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Abstract
Pulse rate variability is a physiological parameter that has been extensively studied and correlated with many physical ail-
ments. However, the phase relationship between inter-beat interval, IBI, and breathing has very rarely been studied. Develop 
a technique by which the phase relationship between IBI and breathing can be accurately and efficiently extracted from 
photoplethysmography (PPG) data. A program based on Lock-in Amplifier technology was written in Python to implement a 
novel technique, Dynamic Phase Extraction. It was tested using a breath pacer and a PPG sensor on 6 subjects who followed 
a breath pacer at varied breathing rates. The data were then analyzed using both traditional methods and the novel technique 
(Dynamic Phase Extraction) utilizing a breath pacer. Pulse data was extracted using a PPG sensor. Dynamic Phase Extraction 
(DPE) gave the magnitudes of the variation in IBI associated with breathing (ΔIBI) measured with photoplethysmography 
during paced breathing (with premature ventricular contractions, abnormal arrhythmias, and other artifacts edited out). 
ΔIBI correlated well with two standard measures of pulse rate variability: the Standard Deviation of the inter-beat interval 
(SDNN) (ρ = 0.911) and with the integrated value of the Power Spectral Density between 0.04 and 0.15 Hz (Low Frequency 
Power or LF Power) (ρ = 0.885). These correlations were comparable to the correlation between the SDNN and the LF 
Power (ρ = 0.877). In addition to the magnitude ΔIBI , Dynamic Phase Extraction also gave the phase between the breath 
pacer and the changes in the inter-beat interval (IBI) due to respiratory sinus arrythmia (RSA), and correlated well with the 
phase extracted using a Fourier transform (ρ = 0.857). Dynamic Phase Extraction can extract both the phase between the 
breath pacer and the changes in IBI due to the respiratory sinus arrhythmia component of pulse rate variability ( ΔIBI) , but 
is limited by needing a breath pacer.
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Introduction

Recent experiments have reawakened interest in the phase 
relationships caused by the delay between the modulation 
of the heart rate from the breath and the breath (Fisher & 
Lehrer, 2021; Lehrer et al., 2020).  Lehrer et al. have shown 
the phase shift at the breathing rate that yields the maxi-
mum power in heart rate variability varies systematically 
with age (Fisher & Lehrer, 2021; Lehrer et al., 2020). This 
report builds upon those papers and the largely-ignored 
work on phase by Angelone and Coulter, who demon-
strated over 50 years ago that there is an intricate relation-
ship between phase, heart rate variability amplitude, and 
breathing rate (Angelone & Coulter, 1964). In this paper 
we introduce a method to accurately and efficiently extract 
the phase of the respiratory sinus arrythmia (RSA) induced 
variations in inter-beat interval (IBI), measured with 
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photoplethysmography, relative to the breath. For the sake 
of clarity and succinctness, in this paper we will define the 
change in IBI due to RSA as the change in IBI ( ΔIBI).

Our Dynamic Phase Extraction (DPE) method is based 
on lock-in amplifier technology. The lock-in amplifier is a 
powerful instrument commonly used in astronomy, phys-
ics, and engineering that can isolate signals a millionth the 
amplitude of the noise.

We propose that this method could be used for analyzing 
the wave characteristics of RSA and may be useful for bio-
feedback studies of pulse rate variability. Broadly, pulse and 
heart rate variability (HRV) is negatively associated with a 
multitude of ailments and physical states, including chronic 
pain (Evans et al., 2013; Tracy et al., 2016), post myocardial 
infarction death rate (Carny et al., 2001; Hohnloser et al., 
1997; Sosnowski et al., 2002), anxiety (Chalmers et al., 
2014; De Souza et al., 2014; Goessl et al., 2017), diabe-
tes (van Ravenswaaij-Arts, 1993), and sympathetic nervous 
system activation (Evans et al., 2013; Sztajzel, 2004; van 
Ravenswaaij-Arts, 1993); conversely, it is positively associ-
ated with athletic performance (Kiviniemi et al., 2007; Plews 
et al., 2013). Some fluctuations in the very low frequency 
(VLF) range (< 0.04 Hz) have been positively associated 
with sympathetic nervous system activation, with some fur-
ther complexities in chronic heart failure patients (Sztajzel, 
2004). This has led to many papers seeking optimization 
parameters, and extensive work has been done in developing 
biofeedback and breathing protocols to improve and opti-
mize heart rate variability (Lehrer et al., 2013; Lehrer & 
Slime, 2007; Goessl et al., 2017), as well as the development 
of consumer devices that measure and utilize pulse rate vari-
ability, e.g. HeartMath, Whoop, Fitbit.

