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ABSTRACT

Sex steroid hormones have been shown to alter regional brain activity, but the extent to
which they modulate connectivity within and between large-scale functional brain networks
over time has yet to be characterized. Here, we applied dynamic community detection
techniques to data from a highly sampled female with 30 consecutive days of brain imaging
and venipuncture measurements to characterize changes in resting-state community structure
across the menstrual cycle. Four stable functional communities were identified, consisting of
nodes from visual, default mode, frontal control, and somatomotor networks. Limbic,
subcortical, and attention networks exhibited higher than expected levels of nodal flexibility,
a hallmark of between-network integration and transient functional reorganization. The most
striking reorganization occurred in a default mode subnetwork localized to regions of the
prefrontal cortex, coincident with peaks in serum levels of estradiol, luteinizing hormone,
and follicle stimulating hormone. Nodes from these regions exhibited strong intranetwork
increases in functional connectivity, leading to a split in the stable default mode core
community and the transient formation of a new functional community. Probing the
spatiotemporal basis of human brain–hormone interactions with dynamic community
detection suggests that hormonal changes during the menstrual cycle result in temporary,
localized patterns of brain network reorganization.

AUTHOR SUMMARY

Sex steroid hormones influence the central nervous system across multiple spatiotemporal
scales. Estrogen and progesterone concentrations rise and fall throughout the menstrual
cycle, but it remains poorly understood whether day-to-day fluctuations in hormones shape
human brain dynamics. Here, we assessed the structure and stability of resting-state brain
network connectivity in concordance with serum hormone levels from a female who
underwent fMRI and venipuncture for 30 consecutive days. Our results reveal that while
network structure is largely stable over the course of a menstrual cycle, temporary
reorganization of several large-scale functional brain networks occurs during the ovulatory
window. In particular, a default mode subnetwork exhibits increased connectivity with itself
and with nodes belonging to the temporoparietal and limbic networks, providing novel
perspective into brain-hormone interactions.
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Transient brain network reorganization across a female menstrual cycle

INTRODUCTION

The application of network science techniques to the study of the human brain has revealed
a set of large-scale functional brain networks that meaningfully reorganize both intrinsically
and in response to external task demands (Bassett & Sporns, 2017). One technique, dynamic
community detection (DCD), has emerged as a powerful tool for conceptualizing and quan-Dynamic community detection:

Network science technique that
identifies strongly connected sets of
nodes (communities) that persist or
change over time.

tifying changes in mesoscale brain network connectivity patterns by identifying sets of nodes
(communities) with strong intracommunity connections (Newman, 2006) to enable identifi-
cation of communities that persist or change over time. DCD complements other statistical
approaches used in fMRI data analysis by identifying when functionally coupled brain regions
undergo sufficiently large changes in connectivity to warrant reassignment to separate func-
tional communities. Additionally, this method provides an interpretable summary of whether
strongly connected sets of brain regions undergo transient, but significant, changes that could
be missed when time-averaging data within and between sessions.

This method is particularly suited for examining relationships between brain dynamics and
physiological variables that vary over relatively short timescales, such as sex hormone fluc-
tuations over the human menstrual cycle. A typical cycle, occurring every 25–30 days, is
characterized by significant rises in estradiol (∼8-fold) and progesterone (∼80-fold), both ofEstradiol:

Refers to 17β-estradiol, the major
form of estrogen in mammals.

which are powerful neuromodulators that have a widespread influence on the central ner-
vous system (Galea, Frick, Hampson, Sohrabji, & Choleris, 2017). Converging evidence from
animal studies has established sex hormones’ influence on regions supporting higher order
cognition, including the prefrontal cortex (PFC) and hippocampus (Frick, 2015; Wang, Hara,
Janssen, Rapp, & Morrison, 2010). Within these regions, for example, estradiol enhances
spinogenesis and synaptic plasticity while progesterone largely abolishes this effect (Hara,
Waters, McEwen, & Morrison, 2015; Woolley & McEwen, 1993). Importantly, sex hormones
are expressed broadly throughout the cerebellum and cerebrum, suggesting that whole-brain
effects might be observed beyond the regions targeted in these preclinical studies.

Human neuroimaging studies have demonstrated that sex hormones influence brain activity
across broad regions of cortex (Berman et al., 1997; Jacobs & D’Esposito, 2011). Further, a
handful of studies have demonstrated that menstrual cycle stage shapes resting-state functional
connectivity (rs-fc; Arélin et al., 2015; Lisofsky et al., 2015; Petersen, Kilpatrick, Goharzad, &
Cahill, 2014; Weis, Hodgetts, & Hausmann, 2019). However, these studies typically involve
group-based cross-sectional studies or sparse-sampling (two–four time points) designs that are
unable to capture transient day-to-day relationships between sex hormones and functional
brain dynamics, and this relatively low temporal resolution has led to inconsistencies in the
literature (Hjelmervik, Hausmann, Osnes, Westerhausen, & Specht, 2014). Therefore, new
approaches are needed that can address these spatial and temporal limitations, as doing so
will provide novel perspectives on human brain-hormone interactions.

Recently, Pritschet et al. (2020) applied a “dense-sampling” approach (Laumann et al.,Dense sampling:
Experimental paradigm in which
phenotypic measures are repeatedly
collected within an individual over
time.

