values represent significant correlations p( < 0.05).

Community No. Flexibility Recruitment

ρ p-value ρ p-value ρ p-value

Whole brain 0.28852 0.0031207 0.52984 8.66E-09 −0.32053 9.64E-04
Auditory 0.38723 5.33E-05 0.49118 1.38E-07 −0.21268 3.10E-02
Cingulo-opercular 0.35580 2.26E-04 0.55497 1.18E-09 −0.31670 1.12E-03
Default Mode 0.40296 2.44E-05 0.44264 2.84E-06 −0.22947 1.97E-02
Dorsal Attention 0.30945 1.47E-03 0.36514 1.49E-04 −0.06906 4.88E-01
Fronto-parietal 0.31721 1.10E-03 0.53856 4.41E-09 −0.22348 2.33E-02
Other 0.35313 2.53E-04 0.44943 1.92E-06 −0.14008 1.58E-01
Somatosensory 0.39382 3.86E-05 0.46037 9.94E-07 −0.31483 1.20E-03
Subcortical 0.38995 4.67E-05 0.46622 6.93E-07 −0.29679 2.33E-03
Ventral Attention 0.39083 4.47E-05 0.32840 7.07E-04 −0.33822 4.75E-04
Visual 0.37777 8.36E-05 0.27263 5.34E-05 −0.15554 1.17E-01
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windows or brain regions within individual subjects. We investigate
these individual differences in community number and flexibility, and
whether they are related to age or performance, by examining the total
community number in each subject's entire time-dependent functional
network, as well as the whole-brain flexibility of each subject, or the
mean flexibility over all that subject's nodes. Here we summarize the
results of these comparisons, which are also presented in Table 1.

We find that total community number is significantly positively
correlated with subject age (Spearman's ρ = 0.29, p < 0.05). This
indicates that cohesive functional communities in the brains of older
subjects tend to be more fragmented than those in younger subjects. A
significant correlation between community number and age
(Spearman's ρ = 0.31, p < 0.05) is also seen on average in null networks

that preserve OC but randomize other topological/spatial network
structure. Six out of 100 instances of randomized networks have a
stronger Spearman correlation between age and total number of
randomized communities than the correlation between age and num-
ber of communities reported above (Fig. 7).

We find that whole-brain flexibility is also significantly positively
correlated with age, as shown in Fig. 8 (Spearman's ρ = 0.53,
p < 0.001). This indicates that younger subjects have brain regions
that switch between communities significantly less frequently, and thus
more stable community partitions over the course of the experiment.

We find no significant correlations between task performance
metrics – either d-prime or criterion shift score – and any of the three
metrics of community dynamics, including flexibility, number of
communities, and recruitment. This holds true for global brain metrics
and for those localized to specific functional systems. In addition, we
conduct a multivariate regression analysis to test whether task perfor-
mance is predictive of brain metrics in individual brain regions. This
analysis uses the flexibility scores of the 194 nodes in all subjects as
outcomes, and the two performance metrics – d-prime and criterion

Fig. 7. Relationship between age and number of communities in functional brain data
and corresponding null models. A: The solid red line shows the Spearman correlation
value between subject age and number of communities; the bars show a histogram of the
same correlation values, each computed from one set of 100 OC-preserving null
networks. B: The solid red line shows the p-value of the Spearman correlation observed
in the data; the bars show the null distribution of p-values corresponding to the null
Spearman correlation values in A. For six out of 100 randomized community structures,
the correlation between age and number of random communities is stronger than the
observed correlation between age and number of functional brain communities.
However, for most randomized community structures, no significant correlation is found
between age and number of random communities is found.

Fig. 8. Whole-brain flexibility and age. A: Scatter plot of the correspondence between
subject age and whole-brain flexibility in networks with 80-s time windows. B: Scatter
plot showing the significant positive correlation between age and whole-brain flexibility
with mean relative motion partialed out (plot shows residuals of separately regressing
each measure on mean relative motion).
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shift score – as predictors. We also include mean relative motion as a
predictor, to ensure it is accounted for as in previous analyses. To test
the significance of the fit, we use a permutation null model in which we
shuffle the d-prime and criterion shift scores uniformly at random
(separately for each measure), perform the fit again 1000 times, and
compare the original beta value for each node to the null distribution of
beta values produced by these fits to permuted data. When uncorrected
for multiple comparisons, 20 non-zero d-prime beta values and 20 non-
zero criterion shift score beta values are significantly different from
random (p¡0.05). After a false discovery rate correction for multiple
comparisons, only a single beta, with an original fit value of zero, is
significantly different from its null distribution. This suggests that there
is no significant correspondence between the performance measures
from this task and the brain metrics we investigate here, even on a
node-by-node basis.

