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Off-line learning is facilitated when motor skills are acquired under a
random practice schedule and retention suffers when a similar set of
motor skills are practiced under a blocked schedule. The current study
identified the neural correlates of a random training schedule while
participants learned a set of four-element finger sequences using their
nondominant hand during functional magnetic resonance imaging. A
go/no go task was used to separately probe brain areas supporting
sequence preparation and production. By the end of training, the
random practice schedule, relative to the block schedule, recruited a
broad premotor–parietal network as well as sensorimotor and subcor-
tical regions during both preparation and production trials, despite
equivalent motor performance. Longitudinal analysis demonstrated
that preparation-related activity under a random schedule remained
stable or increased over time. The blocked schedule showed the
opposite pattern. Across individual subjects, successful skill retention
was correlated with greater activity at the end of training in the
ipsilateral left motor cortex, for both preparation and production. This
is consistent with recent evidence that attributes off-line learning to
training-related processing within primary motor cortex. These results
reflect the importance of an overlooked aspect of motor skill learning.
Specifically, how trials are organized during training—with a random
schedule—provides an effective basis for the formation of enduring
motor memories, through enhanced engagement of core regions in-
volved in the active preparation and implementation of motor
programs.

I N T R O D U C T I O N

Contemporary research in the acquisition of motor skills
demonstrates that performance improvements unfold over at
least two separable timescales: a fast component that occurs
within a training session and a delayed latent component that is
present after a training session. This latent component, referred
to as off-line learning, is often equated with memory consoli-
dation, which is explained as a process of transforming mem-
ories into a stable and endurable form (McGaugh 2000).
Considerable research has demonstrated both time (Robertson
et al. 2005) and sleep (Korman et al. 2007; Walker et al. 2003)
to be critical to off-line learning. In line with these behavioral
features, experimental evidence from transcranial magnetic
stimulation (TMS) and functional magnetic resonance imaging
(fMRI) have shown motor regions—with strong emphasis on
the primary motor cortex and its subcortical targets—to be
involved in off-line learning (Doyon and Benali 2005;

Krakauer and Shadmehr 2006; Robertson and Cohen 2006).
Although it is understood that off-line learning is a product of
successful training and the activation of a cortical–subcortical
motor network, it remains relatively unclear how the structure
of training itself shapes activity within motor regions that
support enduring motor memories. To approach this question,
we manipulated the effectiveness of training through practice
structure to identify motor areas that support off-line learning
in humans.

For motor skills in which more than one specific action is
being acquired, the structure of practice trials plays a critical
role in the enhancement of off-line learning after practice. A
robust behavioral effect, known as contextual interference (CI),
represents a fundamental example of how practice can be
manipulated to enhance newly formed memories. CI experi-
ments typically present the same set of tasks to two groups of
participants. The only difference between the two groups is
how the specific actions are ordered during training. One group
is given the actions in a blocked order so that all the trials for
one particular action are repeated before the next is presented
and the other group practices the different actions in a random
order. Performance during training typically favors the blocked
group. Critically, performance on a retention task following a
substantial delay demonstrates greater off-line learning for the
skills practiced with a random schedule. First described by
Battig (1972) and Shea and Morgan (1979), the CI effect has
been described in numerous motor and cognitive tasks (for
reviews. see Brady 2004; Lee and Simon 2004; Magill and
Hall 1990).

The CI effect shows that a random training schedule can
benefit motor skill retention. Unlike the beneficial effects that
time and sleep have on learning after training ends, CI is also
dependent on processes occurring at the time of training. One
dominant theoretical account suggests that more effortful pro-
cessing must occur during random training because the motor
program information related to the current trial is forgotten by
intervening information that emerges after the previous trial
(Lee and Magill 1983, 1985). The theory contends that in-
creased preresponse processing linking the relevant stimulus
information with the required motor output is what drives
improved retention performance. Recent evidence from con-
tinuous sequence learning experiments appears to support this
“active preparation” theory, demonstrating that random train-
ing leads to extensive processing during the preresponse inter-
val prior to sequence execution (Immink and Wright 1998,
2001). Immink and Wright found that random training de-
mands more time during acquisition relative to block training
and that this additional processing time leads to improved
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performance retention, as established by greater accuracy and
precision following a substantial delay. Behavioral evidence in
support of an active planning model suggests that random
training should lead to greater recruitment of neural systems
supporting preparation and execution. Regions showing in-
creased activation by the end of training might also support
subsequent molecular changes that lead to performance im-
provements after training has ended.