2015; Poldrack, Laumann, & Koyejo, 2015) to a naturally cycling female who underwent
30 consecutive days of brain imaging and venipuncture to capture rs-fc variability over a
complete menstrual cycle (Figure 1). The authors found that day-to-day fluctuations in estra-
diol were associated with widespread increases in rs-fc across the whole brain, with proges-
terone showing an opposite, negative relationship. Using time series modeling and graph
theoretical analysis, they also found that estradiol drives variation in topological network
states, specifically within-network connectivity of default mode and dorsal attention networks.
These findings have important implications for the field of network neuroscience where dense-
sampling, deep-phenotyping approaches have emerged to aid in understanding sources of
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Transient brain network reorganization across a female menstrual cycle

Figure 1. 28andMe dataset. (A) Subject LP (naturally cycling female, age 23) participated in a month-long “dense-sampling" experimental
protocol to provide a multimodal, longitudinal dataset referred to as 28andMe (Pritschet et al., 2020). For 30 consecutive days, the subject
completed assessments of diet, mood, and sleep, provided blood samples to examine serum hormone concentrations, and underwent a 10-
minute resting-state fMRI scan. (B) For each resting-state scan, functional connectivity matrices were constructed by calculating the pairwise
mean magnitude-squared coherence between each region. The result is a 415 × 415 × 30 data structure, in which each entry indicates the
coherence between two nodes on a given day. (C) The brain was parcellated into 415 regions that were assigned to one of nine networks based
on previously identified anatomical and functional associations (Schaefer et al., 2018). Colors indicate regional network membership. In a
follow-up experiment, the participant repeated the procedures while on a hormonal regimen (0.02 mg ethinyl-estradiol, 0.1 mg levonorgestrel,
Aubra, Afaxys Pharmaceuticals), which she began 10 months prior to the start of data collection (Pritschet et al., 2020; Taylor et al., 2020).

intra/inter-individual variability in functional brain networks over days, weeks, months, and
years (Chen et al., 2015; Gratton et al., 2018; Poldrack et al., 2015).

Pritschet and colleagues’ approach identified node-averaged trends in rs-fc changes within
canonical functional networks across the cycle, but questions remain regarding whether and
where functional reorganization takes place between large-scale networks. As changes in
edge weight can result in the formation of functional “communities” not captured by tradi-
tional rs-fc methods, complementary approaches are needed to characterize trends in brain
connectivity at intermediate spatial and temporal scales. Examining mesoscale networks has
further revealed fundamental principles of functional brain networks, such as the modular,
integrated architecture underpinning flexible task performance (Bertolero, Yeo, & D’Esposito,
2015; Khambhati, Sizemore, Betzel, & Bassett, 2018). Additionally, a better understanding
of mesoscale connectivity may provide an avenue for improving personalized medicine by
increasing the efficacy of targeted therapeutic interventions (Gu et al., 2015).

Here, we applied DCD to examine whole-brain dynamics in relation to sex hormone fluc-
tuations across a menstrual cycle. Our results reveal that a stable set of “core” communities
persist over the course of a menstrual cycle, primarily consisting of nodes belonging to distinct
a priori defined functional–anatomical networks, namely visual, somatomotor, attention, de-
fault mode, and control networks. Though these core communities were largely stable, nodes
belonging to limbic, subcortical, attention, and control networks changed community affilia-
tion (referred to as flexibility) at higher rates than expected compared with a null hypothesis.Flexibility:

Measure of how often nodes change
communities. DCD also identified a transient split of the default mode network (DMN) core into two

smaller subcommunities concurrent with peaks in estradiol, luteinizing hormone (LH), and
follicle stimulating hormone (FSH) levels defining the ovulatory window. This community
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split was driven by strong increases of within-network integration between prefrontal nodes of
the DMN, which subsided immediately after the ovulatory window. The default mode, tem-
poroparietal, limbic, and subcortical networks also exhibited significantly increased flexibility
during ovulation, suggesting a role for estradiol, LH, and FSH in regulating localized, tempo-
rary changes in regional connectivity patterns. Importantly, this reorganization was not present
in a follow-up study in which the same participant was placed on an oral hormonal regimen
that prevented ovulation. Taken together, while a large degree of functional brain network sta-
bility was observed across the menstrual cycle, peaks in sex hormones resulted in temporary
brain network reorganization, suggesting that sex hormones may have the ability to rapidly
modulate rs-fc on shorter timescales than previously documented.

RESULTS

A single female underwent brain imaging and venipuncture for 30 consecutive days. For each
session, the brain was parcellated into 400 cortical regions from the Schaefer atlas and 15
subcortical regions from the Harvard–Oxford atlas (Figure 1C) and 415 × 415 functional as-
sociation matrices were constructed via magnitude-squared coherence (Schaefer et al., 2018).
Dynamic community detection was applied to these data, revealing a stable set of communi-
ties that persist over the course of a menstrual cycle. However, significant transient changes in
community structure occurred within the default mode network during the ovulatory window
concomitant with peaks in estradiol, luteinizing hormone, and follicle stimulating hormone.

Stable Functional Cores Persisted Over the Course of One Menstrual Cycle

The degree to which functional brain network connectivity changes over the course of a hu-
man menstrual cycle has yet to be fully characterized. Here, dynamic community detection
(also referred to as multislice or multilayer modularity maximization (Bassett et al., 2013)) con-
sistently identified four functional communities that were largely stable in a naturally cycling
female over 30 consecutive days. In this context, “community” refers to a set of nodes whose
intraset connections are significantly stronger than would be expected when compared with
an appropriate null model. A representative example of this consensus temporal community
structure (the community designation that best matches the output of 150 runs of the nondeter-
ministic community detection algorithm) is shown in Figure 2C. This structure was conserved
over a range of community detection parameter values that, roughly speaking, must be defined
to set the “spatial“ and “temporal” resolutions of community identification (see the Methods
section for a detailed description). Across all temporal resolutions considered here, consensus
community partitions with a spatial resolution parameter 0.97 ≤ γ ≤ 1.015 possessed exactlyPartition:

Set of community assignments for all
nodes resulting from dynamic
community detection.

four communities.