To test the possibility that interactions between age and task
performance are predictive of neural dynamics measures, we per-
formed a multiple regression analysis including the effects of age, d-
prime and criterion shift scores, as well as the interaction between age
and each of the two performance scores. We also included mean
relative motion as a predictor to ensure it was accounted for. However,
we found that none of the interaction terms between age and
performance – nor, indeed, any other terms save age itself and mean
relative motion – had any significant influence on flexibility, number of
communities, or recruitment.

3.3.1. Interdependence of community measures
We observe a very strong correlation between the number of

communities in a subject's brain network and that subject's whole-
brain flexibility (Pearson's r=0.65, p < 0.001). The correspondences
with age for number of communities and flexibility are likely also
related and may in fact be different measures of what is fundamentally
the same phenomenon. For example, consider two separate commu-
nities in an older subject, which still have mutually coherent activity
and recruit from the same set of brain regions. These brain regions may
flexibly switch allegiances between the two communities during the
experiment if they could be nearly equally well associated with either
community. However, in a younger subject with stronger overall
functional associations, these regions would be more likely to all be

grouped into a single community throughout the experiment, and thus
display far lower flexibility, stemming from the smaller community
number.

To understand the dependence of flexibility on community number,
we construct a null model in which we shuffle the community assign-
ments of nodes in each subject's brain network uniformly at random.
This preserves the number and size of communities in each brain
network while destroying other structure that may be contributing to
the flexibility. We re-compute flexibility in each of 100 null-model
community structures for each subject.

We consider a null model in which community assignments were
randomized individually within each time window of each subject's
network. This destroys spatial/topological community structure as well
as the continuity of communities over time. Fig. 9 shows the whole-
brain flexibility of each subject (ordered) as well as the corresponding

Fig. 9. Whole-brain flexibility and null distributions. The solid black line shows the
whole-brain flexibility of each subject (sorted); the colored lines show the distribution of
whole-brain flexibilities computed from 100 instances of the corresponding community-
number-preserving null model. There are clear differences between the whole-brain
flexibility and the null distributions, but the flexibility values computed from null models,
based only upon the number and size of communities, remain strong predictors of a
subject's whole-brain flexibility.

Fig. 10. Age-flexibility relationship in functional brain networks and null models. A: The
solid red line shows the Spearman correlation value between whole-brain flexibility and
age; the bars show a histogram of the same Spearman correlation values, each computed
from one set of 100 community-number-preserving null models. B: The solid red line
shows the p-value of the Spearman correlation observed in the data; the bars show the
null distribution of p-values corresponding to the null Spearman correlation values in A.
While all null correlations between age and flexibility in shuffled community structures
are fairly strong and statistically significant, all are quite distant from and weaker than
the correlation between age and whole-brain flexibility, indicating that the number of
communities alone cannot explain the entire correspondence between flexibility and age.
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null distribution of flexibilities for 100 community-number-preserving
randomized community structures for the same subject. Clearly,
preserving the mere number of communities separately in each net-
work time window produces much higher flexibilities for all subjects,
and does so very consistently, with a low variance among the 100
random instance of the network. Indeed, there are much greater
differences in null flexibility across subjects than across random
instances within a single subject.

When community structure information other than the number and
size of communities is destroyed, we still see significant correlations
between subject age and the flexibility computed from the shuffled
community structure. However, these null-model correspondences are
notably less strong than the correlation between age and flexibility,
which contains information on flexibility beyond that explained by
mere community number and size distributions (Fig. 10).

Although the measure of flexibility is not completely explained by
community number in this case, there is still a clear and strong
correlation between a subject's whole-brain flexibility and the mean
flexibility of regions in the corresponding null model (Pearson's
r p= 0.76, < 0.001). This indicates that the information contained in
community size and number distributions alone does predict relative
subject flexibility quite well.

3.4. Community organization and functional circuits

Having examined the dynamic community structure of individual
functional networks largely on its own, in a data-driven manner, we aim
to further understand and quantify how this structure corresponds to
known functional systems in the brain. Fig. 11 shows the locations (A)
and flexibilities (B) of the ten functional systems considered: auditory
(AU), cingulo-opercular (CO), default mode (DM), dorsal attention (DA),
fronto-parietal (FP), other (OT), somatosensory (SM), subcortical (SC),
ventral attention (VA), and visual (VS). Consistent with Fig. 5A, the visual
system is the least flexible, followed by the somatosensory. The high
inter-subject variance in ventral attention regions likely reflects the
relatively small size of that system (4 brain regions) (12).

In addition to total community number and whole-brain flexibility,
we examine whether the relationships between community structure
and age differ across these specific functional systems, as visualized in
Fig. 11A and described in Methods. We find that the number of distinct
communities into which regions of each individual functional system
are grouped is significantly positively correlated with age, for all ten
functional systems. Mean flexibility and age are positively correlated in
all ten functional systems, with all correlations significant p( < 0.05)
except in the visual system. The visual regions have the lowest mean
flexibility overall (Fig. 11B) and the highest variance in flexibility
across subjects. However, when mean relative motion is partialed out
of the correlation, they also have the weakest relationship between
system-wide flexibility and age.