Evidence that there is increased neural processing during a
random training schedule was first provided by an fMRI study
of contextual interference of sequence learning (Cross et al.
2007). One group of subjects practiced three keyboard se-
quences with a block training schedule and a second group
practiced the same sequences with a random training schedule.
A go/no-go paradigm was used to distinguish preparation from
execution. By the end of training the random group demon-
strated stronger blood-oxygen-level–dependent (BOLD) acti-
vation in sensorimotor and premotor regions during movement
preparation when contrasted with the block group. Interest-
ingly, random practice failed to produce any stronger activa-
tion during movement execution at the end of practice. A
retention test, performed outside the scanning environment,
showed greater off-line learning benefits for the random group.
This suggests that the increased movement preparation activa-
tion by the end of practice led to improved performance
retention.

The scope of this prior result is limited because subjects
were given an unlimited amount of time to prepare a response,
with random trials taking significantly longer to plan than
block trials. Because the amount of time spent preparing
sequences differed between groups, it is difficult to say
whether the activation results were related to differences be-
tween the training schedules or were related to a more general
effect of sequence preparation. Second, the study used a
between-population design. Although this experimental design
was consistent with approaches used in behavior studies, the
between-groups design undermines statistical power in brain
imaging.

To measure brain activity linked with subsequent off-line
learning and also to address the shortcomings of the previous
fMRI study, we used a within-subject design and measured
brain activity during sequence learning under blocked and
random training schedules. To achieve this goal we first com-
pleted a behavioral study demonstrating for the first time that
the CI effect holds true when using a within-subject design
(unpublished data, but replicated in the current fMRI study). A
within-subject design affords the direct comparison of brain
activation images from the same participant under each train-
ing schedule. We adopted a hypothesis that the random training
schedule leads to increased processing, particularly during
motor planning. As such, random training trials, relative to
block training trials, should demonstrate greater activity in
motor preparation and execution areas, particularly by the end
of training. An additional aim was to characterize how the
activation patterns for both training schedules evolve over the
entire training period. This is an important consideration be-
cause it tells not only which regions are greater for random
training at the end of practice, but also identifies which training
effects are specific to random training compared with blocked
training.

Candidate regions that might be more active during training
under a random schedule and thought to support subsequent
sequence retention were hypothesized to be those areas previ-
ously shown to demonstrate experience-dependent changes
when learning arbitrary or sequential visuomotor associations
during the fast component of motor skill learning (for reviews,
see Ashe et al. 2006; Sanes and Donoghue 2000; Tanji 2001).
A significant body of evidence from both humans and nonhu-
man primates suggests that a network involving the dorsal
premotor cortex (PMd) and the posterior parietal cortex (PPC)
is involved in the planning and selection of learned visuomotor
associations (Bischoff-Grethe et al. 2004; Cavina-Pratesi et al.
2006; Diedrichsen et al. 2006; Grafton et al. 1998; 2002; Grol
et al. 2006; Thoenissen et al. 2002). Recent evidence suggests
that the primary motor cortex (M1) is also essential for the
storage of newly learned motor skills (Ashe et al. 2006; Lu and
Ashe 2005; Matsuzaka et al. 2007), a role also assumed by the
basal ganglia (Jueptner et al.1997; Lehéricy et al. 2005; Toni
et al. 2001). Additional evidence using TMS has implicated the
primary motor cortex (M1) in the functional involvement of
latent learning of several different motor skills (Muellbacher
et al. 2002; Richardson et al. 2006; Robertson et al. 2005).
Furthermore, the temporal representation of learned associa-
tions appears to be facilitated by the supplementary and pre-
supplementary motor areas (SMA and pre-SMA), with the
former having an emphasis on the fluid execution of movement
and the latter having an emphasis on the grouping and orga-
nization of motor information (Isoda and Tanji 2004; Shima
and Tanji 2000). Together, these areas form the core network
of motor preparation and execution in which we would predict
random training might lead to a greater recruitment of activity.

Training with a random schedule typically leads to perfor-
mance enhancement on the following day. We also know that
motor cortex plays a central role in skill consolidation. In a
recent TMS study, we found that single-pulse TMS applied to
left motor cortex during sequence preparation eliminated the
beneficial effect of a random practice structure on subsequent
consolidation of sequences learned by the left hand (Cohen et
al. 2009). In the current study we sought to merge these
observations by testing whether individual subject differences
of motor cortex activity at the end of training could be
correlated with skill consolidation.

M E T H O D S

Participants

Twenty right-handed participants (11 female, mean age ! 20.9 yr)
volunteered with informed consent in accordance with the Committee
for the Protection of Human Subjects, Dartmouth College, Hanover,
New Hampshire. All participants had "4 yr of piano training or
experience. Four participants were excluded from further analysis
because behavioral response data exceeded a predetermined exclusion
threshold (explained in the following text). All participants had
normal vision and no history of neurological disease or psychiatric
disorders. Participants were either paid or given coursework credit.