For the standard parameter choice (temporal and spatial resolution parameters both set to 1),
the four identified communities had distinct compositional characteristics. These communities
were largely bilaterally symmetric, with analogous brain regions in each hemisphere assigned
to the same community 71% of the time. The four communities correspond roughly to a visual
core, a default mode core, a control core, and a somatomotor-attention core. The compositions
of these four communities are shown in Figure 3A. The composition value was calculated by
summing the total number of instances in which a node belonging to an a priori functional-
anatomical network (Schaefer et al., 2018) also belonged to the community identified in the
consensus community partition.

The core communities identified here were named based on the highest representation of
nodes belonging to a priori functional networks. The visual core was 80% composed of visual
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Figure 2. Dynamic community detection identified changing modular structure over time at multiple scales. (A) A toy network example
illustrates the dynamic community detection algorithm. For each time point, every node is assigned to a community so as to maximize the
strength of intracommunity connections relative to intercommunity links while also taking community assignments over time into account
(Eq. 1). In this case, three communities are identified and denoted by color. (B) To assess temporal structure in the 28andMe resting-state
fMRI data, community assignments were calculated for a range of parameter values. In this procedure, two parameters, ω and γ, specify
the temporal and spatial scales of analysis, respectively. After performing 150 runs of the community detection algorithm for each parameter
combination, the statistical significance of each community partition relative to a random null model was calculated. The color for each entry
in the heat map indicates the proportion of communities at that parameter combination that are significant at the p < 0.05 level. (C) Consensus
partition structure varied according to the choice of resolution parameters. The example network community structure (left) changes at each
time point, with node community assignment given by color on the y-axis and time indicated on the x-axis. For three different parameter
combinations (outlined in red, blue, and green, respectively), the consensus partitions varied in the total number of communities identified,
ranging from 4 to 15, with more communities identified when the temporal resolution was low and the spatial resolution was high.

network nodes and had a median size of 52 nodes per day. The default mode core consisted
of 56% DMN nodes and approximately 10% of each control, limbic, and temporoparietal
network nodes and contained a median of 133.5 nodes per day. The control core consisted of
48% control and 28% dorsal attention network nodes and contained a median of 133 nodes
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Figure 3. Dynamic community detection uncovered stable cores across a complete menstrual cycle. (A) Four core communities (y-axis) were
consistently identified in the 28andMe dataset across spatial and temporal resolution parameter values. For these parameter combinations, the
compositions of the visual, default mode, control, and somatomotor-attention network cores are shown as a heat map, with color corresponding
to the percentage of nodes in a community belonging to a functional–anatomical network. (B) The four networks that constituted the hubs of
the core communities possessed stable pairwise connectivity between nodes across days. Scatterplots show the day-to-day correspondence
between edge weights for all of the nodes of the somatomotor, default mode, temporoparietal, and visual networks on days t and t + 1. These
network edges had Pearson correlation coefficients of 0.379, 0.573, 0.590, and 0.538, respectively. (C) The subcortical, limbic, and dorsal
attention networks exhibited the highest median node flexibility. Top: Normalized flexibility values for each node over the entire cycle are
plotted as points, with color indicating network affiliation. Thick horizontal lines on box plots indicate median values. A flexibility value of 1
indicates that a node changes community assignment at each possible time point, whereas a value of 0 indicates that the node never changes
community assignment. Bottom: A 95% cutoff value is calculated using the flexibility values for each node over all 150 community detection
runs. For each functional–anatomical network, the blue bar indicates the number of nodes belonging to that network which have flexibility
values above the cutoff threshold. The red bars indicate the proportion of nodes in each network that surpass the cutoff value (i.e., the value for
each blue bar is normalized by the number of nodes in the network). Once again, limbic, subcortical, dorsal attention, and control networks
contained the highest proportion of highly flexible nodes.

per day. Finally, the somatomotor-attention core was composed of 53% somatomotor, 27%
salience-ventral attention, and 13% dorsal attention network nodes and had a median size
of 97 nodes per day. Importantly, for all parameter combinations in which four communities
were detected, the composition of these communities was consistent (Supporting Information).
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These community partitions were also stable across the entire menstrual cycle. Specifically,
315 of the 415 nodes (75.9%) did not change community affiliation across the 30-day
experiment.

Taken together, these results suggest the presence of a stable solution to the dynamic com-
munity detection algorithm and a reliable coarse-grained community architecture present in
the data. In several functional–anatomical networks, there was little to no modification of
network architecture over time; for instance, greater than 85% of nodes in each of the so-
matomotor, default mode, temporoparietal, and visual networks did not change community
affiliation over the entire menstrual cycle. The strong day-to-day correlations between edge
weights in these networks (Figure 3B) reinforce the existence of these stable cores.

Functional–Anatomical Networks Exhibited Distinct Patterns of Flexibility

Though network community structure was stable over a complete menstrual cycle when clas-
sifying nodes into four communities, specific nodes did change community affiliation at levels
above chance when modifying the sensitivity of the community detection algorithm. Specifi-
cally, when γ, the spatial resolution parameter, was increased, the dynamic community detec-
tion algorithm subdivided the four core communities into smaller communities, providing a
finer grained classification of subnetwork structure. At an intermediate parameter combination
(ω = 0.9, γ = 1.055), 10 communities significant at the p < 0.05 level were identified over
the course of the experiment, as visualized in Figure 2C (blue outlines). The subsequent anal-
ysis uses community partitions at this parameter combination, but the results were consistent
across a range of neighboring parameter values (Supporting Information).