We further examine the correspondence between functional com-
munities and known functional systems using the recruitment coeffi-
cient, a measure of how cohesively regions from the same functional
system are grouped together. Fig. 11C shows the recruitment coeffi-
cient of each region (Eq. (3)), and Fig. 11D shows the self-recruitment
of each entire system (Eq. (4)). Again consistent with our flexibility
findings, as well as previous reports of recruitment in the literature
(Bassett et al., 2014), the visual and somatosensory systems have the
highest self-recruitment, indicating that they are the systems most
consistently grouped together in communities across time windows.

Whole-brain recruitment, or the average of region recruitment over
all brain regions, is significantly anticorrelated with subject age
(Spearman's ρ = −0.32, p < 0.05), as shown in Fig. 12. However, we
find that system-specific self-recruitment is affected differently by age
in different circuits. System recruitment is significantly anticorrelated
with age only in cingulo-opercular, somatosensory, subcortical, and
ventral attention regions, but no correlation is apparent in other
regions, such as the visual system (see Figs. 13 and 14).

3.4.1. Dependence of recruitment on community size distributions
To ensure that the recruitment values reported here are not driven

primarily by the size and number of communities detected, we again
use a null model that permutes the community assignments of nodes

Fig. 11. Community organization of functional systems. A: The functional system partition of brain regions, with systems indicated by color. Systems identified (in color order from
purple to red) are auditory (AU), cingulo-opercular (CO), default mode (DM), dorsal attention (DA), fronto-parietal (FP), other (OT), somatosensory (SM), subcortical (SC), ventral
attention (VA), and visual (VS). B: Box plot showing the mean flexibility of brain regions in each functional system, and the distribution of this mean flexibility over subjects. C:
Recruitment coefficients of each brain region (network node); visual cortex and somatosensory regions in particular have exceptionally high recruitment. D: Box plot showing the self-
recruitment of each functional system, and its distribution over subjects.
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within each subject's network uniformly at random, but preserves
community size and number distributions as well as time continuity.
We compute the mean recruitment over all nodes in each subject's
brain in each of these random null networks, as well as the recruitment
of each functional node system. Fig. 15 summarizes the results. All
subjects have mean whole-brain recruitment values significantly higher
than those expected from networks with identical community size
distributions but no other structure, indicating that the association of
algorithmically identified communities with known functional systems
is significantly greater than random. Within individual functional
systems, results vary. Some systems, including sensory and motor
cortices (auditory, somatosensory, and visual) and subcortical struc-
tures, are consistently associated with identified communities at a rate
significantly greater than random. Others, including systems identified
with executive control, both focused and bottom-up attention, and the
resting state, have recruitment values that could reasonably be
explained by chance in several subjects (i.e., similar values were found
in randomized community structures that share only community size
and number distributions with the corresponding human brain com-
munity structures).

4. Discussion

These findings relating functional community dynamics to age
provide important insight into factors affecting the significant indivi-
dual differences in community dynamics. The community structure
appears to act as a signature of individual functional dynamics that is
strongly influenced by age, indicating that cognitive organization
during such a memory task differs across the lifespan of participants.

Interestingly, despite marked differences in community dynamics,
we find no significant correspondence between community structure
measures and performance on the memory task, and no age-related
differences in memory performance or strategy were detected in this
experiment. This is likely related to the choice to study only healthy
adults with no measured deficits in cognitive function. It may also be
partly explained by the timescales which we are able to probe; if
criterion shift score and task accuracy are related to changes in brain

Fig. 12. Brain region recruitment and age. A: Scatter plot of the correspondence
between subject age and average recruitment across all brain regions in networks with
80-s time windows. B: Scatter plot showing the significant negative correlation between
these measures with mean relative motion partialed out.

Fig. 13. System self-recruitment and age. A: Scatter plot of the correspondence between
cingulo-opercular system self-recruitment and subject age in networks with 80-s time
windows. B: Scatter plot showing a significant anticorrelation between these measures
with mean relative motion partialed out (plot shows residuals of separately regressing
each measure on mean relative motion). C: Scatter plot of the correspondence between
visual system self-recruitment and subject age in networks with 80-s time windows. D:
Scatter plot of the correspondence between visual self-recruitment and age with mean
relative motion partialed out; there is no apparent correlation.
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dynamics primarily at the level of single trials or strategy blocks, these
changes may be somewhat obscured in our dynamic networks.
However, it is clear that the dynamic community structure delineated
by the slower fluctuations – e.g., in phasic arousal, attention, or
strategy – do show significant changes related to demographics, to
which our analyses are sensitive. Future studies designed to elicit
greater performance differences, either by increasing task difficulty or
by including a population of individuals with age-related cognitive
impairment, could probe whether individual patterns of community
dynamics are associated with these age-related changes in memory
ability, and determine which dynamics at which timescales correspond
to retention or deterioration of performance.

