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An incredible amount of data is generated in the course of a functional neuroimaging experiment. The quantity of data gives us
improved temporal and spatial resolution with which to evaluate our results. It also creates a staggering multiple testing problem.
A number of methods have been created that address the multiple testing problem in neuroimaging in a principled fashion. These
methods place limits on either the familywise error rate (FWER) or the false discovery rate (FDR) of the results. These principled
approaches are well established in the literature and are known to properly limit the amount of false positives across the whole
brain. However, a minority of papers are still published every month using methods that are improperly corrected for the number
of tests conducted. These latter methods place limits on the voxelwise probability of a false positive and yield no information on
the global rate of false positives in the results. In this commentary, we argue in favor of a principled approach to the multiple
testing problem�one that places appropriate limits on the rate of false positives across the whole brain gives readers the
information they need to properly evaluate the results.
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The struggle between the appropriate treatment of false pos-

itives and false negatives is a fine line that every scientist

must walk. If our criteria are too conservative, we will not

have the power to detect meaningful results. If our thresh-

olds are too liberal, our results will become contaminated by

an excess of false positives. Ideally, we hope to maximize the

number of true positives (hits) while minimizing false

reports.

It is a statistical necessity that we must adapt our thresh-

old criteria to the number of statistical tests completed on

the same dataset. This multiple testing problem is not unique

to neuroimaging; it affects many areas of modern science.

Ask an economist about finding market correlations between

10 000 stocks or a geneticist about testing across 100 000

SNPs and you will quickly understand the pervasiveness of

the multiple testing problem throughout scientific research

(Storey and Tibshirani, 2003; Taleb, 2004).

In this article, we argue for the use of principled correc-

tions when dealing with the large number of comparisons

typical of neuroimaging data. By principled, we mean a cor-

rection that definitively identifies for the reader the

probability or the proportion of false positives that could

be expected in the reported results. Ideally, the correction

would be easy for the reader to understand. Many research-

ers have avoided principled correction due to the perception

that such methods are too conservative. In theory and in

practice, there is no reason for a principled correction to

be either liberal or conservative. The degree of ‘conservative-

ness’ generally can be adjusted by setting a parameter and

maintaining accurate knowledge about the prevalence of

false positives. Later in the commentary, we will outline

familywise error rate (FWER) correction and false discovery

rate (FDR) correction as two examples of principled

approaches.

THE PROBLEM
Many published functional magnetic resonance imaging

(FMRI) papers use arbitrary, uncorrected statistical thresh-

olds. A commonly chosen threshold is P < 0.001 with a min-

imum voxel clustering value of 10 voxels. For a few datasets,

this threshold may strike an appropriate balance between

sensitivity and specificity; and in a few cases it might be

possible to specify the probability of a false positive with

this threshold. However, this uncorrected cutoff cannot be

valid for the diverse array of situations in which it is used.

The same threshold has been used with data comprising

10 000 voxels and with data comprising 60 000 voxels�this

simply cannot be appropriate. The two situations have very
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different probabilities of false positives. The use of a princi-

pled procedure would yield the same expected probability or

proportion of false positives for any number of voxels under

investigation.

In a recent survey of all articles published in six major

neuroimaging journals during the year 2008, we found that

between 25% and 30% of fMRI articles in each journal used

uncorrected thresholds in their analysis (Bennett et al.,

Under Review). This percentage speaks to the fact that the

majority of published research uses principled correction.

However, the meta-analysis also highlights that a quarter

to a third of published papers do not use principled correc-

tion, and that such papers continue to be published in

high-impact, specialized journals. The proportion of studies

using uncorrected thresholds is even higher within the realm

of conference posters and presentations. In a survey of pos-

ters presented at a recent neuroscience conference, we found

that 80% of the presentations used uncorrected thresholds.

In these unprincipled cases, the reader is unlikely to have an

accurate idea about the true likelihood of false positives in

the results.

The prevalence of unprincipled correction in the literature

is a serious issue. During an examination of familywise

error-correction methods in neuroimaging, Nichols and

Hayasaka (2003) compared techniques that included

Gaussian Random Field Theory, Bonferroni, FDR, Šidák

and permutation. They found that only 8 out of 11 fMRI

and PET studies had any significant voxels after familywise

correction had been completed, leaving 3 studies with no

significant voxels at all. Based on these data, it is quite

likely that results comprised wholly of false positives are

present in the current literature. Despite this fact, new stud-

ies reporting uncorrected statistics are published every

month.