This “higher resolution” partition revealed trends in functional organization over time that
were not observable with coarser partitions. First, inspecting the median flexibility value, or
the proportion of times a node changed community affiliation out of the total possible number
of changes, demonstrates that functional–anatomical networks possessed distinct flexibility
distributions (Figure 3C, top). The limbic, subcortical, dorsal attention, and control networks
were significantly overrepresented in terms of highly flexible nodes relative to a random null
hypothesis (Figure 3C, bottom).

The largest fine-scale community reorganization occurred on experiment Day 22 and per-
sisted until Day 24 (Figure 4A). Across these days, 65 nodes belonging to the default mode core
community split from the default mode core community to transiently form a small, strongly
connected community. This was one of only two large-scale reorganization events detected
during the experiment; the other occurred on Day 9, when 59 nodes (yellow in Figure 4A)
changed community affiliation. All 59 nodes involved in this event also changed community
affiliation on Day 22.

Interestingly, 31 (48%) of the nodes in the community that emerged on Day 22 belonged
to the DMN, 12 nodes (19%) belonged to the temporoparietal network, and 9 (14%) were
limbic regions (as defined by functional–anatomical atlases (Jenkinson, Beckmann, Behrens,
Woolrich, & Smith, 2012; Schaefer et al., 2018; Figure 5A). The functional–anatomical network
memberships of the node–node pairs exhibiting the strongest increases in coherence (top 5%)
indicated that enhanced connectivity between DMN nodes drove this community split, as
opposed to DMN nodes being “converted” to a new community via increased connectivity to
non-DMN regions (Supporting Information). More specifically, nodes within prefrontal regions
belonging to DMN subnetwork B drove this reorganization event, as 104 of the 466 (22%)
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Figure 4. Fine-grain community partitioning revealed a bifurcation in the default mode core during ovulation. (A) When the spatial resolution
parameter (which alters the size of communities identified by dynamic community detection) was increased from the standard value, the four
core communities identified previously were subdivided into smaller subcommunities (reproduced from Figure 2C). Here, a split in the default
mode core community (light blue) appeared at Day 22 (red), concomitant with ovulation and a spike in sex hormones. This community
(red) rejoined the default mode core on day 26. For illustrative purposes, only the consensus partition for one parameter value is shown, but
this trend was consistent across nearby parameter combinations (Supporting Information). (B) Shown are flexibility values for each node by
menstrual cycle phase. Color in each region indicates flexibility value, with hotter colors indicating higher values. The following days of the
experiment corresponded to the phases of the menstrual cycle: follicular, Days 11–22; ovulatory, Days 23–25; luteal, Days 1–10 and 26–30.
Flexibility values are noticeably higher in many regions from the temporoparietal, limbic, subcortical, and default mode networks during the
ovulatory phase compared with the follicular and luteal phases. Mowinckel, A.M. and Vidal-Piñeiro, D. (2019) Visualisation of Brain Statistics
with R-packages ggseg and ggseg3d. arXiv:stat.OT/1912.08200.

strongest increases in coherence occurred between nodes in this subnetwork, despite DMN
subnetwork B containing only 32 nodes (8% of the total nodes).

Network Reorganization Timing Coincided With Peaks in Hormone Levels During Ovulation

Global flexibility was higher (Wilcoxon rank-sum test, p < 0.05) during ovulation (Days
23–25) than during early follicular or luteal phases. Specifically, global mean flexibility during
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Figure 5. Nodes in a default mode subnetwork drove community bifurcation via strong increases in coherence. (A) The newly formed
functional community on Days 22–24 contained 65 nodes that belonged to the community on all three days. The functional–anatomical
network and subnetwork affiliations of these nodes are shown on the left and right, respectively. The new community contained 31 DMN
nodes, 12 temporoparietal nodes, and 9 limbic nodes. (B) The edges that exhibited large weight changes from Day 21 to Day 22 (top 5%
of changes, left) were predominantly within-network connections between DMN network nodes (104/466). Examining subnetwork structure
reveals that all of the strongly enhanced connections between nodes in the DMN belonged to subnetwork B, indicating that this subnetwork,
which consists of regions in prefrontal cortex, drove the default mode core community bifurcation at ovulation.

the ovulatory window was 0.10, whereas flexibility during follicular and luteal phases was 0.05
and 0.04, respectively. Flexibility of individual brain regions during these phases are shown in
Figure 4B. Note that while several nodes exhibit high flexibility across all three phases, global
flexibility and network-specific mean flexibility are still relatively low (as seen in Figures 3C
and Figure 6A) because the majority of nodes rarely change community affiliation.

Mean flexibility of each network over a five-day sliding window is depicted in Figure 6A.
The DMN, temporoparietal, subcortical, and limbic networks exhibited peaks in flexibility at
Day 23 of the experiment, coincident with the peaks in estradiol, LH, and FSH which are a
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Figure 6. Community reorganization was temporally localized to ovulation. Changes in community assignment (A) were coordinated and
closely tracked the timing of spikes in estradiol concentrations (B). Default mode, limbic, subcortical, and temporoparietal networks exhibited
peaks in flexibility on Day 23, indicating brain-wide functional reorganization during the ovulatory window. These same networks also
exhibited elevated flexibility between Days 5 and 10 during the secondary estradiol peak. The pattern of flexibility shown here corresponds
to the network reorganization observed for dynamic community detection performed with the parameter combination ω = 0.9, γ = 1.055
(blue outline in Figure 2). Here, flexibility is calculated over a five-day sliding window.

hallmark signals of the ovulatory window (Figure 6B). To determine whether the bifurcation of
the default mode core community was significantly associated with sex hormones, we com-
pared functional–anatomical network flexibility values with serum hormone levels.