We found that age correlates positively with community number
and flexibility. That is, older adults tend to have more fragmented
communities with less coherent activity than those in younger adults.
Furthermore, brain regions are more likely to switch their community
membership in older adults, a result only partially explained by the
existence of more communities to switch between. Taken together,
these results agree with previous findings from task-free paradigms,

insofar as the brains of older adults tend to show a loss of the within-
network integrity that might have led to them being grouped in fewer
and larger coherent communities, while at the same time losing
segregation between communities and seeing more fluidity of commu-
nity membership over the course of the memory task.

Using null models, we show that the overall connectivity, or density,
of a subject's brain network has some influence on the number of
communities detected, and hence also on the flexibility. This may be
related to the resolution limit inherent in modularity maximization
algorithms for community detection, in which the network density
determines an intrinsic scale to the modularity that prevents the
detection of communities below a certain size (Fortunato and
Barthelemy, 2007). In multi-slice modularity maximization in general,
the addition of links (here of weight ω) to connect communities across
network slices affects the resolution limit of the problem, potentially
biasing the number of communities as well as the flexibility. This
complicated interaction between the time resolution parameter and
overall network connectivity makes the mechanism underlying the
changes in flexibility and community number more difficult to isolate.
Here we have employed null models to probe the extent of the influence
of OC on our results; however, future work is needed to fully elucidate
this relationship.

We also investigate the correspondence of communities to known
functional systems in the brain, and find that this correspondence is
modulated by age in several circuits involved in cognitive control,
including ventral attention, cingulo-opercular, and subcortical systems.
The ventral attention system is involved in bottom-up attention, or
response to infrequent or unexpected cues (Vossel et al., 2014). The
cingulo-opercular circuit, composed of anterior cingulate cortex as well
as the supramarginal gyrus, rostral middle frontal gyrus, and sections
of inferior frontal gyrus, is thought to underlie tonic alertness and the
maintenance of available function during a task, and to be important
for cognitive control during working memory (Cohen et al., 2014;
Sadaghlani and D'Esposito, 2015). The cingulo-opercular functions
also include contribution from thalamus, which is categorized as a
subcortical region in this scheme. The subcortical regions are less finely
divided than the cortical regions in this atlas, so the subcortical nodes
have larger volume and are more functionally heterogeneous
(Hagmann et al., 2008). Thus, the results involving subcortical regions
likely contain less information on meaningful functional correlations
than results involving cortex, since the signal from these regions is
averaged over a larger area containing distinct functional responses.

Overall, these results show that age-related differences are evident
during the memory task in specific circuits related to attention and
cognitive control (as well as the task-related somatosensory network),
which is consistent with past findings that cognitive control is
modulated by age (Cepeda et al., 2001; West et al., 2002; Treitz
et al., 2007). The relationship between regions identified as theoreti-
cally meaningful on the basis of prior GLM-based analyses of BOLD
activity, and the sort of dynamic, system-level connectivity of interest
here, is not yet well understood. However, this study demonstrates that
we can use a data-driven method to discover regions of interest for
aging and task function about which it is still very difficult to make a
priori hypotheses at this scale, based on our previous understanding of
the neural processes involved in this task. The results of this and other
similar investigations can be used to guide further study with different
methodologies, and provide a valuable complementary body of knowl-
edge to that gleaned from traditional, more static methods of analyzing
BOLD activity.

The finding that age selectively modulates the cohesive functional
grouping of these cognitive control circuits, as well as the task-involved
somatosensory cortex, shows that specific cognitive systems differ
notably across the lifespan, while others remain relatively unaffected
by age. Importantly, although we can identify the extent of each
circuit's functional changes across the lifespan, the behavioral effects
of differences in these circuits remain unclear. All participants in the

Fig. 14. System self-recruitment and age. A: Scatter plot of the correspondence between
visual system self-recruitment and subject age in networks with 80-s time windows. B:
Scatter plot of the correspondence between visual self-recruitment and age with mean
relative motion partialed out; there is no apparent correlation.
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experiment were cognitively healthy and none showed memory im-
pairment; furthermore, no age-related differences in performance were
evident despite the clear changes we observed in functional organiza-
tion. The presence of such widespread neural changes, with no
manifest change in behavior, strongly suggests that compensatory
mechanisms may be playing a role in this cognitive task for older
adults, as proposed in previous work (Cabeza et al., 2002; Grady,
2008). While this study cannot identify which age-related changes are
beneficial to memory performance rather than detrimental, the meth-
ods used here provide a framework for quantifying such changes in
community structure and dynamics, in future studies where age-related
performance differences are evident.