Each participated in two scanning sessions: a training session and a
follow-up test session acquired 1 day after the training session. Two
participants completed this test session 4 days after training, one
because of technical difficulties and the other because of drowsiness
during the initial follow-up session. The test session was performed
within the identical scanner environment to maintain consistency with
the initial training session.
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Experiment setup and procedure

Participants lay supine in the MRI scanner. Stimuli were back-
projected onto an adjustable mirror mounted inside of the headcoil.
On both days, participants performed a visually cued sequence re-
sponse task using their nondominant left hand on a custom-made
fiber-optic response box placed on their lap. To make the response
surface uniform and the button box stable during scanning, a board
was placed between the participant’s lap and the button box. Re-
sponses were made with all four fingers, excluding the thumb. Each
visual cue, as illustrated in Fig. 1, displayed a string of four digits
containing the numbers 1–4, randomly ordered, and without repeti-
tion. The digit strings excluded combinations that occur sequentially
(e.g., “1234” and “4321”) or as runs (e.g., “4123”). The keys were
matched to the numbers from left to right so that a “1” was reported
with the smallest finger and a “4” was reported with the index finger.
There are a total of 24 nonrepeating combinations of the numbers 1–4.
Combinations that contained strings of three or four sequential digits
(i.e., “1234” or “4123”) were excluded, leaving a total 18 sequences
to choose from. The following sequences were hand-selected: “1423,”
“2413,” “3142,” “3241,” “4213,” and “4231.” The same sequences
were learned by all participants and were counterbalanced across
training schedules.

A trial began with the presentation of the sequence (900 to 1,100
ms) at the center point of the video screen (Fig. 1, left). Participants
were instructed to prepare but not execute a response. Next, the
sequence reappeared (400 to 600 ms) surrounded by either a green
(go) or a red (no go) border cuing participants to execute or refrain
from responding (Fig. 1, center). On the disappearance of the go cue,
participants had 2,000 ms to generate their response; otherwise, it was
counted as incorrect.

Figure 2A depicts the experiment timeline. Subjects trained on six
sequences over the course of six scan epochs. The sequences were
divided between two training schedules, with three of the sequences
presented under a block training schedule and the other three se-
quences presented under a random training schedule. There were three
block training scan epochs interleaved with three random training
scan epochs as shown. Half the subjects started with a block epoch
and the other half started with a random epoch, each alternating until
all six epochs were completed. Sequences were unique to type of
epoch, so that a sequence trained under a block schedule would not be
trained under the random schedule and vice versa. The block schedule
featured one sequence for an entire scan epoch. Each block epoch
presented the same sequence over 36 trials, with half being prepara-
tion (i.e., no go trials) and the other half being production (i.e., go
trials). The random schedule presented all three random sequences
over the course of each scan epoch. Random epochs also contained 36
trials, with half being no go and the other half being go trials. The
order of the three sequences was randomized within each epoch and
each of the three sequences had the same amount of no go and go

trials within the epoch. The same three random sequences were
presented in each of the three random epochs. Event totals for the
experiment are tabulated on the right in Fig. 2B. By the end of
training, all sequences (three block, three random) were presented the
same number of times. There are two critical points in this design.
First, all sequences received the same amount of training, with the
only difference being how the training was structured. Second, the
training was performed with a within-groups design, so all partici-
pants trained on all sequences and under both practice schedules.

Trials were spaced with an intertrial interval (ITI) lasting between
2 and 20 s. This variable ITI was used to improve fMRI model
estimation of task relative to baseline. Following every six sequence
execution trials, participants received feedback that displayed the
average time to complete a sequence and the number of correct
sequences. Each training epoch lasted a total of 139 scan repetition
times (TRs, 348 s) and each training session a total of 834 scan TRs
(#35 min).

The test session presented two epochs, each containing all six
sequences used in the training sessions. To compensate for possible
differences in the order of sequence presentation during the training
epochs and the subsequent test schedules, one test epoch presented all
sequences in short blocks of trials and the other test epoch presented
all sequences in a random order, as shown in the bottom of Fig. 2A.
The order of blocked or random test epochs was randomized across
subjects. Both test epochs contained preparation and execution trials
and each continued until the subject made 18 correct responses. No
performance feedback was given during the test session.

Prior to the start of the training session, participants were intro-
duced to the task inside the scanner room. After being positioned in
the scanner and while initial localizer and anatomical images were
collected, participants practiced the sequences “4321” and “1234.”
Feedback followed each practice trial. During the test session, partic-
ipants were reminded of the task but received no additional practice.

Behavioral apparatus

Stimulus presentation was controlled with a PC running Matlab
version 7.1 (The MathWorks, Natick, MA) in conjunction with
Cogent 2000 (FIL 2000). Key-press responses and response times
were collected using a fiber-optic custom button box transducer
connected to a digital response card (DAQCard-6024e; National
Instruments, Austin, TX).

