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Neural  systems  continuously  optimize  how  organisms  process  their  environment  and  are  highly  dynamic.
Building  predictive  models  of these  systems  is challenging  due  to  the large  number  of their  elements.
Therefore,  in  experimental  and  descriptive  neurobiology  the  researcher  typically  does  not  seek to cat-
alogue  all  variables  that affect  one  another,  but  rather  tries  to  isolate  variables  that  interact  directly.
Because  of  methodological  limitations,  observed  variables  are  often  measured  near  equilibrium.  The
presented  analysis  demonstrates  that  statistical  tests  performed  on  such  equilibrium  values  are  funda-
orrelation
nteraction
ynamical systems
teady-state
-test
NOVA
eneralized linear model (GLM)

mentally  incapable  of detecting  direct  interactions  in a large  subset  of  simple  dynamical  systems.  Some
of  these  problems  can be  avoided  by  using  explicit  statistical  models  that  include  time  as a  variable.

© 2012 Elsevier B.V. All rights reserved.
. Introduction

At all organizational levels, biological systems tend to be highly
ynamic. This property lies at the core of their self-organization and
elf-maintenance that are driven by irreversible processes, or the
arrow of time” (Nicolis and Prigogine, 1989; Prigogine, 1997). Neu-
al systems take this time-dependence to the next level, since their
ery function requires that they continuously update themselves
n evolving and even stable environments.

This presents great challenges for experimental neuroscience
hich seeks to isolate neural system elements that directly affect

ne another. These elements can be molecules, cells, or entire brain
egions. Due to the complexity of neural systems, often entire stud-
es are devoted to the demonstration of a single hypothesized link.
undamentally, this approach reveals functional networks that are
nalogous to anatomical or social networks and can be formalized
s graphs, in which each node (vertex) represents an element of the
ystem and each link (edge) represents a direct causal link between
wo elements (Fig. 1). The mathematical graph theory has already
rovided new insights into the organization of neural systems, such
s their small-world properties (Buzsáki, 2006; Hagmann et al.,

008; Feldt et al., 2011; Hu et al., 2011; Power et al., 2011; Sporns,
011; Wig  et al., 2011).

∗ Tel.: +1 805 893 6032; fax: +1 805 893 4303.
E-mail address: skirmantas.janusonis@psych.ucsb.edu

165-0270/$ – see front matter ©  2012 Elsevier B.V. All rights reserved.
oi:10.1016/j.jneumeth.2012.02.012
Why  does current methodology place so much emphasis on
direct effects? If a neural system was  given sufficient time, it is
likely that any of its elements would eventually affect any of its
other elements (Fig. 1A). This conclusion follows from the almost
trivial observation that biological systems are complex, adaptive,
and dynamic (Meehl, 1967; Gros, 2008). The distinction between
indirect and direct effects is important because indirect effects can
be highly sensitive to the current state of other elements in the
system. While indirect effects may be useful in some standardized
applications (e.g., in a clinical setting), they cannot be expected to
generalize to other, untested conditions. In contrast, direct effects
are relatively insensitive to the current state of other elements that
do not participate in the process. Therefore, direct effects are supe-
rior to other effects in that they can segment a complex system into
simpler, independent components. The knowledge of direct links
among elements is especially important if the researcher seeks to
model the system and predict its behavior in situations that have
never been studied experimentally. It is understood that such flex-
ible control will eventually require information about how directly
interacting elements affect each other in time, or about the dynam-
ics of the entire network (Palsson, 2006; Barrat et al., 2008; Feldt
et al., 2011).

This sequential approach implicitly assumes that one can make
a complete inventory of direct connections among the system’s ele-

ments and deal with their dynamic relationships later. The first part
of this program is typically carried out by experimentalists who
seek black-or-white P-values (and who rarely present the numeri-
cal estimates of the underlying model). The second part is typically

dx.doi.org/10.1016/j.jneumeth.2012.02.012
http://www.sciencedirect.com/science/journal/01650270
http://www.elsevier.com/locate/jneumeth
mailto:skirmantas.janusonis@psych.ucsb.edu
dx.doi.org/10.1016/j.jneumeth.2012.02.012
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Fig. 1. In a neural system, any element can affect any element if the system is given sufficient time. Such indirect interactions are the “expected” and carry little information
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elatively independent of one another (B).

eft to theoretical neuroscientists (e.g., Izhikevich, 2007). The fol-
owing analysis shows that this program is deeply flawed in that a
arge proportion of direct interactions among elements can elude
xperimental detection unless their temporal dynamics is consid-
red. Conversely, time-independent statistical tests cannot provide
roof that elements do not directly interact. These problems can-
ot be solved by simply using large samples, but they can be greatly
lleviated by proper care in experimental designs and analyses.