5. Conclusion

Overall, this work confirms that the dynamics of functional com-
munity structure in the human brain during a memory task vary
considerably with age. In particular, both whole-brain flexibility, which
measures the tendency of brain regions to switch between communities
over time, and the overall number of functional communities show
notable individual differences and are strongly correlated with age,
with older subjects demonstrating significantly higher flexibility and
more fragmented functional communities. Using quantitative methods

of comparing the community structure to known functional brain
systems, we also examine the tendency of brain systems to be grouped
cohesively together in communities during the memory task. We find
that this tendency is significantly modulated by age in brain regions
associated with cingulo-opercular, somatosensory, ventral attention,
and subcortical circuits, but not in other brain areas. These results
identify age as an important driver of individual variation in functional
community dynamics, and provide insight into how aging differentially
impacts the functional organization of different brain systems, even in
healthy adults who do not experience declines in performance.
Additionally, they demonstrate methods which promise to be useful
in quantifying which circuits drive changes in network organization
across a broad range of situations, including in task-active networks.
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confidence line (red line) from null distribution of 100 recruitment values computed in community-size-preserving null networks. All subjects have mean whole-brain recruitment values
significantly higher than those expected in null networks, indicating that the association of algorithmically identified communities with known functional systems is statistically
significant. Smaller panels: Recruitment values for each subject (blue lines), averaged over brain regions in known functional systems, alongside 95% confidence lines (red lines). Some
individual systems, including sensory and motor cortices (auditory, somatosensory, and visual) and subcortical structures, are consistently associated with identified communities at a
statistically significant rate. Others–including systems identified with executive control, both focused and bottom-up attention, and the resting state–have recruitment values that could
reasonably be explained by chance in several subjects.
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Appendix A. Appendix

In this Appendix, we present the following information:
1. dynamic community structure results in dynamic functional networks with 500-s time windows;
2.1. details on the choices of spatial and temporal resolution parameters for the community detection algorithm;
2.2. details on categorical versus time-ordered definitions of flexibility;
2.3. an analysis of single-node communities, or “singletons”, and results when they are excluded from the analysis;
2.4. discussion of behavioral and brain-measures outliers and their e ect on the results;
2.5. details and discussion of the statistical correction for mean relative motion.

A.1. Results from networks with 500-s time windows

Here we present further results from networks with 500-s time windows, which capture dynamics associated with a much longer time scale than
the 80-s time windows that are the focus of the main manuscript. Overall, these results are mostly qualitatively similar to those found for 80-s time
windows, but the correlations between demographics or performance measures and brain community structure measures are weaker.

A.1.1. Brain region flexibility
As discussed in the main manuscript, we find that in networks with 80-s time windows, highly flexible brain regions are very consistently flexible

across subjects, while those with lower mean flexibility show greater inter-subject variance in flexibility. On longer timescales, in networks with 500-
s time windows, the identities of the brain regions with the lowest mean flexibility – i.e., regions in visual and motor cortex – are largely the same as
those found with 80-s time windows (Fig. A1A), and their cross-subject variance is quantitatively similar as well. However, the regions with higher
mean flexibility – i.e., non-visual and non-motor regions – are much more variable in flexibility across subjects in networks composed of 500-s time
windows. This leads to a strong correlation between mean flexibility and cross-subject variance with 500-s time windows, shown in Fig. A1B,
whereas 80-s time windows lead to a similarly strong anticorrelation (as shown in Fig. 5 in the main manuscript).

Fig. A1. A: Flexibility of the 194 brain regions used as network nodes in networks with 500-s time windows. Color indicates mean flexibility over N=104 subjects. Visual cortex and
somatosensory regions in particular have exceptionally low mean flexibility, as also observed with 80-s time windows. B: Scatter plot of mean region flexibility against variance in region
flexibility across subjects. Brain regions that are more flexible on average have a strong tendency to also display higher cross-subject variance in flexibility. This is the opposite effect from
that seen in networks with 80-s time windows (Fig. 5 in the main manuscript), due largely to the much higher cross-subject variability seen in high-flexibility (non-motor, non-visual)
regions with 500-s time windows.
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The cohesive dynamics of visual and motor systems thus show similar flexibility patterns across subjects even on very different timescales, while
individual differences in the dynamics of other brain regions are more strongly impacted by the choice of time resolution. This may be because
visual and motor components of the memory task do not differ across trials, leading to strong functional similarity throughout the entire
experiment.

A.1.2. Whole-brain flexibility, number of communities, and recruitment
The strong correspondence between age and whole-brain flexibility seen with 80-s time windows, and presented in the main manuscript, is not

statistically significant in networks with 500-s time windows (Fig. A2). This indicates that the community dynamics modulated by age here are
relevant on shorter timescales of only a few minutes, which correspond more closely to the timescales of cognitive function demanded by the task
setup.