Imaging procedures

The experiment was performed in a 3.0-T Philips Intera using an
eight-channel SENSE head coil (Philips Medical Systems, Best, the
Netherlands). BOLD imaging used single shot echo planar imaging.
The scanning parameters were: 30 slices per repetition time (TR,
4.5-mm thickness, 0.5-mm gap, interleaving, axial scan plane), with a
TR of 2,500 ms, echo time (TE) of 35 ms, a field of view (FOV) of
24 cm, and a 64 $ 64 matrix. We acquired 834 functional volumes
from each subject during training and a variable amount during
follow-up, depending on how long a subject needed to make 18
correct responses. Full-brain T1-weighted images were acquired using
a spoiled gradient recalled three-dimensional sequence (TR ! 9.9 ms;
TE ! 4.6 ms; flip angle ! 8°; FOV ! 240 mm; slice thickness ! 1
mm; matrix ! 256 $ 256).

Data analysis: behavior

Movement time (MT) and response time (RT) data were collected
for all production trials. RT is the time elapsed from the disappearance
of the response cue to the initial key-down press. MT is the time
elapsed from the initial to the final key-down press. Training session
trials with errors or other contaminated trials (due to malfunction of
the response box) were first removed and then accounted for using an

Study

4 2 1 3

t = 900 - 1100ms

   GO

or

4 2 1 3

4 2 1 3
t = 400 - 600ms

  NOGO

Report

t = 2000ms

Rest

FIG. 1. Trial structure. Participants first prepared the number sequence in
the study segment. Either a green (lighter shade) or a red (darker shade) box
then appeared with the sequence still present on the screen. Trials with the
green box (go) signaled the subject to execute the sequence. The red box (no
go) cued subjects to disengage and wait for the next trial.
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expectation maximization algorithm (Schneider 2001). The algorithm
sampled the mean, SE, and covariance of the existing data points to
generate replacement values. Following this step, MT values that fell
outside a 2SD range were replaced with either the upper or lower
bound of this range. Training data were sorted by schedule type and
then segmented into groups of six temporally contiguous trials. The
block training groups were then reordered to reflect sequence expe-
rience in terms of trials rather than time, a perspective adopted from
the initial CI literature (Shea and Morgan 1979). Because three block
sequences were presented during training, trials were reordered so that
the initial 6 trials of the first block sequence were followed by the
initial 6 trials of the second block sequence and, again, by the initial
6 trials of the third block sequence. This pattern was repeated for the
trial group that contained production trials 7–12 and then, finally, by the
group containing trials 13–18. The random trial groups maintained their
original order in time. Subjects were excluded if behavior from two or
more scanning epochs contained trial group values outside the %2SD
range from the population across each MT group. MTs for each subject,
segment, and schedule were entered into a 2 $ 9 repeated-measures

ANOVA, with subject being entered as a random factor (SPSS, Chicago,
IL). A probability of P " 0.05 was set as the threshold for rejection of the
null for the training session.

To determine the effect of training schedule on off-line learning, MT
data were selected from the initial half of trials from the first test session
epoch. The rationale for selecting data only from the beginning of the test
session was to isolate memory performance from the relearning of the
sequences. Because test session trials presented all six sequences from the
previous day’s training session, test session trials were grouped according
to what training schedule they were practiced under on the previous day.
In other words, three of the sequences were classified as “block trained”
and the other three were classified as “random trained.” The effect of
schedule on off-line learning was determined by comparing test trials
with the last four training trials from the same training schedule. As such,
test session sequences originally learned under a block training schedule
were compared with the final four block training trials. Four training trials
from each schedule type allowed for an ideal match between the amount
of data points needed to perform a paired-sample t-test comparison with
the test session trials. Furthermore, results from the comparison would
not be attributed to unequal variance between conditions because SEs for
training (block ! 22.4; random ! 22.8) and test session trials (block !
27.4; random ! 24.7) were equivalent for the group data. Finally,
difference scores of latent learning were calculated for each participant
and for each schedule by subtracting the mean of the early test trials from
the mean of the final training trials. Positive difference scores reflect
off-line learning. The random schedule difference scores were used as a
covariate of interest in aim 4 of the fMRI analysis.

The analysis of test session was limited to the behavioral data.
fMRI data were collected at the same time to closely replicate the
conditions subjects experienced during training. However, because
only a limited number of trials were collected per condition to
minimize additional learning during the test session, analysis of test
session fMRI data was not well suited for statistical modeling.
Imaging results for the test session are not reported, to avoid the risk
of making a type I error from the low statistical power of fMRI data
in this session.

