

Estradiol shapes resting-state functional connectivity over a complete reproductive cycle

L. Pritschet^{*1}, T. Santander^{*1}, E. Layher¹, C. Taylor¹, S. Yu¹, M.B. Miller^{1,2}, S.T. Grafton¹, & E.G. Jacobs^{1,2}

¹Department of Psychological and Brain Sciences, ²Neuroscience Research Institute, University of California, Santa Barbara

INTRODUCTION

The brain is an endocrine organ

- Hormonal effects on the central nervous system can be measured across spatial and temporal scales, influencing brain structure and function¹. • Across a typical menstrual cycle (~28 days), the average female will experience a 12-fold increase in estrogen and an 800-fold increase in progesterone².
- Sex hormones potential source of intra-subject variability in fMRI assessments

• Recent approaches in neuroscience have moved towards densely sampling individuals to understand sources of intra-subject variability in the stability of functional brain networks over time³⁻⁵. • These studies have largely overlooked the effects of sex steroid hormones, which fluctuate within and between individuals⁶.

Current study: How do sex steroid hormones impact resting-state functional connectivity?

RESULTS

Time-Synchronous Analysis: Edgewise Regression

Increases in estradiol over time are associated with greater functional connectivity across the whole brain

• In this dense-sampling, deep phenotyping case study, we examined the extent to which endogenous fluctuations in sex steroid hormones across a complete reproductive cycle alter functional connectivity of brain networks at rest.

METHODS

PARTICIPANT: The participant (author LP) is a right-handed Caucasian female, aged 23 years old at the onset of the study. She is a healthy, regularly and naturally cycling woman, with no history of neuropsychiatric or endocrine disorders.

DATA COLLECTION: LP underwent daily time-locked (±30 min) blood draws and MRI scans for 30 consecutive days. Venous blood sampling took place each morning to evaluate serum concentrations of luteinizing hormone (LH), follicle stimulating hormone (FSH), 17β-estradiol (E), and progesterone (P) via liquid chromatography-mass spectrometry, conducted at the Brigham and Women's Research Assay Core.

Figure 1. Participant's serum hormone concentrations (pink) plotted against median (solid grey line) and 5th/95th percentiles (dotted grey lines) hormone concentrations based on serum samples from 20 naturally cycling females².

Figure 3. Standardized regression between coherence and estradiol (L, left; M, dorsal; R, right) at each edge. 'Hotter' colors indicate stronger coherence with increasing estradiol concentrations (FDR-corrected, q < 0.05).

Time-Lagged Analysis: Vector Autoregression

In order to more directly capture time-dependent modulation of network connectivity and hormonal states, we specified and estimated simultaneous 2nd-order vector autoregressive models: $DMN_t = DMN_{t-1} + Estradiol_{t-1} + DMN_{t-2} + Estradiol_{t-2}$ $Estradiol_{t} = DMN_{t-1} + Estradiol_{t-1} + DMN_{t-2} + Estradiol_{t-2}$

WITHIN-NETWORK CONNECTIVITY: EFFICIENCY

MRI PROCESSING: We acquired a daily 10 min. resting-state scan on a 3T Siemens Prisma at the UCSB Brain Imaging Center (T2* multi-band EPI; 72 oblique slices; TR = 720 ms; voxel size = 2 mm³). Data were realigned/unwarped, registered to a subject-specific anatomical template (created with ANTs), and smoothed (5mm FWHM) in SPM12; in-house Matlab scripts were used for additional preprocessing, including global scaling, detrending, nuisance regression, and temporal filtering using a maximal overlap discrete wavelet transform.

Figure 2. Functional images were registered to a subjectspecific template, created by averaging 10 high-resolution T1 MPRAGE structural scans in ANTS.

RESTING-STATE FUNCTIONAL CONNECTIVITY (RSFC) ANALYSES: For each day, we extracted eigen-timeseries from 415 network nodes defined by the Schaefer⁷ cortical parcellation and Harvard-Oxford subcortical atlas. Pairwise functional connectivity was estimated via magnitude squared coherence, restricted to low-frequency fluctuations in wavelet scales 3-6 (~0.01 - 0.17 Hz). All association matrices were FDR-thresholded (q<0.05). We used common graph theoretic metrics to characterize functional network topology: efficiency (a measure of *within* network integration) and participation coefficient (a measure of between network integration)⁸. These were estimated for each of the Yeo 7 network parcellations⁹ and a subcortical network.

CONCLUSIONS

- Serum concentrations of E and P were within expected ranges⁶, and showed the canonical fluctuations across the menstrual cycle, with E peaking in late follicular phase and P concentrations rising dramatically during the mid-luteal phase.
- Time-synchronous analyses: Increases in estradiol over time are associated with greater functional connectivity across the whole brain.
- <u>Time-Lagged analyses</u>: Estradiol drives Default Mode connectivity, within (efficiency) and between (participation) networks. This pattern was also observed in Dorsal Attention, Frontoparietal, and Limbic networks.
- The brain is an endocrine organ; consideration of the hormonal milieu is necessary to fully understand intrinsic brain dynamics.

References

1. Galea et al. Neurosci Biobehav Rev. 76, 363-379 (2017) 2. Stricker et al. Clin Chem Lab Med. 44, 883-887 (2006) 3. Finn et al. Nat Neurosci. 18(11), 1664 (2015) 4. Poldrack et al. Nat Commun. 6, 8885 (2015) 5. Gratton et al. Neuron. 98(2), 439-452 (2018) 6. Fehring et al. J Obstet Gynecol Neonatal Nurs. 35(3), 376-384 (2006) 5. 7. Schaefer et al. Cereb. Cortex. 1-20 (2017). 8. Bullmore et al. Annu. Rev. Clin. Psychol. 7, 113-140 (2011) 9. Yeo et al. J. Neurophysiol. 106(3), 1125 (2011)

Acknowledaments

This work was supported in part by the University of California, Santa Barbara, Brain and Behavior Foundation, and Rutherford Fett Fund.

Email: Ipritschet@ucsb.edu 2 @laura_pritschet Lab: https://Jacobs.psych.ucsb.edu/