False positives can be costly in a number of ways. One

example of the negative consequences of false positives can

be illustrated in a study completed by one of the current

authors (MBM) in graduate school. He conducted an

fMRI study investigating differential activations between

false memories and true memories using the Roediger and

McDermott word paradigm (1995). At the same time,

Schacter and colleagues were conducting a PET study

using the same approach. Using a liberal uncorrected thresh-

old, Schacter and colleagues (1996) found a few small

regions of interest in the medial temporal lobe and superior

temporal sulcus. In their own results, Miller and colleagues

found two very different small clusters in the frontal and

parietal cortex. When the Miller et al. (1996) study was pres-

ented at the Society for Neuroscience conference it was

made clear that multiple testing correction was necessary.

None of the results survived correction and the study was

never released, while the uncorrected Schacter results were

published in a major neuroimaging journal. Since that time

there has been a scattering of studies reporting different pat-

terns of brain activations for false memories and for true

memories. Virtually all of them have used uncorrected

thresholds and have proven difficult to replicate.

This situation raises two issues. The first issue is the

amount of time and resources that have been spent trying

to extend results that may never have existed in the first

place. The second issue is the prevailing skewed view of

the literature that brain activations can be reliably discerned

between false and true memories because only reports with

positive results will be published.

Less rigorous control of Type I errors would not be so bad

if inferences based on false positives were easily correctable.

However, this does not seem to be the case within the cur-

rent model of publication. If researchers fail to reproduce

the results of a currently published study, it would be quite

difficult to disseminate their null findings. This forms one of

the most profound differences between Types I and II errors:

false negatives are correctable in future publications, whereas

false positives are difficult to refute once established in the

literature.

This imbalance in the propagation of Types I and II errors

contributes to an issue known as the ‘File Drawer Problem’

(Rosenthal, 1979). This refers to the publication bias that

ensues because the probability of a study being published

is directly tied to the significance of a result. While presen-

tation of null results is not unheard of (see Baker,

Hutchinson, 2007), such publications are generally consid-

ered the exception and not the rule.

Another important cautionary tale is our recent investiga-

tion of false positives during the acquisition of fMRI data

from a dead Atlantic salmon (Bennett et al., 2009; Under

Review). Using standard acquisition, preprocessing and

analysis techniques, we were able to show that active voxel

clusters could be observed in the dead salmon’s brain when

using uncorrected statistical thresholds. If any form of cor-

rection for multiple testing was applied, these false positives

were no longer present. While the dead salmon study can

only speak to the role of principled correction in a single

subject, we believe it effectively illustrates the dangers of false

positives in any neuroimaging analysis.

A bit of clarification may be important at this point. Our

goal should not be to completely eliminate false positives. To

be completely certain that all of our results are true positives

would require obscenely high statistical thresholds that

would eliminate all but the very strongest of our legitimate

results. Therefore we must accept that there will always be

some risk of false positives in our reports. At the same time,

it is critical that we be able to specify how probable false

positives are in our data in a way that is readily communi-

cated to the reader.

In this discussion of false positives, it is also important

that we not minimize the danger of high false negative rates.

Being over-conservative regarding the control of Type I error

comes at the expense of missing true positives. Perhaps for

this reason, there have been some voices in the imaging

community that argue against principled correction due to
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the resulting loss of statistical power. Again, a principled

correction does not necessarily lead to a loss of power.

The researcher can set a liberal criterion in FDR or FWE

and the readers can use their precise knowledge of the false

positive rate to evaluate the reported results.

OUR ARGUMENT
There is a single key argument that we wish to make regard-

ing proper protection against Type I error in fMRI. All

researchers should use statistical methods that provide infor-

mation on the Type I error rate across the whole brain. It

does not matter what method you use to accomplish this.

You can report the FDR (Benjamini and Hochberg, 1995) or

use one of several methods to control for the FWER (Nichols

and Hayasaka, 2003). You can even do a back-of-the-napkin

calculation and use a Bonferroni-corrected threshold if you

wish. The end goal is the same: giving the reader information

on the prevalence of false positives across the entire family of

statistical tests.