. Methods

In experimental neuroscience, variables are typically controlled
y the researcher or measured near equilibrium to avoid rapid
ransients and/or repetitive invasive procedures. The relationships
mong the variables are then investigated with standard statistical
ests (the t-test, ANOVA, or other types of regression). Since these
tatistical tests are based on correlation, the researcher effectively
ssumes that if two variables interact, their values can be expected
o strongly correlate. However, it can be demonstrated that if a
ystem is measured at equilibrium and its two variables interact
irectly, their correlation can take on any value (including zero).

mportantly, these values are theoretically exact and are not related
o the statistical power of the sample.

The equilibrium value of one variable cannot directly affect the
quilibrium value of another variable because it would imply an
nstantaneous communication between entities located at different
oints on the time continuum. Such assumptions may  be acceptable

n practical applications, but they are fundamentally incapable of
iving an accurate description of reality. A variable can only have an
ffect on the trajectory of another variable; in particular, a change
n one variable can make another variable move from its current
quilibrium (with time, the second variable can stabilize at another
alue).

Based on these considerations, a direct interaction between two
ariables (X and Y) can be formalized as follows:

dX

dt
= f (X, Y) and

dY

dt
= g(X, Y) (1)

here dX/dt and dY/dt are the rates of change of X and Y, respec-
ively, and f and g are some functions of the two variables.
In experimental and descriptive research, the relationship
etween two variables is studied by observing the system’s behav-

or as it undergoes artificial or natural perturbations. Both of these
cenarios are examined.
fects are indirect, thus reducing the system to a network of direct effects that are

All numerical simulations were carried out in Mathematica
8 (Wolfram Research, Inc.). For the analysis of two-dimensional
stochastic systems, a closed-form solution was used (Gardiner,
2010). The simulation code is available in Supplementary
Material.

3. Results

3.1. Direct interaction with no correlation in descriptive research

In descriptive research, perturbations are produced by genetic
and environmental factors. If the simplest, linear interaction is
assumed, one obtains

dX

dt
= aX + aXXX + aYXY and

dY

dt
= aY + aYY Y + aXY X (2)

where all a’s are coefficients. Note that if aYX /= 0 or aXY /= 0, it
immediately implies that X and Y interact.

Two natural scenarios are considered, both of which lead to
qualitatively similar conclusions. In the first scenario, X and Y are
sampled in a population in which all coefficients vary slightly
from individual to individual around their population means. In
biological systems, such variability of parameters can be due to
genetic polymorphisms of receptors, transporters and ion chan-
nels, accumulated memory, and other factors. If the only available
information is that X and Y interact, the correlation between
their equilibrium values can fall anywhere between −1 and 1,
including zero (Fig. 2A). This finding continues to hold if only
strong interactions between X and Y are allowed (Fig. 2B) and
if the coefficient of variation (the standard deviation divided by
the mean) is allowed to randomly vary among the coefficients
(Fig. 2C and D).

In the second scenario, X and Y are sampled in a population
in which the coefficients are constant in all individuals, but the
equilibrium values of X and Y in each individual are continu-
ously perturbed by random noise. A formal description of this
situation is given by the stochastic Ornstein-Uhlenbeck process
(Gardiner, 2010). Again, the correlations between the X and Y val-
ues cover the entire range from −1 to 1 and appear to be nearly

uniformly distributed if the ends of the interval are excluded
(Fig. 2E and F).

These results demonstrate that, if only equilibrium values are
used, a direct and strong interaction between two  variables can



S. Janušonis / Journal of Neuroscience Methods 206 (2012) 151– 157 153

0.02

0.04

0.06

0.08

0.10

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

0.02

0.04

0.06

0.08

0.10

-1.0 -0.5 0.0 0.5 1.0

0.02

0.04

0.06

0.08

0.10

0.12

-1.0 -0.5 0.0 0.5 1.0

0.02

0.04

0.06

0.08

0.10

0.12

-1.0 -0.5 0.0 0.5 1.0

0.01

0.02

0.03

0.04

-1.0 -0.5 0.0 0.5 1.0

0.01

0.02

0.03

0.04

P
ro

ba
bi

lit
y

P
ro

ba
bi

lit
y

P
ro

ba
bi

lit
y

Correlation(Xeq, Yeq) Correlation(Xeq, Yeq)