Test Session

Tb

All Sequences
1 ...8765432

Block Trained

Random Trained

Tr

All Sequences
1 ...8765432

Block Trained Random Trained

Training Session

B RR BBR

//

//

Sequence B3

1 2 3 4 5 6 36

Sequences R1, R2, R3
1 2 3 4 5 6 36

//

//

Prepare or ExecuteRest (2 -20sec)

A

B

  Event totals 
               
    random early
      18 go
      18 no go
     
     block early
      18 go
      18 no go

     random late
       36 go
       36 no go
 
     block late
        36 go
        36 no go

early block / random events

late random events

late block events

R R RB B B

18 go
18 no go

18 go
18 no go

12 go
12 no go

12 go
12 no go

12 go
12 no go

6 go
6 no go

6 go
6 no go

6 go
6 no go

18 go
18 no go

Time

FIG. 2. Experimental design and structure of event-related functional
magnetic resonance imaging (fMRI) analysis. A: the training session presented
participants with alternating trial epochs organized in both block (B) and
random schedule (R) form. Each schedule epoch contained 18 sequence
preparation (no go) and 18 sequence production (go) trials. Participants
received 6 schedule epochs: 3 block schedules and 3 random schedules each
lasting 139 scans. Presentation of block and random epochs were interleaved,
such that following the completion of all trials contained in a block schedule,
the next epoch of trials would be presented using a random schedule. For the
test session participants received 2 epochs of trials comprised of all the
practiced sequences, independent of initial practice schedule. One epoch
contained trials organized into miniblocks of 3 trials of the same sequence (Tb)
and the other epoch presented trials in a random order (Tr). For each epoch,
trials could be either preparation or production events. Epochs continued until
participants produced 18 correct sequences. B: to account for behavioral
performance differences between schedules within the fMRI analysis, the
training trials were grouped into thirds. The first third of trials, shown in solid
white, are known as “early training events,” whereas the final two thirds of
trials, shown with line patterns, are known as “late training events.” Early and
late training events were defined by the amount of training time for each
sequence. Such that, the first third of trials (6 trials) for a particular sequence
were considered early events, and the final two thirds of trials (12 trials) for the
same sequence were considered late events. This was done separately for both
preparation (no go) and production events (go). Because only one sequence
was presented in each block schedule, early events were considered to be the
first third of each block epoch and late events were from the final two thirds of
each block epoch. On the other hand, all 3 random schedule sequences were
presented in each random schedule epoch, so that the early events were
considered to be the first random epoch, whereas the final 2 random epochs
were classified as late events. A total of 18 early events and 36 late events were
designated for both block and random schedules.
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fMRI data analysis

The fMRI analyses addressed four aims. Aim 1 was to identify
task-specific neural regions that supported the preparation and the
production of visually cued finger sequences with the nondominant
left hand. Aim 2 was to identify those regions supporting the prepa-
ration and execution of sequences late in training for the random
schedule relative to the block schedule. Aim 3 was to identify
differences in longitudinal changes of brain activation over the entire
course of training as a function of the two training schedules. To avoid
confounds of differing kinematics, this question was limited to prep-
aration, no go trials only. Aim 4 was to test whether activity in motor
cortex measured at the end of training and for just the random training
schedule, correlated with individual differences in subsequent off-line
learning.

Preprocessing and statistical analysis of the data were performed
using FSL (Oxford Centre for Functional Magnetic Resonance Imag-
ing of the Brain [FMRIB], Oxford University, Oxford, UK) (Smith
et al. 2004). Motion correction was performed by MCFLIRT (Jenkin-
son et al. 2002). Images were temporally high-pass filtered with a 50-s
cutoff period. Spatial smoothing was applied with a Gaussian kernel
of 8 mm (full width at half-maximum) and signal intensities were
globally normalized to account for transient fluctuations in signal
intensity.

Statistical analyses were performed at the single-subject level by
using the general linear model (GLM) as implemented in FSL (FMRI
Expert Analysis Tool). Training regressors were defined by schedule
(block, random) and split into two sets based on exposure time (early
training, late training).

Figure 2B shows how trials were defined for the formation of
regressors used in the general linear model (GLM) to estimate BOLD
effects. “Early” training events were defined as the first third of go and
no go trials from each practice schedule. Similar to the analysis of the
behavioral data, the first 6 trials from each block epoch were desig-
nated as early block trials. Early random trials also came from the first
third of the random sequences. Because the first random epoch
contained 6 go and 6 no go trials from each of the three random
sequences trained on, all early random trials could be taken from this
initial epoch. Both block and random schedules contained 18 go and
18 no go early events. “Late” training events were parcellated in a
similar fashion. The final two thirds of each block epoch were defined
as late block events, whereas the final two random epochs were used
to define late random events. This resulted in 12 go and 12 no go trials
for each of the sequences and thus a total of 36 go and 36 no go trials
per practice schedule. By organizing the GLM regressors in this
manner, the fMRI design is consistent with how the behavioral data
were binned and thus is also consistent with the CI literature. Further,
as discussed in greater detail in the following text, this organization
allowed for the direct comparison of block and random events because
MT was equivalent between schedules during late training.

Additional nuisance variables of noninterest were added as model
regressors. These consisted of session means, error trials, and MT,
which was used as a covariate by weighting each production trial by
a value that was the percentage difference from the mean MT
generated from all training trials. MT was included as a covariate of
noninterest to ensure that brain activation differences at the end of
training were not related to performance differences during sequence
production.