To assess the temporal relationship between network flexibility values and sex hormones,
correlations between each time series were calculated. The default mode, limbic, salience/
ventral attention, somatomotor, subcortical, and temporoparietal networks had significant
Spearman rank correlations greater than 0.6 (where maximum value of 1 indicates perfect
rank correlation and 0 indicates no correlation) with estradiol (Bonferroni-corrected at p <
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0.05). No other significant positive network flexibility-hormone correlations were identified
(Supporting Information).

Next, to determine whether these reorganization events are uniquely related to the intrinsic
hormonal dynamics that occur across a menstrual cycle, we conducted an identical analysis
from a follow-up dataset in which the same individual repeated the daily protocol (30 consec-
utive days of sampling) one year later. During this follow-up study, the participant was placed
on a hormonal regimen that disrupted endogenous sex hormone production and prevented
ovulation from occurring (see Pritschet et al., 2020; Taylor et al., 2020). Under this regimen,
DCD identified the same four stable cores found in the original experiment, but no large-scale
reorganization was observed (Supporting Information).

DISCUSSION

In this study, we applied DCD to data from a densely sampled female who underwent 30
consecutive days of brain imaging and venipuncture to investigate the extent of intrinsic spa-
tiotemporal functional reorganization over a menstrual cycle. We identified four stable com-
munity cores across the cycle, represented here as visual, somatomotor, default mode, and
control network cores; the strongest exception to this stability occurred simultaneously with
peaks in estradiol, LH, and FSH. During this event, we observed a transient reorganization
of the DMN core into a newly formed community, as well as increases in nodal flexibility
among prefrontal, limbic, and subcortical nodes. A nearly identical reorganization event oc-
curred during the secondary peak in estradiol. Together, our results suggest that the interplay
between the nervous and endocrine systems over a menstrual cycle results in temporary, local-
ized patterns of brain network reorganization. These results highlight DCD as a new avenue
for investigating the intricate relationship between sex hormones and human brain dynamics.

Dynamic Community Detection Characterizes Network-Specific Functional Stability Across a
Menstrual Cycle

Dense-sampling, deep-phenotyping studies offer new ways to investigate intra/interindividual
variability in functional brain networks by identifying features of rs-fc that are stable traits within
an individual or change in conjunction with biological factors and state-dependent variables
(Gratton et al., 2018; Poldrack et al., 2015). Recent dense-sampling studies have shown that
frontoparietal regions/networks exhibit high degrees of intra-individual rs-fc stability while also
being characteristically unique across individuals, suggesting that these higher order regions
may be especially critical for uncovering individual differences in brain function and improv-
ing personalized medicine (Gratton et al., 2018; Horien, Shen, Scheinost, & Constable, 2019).
Our findings provide new insight towards the ongoing explorations into stability within func-
tional brain networks. With the exception of limbic and subcortical networks, network nodes
were highly stable, changing affiliations fewer than 10% of the time on average (Figure 3C).
Therefore, our results align with previous research suggesting a high degree of network stability
in resting-state networks in individuals over time (Gratton et al., 2018; Hjelmervik et al., 2014;
Horien et al., 2019; Poldrack et al., 2015).

In contrast to this observed overall stability, several highly flexible nodes were identified.
Control subnetwork C, encompassing posterior cingulate cortex/precuneus regions, was the
most flexible functional subnetwork identified, with 10 of the 12 nodes exhibiting significantly
higher than expected flexibility (Supporting Information). Limbic and subcortical networks
displayed intermediate levels of flexibility. Regions from these systems receive input from and
project to many cortical areas and are implicated in functions such as sensorimotor integration
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via the cortico-basal ganglia-thalamo-cortical loop (Bell & Shine, 2016); therefore, the high
degree of flexibility observed here may reflect the tendency of these systems to serve as relays
between functionally segregated communities.

Particular changes in rs-fc were significantly related to sharp rises in sex hormones seen
during ovulation. Here, we observed a spatially specific transient reorganization of the DMN,
during which nodes from the temporoparietal, limbic, subcortical, and default mode networks
split from the default mode core to form a short-lived community for (three days) before re-
joining the original core community. Notably, a nearly identical event occurred on Day 9 of
the experiment, when 59 of the 65 nodes that changed community affiliation during ovulation
merged with the default mode core. This event occurred concurrent with a secondary peak in
estradiol and involved networks (DMN, temporoparietal, limbic, subcortical) whose flexibility
values were significantly associated with estradiol levels, further implicating hormone-specific
modulation of functional connectivity between these networks.

Using time-lagged analyses, Pritschet and colleagues reported that within-network connec-
tivity of the DMN was regulated by previous states of estradiol (Pritschet et al., 2020). Here,
we expand on this finding and identify a subnetwork of the DMN that is likely driving this re-
organization. Regions constituting this new community are located in PFC, an area exquisitely
sensitive to sex steroid hormones (Shanmugan & Epperson, 2014) where, for instance, nearly
50% of pyramidal neurons in the dorsolateral PFC (dlPFC) express ER-alpha (Wang et al.,
2010). Importantly, this coordinated reorganization was not observed in a follow-up experi-
ment in which typical hormone production patterns were disrupted (Supporting Information).
Together, this presents the possibility that endocrine signaling may, in part, regulate intrinsic
brain dynamics within the frontal cortex.