A B

C D

E F

Variable coefficients 
(constant CV)

Variable coefficients 
(constant CV)

Variable coefficients 
(variable CV)

Variable coefficients 
(variable CV)

X(t) + noise
Y(t) + noise

X(t) + noise
Y(t) + noise

All interactions Strong interactions

Fig. 2. The distribution of the correlation coefficients between the equilibrium values of two  interacting variables (X and Y) in randomly generated linear dynamical systems
(25  000 in A–D and 100 000 in E and F). Each system was generated by assigning each a-coefficient (Eq. (2)) a random value from the uniform distribution on the interval
[−1,  1], and only stable systems were used (i.e., the real parts of both eigenvalues had to be negative). In A, C and E, no other restrictions were placed on aYX and aXY (the “all
interactions” condition). In B, D and F, an additional restriction was  placed on aYX and aXY: at least one of them had to be greater than or equal to 0.4 (the “strong interactions”
condition). In A–D, the correlation for each system was obtained by allowing each coefficient to independently vary around its original value (m) according to the normal
distribution with the mean = m and the standard deviation = 0.05 m (A, B) or the standard deviation = ˛m (C, D), where  ̨ was assigned (for each coefficient of the system) a
random value from the uniform distribution on the interval [0,0.10]. Therefore, the coefficient of variation (CV) was the same for all coefficients in A and B, but varied among
the  coefficients in C and D. In A–D, the correlation coefficient of a system was estimated by analytically calculating the X and Y equilibrium values after 300 perturbations
(for  technical details, see Janušonis, in press). In E and F, the values of X and Y were perturbed around the equilibrium with random noise and were modeled as a multivariate
Ornstein-Uhlenbeck process dV = −A·Vdt + B·dW(t), where V = {X, Y}, −A is a square matrix {{aXX , aYX}, {aYY , aXY}} generated as described above, B is a diagonal matrix with its
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iagonal elements independent and uniformly distributed on the interval [0,2], and
y  using a closed-form expression available for the two dimensions (Gardiner, 2010
eterminant and trace of A, respectively, and I is the 2 × 2 identity matrix). Note th

e fundamentally undetectable (i.e., it can consistently yield zero-
orrelations irrespective of the sample size).

.2. Direct interaction with no correlation in experimental
esearch

In experimental research, a system is typically strongly per-

urbed by transiently or permanently “clamping” one variable at

 certain value (or a series of values), and allowing other variables
o freely settle down to their new equilibrium values. If the sys-
em is pushed far away from its equilibrium (a typical situation in
is the Wiener process. The stationary covariance matrix was analytically calculated
etA)B·BT + (A–(TrA)I)·B·BT·(A − (TrA)I)T]/2(TrA)(DetA), where DetA and TrA are the
scales of the Y-axes are not the same in A–F.

experimental science), the function g (Eq. (1)) can be approximated
by a Taylor series with some of the higher order terms:

dY

dt
= aY + aYY Y + aXY X + a(YY)Y Y2 + a(XX)Y X2 + a(XY)Y XY + (hot)

(3)

where all a’s are coefficients and (hot) denotes still higher order

terms that may  be important (e.g., Y3, XY2, with appropriate coef-
ficients). Note that if aXY /= 0 or a(XX)Y /= 0 or a(XY)Y /= 0, it implies
that X and Y interact. The importance of second-order terms is obvi-
ous in biological processes in which the growth/decay rate of one
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injection) and sustained (B; e.g., a gene mutation) change in X has no effect on the equilibrium value of Y, but the dynamics of Y controls the equilibrium value of Z (which
does  not directly interact with X). The equations in the middle panels represent a simple homeostatic mechanism (A) and development or growth (B). The equations in the
right  panels (A and B) represent a simple switch (Strogatz, 2001). All of these dynamic relationships naturally describe a number of biological processes, some of which are
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tates  (i.e., the homeostatic states to which the variables automatically return after
o  not require external variables.

ariable is controlled by another variable, such as in the accelerated
ostnatal brain growth in autism (Courchesne et al., 2011).