This design matrix was convolved with the default gamma-shaped
canonical hemodynamic response function (HRF) and temporal de-
rivative in FSL. Each subject-specific design matrix was estimated
using a fixed-effects approach, generating parameter estimates (PEs)
for each regressor as well as contrasts of parameter estimates (COPEs)
using the PEs convolved with the HRF, excluding the temporal
derivative. The COPEs were then carried up to the second-level group
analysis.

Individual brains were normalized to the Montreal Neurological
Institute (MNI)–152 template with a three-stage, 12 degrees of free-
dom affine registration using FLIRT. A nonlinear registration was
then carried out using FNIRT, with a warp resolution of 10 mm.
Spatially normalized individual subject contrasts (COPEs) were sub-
mitted to a mixed-effects group analysis. Higher-level analysis was
carried out using FLAME “1 & 2,” FMRIB’s Local Analysis of
Mixed Effects in FSL, with automatic outlier deweighting and with a
whole-brain search volume (Beckmann et al. 2003; Woolrich et al.
2004). Type II error was minimized by using the FDR algorithm for
multiple comparison correction with q ! 0.05 (Genovese et al. 2002).
One exception to this was the contrasts performed for aim 4, which was
corrected using the Bonferroni method, so that voxels above the threshold
P " 0.0125 were significant. For visualization purposes, the z-images
were mapped to the partially inflated cortical surface of the Population
Average Landmark and Surface-based (PALS-B12) atlas using the Caret
software application (Van Essen 2005). The PALS-B12 atlas represents
the surface registration of 12 normal adult high-resolution scans, which
can be used as an unbiased template for displaying images from group
fMRI analyses.

To address our first aim, we created separate contrasts for the main
effects of sequence preparation and sequence execution, both inde-
pendent of time and practice schedule, relative to baseline.

To address aim 2, that is to identify regions that were differentially
activated during late training, the linear contrasts “block ' random
late” and “random ' block late” were performed separately for both
sequence preparation and sequence execution trials. The objective was
to determine which brain regions showed greater activity for each
practice schedule once all the sequences had already been practiced.
Because there was a significant behavioral effect of practice schedule
on the MTs, a contrast that included all of the execution trials would
have introduced a potential confounding performance factor despite
including MT as a nuisance variable in the design matrix. Instead, the
contrast was restricted to only the final two thirds of the training
session (block late, random late) when MTs were equivalent. To
maintain consistency with the sequence execution trials and also to
adhere to our hypothesis that imaging at the end of training would
capture differential effects of the practice schedules, sequence prep-
aration contrasts were also limited to the final two thirds of trials.

Results were then quantified by calculating the mean z-statistic,
number of voxels, and the MNI space coordinates of the peak voxel
within a series of MRI atlas anatomic templates. These templates are
not the same as regions of interest. Instead, the regions in the current
analysis were used to present an accurate anatomical description and
labeling of the data. This approach was also carried out in aims 3 and
4 and a description of the template boundaries is described in the
following section.

In the third aim, we addressed the effects of the block and random
schedules on sequence-preparation–related brain activation over the
course of training by testing for an interaction between type of
training schedule (block vs. random) and time (early vs. late). We
were particularly interested in the pattern of interaction in which
(random late ' block late) ' (random early ' block early). Results
were first organized into the templates subsequently described and
local peaks were then identified. Activity from the local peak and
adjacent 26 voxels (a cube with a width of 3 voxels) were then used
to calculate percentage signal change relative to baseline. This al-
lowed us to plot task means and characterize the specific pattern of
interaction for each region.

The fourth aim was to test whether activity in motor cortex at the
end of random training, for both preparation and production events,
correlated with successful off-line learning as determined by individ-
ual subject differences. Would greater activity in motor cortex as a
function of practice structure lead to better consolidation? To test this,
the difference scores calculated for each participant were applied to
the linear contrast, “random late ' baseline” as an additional covari-
ate of interest in the group analysis. The difference score represented
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how efficiently each participant consolidated motor sequence infor-
mation learned during random training. Subjects with above-average
difference scores reflect a high amount of savings, whereas those with
below-average difference scores reflect poor retention. Anatomical
templates of right and left sensorimotor cortex were used to constrain
the results. Statistical corrections for multiple comparisons were based
on the size of this anatomic volume.