Neurobiological Interpretations of Sex Hormones on PFC Function

Cross-species investigations have established estrogen’s ability to shape the PFC (Galvin &
Ninan, 2014; Hara et al., 2016; Jacobs & D’Esposito, 2011; Jacobs et al., 2017; Shanmugan
& Epperson, 2014). In rodents, estradiol increases fast-spiking interneuron excitability in deep
cortical layers (Clemens et al., 2019); in nonhuman primates, estradiol treatment increases
dendritic spine density in dlPFC neurons (Hao et al., 2006) and this potentiation is observed
only if the treatment is administered in the typical cyclical pattern observed across a menstrual
cycle. Human brain imaging studies have also implicated estradiol in enhancing the efficiency
of PFC-based circuits. In cycling women performing a working memory task, PFC activity
is exaggerated under low estradiol conditions and reduced under high estradiol conditions
(Jacobs & D’Esposito, 2011). Similarly, when estradiol declines across the menopausal transi-
tion, working memory–related PFC activity becomes more exaggerated despite no differences
in task performance (Jacobs et al., 2017). Examining rs-fc across the cycle, Petersen and col-
leagues found that women in the late follicular stage (encompassing the ovulatory window)
showed increased coherence within DMN and executive control networks compared with
those in luteal stages (Petersen et al., 2014). Our findings extend this body of work by demon-
strating that PFC nodal flexibility tracks significantly with sharp shifts in estradiol, which may
support the brain’s ability to reorganize at the mesoscale level.

While future studies are needed to establish a mechanistic link between endocrine signaling
and large-scale network reorganization, we present two possible neurobiological interpreta-
tions. One mechanism of action may be through estradiol’s interaction with the dopamin-
ergic system. The PFC is innervated by midbrain dopaminergic neurons that enhance the
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signal-to-noise ratio of PFC pyramidal neurons and drive cortical efficiency (Williams &
Goldman-Rakic, 1995). In turn, estradiol enhances dopamine release and modifies the basal
firing rate of dopaminergic neurons, potentially having the ability to alter mesoscale network
integration. Second, although coherence is robust to changes in the hemodynamic response
(Sun, Miller, & D’Esposito, 2004), sex hormones influence cerebrovascular function (Krause,
Duckles, & Pelligrino, 2006; Krejza, Rudzinski, Arkuszewski, Onuoha, & Melhem, 2013).
Therefore, the observed changes in rs-fc across the cycle could be due to changes in perfusion
rather than alterations in neural activity.

Important differences in network stability emerged between naturally cycling and oral hor-
monal contraceptive conditions. Under naturally cycling conditions, the largest reorganization
event occurred during the ovulatory window. Although estradiol levels were comparable in
Study 2 (Supporting Information), estradiol was decoupled from LH and FSH, progesterone was
reduced by 97%, and ovulation did not occur. Therefore, hormone-related changes in DMN
subnetwork reorganization might only be present when shifts in endogenous hormones occur
in a coordinated fashion. Future studies comparing endocrine states of women over several
cycles will help establish the robustness of these differences.

Implications for Cognition and Disease

Several studies have begun utilizing DCD to relate “task-free“ and “task-based” functional net-
work reorganization to cognitive performance. High levels of nodal flexibility have been asso-
ciated with enhanced performance on working memory tasks (Braun et al., 2015), improved
learning of a motor task (Bassett et al., 2011), and visual cue learning (Gerraty et al., 2018).
Further, sensory regions typically participate in a small number of functional networks dur-
ing various tasks, whereas “hub” regions in frontal cortex, including precuneus and posterior
cingulate gyrus, participate in multiple functional networks (van den Heuvel & Sporns, 2013),
indicating that network-specific temporal reconfiguration of functional connectivity has im-
plications for a wide variety of cognitive functions (Mattar, Cole, Thompson-Schill, & Bassett,
2015).

Highly flexible nodes were identified in precuneus and posterior cingulate gyrus, with
changes in community affiliation occurring simultaneously with sharp peaks in estradiol levels,
raising the possibility that hormonal fluctuations could be associated with and facilitate task-
based network reorganization. For instance, if high levels of estradiol increase nodal flexibility
among hub regions in the PFC, one might predict that performance on PFC-dependent tasks
will improve. Further, pregnancy—a period of profound neuroendocrine change—leads to
long-lasting gray matter reductions within DMN regions (Hoekzema et al., 2017). The capac-
ity for the brain to fluctuate between integrated and segregated states at rest allows for rapid
and efficient transitions to various task states (Kabbara, Falou, Khalil, Wendling, & Hassan,
2017; Shine et al., 2016; Zalesky, Fornito, Cocchi, Gollo, & Breakspear, 2014). Therefore, fu-
ture work examining whether task-based functional brain networks undergo transient changes
in flexibility and community structure, both across the menstrual cycle and during other hor-
monal transition periods, will be imperative.