Suppose the experimenter changes X from its normal value
X0) to Xexp and holds it there (e.g., knocks out a gene). Will
he equilibrium value of Y change? Despite the fact that X and

 directly interact, the answer sensitively depends on the val-
es of the coefficients. Assume (hot) = 0 (i.e., the higher order
erms can be neglected). If aY = aXY = a(YY)Y = a(XX)Y = 0, the experi-

ental treatment will have no effect on the Y equilibrium value.
n another simple scenario, if a(XY)Y = a(YY)Y = 0 and all other coef-
cients are non-zero, the equilibrium value of Y will change

f aY + aXYXexp + a(XX)Y(Xexp)2 differs from aY + aXYX0 + a(XX)Y(X0)2.
owever, it may  be possible to find (or accidentally choose) such
exp /= X0 that aY + aXYXexp + a(XX)Y(Xexp)2 = aY + aXYX0 + a(XX)Y(X0)2.
his leads to the conclusion that a change in X may  or may  not
esult in a change in the Y equilibrium value (if the only available
nformation is that X directly controls Y). Therefore, a t-test per-
ormed on the conditions (X = X0 and X = Xexp) effectively assesses
he consistency of the data with the following compound null-
ypothesis: {X does not control Y} OR {the set of coefficients is
ot “fortuitous”}. Importantly, there is no equivalence between
he strength of the interaction and the coefficient set being “fortu-
tous.” As shown in Fig. 3, X can strongly control Y with no effect on
ts equilibrium value. Redefining “interaction” as effects on equi-

ibrium values only does not solve the problem and can result in
evere inferential errors. Specifically, the researcher may  conclude
hat X directly controls Z but not Y, when in reality the opposite may
e true (Fig. 3). This has important implications for theoretical and
 perturbations). These equilibrium states are a product of the system dynamics and

applied neuroscience fields, including developmental neurobiology
and neuropharmacology.

4. Discussion

4.1. Statistical tests estimate mathematical models

The presented analysis shows that statistical tests cannot reli-
ably detect direct interactions among variables if these variables
are measured at equilibrium and no constraints are placed on their
possible dynamics. This problem arises not because of flaws in sta-
tistical tests as mathematical procedures, but because they are used
to estimate “time-less” models. Since this observation is important
for the following discussion and it also suggests potential solutions,
it is helpful to briefly review how statistical tests operate.

If the researcher has performed a statistical test, however sim-
ple, it implies the following:

• The researcher has proposed a mathematical model of the stud-
ied process. If the model is explicitly specified (e.g., by a formula),
its biological relevance can be immediately examined. If the
model is not explicitly specified, it is likely to be a standard, pre-
made model (e.g., ANOVA). Since many standard models are built
on computational convenience rather than biological relevance,

they are generally less safe than models constructed by using
evidence-based decisions.

• The researcher has verified that the mathematical structure of
the proposed model is consistent with the observed data. For
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example, small values of a biological variable can have smaller
variances than its large values. While this situation is biologically
natural (the variance is proportional to the value), it is inconsis-
tent with the standard ANOVA model.
The experimenter has numerically estimated the coefficients of
the model. A significant P-value typically means that some of the
model’s coefficients are likely to have non-zero values. Obviously,
this information is meaningful only if the model is correct (or,
more precisely, if the model’s mathematical structure is consis-
tent with the data structure).

These considerations show that statistical testing is a type of
athematical modeling. Mechanistically, it is not different from
athematical modeling used to understand physical laws in exact

ciences. For example, Newton’s second law of motion (F = ma)
s a simple version of the model that underlies the standard t-
est (Y = bX + b0 + �); the former can be obtained from the latter by
ssuming a zero intercept (b0 = 0) and a negligible random error
ε = 0). While statistical models often differ from models of physi-
al laws in that they are more empirical or ad hoc, this difference is
ot fundamental and simply reflects the depth of scientific under-
tanding. It is not unusual to start with empirical models that work
easonably well in fixed or highly controlled settings and then
roceed to generalized predictive models that include all essen-
ial variables (therefore minimizing the need to control for other
ariables).

A distinguishing characteristic of statistical models is that in
ddition to usual deterministic variables they include random
ariables. These random variables are typically assumed to be
nchanging in time (e.g., measurement errors). Random variables
hat evolve in time are usually studied in the theory of stochas-
ic differential equations. It is revealing that these equations are
ot considered to represent any “tests.” They are models, the
arameters of which can be optimally estimated based on previous
bservations and then used to predict the future of cellular, eco-
ogical, or financial processes (Øksendal, 2003; Letinic et al., 2009;
ardiner, 2010).