Previous work has modeled the cardiac system as a two-
closed-loop system, with the brain, baroreceptors, vascu-
lar tone control system, blood pressure control system, and 
heart rate control system as its constituents. Vaschillo (2002) 
emphasized the importance of phase delays in his work on 
biofeedback and approached the system from an engineering 
perspective, where often the most important components of 
a feedback system are the phase relationships. This is reason 
enough to investigate phase relationships, but there has been 
even more work motivating an investigation into the phase 
relationships in HRV.

There is evidence to suggest that the delay causing the 
phase shift between the changes in IBI and breathing rate 
exists because a delay results in more efficient pulmonary 
gas exchange (Hayano et al., 1996; Giardino et al., 2003), 
and that the changes in IBI are just the apparent manifesta-
tions of a system that optimizes this gas exchange (Sin et al., 
2010). Thus, we are interested in finding two parameters: 
the phase between IBI and breathing, and the peak-to-peak 
amplitude of the inter-beat interval, ΔIBI , as defined in 
Fig. 1.

Notably, the preponderance of extant literature measures 
HRV by electrocardiography (ECG). Here, however, we use 
photoplethysmography (PPG) to measure pulse rate variabil-
ity. While we acknowledge limitations to this approach (e.g., 
difficulties in precisely capturing the timing of peak-to-peak 
events), PPG is nevertheless the most accessible form of 
measuring pulse rates. Our future research hopes to use the 
technique in various applications where ECG is unfeasible.

Here we introduce and discuss the Dynamic Phase 
Extraction (DPE) method and demonstrate its ability to 
extract the phase relationships from PPG data. We also com-
pare the measure for the magnitude of pulse rate variability, 
ΔIBI , that it generates to other methods of extracting pulse 
rate variability (the LF Power and Standard Deviation of 
the IBI) and compare the phase that it extracts to the phase 
extracted using the Fourier transform. ΔIBI is defined as 
the peak-to-peak amplitude of the waves in the IBI interval 
vs. time curve. We extracted the phase and amplitude of 
the pulse rate variability, compared it to other methods of 
measuring pulse rate variability and phase, and found good 
agreements between them.

Methods

Participants

We collected data from six healthy young adults (5 men 
and 1 woman, aged between from 19 to 26). All procedures 

Fig. 1   Dynamic Phase Extraction (DPE) can give the phase and 
magnitude (ΔIBI) of the variation in Inter-beat Interval (IBI) due to 
Respiratory Sinus Arrhythmia (RSA). We define the phase as a shift 
to the left being negative, and a shift to the right being positive, in 
agreement with standard physics and engineering convention. The 
phase and ΔIBI are determined by DPE, which pulls out the first 
Fourier component of the IBI Interval curve, as shown with the blue 
dashed line
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were approved by the UC Santa Barbara Human Subjects 
Committee.

Data Acquisition Procedures

A custom built PPG sensor was used to obtain pulse data. A 
chest strap with an integrated FUTEK LSB 200 load cell, an 
instrument that measures force using a Wheatstone bridge 
and strain gauges, was used to obtain breathing data. These 
were used because they were conveniently available in the 
lab; however, any linear chest circumference measurement 
and pulse rate measurement could be used.

The PPG sensor was attached to the left index finger 
using a Velcro strap. The voltage powering the LED in the 
PPG sensor was adjusted until a pulse waveform that occu-
pied about a third of the voltage range on the measurement 
device with clear peaks was measured. The chest strap was 
wrapped around the thorax to measure chest movement, and 
the output was run through a low-pass filter and then to an 
amplifier. Voltage values from the PPG sensor and chest 
strap were read using a Wemos LOLIN32 board sampling 
at 2000 Hz and recorded by a computer.