Examining how large-scale brain networks are disrupted in clinical populations can en-
hance our understanding of complex neurological disorders (Hallquist & Hillary, 2019), and
studies have begun utilizing DCD methods to characterize the spatiotemporal basis of how
networks reconfigure across diseases such as epilepsy and autism spectrum disorder (Braun
et al., 2016; Martinet et al., 2020). Here, using similar methods, we demonstrate that hormone
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fluctuations are associated with significant reorganization of the DMN and increased flexibility
among several brain networks. Notably, differences in DMN rs-fc emerge among individuals
with depression (Greicius et al., 2007) and Alzheimer’s disease (Buckner et al., 2009)—two
conditions that display a sex-skewed prevalence towards women (Nebel et al., 2018). Using
the MyConnectome Project, Betzel and colleagues provided evidence that increased network
flexibility is associated with positive mood (Betzel, Satterthwaite, Gold, & Bassett, 2017). Here,
network flexibility was highest during the ovulatory window followed by an immediate decline
back to network stability in the luteal phase of the cycle, coincident with traditional rises in
negative affect (e.g., premenstrual syndrome; Rubinow & Schmidt, 2006). Although we did
not identify a relationship between mood and network flexibility within this participant, cycle-
dependent brain network reorganization could play a role in psychiatric conditions observed in
some women, particularly those suffering from premenstrual dysphoric disorder. Further, a de-
cline of sex hormones to chronically low states occurs in postreproductive years, decades prior
to diagnoses of Alzheimer’s disease. Therefore, modeling time-varying community structure
in conjunction with endocrine status could shed light on neurological disorders that display
prominent sex differences. If fluctuations in sex hormones lead to greater network flexibility,
and those in turn shape the brain and behavior (Betzel et al., 2017), hormone therapy that
mimics the transient rise and fall of estradiol could provide a line of treatment for individu-
als experiencing cognitive symptoms in the transition to menopause and/or for those with a
heightened risk for dementia.

Limitations and Future Directions

The following limitations should be taken into consideration. First, this study involved densely
sampling a single female over one complete menstrual cycle, hindering our ability to generalize
these findings to other individuals. Therefore, it is critical for this approach to be extended to
a larger and more diverse set of women to establish the consistency of these results while
accounting for individual differences. Second, we used a well-established group-based atlas
to improve generalizability beyond a single-subject design (Schaefer et al., 2018). However,
group-based atlases risk loss of individual-level specificity and could overlook meaningful
reconfigurations in parcellations (Salehi et al., 2020). Future work using an individual-derived
atlas is needed to confirm whether these results are stable across various analytic pipelines.
Third, an ongoing debate in network neuroscience surrounds test-retest reliability and what
constitutes a “substantial” amount of data per individual. While some studies suggest that
(more than 20 min of data per individual is needed (Gratton et al., 2018), others contend
that shorter durations (5–15 min) of sampling is sufficient to achieve reliability (Birn et al.,
2013; Chen et al., 2015). Repeating this experiment under longer scanning durations (>10
min per day) will be critical for exploring the degree of network stability across the menstrual
cycle. Finally, this work considers only between-session rather than within-session network
reconfiguration because of the aforementioned concerns about test-retest reliability. However,
as previous studies have found meaningful shifts in flexibility across shorter time scales (Braun
et al., 2015; Telesford et al., 2016), a natural extension to this work will be to examine within-
session network reorganization across the cycle in larger samples of women.

CONCLUSION

In sum, we demonstrate that resting-state functional connectivity is largely stable within an
individual over the course of a complete menstrual cycle. The largest exception to this stability
occurs around the ovulatory window, during which peaks in sex hormones result in temporary
patterns of brain network reorganization largely localized within areas of the default mode
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network. Historically, brain-level phenomena resulting from hormone fluctuations have been
treated as an unwanted source of variance in population studies and, consequently, studies of
this relationship are sparse and underpowered. This work demonstrates that dynamic network
methods can reveal important, transient effects of sex hormones that may be overlooked by
traditional approaches and provides a novel template for examining the nature of human brain-
endocrine relationships.

METHODS

28andMe Experimental Protocol

Data were collected and preprocessed as reported in Pritschet et al. (2020); methods briefly
reproduced here. The participant was a right-handed Caucasian female, aged 23 years for the
duration of the study. The participant had no history of neuropsychiatric diagnosis, endocrine
disorders, or prior head trauma. She had a history of regular menstrual cycles (no missed
periods, cycle occurring every 26–28 days) and had not taken hormone-based medication in
the 12 months prior to Study 1. The participant gave written informed consent and the study
was approved by the University of California, Santa Barbara, Human Subjects Committee.

The participant underwent daily testing for 30 consecutive days, with the first test session de-
termined independently of cycle stage for maximal blindness to hormone status (Study 1). The
participant began each test session with a daily questionnaire (9:00 a.m.) followed by a time-
locked blood sample collection 10:00 a.m. (±30 min). Endocrine samples were collected, at
minimum, after 2 hr of no food or drink consumption (excluding water). This was followed
by a 1-hr MRI session (11:00 a.m.) consisting of structural and functional MRI sequences. To
note, the participant refrained from consuming caffeinated beverages before each test session.
One year later (Study 2), the participant repeated the procedures while on a hormonal regimen
(0.02 mg ethinyl-estradiol, 0.1 mg levonorgestrel, Aubra, Afaxys Pharmaceuticals), which she
began 10 months prior to the start of data collection (Pritschet et al., 2020).