In summary, statistical tests cannot directly “test” biological
eality. Rather, they are mathematical models that can yield deeper
nsights into the mechanisms of the observed phenomena and

ay  allow predictions. As such, they are meaningful only to the
xtent that their mathematical structure is biologically relevant.
ince neural systems never stop evolving in time, ignoring time in
heir statistical models may  lead to serious problems. Some of these
roblems are beyond the scope of the present study and have been
iscussed elsewhere (Janušonis, in press).

.2. Null-hypothesis significance testing yields uninformative
odel estimates

Null-hypothesis significance testing (NHST) dates back to the
re-computer era and has many problems as a methodological
pproach (Meehl, 1967; Cohen, 1994; Cohen et al., 2003; Kline,
004; Nakagawa and Cuthill, 2007). Two of these problems are

mmediately relevant to the presented results.
First, the correlation between the equilibrium values of two  vari-

bles is highly sensitive to the baseline numerical values of the
oefficients that couple the variables (Eqs. (2) and (3)). However, a
ignificant P-value merely means that the confidence intervals of
ome coefficients do not include zero. If large experimental samples
re used, this information becomes nearly trivial, as no coefficients
an be precisely 0.00000. . .,  with zeros extending into infinity. It

an be more useful if sample sizes are relatively small, since large
not merely non-zero) effect sizes are needed to reject the well-
rotected null-hypothesis (the Type I error is usually set at  ̨ = 0.05).
till, this reasoning is an unnecessarily convoluted alternative to
Methods 206 (2012) 151– 157 155

confidence intervals that, based on the data, assign each model
coefficient a range of possible numerical values (Tukey, 1969;
Cohen, 1994; Cohen et al., 2003; Nakagawa and Cuthill, 2007). The
latter interpretation is intuitive and mathematically obvious (these
estimates can be immediately plugged into the model and used to
predict untested outcomes).

It follows that, even if one starts with a statistical model that
includes time, NHST fails to report key pieces of information.
Specifically, if the only available information is that some model
coefficients are non-zero, virtually no prediction can be made about
the association strength among the equilibrium values of the vari-
ables. Since these equilibrium values are likely to have been studied
by other researcher groups, it greatly diminishes the potential for
meta-analysis and cross-verification.

In addition, NHST has another undesirable property: it treats
the complete absence of an effect as the “normal” or “expected”
situation. Consequently, the Type I error (  ̨ = 0.05) is set such that
tests default to this conclusion unless there is strong evidence
to the contrary. However, this default conclusion is extraordinary
from the biological point of view. In fact, it is difficult to imag-
ine a biological system a perturbation of which would produce
a zero effect on some of its variables (small effects already vio-
late the null-hypothesis assumption). In this regard, true weak or
near-zero effects are of great value in that they can refine the sys-
tem’s graph by pruning away its links that do not represent direct
interactions (Fig. 1). The need for greater flexibility in the construc-
tion of the initial hypothesis has been discussed by other authors,
some of whom have called for “reversal of the usual scientific bur-
den of proof” (Meehl, 1967; Dayton, 1998; Hoenig and Heisey,
2001).

This approach is perilous if conclusions about weak or near-
zero effects are based on associations between equilibrium values
(the variables may  actually directly interact) or NHST (which auto-
matically defaults to the absence of interaction if the evidence is
insufficient). It is interesting that the practice of treating “negative”
experimental results as low in scientific value is directly connected
with these methodological flaws. If well-designed statistical mod-
els are estimated with reliable experimental data, both “negative”
and “positive” results are equally useful, since they reveal the con-
nectivity of the system’s elements.

Nakagawa and Hauber (2011) is an excellent review of modern
statistical models, most of which are not based on NHST. A pow-
erful application of these approaches to the relationship between
hippocampal neurogenesis and behavior is given in Lazic (in press).