Standard-space anatomical templates

Anatomical templates were defined from either the Jülich histolog-
ical atlas or the Harvard–Oxford cortical and subcortical structural
atlas, both supplied with FSL (Eickhoff et al. 2005). The most
inclusive probabilistic map pertaining to BA6 was first selected from
the Jülich atlas. This region was then subdivided into more detailed
premotor regions using gyral and sulcul landmarks taken from the
group-averaged anatomical image. Medial premotor regions were
drawn with respect to the intersection of the bicommissural line
(anterior commissure–posterior commissure [AC–PC]), with the pre-
supplementary motor area (pre-SMA) rostral and the supplementary
motor area (SMA) caudal to the AC. The cingulate motor area (CMA)
was drawn inferior to the SMA, extending from the superior bank of
the cingulate sulcus to the superior cingulate gyrus (Picard and Strick
1996, 2001). Lateral premotor regions included the dorsal and ventral
premotor cortex, their boundary defined by a gyral branch landmark
on the precentral gyrus at the level z ! 48, based on results from a
recent diffusion-weighted imaging tractography-based parcellation of
the precentral gyrus (Tomassini et al. 2007). In addition, the primary
motor cortex (M1) was drawn by hand, from the anterior bank of the
central sulcus to the postcentral gyrus. All other regions were deter-
mined using the Harvard–Oxford cortical and subcortical atlas. In-
cluded are those regions that demarcate the predicted sequence prep-
aration network. These are: supramarginal gyrus (SMG), angular
gyrus (ANG), superior parietal lobule (SPL), putamen, caudate, glo-
bus pallidus, and the lateral cerebellum. Further, cerebellar lobes were
labeled following the demarcations provided by a recently developed
three-dimensional MRI atlas, such that numerals I–X follow the
cerebellar lobules superior–inferior, respectively, and Crus 1 and 2
refer to the lateral hemispheres (Schmahmann et al. 1999).

R E S U L T S

Training performance

Performance was characterized by the amount of time
needed to type out each sequence trial, referred to as movement
time (MT). A group (block/random training schedule) $ time
(bins of six trials over the course of training) repeated-mea-
sures ANOVA revealed two main effects and a modest inter-
action. Consistent with the CI effect, performance was faster
for sequences performed with a block schedule [main effect of
group: F(1,15) ! 5.81, P " 0.03] and, overall, both groups
learned to perform the sequences at a faster rate over time
[main effect of time: F(8,8) ! 4.75, P " 0.02] (Fig. 3A). There
was also a greater performance gain over the course of training
for the random schedule [group $ time interaction: F(8,8) !
3.42, P " 0.05].

Performance was further characterized by the time needed to
initiate a response, measured from the removal of the response
cue (go/no go) to the first downstroke recorded from the button
box. This response time (RT) was used to test for differences
of sequence initiation for the different groups of sequences. RT
performance was faster for the block schedule than for the
random schedule [main effect of group: F(1,15) ! 6.58, P "
0.02]. This suggests that when sequences are practiced in a

random fashion, more time is needed to initiate the first
movement of the sequence. Further, this suggests that if ran-
dom MTs are slower than block MTs, this MT difference might
be driven by continued preparation following the initial key-
press. To test whether this was occurring, both dependent
variables (RT, MT) were reanalyzed for group differences
using only the final two thirds of trials, when MTs were
equivalent. Again, RTs were faster for the block schedule
[main effect of group, last two thirds trials: F(1,15) ! 5.76,
P " 0.03], but both groups had equivalent MT performance
[main effect of group, last two thirds trials: F(1,15) ! 2.05,
P " 0.18]. This shows that although the random schedule led
to slower response initiation throughout training, by the final
two thirds of trials there were no differences in MT between
groups. Thus it is unlikely that continued sequence preparation
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FIG. 3. Performance results. A: movement times demonstrate slower perfor-
mance for random schedule trials during training. This cost diminishes over time,
as indicated by a small interaction between practice schedule and time at the end
of training. The shaded region reflects the final two thirds of production trials
during which movement time between schedules was equivalent. These trials were
used to compare brain activity between practice schedules during sequence
production. The abscissa label, “Trial group” represents bins of 6 consecutive
trials. The dashed vertical line following trial group 9 represents the transition from
the end of training to the initiation of the test session. B: movement times show an
effect of memory consolidation (**) for random practiced sequences. The standard
contextual interference (CI) effect was also found, with faster retest performance
for sequences practiced with a random schedule than a blocked schedule (*).
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was occurring in the random group once the go imperative was
presented. To avoid potential confounds of persistent sequence
planning after the go imperative and to avoid an MT rate
confound, only the last two thirds of go trials were used to
compare brain activity as a function of type of training.

Test performance

Off-line learning was measured by comparing MT perfor-
mance at the end of the training session with the start of the test
session. This method has an advantage for characterizing
off-line learning because it compares peak training perfor-
mance with initial test performance prior to any additional
practice. MTs from the last four training trials of each schedule
were compared with the MTs during the first half of the first
test session epoch. The test session trials were balanced between
sequences learned with a block training schedule (n ! 60) and
those learned with a random training schedule (n ! 61).