With 500-s time windows, there is also no significant correspondence between dynamic community number and age, and the number of distinct
communities in individual functional systems is significantly positively correlated with age only in four systems: auditory, somatosensory,
subcortical, and ventral attention. The weakening of both the age-flexibility correspondence and the age-community number correspondence on this
longer timescale is consistent with the possibility that flexibility and community number are related.

The correspondence between subject age and the mean recruitment coefficient over all brain regions is shown in Fig. A3. There is a highly
significant anticorrelation between these measures (Spearman's ρ p= −0.42, < 0.001) with both 500-s and 80-s time windows.

A.1.3. System-specific recruitment
In networks with 500-s time windows, system-specific recruitment is significantly anticorrelated with age only in cingulo-opercular (Fig. A4),

subcortical, ventral attention, and auditory systems, but not in other systems (such as the visual system, shown in Fig. A5). This effect is consistent
across timescales for cingulo-opercular, subcortical, and ventral attention regions.

A.2. Methodological details and considerations

A.2.1. Resolution parameters
The spatial resolution parameter γ determines the relative weight given to the randomized null model as compared to the data in each time

Fig. A2. A: Scatter plot of the uncorrected correspondence between subject age and whole-brain flexibility in networks with 500-s time windows. B: Scatter plot showing residuals of
separately regressing each measure on mean relative motion. The correlation between these residuals is not significant, indicating that there is no significant relationship between age
and flexibility in these networks that cannot be explained by mean relative motion.
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window when finding a partition. Varying γ changes the number and size of communities found in the partition – higher values of γ favor many
small communities, while lower values favor fewer, larger communities. In order to choose a spatial resolution that will give meaningful results
about brain organization on the scale of our chosen atlas, we prefer γ values at which the stochastic algorithm tends to produce less variation in
partitions across algorithm runs. We measure variation among partitions with the z-score of the Rand coefficient, which measures the extent to
which two partitions are similar compared to the expected similarity of randomized partitions Traud et al. (2011), averaged over all pairs of
partitions produced by the algorithm. It has been shown in simulated networks of oscillators that the lowest cross-subject variance in Rand z-score
occurs at the value of γ that produces communities corresponding to the size and number of “ground-truth” communities in the network Bassett
et al. (2013). However, since human brain functional networks have meaningful activity at various scales, we see no clear maximum in Rand z-score
corresponding to a minimum in Rand z-score variance at any single value of γ. In networks with 80-s time windows, we choose γ = 1.2 – a value
between γ = 1, which often gives just two or three large communities, and γ = 1.4, which in many subjects gives as many at 100 communities (more
than half the total number of nodes) – in order to obtain communities that are on average similar to the size of the functional systems we are
interested in. For 500-s time windows, we choose γ = 1.15 for the same reason. Both of these choices lie in a range of values over which Rand z-score
and its variance are relatively uniform, indicating that the consistency of the communities detected does not depend sensitively upon this parameter.
In addition, the Rand z-score is high for all choices, indicating that the community partitions detected are significantly more consistent across these
parameter values than would be expected of community partitions with the same community size distributions selected at random.

The time resolution parameter ω determines the relative weight given to intra-window (non-temporal) and inter-window (temporal)
considerations when finding a partition. Here, in order to most clearly resolve the differences in the flexibilities of different brain regions, we
choose the value of ω that maximizes the variance in flexibility across nodes. This value is ω = 0.05 for 80-s time windows, and ω = 0.001 for 500-s
time windows.

A.2.2. Categorical versus time-ordered flexibility
Eq. (2) in the main manuscript, reproduced here, defines the metric of flexibility for each brain region:

∑f i
T T

δ g g( ) = 1
( − 1)

[1 − ( , )].
t t

it it
≠ ′

′

Fig. A3. A: Scatter plot of the uncorrected correspondence between subject age and average recruitment across all brain regions in networks with 500-s time windows. B: Scatter plot
showing the significant negative correlation between these measures with mean relative motion partialed out. Older subjects have significantly lower recruitment on average over brain
regions than younger subjects on both timescales investigated.
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This method of calculating flexibility, known as “categorical” flexibility, compares the community assignments of nodes between all possible pairs of
time windows, not just time-adjacent windows. Typical uses of categorical flexibility compare community assignments between categories or tasks
without considering temporal changes. In this work, we use categorical flexibility to emphasize the consistency of nodes across long time windows.
We choose to compare between all time windows equally (without imposing time order) since each window is long compared to the differing
elements of the task on a trial or probability block level, and all windows are statistically identical with respect to task design (for 500-s windows) or
nearly so (for 80-s windows). In this way we avoid assuming that changes in brain dynamics happen progressively over the course of the task, but
instead focus on assessing stability of community structure over the entire task at once.