4.3. Explicit modeling and numerical estimation minimize
inferential pitfalls

In order to avoid the discussed pitfalls, it is best to start with
an explicit statistical model. This approach is used in modern
statistical techniques, such as generalized linear modeling (Zuur
et al., 2009; Nakagawa and Hauber, 2011) and structural equa-
tion modeling (SEM). In SEM, the researcher proposes a model
and seeks to validate it with real-life data (thus hoping that the
null-hypothesis will not be rejected) (Kline, 2011). For the same
reason, running a two-way ANOVA in R (www.r-project.org) can
become an unexpected challenge, because this forward-looking
statistical platform requires an exact specification of the under-
lying model, including a precise definition of the “main effects” in
the presence of an interaction (which otherwise can be mathemat-
ically ambiguous; by default, most software packages give only one
version).
An added benefit of this approach is that it forces the researcher
to study the structure of the experimental data. For example, if
measurements have been made in animals from different litters,
it immediately raises questions about how these data points may

http://www.r-project.org/


1 ience 

b
d
a
i

b
2
o
r
m
l
d
i
e
e
v
v
a

a
v
o
P
a
v
s
t
a
s
l
a
w
i
i
i
s

s
s
r
t
t
i
t
i
i
e
c
e

b
t
i
F
t
t
n
c

O
t
u
2
t
t
q

1989.
Øksendal B. Stochastic differential equations: An introduction with applications.
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e related to one another (e.g., whether they are truly indepen-
ent). This may  invalidate the standard ANOVA model and suggest

 model that is both more relevant and can provide richer biological
nformation (e.g., a mixed-effects model).

While the importance of the data covariance structure has
een emphasized in statistical literature (Zuur et al., 2009; Lazic,
010; Nakagawa and Hauber, 2011), the inherent time-dependence
f biological variables is often overlooked. Nevertheless, the
esearcher has to also decide how time should be included in the
odel. Since a biological system without time cannot exist, prob-

ems at this stage may  reveal serious flaws in the experimental
esign (e.g., the value of a variable was measured, but the selected

ndependent variables affect its rate of change). If a generalized lin-
ar model is used, time can be included in the intercept (e.g., if all
xperiments were conducted at the same time), as an independent
ariable (which may  or may  not interact with other independent
ariables), or as the velocity (rate of change) of the dependent vari-
ble.

Including time in the model also forces the researcher to take
 disciplined approach to possible linear relationships among the
ariables. Many emergent properties of biological systems depend
n non-linearities among variables (Babloyantz, 1986; Nicolis and
rigogine, 1989; Buzsáki, 2006). The assumption of linearity as an
pproximation is safe only in special circumstances – namely, when
ariables stay close to their equilibrium values (due to the Taylor
eries expansion). Most experimental approaches grossly violate
his assumption (typically, the researcher moves the system far
way from its equilibrium in the hope of obtaining a large effect
ize detectable with a relatively small sample). In many cases, a
inear relationship automatically implies non-linearity in associ-
ted processes (e.g., if Y = dX/dt = aX,  then it follows that X = X0eat,
here t is time and X0 is the initial value of X). Finally, assum-

ng linearity among any variables in a dynamical system is logically
nconsistent (e.g., if v ∼ t, then it follows that s ∼ t2, where v is veloc-
ty, s is traveled distance, t is time, and ∼ is the proportionality
ign).

It is worth noting that despite these inherent difficulties many
uccessful models in physics and chemistry are linear. It is pos-
ible because these models establish relationships between the
ate of change of the dependent variable and the current state of
he independent variables (Eq. (1)). This approach takes advan-
age of the trivial observation that change requires continuity
n time and, therefore, can be described locally with respect
o time. It also immediately disposes of the problem of “direct
nteraction with no correlation,” since time is already included
n the definition of “rate of change.” Velocity has been mod-
led in ecological research (Blumstein, 1992), but it is still rarely
onsidered in neurobiology (with the prominent exception of
lectrophysiology).

In numerical estimations of the final statistical model, time can
e folded into other variables. However, the overall transparency of
he analysis can help other researchers to avoid premature general-
zations and may  facilitate collaborative and meta-analysis efforts.
or example, the absence of an effect in adulthood does not imply
hat the same factor has no effect in early development. Similarly,
he absence of an effect on the equilibrium value of a variable does
ot imply that the factor has no effect on how fast the variable can
hange (Fig. 3).

Several approaches can be used to validate the final model.
ne can verify that the structure of the residuals is consistent

he specification of the statistical model (Zuur et al., 2009) or
se Bayesian-based posterior predictive checking (Gelman et al.,
003). It is worth repeating that the usual P-values of statis-
ical tests do not carry this information, since they estimate

he coefficients of the underlying models, not their relevance or
uality.
Methods 206 (2012) 151– 157

5. Conclusions

A  direct interaction between elements of a neural system can-
not be reliably established unless these elements are analyzed in
time. Consequently, statistical models of neurobiological processes
should include time as a variable, unless experimental evidence
exists to support their time-invariance.
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