Each subject was tested for at least 8 different breath-
ing rates, ranging from 2.4 to 57 breaths per minute. IBIs 
were eliminated without replacement if they were more than 
double or less than half of the previous pulse rate. In order 
to calculate the phase and perform Fourier transforms, each 
IBI interval was interpolated between to ensure consistent 
time interval spacing.

Participants were instructed to follow a sine wave breath 
pacer at the desired breathing rate, and to breathe in as 
the sine wave increased and breath out as the sine wave 
decreased. Recording sessions were 12 min total, with 2 min 
for each breathing rate. Multiple sessions were recorded for 
each subject, with the goal of finding a breathing pace where 
a local maximum of ΔIBI could be seen.

The chest strap data was used to verify that the participant 
followed the breath pacer, this was done visually, just to 
make sure that the subject took a breath every cycle of the 
pacer. Inter-beat Interval (IBI) data were extracted by pass-
ing the pulse data through a peak detection program and then 
using those peaks to determine IBI.

Dynamic Phase Extraction and Analysis

The lock-in amplifier is an instrument commonly used in 
engineering and physics. Here, we apply the principles of 
lock-in amplifier technology, specifically dual-phase lock-in 
amplifiers, in the DPE method to extract the phase of the IBI 
variations relative to the breath pacer. The method can be 
broken down into a few simple parts.

First, a reference signal is fed into any system which will 
process and return a signal. In this case, the reference signal 
is a breath pacer, the system is the human body, and the 
signal is the Inter-beat Interval. The signal is then processed 
in two ways: “in-phase” and “quadrature”. For the in-phase 
processing (Fig. 2a), the signal is inverted every time the 
reference signal crosses zero, as seen in the third panel of 

Fig. 2   The Dynamic Phase Extraction (DPE) method extracts an In-
phase Averaged Signal and a Quadrature (90 degrees out of phase) 
Averaged Signal. These are used to calculate the amplitude and phase 

of the Interbeat Interval (IBI) relative to a Breath Pacer. The average 
value of the pulse rate was subtracted out to only reflect the changes 
in IBI
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Fig. 2a. Similarly, for the quadrature signal (Fig. 2b), the sig-
nal is inverted every time the reference signal has a peak or 
a trough, as seen in the third panel of Fig. 2b. The in-phase 
and quadrature signals are then continuously time-averaged, 
as seen in the fourth panels of Fig. 2a and 2b. In practical 
terms, we can simply perform a numerical summation.

In the sum, IPi is positive for the first half of the refer-
ence signal, and negative for the second half (as seen in the 
second panel of Fig. 2a). Similarly, Qi follows the second 
panel of Fig. 2b, where it starts positive and switches sign 
every half-wave. i indexes the ith heart beat from where you 
start counting, and N is the total number of heart beats. After 
evaluating Ao and Aπ/2, using Eqs. (1) and (2), we can calcu-
late the phase and amplitude (∆IBI) as follows:

whereΔIBI is the peak-to-peak amplitude of the signal, A0 
is the in-phase value, and A�∕2 is the quadrature value. The 
function arctan2 gives the angle of a ray through the origin 
to a point (x,y) relative to the x-axis. It is used because the 
normal arctan only ranges from −90o to +90o , while arctan2 
ranges from −180o to +180o . We are justified in using these 
formulas as DPE extracts the first Fourier component at the 
reference frequency. This can be seen by converting our sum 
(Eqs. (1) and (2)) to an integral:

If IBI(t) is periodic, its Fourier decomposition is given 
by:

We can neglect the constant value in the Fourier trans-
form because it is exactly equal to the average value, which 
we subtracted out of the IBI.

(1)A0 =
1

N

N
∑

i=1

IBIiIPi,

(2)Aπ∕2 =
1

N

N
∑

i=1

IBIiQi.

(3)
Phase ∶=� = arctan2

(

A0,A�∕2

)

= −arctan2(45.7,−73.8) = 58.2◦,

(4)
ΔIBI ∶= 2A = π

�

A2
0
+ A2

π∕2
= π

√

73.82 + 45.72 = 86.8 ms,

A0 =
1

T

T

∫
0

IBI(t)IP(t)dt,

Aπ∕2 =
1

T

T

∫
0

IBI(t)Q(t)dt.

IBI(ωt) =

∞
∑

i=1

aisin(iωt) + bicos(iωt).