We would further argue that an investigator could still use

an uncorrected threshold for their data as long as proper

corrected values detailing the prevalence of false positives

are also provided. In this manner, you could threshold

your data at P < 0.001 with a 10 voxel extent as long as

you presented what FDR or FWE threshold would be

required for the results to stay significant. One example

can be seen in figure 1. In this image, voxels that survive

an uncorrected threshold are depicted in cool colors while

voxels that survive FDR correction are depicted in warm

colors. This allows a researcher to ‘have their cake and eat

it too’. Again, the key to our argument is not that we need to

use correction simply for correction’s sake, just that our

readers are made aware of the false positive rate across the

whole brain.

Techniques for principled correction
There are a wide variety of methods that can be used to hold

the false positive rate at specified levels across the whole

brain. One approach is to place limits on the FWER.

Using this method, a criterion value of 0.05 would mean

that there is a 5% chance of one or more false positives

across the entire set of tests. This yields a 95% confidence

level that there are no false positives in your results.

There are many methods that can be used to control the

FWER in neuroimaging data: the Bonferroni correction,

the use of Gaussian Random Field Theory (Worsley et al.,

1992), and non-parametric permutation correction tech-

niques (Nichols and Holmes, 2002). Nichols and Hayasaka

(2003) have authored an excellent article reviewing these

techniques. The Bonferroni correction is typically seen as

too conservative for functional neuroimaging since it does

not take into account spatial correlation between voxels.

Gaussian RFT adapts to spatial smoothness of the data,

but was shown to be quite conservative at low levels of

smoothness. The use of permutation-based techniques to

control the FWER emerged as an ideal choice for adequate

correction while maintaining high sensitivity.

Another approach to principled correction is to place

limits on the FDR (Benjamini and Hochberg, 1995;

Genovese et al., 2002). Using this method, a criterion value

of 0.05 would mean that on average 5% of the observed

results would be false positives. The goal of this approach

is not to completely eliminate familywise errors, but to con-

trol how pervasive false positives are in the results. This is a

weaker control to the multiple testing problem, but one that

still provides precise estimates of the percentage of false

positives.

The advantages and disadvantages of each correction

approach are illustrated graphically using simulated data in

Figure 2. The simulated data are set up so that the uncor-

rected results have a power of 0.80. Controlling for the

FWER with the criterion P(FWE)¼ 0.05 can be seen to vir-

tually eliminate false positives while dramatically reducing

the amount of detected signal. In this example, power is

reduced to 0.16. Controlling the FDR with the criterion

FDR¼ 0.05 increases the number of false positives relative

to FWER techniques, but also increases the ability to detect

meaningful signal. In this example, power is increased

to 0.54.

If you are concerned about power, you can appropriately

adjust the cutoff in FWE or FDR. For instance, it is not

strictly necessary to use 0.05 in either FWE or FDR. It

might yield a better balance of power and false positive

Fig. 1 Example figure of a hybrid corrected/uncorrected data presentation. Areas that are significant under an uncorrected threshold of P < 0.001 with a 10-voxel extent criteria
are shaded in blue. Areas that are significant under a corrected threshold of FDR¼ 0.05 are shaded in orange.
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protection to use 0.10 or even something higher. You will be

more likely to find true sources of activation and the reader

will still have a precise idea about the prevalence of false

positives.

It is important to understand the appropriate use of the

correction method you select. For instance, one commonly

used approach is the small-volume correction (SVC) method

in SPM (http://www.fil.ion.ucl.ac.uk/spm/). The use of SVC

allows researchers to conduct principled correction using

Gaussian Random Field Theory within a predefined region

of interest. Ideally, this would be a region defined by ana-

tomical boundaries or a region identified in a previous, inde-

pendent dataset. However, many researchers implement SVC

incorrectly, choosing to first conduct a whole-brain explor-

atory analysis and then using SVC on the resulting clusters

(cf Loring et al., 2002; Poldrack and Mumford, 2009). This is

an inappropriate approach that does not yield a principled

correction. Another method that is often incorrectly used is

the AlphaSim tool included in AFNI (http://afni.nimh.nih

.gov/afni/). For effective false positive control, AlphaSim

requires an estimate of the spatial correlation across voxels

be modeled using the program 3dFWHM. Many researchers

simply input the amount of Gaussian smoothing that was

applied during preprocessing, leading to incorrect clustering

thresholds as output. Errors during estimation of the spatial

smoothness can also lead to incorrect values.

