Visual and Auditory Stimuli Pairings During Recognition Memory
Grace Liu
Michael Miller, Ph.D., Evan Layher, Ph.D.
Department of Psychological & Brain Sciences, University of California, Santa Barbara

Introduction

- Previous research found that auditory-visual interactions occur early in perceptual processing in the primary visual cortex, which was previously thought to be only responsible for visual information (Thesen et al., 2004). Visual stimuli occurring with sounds enhanced the brain’s response to sounds.
- Auditory recognition memory is weaker than visual recognition memory (Cohen et al., 2009).
- Signal detection theory (SDT): analyzes decision-making performance when interference is present (Swets et al., 1961), showing how one discriminates between signal vs. noise assuming neither is perfectly independent.
- Measuring recognition accuracy across visual/auditory stimuli pairings can reveal how multisensory experiences may affect recognition memory, aiding research in recognition memory strategies, education, and memory-related disorders.
- The study aims to discern if familiar/unfamiliar visual stimuli paired with familiar/unfamiliar auditory stimuli can improve recognition, creating a memory recognition hierarchy based on stimulus familiarity.

Hypotheses

H1: Pairing visual face images with sounds will lead to more robust memory encoding than exposure to only one sense stimulus.
H2: Pairing familiar faces with sounds will lead to higher recognition accuracy than pairing unfamiliar faces with sounds.
H3: Recognition accuracy for faces will be higher than audios across all three conditions.

Methods

Participants: 72 participants (53 = female, 17 = male, 2 = non-binary) between the ages of 18 and 30 (M = 20.44, SD = 1.943), recruited from UCSB SONA.
- 5 participants were excluded due to below chance performance.
- Participants were exposed to six study/test phase cycles with visual and auditory stimuli pairing conditions and asked to recognize a set of stimuli.

- Test phases presented participants with a studied image/audio or a foil image/audio, and are then asked to determine whether the image/audio is “old” or “new,” along with confidence ratings.

- A SDT curve measures how well signal vs. noise (familiar vs. unfamiliar stimuli) is discriminated (d’). A greater d’ means a person can more accurately differentiate between the two (Banks, 1970).

Results

- Of the six conditions, there was only a significant effect on recognition memory in condition [1] (p = 0.0238).
- Condition [1] had the greatest d’ (1.829).
 ○ The visual stimuli condition had a greater average d’ (1.678) than the auditory stimuli condition d’ (0.743) (Figure 1).

<table>
<thead>
<tr>
<th>Condition</th>
<th>Test</th>
<th>Pair</th>
<th>d’</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1]</td>
<td>Image</td>
<td>No audio</td>
<td>1.829</td>
</tr>
<tr>
<td>[2]</td>
<td>Image</td>
<td>Unfamiliar audio</td>
<td>1.615</td>
</tr>
<tr>
<td>[3]</td>
<td>Image</td>
<td>Familiar audio</td>
<td>1.589</td>
</tr>
<tr>
<td>[4]</td>
<td>Audio</td>
<td>No image</td>
<td>0.767</td>
</tr>
<tr>
<td>[5]</td>
<td>Audio</td>
<td>Unfamiliar image</td>
<td>0.680</td>
</tr>
<tr>
<td>[6]</td>
<td>Audio</td>
<td>Familiar image</td>
<td>0.781</td>
</tr>
</tbody>
</table>

Figure 1. Mean d’ values of each condition

The ROC curve illustrates participants’ recognition accuracy performance across all six conditions at different confidence ratings.

Discussion

- H1: Pairing visual face images with sounds did not improve memory performance, but instead decreased visual stimuli performance.
- H2: Pairing familiar faces with sounds had no significant effect on recognition accuracy for the sounds compared to pairing unfamiliar faces with sounds.
 ○ Conditions that had a pairing, instead of just one stimulus, had lower recognition accuracy than conditions with no pairing.
- H3: Recognition memory for images is stronger than recognition memory for audios, supporting previous findings.

References

Acknowledgements

I would like to thank Evan Layher for his guidance, wisdom, and support on this project. I would also like to thank Dr. Michael B. Miller and the Miller Lab for their support throughout my project. Sponsored by the Undergraduate Research Creative Activities Grant (URCA).