However, when we integrate with the in-phase and 
quadrature signals, the sines and cosines cause anything 
other than a wave at the same frequency as the reference to 
diminish as 1/T, thus only the I = 1 terms are left. We can 
choose to start anywhere—in other words, may keep only 
the sine terms without loss of generality. Thus, we are left 
integrating:

We can use the result of this integration to easily derive 
Eqs. (3) and (4).

In general, DPE will have a reasonable phase after two 
breaths, but inevitably, the more breaths that are taken, the 
better the precision of the method will be. The trade-off 
between time and precision is important to consider when 
measuring phase, and depends strongly on the application 
of DPE.

Results

First, we investigated how changes in the Breathing Rate 
(Breaths per Minute) of the breath pacer modulated the 
amplitude, ∆IBI, and Phase, as shown in Fig. 3.

This allowed us to identify the breathing rate that maxi-
mizes ΔIBI (Fig. 4). If we compare multiple trials to each 
other, we can locate what phase an individual’s ΔIBI is 
maximized at, and compare said phase to other individuals. 
Aside from the applications in pulse rate variability, the DPE 
method can be applied to any physiological signal that varies 
at the same frequency as a reference signal. 

As shown in Fig. 5, it is possible to extract phases relative 
to the breath from different physiological systems—even if 
they are noisy or have other signals mixed into them. It is 
evident that the pulse and the phase of the R–R interval 
are different. This is because, although the R–R interval is 
extracted from the pulse, breathing has a different phase 
relationship to the pulse specifically than it does to the R–R 
interval. Although the shapes don’t resemble sine waves, 
plugging them into the DPE method as one would with the 
IBI yields the phase of the fundamental Fourier component 
of the signal relative to the reference signal.

Futhermore, we demonstrate that there is an upward 
trend in phase as we increase the breathing rate. However, 
as the breathing rate increases, the phase increases slower, 
indicating that the change in phase isn’t a simple delay in 
the breathing, but rather, is some more complicated func-
tion of breathing. We note that this general trend was not 

A0 =
1

T

T

∫
0

a1sin(ωt − �)IP(ωt)dt+ =
2ai

π
cos(�),

Aπ∕2 =
1

T

T

∫
0

a1sin(ωt − �)Q(ωt)dt+ = −
2ai

π
sin(�).
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observed in the single female participant, although we can-
not determine whether this is due to gender or is simply 
an outlier. There is also a variation in the phase measured 
at each breathing rate. Whether this is truly a meaningful 
variation or an artifact due to measurement noise remains 
unclear. More research is needed before any conclusions are 
warranted.

Correlations with Standard Methods

Our results for ΔIBI correlate well with other standardized 
measures of pulse rate variability (PRV). Here, we compare 
our method of analysis to the LF Power, a common fre-
quency domain analysis method for HRV, and the standard 
deviation of the inter-beat interval (SDNN), a common time-
domain analysis method (Task Force, 1996; Shaffer & Gins-
berg, 2017). We performed these comparisons by calculating 
ΔIBI , SDNN, and LF power for each data set recorded, and 
plotting the value obtained for each data record with respect 

to each other measure obtained from the same data set. The 
breathing rates were paced but varied, in order to verify that 
the method generalized well across breathing rates (Figs. 6, 
7).

Notably, we observed an offset from zero (Fig. 8) due to 
SDNN being based on the standard deviation (which will 
pick up any variance due to noise in the data), while the 
DPE naturally filters the noise out. There is also a spread in 
the data; however, this spread is also present when correlat-
ing SDNN to the LF Power (Fig. 9). All correlations were 
assessed via the nonparametric Spearman method and were 
significant at p < 0.00001.

Fig. 3   ΔIBI and phase as a 
function of Breathing Rate for 
a young, athletic person. The 
maximum ΔIBI occurs around 
100o Phase. The x-axis is plot-
ted on a log scale. Multiple runs 
are reported

Fig. 4   Different people (shown by different symbols and colors) can 
have slightly different phases at their maximum ΔIBI 

Fig. 5   Dynamic Phase Extraction (DPE) can measure the phase and 
amplitude of the IBI Interval, Pulse Waveform, and Thoracic Force 
on a chest strap. In general, DPE can measure the phase and ampli-
tude of any signal that is the same frequency as a reference signal. In 
this case, all phases are calculated with reference to the breath pacer
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In order to confirm that these correlations were a result 
of our method’s sensitivity to the RSA—and not some 
other source of variance in the LF band—we took the Fou-
rier transform of the pulse rate and verified that the largest 
peak was at the respiratory rate. Figure 10 presents a set 
of power spectra for typical trials.