In the future, we may have statistical methods that are

better able to address the multiple testing problem.

Hierarchical Bayes models have been offered as one

approach (Lindquist and Gelman, 2009). We may even

Fig. 2 Demonstration of correction methods for the multiple testing problem. (a) A raw image of the simulated data used in this example. A field of Gaussian random noise was
added to a 100� 100 image with a 50� 50 square section of signal in the center. (b) Thresholded image of the simulated data using a pixelwise statistical test. The threshold
for this test was P < 0.05. Power is high at 0.80, but a number of false positives can be observed. (c) Thresholded image of the simulated data using a Bonferroni FWER
correction. The probability of a familywise error was set to 0.05. There are no false positives across the entire set of tests, but power is reduced to 0.16. (d) Thresholded image of
the simulated data while controlling the false discovery rate. The FDR for this example was set to 0.05. Out of the results, 4.9% are known to be false positives but power is
increased to 0.54.
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move away from the binary decision of significance and

begin to examine effect sizes in earnest (Wager, 2009).

Still, we must examine the balance of Types I and II errors

in the context of where our analysis techniques are today. At

present, the general linear model is by far the most prevalent

method of analysis in fMRI. Mumford and Nichols (2009)

found that �92% of group fMRI results were computed

using an ordinary least squares (OLS) estimation of the gen-

eral linear model. This percentage is unlikely to shift dra-

matically in the next 12–36 months. Our focus should

remain on how to improve OLS methods in the near term

as we move toward new analysis techniques in the future.

Predetermined cluster size as a partial correction
In neuroimaging, we often rely on the fact that legitimate

results tend to spatially cluster together. The assumption

being that voxel clustering provides some assurance against

Type I errors. While predefined thresholds in combination

with predetermined clustering requirements may represent a

sufficient approximation of a proper threshold, it is in gen-

eral an unprincipled approach to the control of Type I error

rates.

Many authors justify this approach by referring to the

results of Forman et al. (1995), who examined clustering

behavior of voxels in fMRI. The results of Forman et al.

suggest that a threshold of P < 0.001 combined with a

10-voxel extent requirement should more than adequately

control for the prevalence of false positives. However, the

Forman et al. data were only computed across two-

dimensional slices, not in 3D volumes. The findings of

Forman et al. simply do not apply to modern fMRI data.

It should also be noted that we are not arguing that

P < 0.001 with a 10-voxel threshold is wholly inappropriate.

For example, Cooper and Knutson (2008) used the

AlphaSim utility in AFNI to determine that a corrected

threshold of P < 0.001 with a 10-voxel extent threshold

would be appropriate to keep the FWER at 5% in their par-

ticular dataset. The problem is that this threshold is specific

to the parameters of their dataset, and may be inappropriate

in other datasets. Arnott et al. (2008) used the same AFNI

routine and estimated that an 81-voxel extent was required

to ensure that familywise error was kept below 5%. It is

possible to use the combination of a P-value and a cluster

size in a principled way, but it requires computing the

proper values for each and every analysis. The cluster size

criteria can change quite substantially from dataset to data-

set. Further, it can be the case that required cluster sizes

become so large that legitimate results with a smaller

volume are missed.

CONCLUSIONS
The topic of proper Type I error protection is not a new

element of discussion in the field of neuroimaging. The need

to correct for thousands of statistical tests has been recog-

nized since the early PET imaging days (Worsley et al.,

1992). It is uncertain why uncorrected thresholds have lin-

gered so long. Perhaps many researchers simply recognized it

as an accepted, arbitrary threshold in the same manner

P < 0.05 is an accepted, arbitrary threshold throughout

other scientific fields. This approach may have been accept-

able in the past, but within the last decade we, as a field, have

come under increased scrutiny from the public and from

other scientists. At a time when so many are looking for

us to slip up, we believe it is time to set a new standard of

quality with regard to our data acquisition and analysis.

The fundamental question that that all researchers must

face is whether their results will replicate in a new study. The

prevalence of false positives in your results will directly influ-

ence this ability. We are all aware that the multiple testing

problem is a major issue in neuroimaging. How you correct

for this problem can be debated, but principled protection

against Type I error is an absolute necessity for moving

forward.
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