A licensed phlebotomist inserted a saline-lock intravenous line into the dominant or non-
dominant hand or forearm daily to evaluate hypothalamic-pituitary-gonadal axis hormones,
including serum levels of gonadal hormones (17β-estradiol, progesterone, and testosterone)
and the pituitary gonadotropins luteinizing hormone (LH) and follicle stimulating hormone
(FSH). One 10-ml blood sample was collected in a vacutainer SST (BD Diagnostic Systems)
each session. The sample clotted at room temperature for 45 min until centrifugation (2,000 g
for 10 min) and was then aliquoted into three 1-ml microtubes. Serum samples were stored
at −20°C until assayed. Serum concentrations were determined via liquid chromatography-
mass spectrometry (for all steroid hormones) and immunoassay (for all gonadotropins) at the
Brigham and Women’s Hospital Research Assay Core.

fMRI Data Acquisition and Preprocessing

The participant underwent a daily magnetic resonance imaging scan on a Siemens 3T Prisma
scanner equipped with a 64-channel phased-array head coil. First, high-resolution anatom-
ical scans were acquired using a T1-weighted magnetization prepared rapid gradient echo
(MPRAGE) sequence (TR = 2,500 ms, TE = 2.31 ms, TI = 934 ms, flip angle = 7°; 0.8-mm
thickness) followed by a gradient echo fieldmap (TR = 758 ms, TE1 = 4.92 ms, TE2 = 7.38 ms,
flip angle = 60°). Next, the participant completed a 10-min resting-state fMRI scan using a
T2-weighted multiband echo-planar imaging (EPI) sequence sensitive 468 to the blood oxy-
genation level–dependent (BOLD) contrast (TR = 720 ms, TE = 37 ms, flip angle = 56°,
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multiband factor = 8; 72 oblique slices, voxel size = 2 mm). In an effort to minimize motion,
the head was secured with a custom, 3D-printed foam head case (https://caseforge.co/) (Days
8–30 of Study 1). Overall motion (mean framewise displacement) was negligible, with fewer
than 130 μm of motion on average each day.

Initial preprocessing was performed using the Statistical Parametric Mapping 12 software
(SPM12, Wellcome Trust Centre for Neuroimaging, London) in MATLAB. Functional data were
realigned and unwarped to correct for head motion and the mean motion-corrected image
was coregistered to the high-resolution anatomical image. All scans were then registered to
a subject-specific anatomical template created using Advanced Normalization Tools (ANTs)
multivariate template construction. A 5-mm full-width at half-maximum (FWHM) isotropic
Gaussian kernel was subsequently applied to smooth the functional data. Further prepara-
tion for resting-state functional connectivity was implemented using in-house MATLAB scripts.
Global signal scaling (median = 1,000) was applied to account for fluctuations in signal in-
tensity across space and time, and voxelwise time series were linearly detrended. Residual
BOLD signal from each voxel was extracted after removing the effects of head motion and
five physiological noise components (cerebrospinal fluid + white matter signal). Motion was
modeled using a Volterra expansion of translational/rotational motion parameters, accounting
for autoregressive and nonlinear effects of head motion on the BOLD signal. All nuisance
regressors were detrended to match the BOLD time series.

Functional network nodes were defined based on a 400-region cortical parcellation and 15
regions from the Harvard–Oxford subcortical atlas. For each day, a summary time course was
extracted per node by taking the first eigenvariate across functional volumes. These regional
time series were then decomposed into several frequency bands using a maximal overlap
discrete wavelet transform. Low-frequency fluctuations in wavelets 3–6 (0.01–0.17 Hz) were
selected for subsequent connectivity analyses. Finally, we estimated the spectral association
between regional time series using magnitude-squared coherence: this yielded a 415×415
functional association matrix each day, whose elements indicated the strength of functional
connectivity between all pairs of nodes (FDR-thresholded at q < 0.05).

Dynamic Community Detection and Analysis

A multilayer tensor (415 × 415 × 30) was constructed from the association matrices described
above for network analysis. Each layer corresponded to the strictly positive, weighted, FDR-
thresholded rs-fc association matrix for the corresponding day of the experiment. Interlayer
links were added only between adjacent layers. Communities in resting-state connectivity were
identified by maximizing multislice modularity, given by

Q =
1

2μ ∑
ijlr

((Aijl − γl
kilkjl

2ml
)δlr + δijωjlr)δ(gil , gjr), (1)

where μ is the total edge weight in the network, i and j index nodes in slices l and r, A
is the adjacency matrix containing edge weights between nodes and slices, γ is the structural
resolution parameter, kil is the strength of node i in slice l, ml is the total nodal strength in slice
l, δ is the Kronecker delta, ω is the temporal resolution parameter, and g is the community
assignment index (Bassett et al., 2013).

Community assignments that maximize modularity were determined 150 times over a grid of
parameter values (γ, ω) = [0.97, 1.07]× [0.8, 1.5] using the genlouvain function from Jeub
et al. in MATLAB 2019a (Jeub, Bazzi, Jutla, & Mucha, 2011–2019). From these community
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assignments, the consensus partition for each parameter combination was determined us-
ing the consensus_similarity function from the Network Connectivity Toolbox (NCT,
http://commdetect.weebly.com/).

Node flexibility is defined as the proportion of times a node changes community assignment
out of all possible opportunities to change its assignment. Thus, a flexibility value of 1 indicates
that a node changes community membership at every time step and a value of 0 indicates that
it never changes communities. Partition significance, node flexibility, and persistence were
also calculated using functions from the NCT (Bassett et al., 2011). Cross-covariance values
were calculated and statistical tests were performed using built-in MATLAB functions.

Head motion was low (< 130 μm), was not significantly associated with hormone con-
centrations (all pairwise Pearson correlations > 0.05 after Bonferroni correction), and was
nearly identical between Days 22 and 24 of the experiment (when reorganization occurred),
suggesting that head motion is not a confounding factor when considering community recon-
figuration. On the day of the experiment with the fewest connections (Day 26), the network
had an edge density of 0.9317 (i.e., 93.17% of possible edges have nonzero values) and the
median density was 0.9713. This represents a 4% difference in density, and density was not
significantly correlated with hormone levels, so we do not believe the community detection
algorithm was biased by disparities in edge density.
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