In most cases, the primary source of power does appear 
to arise from RSA; however, there is a baseline level of 
power, and the harmonics are also somewhat visible 
(Fig. 10). Furthermore, at very low breathing rates, power 
from the VLF band (< 0.04 Hz) may contaminate the esti-
mate (although at such low breath frequencies, it becomes 
very difficult for an individual to keep breathing at the 
necessary pace).

Fig. 6   The phase relationships 
of the population, plotted on a 
logarithmic xscale, there is a 
general upwards trend in phase 
as breathing gets faster

Fig. 7   ΔIBI from DPE correlates with the LF Power (0.04–0.15 Hz) 
(ρ = 0.885)

Fig. 8   ΔIBI from DPE correlates well with SDNN (ρ = 0.911)

Fig. 9   The correlation between two conventional measures of pulse 
rate variability, LF Power and SDNN, ρ = 0.877, is comparable to the 
correlation of each of them with the novel measure, Dynamic Phase 
Extraction (DPE) (Figs. 6 and 7)
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While there are no standardized methods of phase 
extraction, one approach for extracting phase relation-
ships utilizes the Fourier transform. In general, the Fou-
rier transform of a time series yields a complex func-
tion—the modulus of the values in frequency space gives 
the power density at that frequency, while the argument 
of the values in frequency space gives the phase shift of 
said frequency. In other words, the phase shift, ϕ, can be 
calculated from the Fourier transform of a function f (t):

where f̂ (ω) denotes the Fourier transform of a function 
f (t) . Specifically for our case, to find the phase shift of 
the value in question, we perform a Fourier transform on 
the pulse rate that we extract from the PPG signal, and 
then find the peak within ± 0.01 Hz of the breathing rate. 
We then identify the phase shift of that peak and show 
that our DPE method is strongly correlated to the tradi-
tional Fourier technique (Fig. 11).

𝜙(ω) = arctan2

(

Im
(

f̂ (ω)
)

Re
(

f̂ (ω)
)

)

Fig. 10   The Fourier transforms of a typical set of data, with the 
breathing rates indicated on each of the graphs. The dataset shows 
that the primary  source of power comes from frequencies close to the 

breathing rate. Each subfigure a–f represent is a different trail with a 
breathing rate set to the frequency in the figure

Fig. 11   The phase extracted using DPE correlates well with the phase 
extracted using Fourier Transform methods (ρ = 0.857)
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Discussion

Dynamic Phase Extraction (DPE) is a powerful methodol-
ogy that can determine the phase of a signal relative to a 
reference signal and extract the amplitude of the funda-
mental Fourier component of the signal at the frequency of 
the reference signal. There has recently been a resurgence 
of interest in phase, and several groundbreaking stud-
ies have shown that phase can be used to determine the 
breathing rate that gives the maximum variation in heart 
rate variability in the LF (0.04–0.15 Hz) band (Fisher & 
Lehrer, 2021; Lehrer et al., 2020; Lehrer & Gevirtz 2014). 
Our results, using DPE analysis of PPG data, agree with 
previous estimates of where maximum HRV amplitude 
is in relationship to the phase (Lehrer et al., 2020). The 
magnitude extracted by DPE also demonstrates a signifi-
cant correlation to other standardized methods of measur-
ing pulse rate variability, namely SDNN and LF Power 
(ρ = 0.911 and ρ = 0.885, respectively), and the phase 
agrees well with that extracted via Fourier transform tech-
niques (ρ = 0.857). This suggests that DPE is an effective 
measurement technique for analyzing changes in inter-beat 
intervals due to respiratory sinus arrythmia as measured 
with PPG.