All results reported in the main manuscript use categorical flexibility. For comparison, we repeat our analysis using time-ordered flexibility:

∑f i
T

δ g g( ) = 1
− 1

[1 − ( , )].to
t

T

it i t
=1

−1

( +1)

We find that the values of node flexibility and subject-wise whole brain flexibility are extremely closely correlated, as shown in Fig. A6. In addition,
all correlations with categorical flexibility reported in the main manuscript are essentially unchanged when computed with time-ordered flexibility.
This suggests that progressive changes in brain dynamics over the course of the task are less important at this time scale than overall consistency or
variability of community assignments throughout the experiment, as we might expect with time windows representing multiple statistically similar
portions of the same task.

A.2.3. Analysis of single-node communities
As seen in Fig. 4 in the main manuscript, the community detection algorithm identifies communities of size 1 in the brain networks of many

subjects. As described in the main manuscript, we identify both “dynamic singletons,” or single-node communities that contain only one brain
region across all time windows, and “static singletons,” or communities with a single brain region in one time window, regardless of whether that
community also extends across multiple time windows.

We find that across all subjects, there is only a single dynamic singleton identified in our data. Static singletons are more numerous, but still

Fig. A4. A: Scatter plot of the uncorrected correspondence between cingulo-opercular system self-recruitment and subject age in networks with 500-s time windows. B: Scatter plot
showing a significant anticorrelation between these measures with mean relative motion partialed out. Older subjects have significantly lower cingulo-opercular recruitment coefficients
on both timescales investigated; this correspondence is also consistent across timescales in the subcortical and ventral attention systems. However, there are changes in the significance
of this correspondence across timescales in some systems. In 500-s time window networks (unlike in 80-s time window networks), the recruitment-age correspondence is not significant
in the somatosensory system, and it is significant in the auditory and default mode systems.
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remain sparse. Fig. A7 shows the number of communities identified in each time window for each subject with single-node communities excluded
from each time window (cf. Fig. 3 in the main manuscript). These statistics appear qualitatively similar for almost all subjects.

A closer look at the cross-subject and cross-region distributions of static singletons is given in Fig. A8. Panel A shows the total number of static
singletons (summed over 80-s time windows) in each subject and each brain region. Most static singletons to not tend to persist across time

Fig. A5. A: Scatter plot of the correspondence between visual system self-recruitment and subject age in networks with 500-s time windows. B: Scatter plot of the correspondence
between visual self-recruitment and age with mean relative motion partialed out; there is no apparent correlation on this coarser timescale, consistent with the result in 80-s time
window networks.

Fig. A6. Correspondence between categorical and time-ordered flexibility. A: Flexibility of each brain region (averaged over subjects). B: Whole-brain flexibility of each subject. Both
measures show near-perfect correlation between categorical and time-ordered flexibility (Spearman's ρ=0.99, p ≈ 0).
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windows, either in particular subjects or in particular regions. However, one subject (subject 35) does have a handful of regions which are
consistently singletons in 16 out of 18 time windows; this is very unusual and only occurs once in one other subject (subject 28). In panel B of Fig.
A8 – which depicts the number of singletons by subject, with each color representing one brain region – the large contributions from these
consistently single regions visibly boost the total singleton count for these two subjects, making them appear as outliers. (More details on outliers
are given below.) Panels C and D both show the number of singletons for each brain region. In C, the colors represent the contributions from
individual subjects, while in D, the colors represent contributions from the three age groups.

To ensure that singletons do not drive results, we repeat our analyses with these communities excluded from consideration. The correlation
between age and number of communities, both overall and in specific functional systems, is nearly unchanged, as shown in Table A1. Although
found in most subjects, static singletons are not significantly correlated with age and do not substantially affect age-related changes in community
dynamics.

A.2.4. Analysis of outliers in task performance and brain measures
As noted in the main manuscript, two subjects appear to be bivariate behavioral outliers (see Fig. 2). In order to ensure that these anomalous

performance values do not affect the behavioral correlations, we repeated our analysis with these two subjects removed. We had originally found no
significant correlations, either between the d-prime and criterion shift performance measures, or between either of these measures and the brain
measures of interest. With the outliers removed, we similarly find that all Pearson correlations between behavior measures and brain measures, as
well as the correlation between d-prime and criterion shift, remain insignificant.

Similarly, two subjects in Fig. 3 in the main manuscript appear to have notably higher numbers of static communities than the rest. One of these
subjects, subject 35, also has a notably higher number of static singletons, as seen in Fig. A8B, along with another subject who is not an outlier in
number of non-singleton static communities. To ensure that these outliers are not driving results, we also repeat our analysis while excluding these
three brain-measures outlier subjects. We find that the significance or non-significance of all correlations between brain measures (flexibility,
number of communities, recruitment) and age or performance remain the same, both overall and in individual functional systems, with a single
exception. That exception is the system-specific recruitment of the subcortical nodes, which is significantly correlated with age with the outliers
included (Spearman's ρ = −0.30, p = 2.33 × 10−3, as reported in Table 1), but not once the outliers were removed (Spearman's ρ = −0.26,
p = 9.69 × 10−3, which is not significant after correction for multiple comparisons).

