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Estradiol shapes resting-state functional connectivity 
over a complete reproductive cycle
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The brain is an endocrine organ

• Hormonal effects on the central nervous system can be measured across

spatial and temporal scales, influencing brain structure and function1.

• Across a typical menstrual cycle (~28 days), the average female will

experience a 12-fold increase in estrogen and an 800-fold increase in

progesterone2.

INTRODUCTION

Current study: How do sex steroid hormones impact resting-state functional connectivity?

• In this dense-sampling, deep phenotyping case study, we examined the extent to which

endogenous fluctuations in sex steroid hormones across a complete reproductive cycle alter

functional connectivity of brain networks at rest.

Sex hormones potential source of intra-subject variability in fMRI assessments

• Recent approaches in neuroscience have moved towards densely sampling individuals to

understand sources of intra-subject variability in the stability of functional brain networks over time3-5.

• These studies have largely overlooked the effects of sex steroid hormones, which fluctuate within

and between individuals6.

PARTICIPANT: The participant (author LP) is a right-handed Caucasian female, aged 23 years old at the onset of the study.

She is a healthy, regularly and naturally cycling woman, with no history of neuropsychiatric or endocrine disorders.

DATA COLLECTION: LP underwent daily time-locked (±30 min) blood draws and MRI scans for 30 consecutive days.

Venous blood sampling took place each morning to evaluate serum concentrations of luteinizing hormone (LH), follicle

stimulating hormone (FSH), 17β-estradiol (E), and progesterone (P) via liquid chromatography-mass spectrometry,

conducted at the Brigham and Women’s Research Assay Core.

MRI PROCESSING: We acquired a daily 10 min. resting-state scan on a 3T Siemens Prisma at the UCSB Brain Imaging

Center (T2* multi-band EPI; 72 oblique slices; TR = 720 ms; voxel size = 2 mm3). Data were realigned/unwarped, registered

to a subject-specific anatomical template (created with ANTs), and smoothed (5mm FWHM) in SPM12; in-house Matlab

scripts were used for additional preprocessing, including global scaling, detrending, nuisance regression, and temporal

filtering using a maximal overlap discrete wavelet transform.
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Figure 2. Functional images

were registered to a subject-

specific template, created by

averaging 10 high-resolution

T1 MPRAGE structural scans

in ANTS.

RESTING-STATE FUNCTIONAL CONNECTIVITY (RSFC) ANALYSES: For each day, we extracted eigen-timeseries from

415 network nodes defined by the Schaefer7 cortical parcellation and Harvard-Oxford subcortical atlas. Pairwise functional

connectivity was estimated via magnitude squared coherence, restricted to low-frequency fluctuations in wavelet scales 3-6

(~0.01 - 0.17 Hz). All association matrices were FDR-thresholded (q<0.05). We used common graph theoretic metrics to

characterize functional network topology: efficiency (a measure of within network integration) and participation

coefficient (a measure of between network integration)8. These were estimated for each of the Yeo 7 network parcellations9

and a subcortical network.
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Figure 1. Participant’s serum hormone concentrations (pink) plotted against median (solid grey line) and 5th/95th

percentiles (dotted grey lines) hormone concentrations based on serum samples from 20 naturally cycling females2. 
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METHODS

Serum concentrations of E and P were within expected ranges6, and showed the canonical 

fluctuations across the menstrual cycle, with E peaking in late follicular phase and P concentrations 

rising dramatically during the mid-luteal phase.

Time-synchronous analyses: Increases in estradiol over time are associated with

greater functional connectivity across the whole brain.

Time-Lagged analyses: Estradiol drives Default Mode connectivity, within (efficiency) and 

between (participation) networks. This pattern was also observed in Dorsal Attention, Frontoparietal, 

and Limbic networks. 

The brain is an endocrine organ; consideration of the hormonal milieu is necessary to fully 

understand intrinsic brain dynamics.

CONCLUSIONS
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Figure 3. Standardized regression between coherence and estradiol (L, left; M, dorsal; R, right) at each edge. ‘Hotter’ 

colors indicate stronger coherence with increasing estradiol concentrations (FDR-corrected, q < 0.05).

Increases in estradiol over time are associated with

greater functional connectivity across the whole brain

In order to more directly capture time-dependent modulation of network connectivity and hormonal states, 

we specified and estimated simultaneous 2nd-order vector autoregressive models:

DMNt = DMNt-1 + Estradiolt-1 + DMNt-2 + Estradiolt-2 

Estradiolt = DMNt-1 + Estradiolt-1 + DMNt-2 + Estradiolt-2

WITHIN-NETWORK CONNECTIVITY: EFFICIENCY

DMN efficiencyestradiol

X
DMN efficiencyestradiol



Term Est SE t p

DMNt-1 0.21 0.21 0.99 .292

Estrot-1 0.71 0.29 2.39 .002

DMNt-2 -0.23 0.20 -1.15 .275

Estrot-2 -0.64 0.29 -2.24 .003

F(4,24) = 5.05, p=.004; R2 = 0.47

DMN participationestradiol

X
DMN participationestradiol



Term Est SE t p

DMNt-1 -0.19 0.16 -1.13 .369

Estrot-1 1.28 0.23 5.59 <.001

DMNt-2 -0.01 0.15 -0.05 .965

Estrot-2 -0.57 0.22 -2.56 .003

F(4,24) = 12.88, p < .001; R2 = 0.68

Diagram of fit for Estradiol across 30 days (top) and residuals (bottom) Diagram of fit for DMN across 30 days (top) and residuals (bottom)

Estradiolt = DMNt-1 + Estradiolt-1 + DMNt-2 + Estradiolt-2 DMNt = DMNt-1 + Estradiolt-1 + DMNt-2 + Estradiolt-2 

Term Est SE t p

DMNt-1 0.08 0.12 0.65 .690

Estrot-1 1.13 0.18 6.42 <.001

DMNt-2 -0.08 0.12 -0.65 .688

Estrot-2 -0.51 0.18 -2.87 .007

F(4,24) = 12.25, p < .001; R2 = 0.671

Term Est SE t p

DMNt-1 0.19 0.15 1.24 .332

Estrot-1 -.85 0.22 -3.92 <.001

DMNt-2 -.14 0.15 -.95 .464

Estrot-2 .90 0.22 4.15 <.001

F(4,24) = 5.82, p=.002; R2 = 0.492

BETWEEN-NETWORK CONNECTIVITY: PARTICIPATION

Figure 3. Applying these methods across all 

networks revealed that estradiol drives 

greater functional coherence within 

estrogen-receptor (ER) rich networks 

(frontoparietal, dorsal attention, limbic) 

with little to no influence in ER-poor 

networks (e.g. Visual). ‘*’ denotes network 

model significance after 1,000 iterations of 

nonparametric permutation testing: **p<.01 

*p<.05 
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Estradiolt = DMNt-1 + Estradiolt-1 + DMNt-2 + Estradiolt-2 DMNt = DMNt-1 + Estradiolt-1 + DMNt-2 + Estradiolt-2 

Diagram of fit for Estradiol across 30 days (top) and residuals (bottom) Diagram of fit for DMN across 30 days (top) and residuals (bottom)
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