We note that PPG has nontrivial limitations relative 
to ECG estimates of heart rate variability. Constant et al. 
have emphasized that pulse rate variability (PRV)—an 
analogue for heart rate variability measured using PPG—is 
not a surrogate for HRV measured via ECG. In particu-
lar, they found that respiratory PRV does not precisely 
reflect respiratory HRV in standing healthy subjects 
and in patients with low HRV. Accordingly, Yuda et al. 
(2020) suggest that it is more appropriate to recognize 
PRV as a different biomarker than HRV. The literature at 
large, however, is more conflicted: a number of influen-
tial studies have persisted in using HRV for PPG-derived 
signals to emphasize that they are often similar to ECG 
estimates, especially in the frequency domain (Batista 
et al., 2021; Bozkurt et al., 2019; Chrousos et al., 2022; 
Jhang et al., 2021; Lam et al., 2020; Natarajan et al., 2020; 
Rubins et al., 2019; Vescio et al., 2018; Yu et al., 2020).

There are differences between PPG and ECG sensors, 
particularly with respect to the RSA spectrum. However, 
this tends to manifest in an overestimation of the power 
in the high frequency band (Constant et al., 1999), while 
most data taken in this study is in the LF band. Further-
more, other studies have found that PPG and ECG meas-
urements of heart rate/pulse rate variability are well cor-
related during rest (Charlot et al., 2009; Lin et al. 2014). 
There is also a delay in where the peaks are detected 
between PPG and ECG sensors. This delay is on the order 
of 0.1 s (Dunn et al., 2019). For our application, we are 

interested in phase delays, and therefore do not investigate 
non-resting participants. Our ultimate goal is to develop 
more accessible techniques to assess pulse rate variability. 
As such, in this context, we believe that PPG is suitable 
for use.

Additionally, there are some mathematical niceties to 
consider for the numbers to make sense. The formula 
√

A2
π∕2

+ A2
0
 gives the RMS amplitude of the changes in the 

Inter-beat Interval, with no assumption of the waveform. But 
if one wants to convert to peak-to-peak amplitude, one needs 
to know the waveform. For example, the IBI pattern during 
paced breathing is visually similar to a sine wave, thus we 
multiply by � , as in Figs. 1 and 4. In multiplying by π there 
is an inherent assumption that the waveform is a sine wave. 
Strictly speaking, this doesn’t change any of the correlation 
coefficients, but it does link the number generated by DPE 
to a physical attribute (the peak-to-peak amplitude).

In terms of usage, the primary limitation of this method 
is that it requires a breath pacer. The most common methods 
for determining the heart/pulse rate variability are to perform 
a Fourier transform and integrate the power within the target 
frequency band (0.04–0.15 Hz) (Task Force, 1996; Shaffer 
& Ginsberg, 2017; Lehrer & Gevirtz, 2014) or to perform 
time-domain analysis involving some statistical methods, eg 
SDNN (the standard deviation of the time between heart-
beats) (Task Force, 1996, Shaffer & Ginsberg, 2017; Lehrer 
& Gevirtz, 2014). These methods do not require a breath 
pacer, and as such are easier to implement. The primary ben-
efit of using DPE is that it can extract the phase efficiently 
after a breath is taken, while simultaneously providing a 
measurement for the amplitude of the signal at the desired 
frequency, making it ideal for biofeedback.

Conclusion

In this paper we introduce a novel technique, Dynamic Phase 
Extraction (DPE), that can detect the magnitude (ΔIBI) and 
phase of a signal relative to a reference signal. ΔIBI corre-
lated well with other standard measures of respiratory sinus 
arrythmia (ρ = 0.885 for LF power and ρ = 0.911 for SDNN). 
We apply this technique to PPG data to determine the magni-
tude and phase of the IBI, pulse, and thoracic force as meas-
ured with a chest strap relative to a breath pacer. In the case 
of the IBI, the magnitude detected by this novel technique 
correlates well with pulse rate variability as determined by 
conventional time and frequency-based techniques. The 
phases detected by our new technique are consistent with 
what has been reported with other techniques, and corre-
lates well with the phase extracted using Fourier techniques 
(ρ = 0.857). The phases between various parameters may 
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give important clues to the detailed operation of the physi-
ological feedback loops that are critical for health.

Work beyond the scope of this initial report on the 
Dynamic Phase Extraction method would be needed to 
determine if this method is also useful for ECG data and, 
if that is successful, to determine how the parameters from 
Dynamic Phase Extraction in PPG compare to ECG.
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