A.2.5. Statistical correction for mean relative motion
As discussed in the main manuscript, since subject age is correlated with mean relative motion in these data, we expect motion to substantially

affect the correspondence measures of community dynamics and age, and potentially other performance and demographic measures as well, due to
the broad and non-uniform distribution of ages in our sample. Thus, all subject-wise correlations in this study are performed with mean relative
subject motion partialed out – i.e., each correlation variable was first regressed separately on mean relative motion, and we assessed the correlation
between the residuals of these regressions, to ascertain the extent of their relationship that could not be explained by motion. Some of the observed
results are indeed affected by motion, showing a different level of correlation and significance with and without the motion correction. Here we
report the differences we observe.

• The correlation between age and whole-brain flexibility is consistently highly significant both with r p( = 0.53, < 0.001) and without
r p( = 0.40, < 0.001) motion correction in networks with 80-s time windows. Indeed, the correlation is stronger when motion is accounted
for. However, in networks with 500-s time windows, a significant correlation r p( = 0.30, < 0.05) is observed only when not correcting for motion.
When motion is accounted for, the correlation is weaker and does not pass the significance test.

• The correlation between age and number of communities evident in networks with 80-s time windows r p( = 0.29, < 0.05) is not significant
without accounting for motion p( > 0.1). With 500-s time windows, there is no evident correlation between age and number of communities, and
motion does not impact this result.

• The anticorrelation between age and average recruitment observed in networks with 80-s time windows r p( = −0.32, < 0.05) is not significant

Fig. A7. Number of non-single-node communities. Color indicates the number of communities detected within each 80-s time window in each subject, excluding communities
composed of only a single brain region within that time window. Subjects (on the vertical axis) are ordered by age. These results are qualitatively similar to the numbers of communities
found in each subject with single-node communities included (see Fig. 3 in the main manuscript).
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without accounting for motion p( > 0.1). Similarly, the anticorrelation between age and average recruitment with 500-s time windows is only
significant when motion is accounted for.

• Mean relative motion affects the correspondence between system-specific flexibility and age in several systems. Flexibility over 80-s time
windows in the dorsal attention, subcortical, and ventral attention systems shows no significant correlation with age when motion is not partialed
out, but does correlate with age when motion is accounted for. On the other hand, flexibility over 80-s time windows in the visual system does not
correlate with age when motion is accounted for, but correlates only when motion is not partialed out. The correlation between age and system-
specific flexibility over 500-s time windows is not affected by this motion correction in any specific systems.

Fig. A8. A: Number of time windows in which each brain region is a static singleton in each subject. Static singletons are relatively sparse, and most regions are not consistently
singletons across subjects or time windows. However, two subjects (subjects 28 and 35) have regions which are singletons in most of the 18 80-s time windows. B: Distribution of static
singletons over subjects. Colors represent contributions from individual brain regions. Due largely to contributions from just one or two brain regions, subjects 28 and 35 have many
more singletons than the others. C: Distribution of static singletons over brain regions. Colors here represent individual subjects. D: Distribution of static singletons over brain regions,
as in C. Here, colors represent contributions from one of the three age groups.

Table A1
Correlations between subject age and number of non-singleton communities. Spearman rank correlation ρ values and associated p-values for
correlations between age and community number, with single-node communities excluded. Mean relative motion has been partialed out of all
correlations. All correlations are statistically significant p( < 0.05) after family-wise error rate correction for multiple comparisons, and values
are essentially unchanged from corresponding values with single-node communities included.

Age v. Community Number

(single-node communities excluded)

Spearman's ρ p-value

Whole brain 0.28852 0.0031207
Auditory 0.38723 5.33E-05
Cingulo-opercular 0.36970 1.21E-04
Default Mode 0.40874 1.82E-05
Dorsal Attention 0.34042 4.34E-04
Fronto-parietal 0.33858 4.68E-04
Other 0.35313 2.53E-04
Somatosensory 0.40325 2.41E-05
Subcortical 0.38999 4.66E-05
Ventral Attention 0.39083 4.47E-05
Visual 0.37777 8.36E-05
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• Motion also affects system-specific recruitment and its correlation with age. When motion is not accounted for in 80-s time window networks,
none of the functional systems have self-recruitments that significantly correlate with age. When motion is not accounted for in 500-s time
window networks, three systems show a significant anticorrelation between self-recruitment and age: cingulo-opercular and subcortical, which
show the same results with motion partialed out, and fronto-parietal, which does not.

• Overall, we find that mean relative motion is most likely to affect recruitment in small systems (i.e., those composed of fewer brain regions). This
is depicted in Fig. A9, which shows a significant correlation between system size and the strength of the correlation between motion and system
self-recruitment. However, we do not see a similar relationship between system size and the effect of mean relative motion on system flexibility or
number of communities in the system.
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