Paired-samples t-tests performed between the end of training
and the start of the test session revealed an effect of off-line
learning for the random trained sequences but not the block
trained sequences. Random sequences were executed faster at
the beginning of the test session than at the end of training, M
(mean) ! 89.24, t ! 2.67, P " 0.01, whereas the block trained
sequences were not: M ! (0.87, t ! (0.02, P ! 0.98 (Fig.
3B). Furthermore, a direct comparison of MT performance
during the initial test session revealed that random trained
sequences are faster than block trained sequences: M ! 77.7,
t ! 1.98, P ! 0.05. By using a within-groups design, these
results confirm that off-line learning is sequence specific, with
performance enhancement for sequences practiced with a ran-
dom schedule.

Individual differences in training and test session MT per-
formance were also explored. The single-subject training and
test session means that were used in the previous analysis are
shown in Fig. 4. The group means for each training schedule,
shown with thick dashed lines, are overlaid on the individuals
and highlight off-line learning for the random trained se-

quences but not for the block trained sequences. Variability
among block schedule subjects was high, with some subjects
showing marked performance improvement, but others show-
ing poor retention. On the other hand, variability across the
same group of subjects was much lower for the random
schedule. These trends suggest that random training does a
better job at facilitating off-line learning and that block training
does not in itself preclude off-line learning, but is less robust
across subjects. The amount of off-line learning for each
subject was expressed as a single numerical value, referred to
as the performance delta (PD). The PD is taken by subtracting
the mean MT from the start of the test session with the mean
MT from the end of training (training mean ( test mean). PD
values provide a sensitive method for evaluating individual
differences of performance retention. These values were im-
plemented in a parametric analysis of the imaging data, allow-
ing for the identification of those brain regions activated by
random training that are critical for off-line learning.

Comparisons were also performed on RT data from the same
trials at the end of training and initial testing. Participants
responded more quickly for both block (M ! 25.87, t ! 2.07,
P " 0.05) and random (M ! 49, t ! 2.65, P ! 0.01) sequences
during the test session compared with training. However, the
test session RTs for block and random were not different (M !
(11, t ! (0.71, P " 0.5). These results suggest there was a
general effect of off-line learning on the RT, independent of
the practice schedule used.

Imaging results

MAIN EFFECTS OF SEQUENCE PREPARATION AND EXECUTION. Brain
areas associated with the preparation and execution of se-
quences with the left hand are illustrated in Fig. 5. Contrasts
revealed activation in a broad network of classically defined
motor sequence planning and production regions, including
lateral and medial premotor regions, dorsal prefrontal regions,
and the parietal cortex. In addition, there was extensive acti-
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vation in primary and secondary occipital cortex, as well as
inferior temporal cortex.

DIFFERENCES BETWEEN BLOCK AND RANDOM SEQUENCE BOLD
ACTIVITY DURING LATE TRAINING. Training with a random
practice schedule strengthens off-line learning. We hypothe-
sized that the random schedule enhances the activity in a neural
network used for both preparing and producing motor se-
quences and that these benefits would be manifest, relative to
the block schedule by the end of training. To measure what
effect practice schedule has on brain activation once the se-
quences were well practiced, data from the final two thirds of
the training session were compared. The initial third of training
session data was excluded from the analysis because there was
a significant performance difference between practice sched-
ules. Contrasts were made between these final two thirds of
trials performed under random or block training schedule,
separately for preparation and production events. The resulting
contrasts random ' block and block ' random were per-
formed on a whole-brain volume and corrected for multiple
comparisons using FDR, at the q ! 0.05 level.

Sequence preparation at the end of training. Relative in-
creases in brain activation during sequence preparation after
training with the block schedule compared with the random
schedule were localized to subcortical structures as well as
activation of the medial frontal and inferolimbic cortices
(Table 1). Of particular note was the extensive activation of the
retrosplenial anterior cingulate cortex (rsACC), which ex-

tended bilaterally and into the adjacent orbital frontal gyri.
These areas are part of a network that is often more active at
baseline relative to a broad range of stimulus dependent tasks
and it is commonly referred to as the default network. Because
these areas are more active for the block practice structure than
the random practice structure, we speculate that during block
training, these areas are responding more similarly to a base-
line resting state, rather than a state of task engagement.
Additional clusters of activation were found in the external
globus pallidus, right putamen, left dentate cerebellar nucleus,
right posterior superior temporal gyrus (STG), and the bilateral
fusiform gyrus.

On the other hand, preparing a sequence that had been
practiced under a random training schedule was associated
with relatively greater activity throughout a broad network of
cortical structures known to be involved in sequence prepara-
tion, as well as extensive activation of the cerebellar hemi-
spheres (Fig. 6A). Predominant activation was found in bilat-
eral premotor cortices, with a predicted leftward bias. In
particular, there was substantial activation of the left dorsal
premotor cortex (PMd) and ventral premotor cortex (PMv), as
well as the left SMA. The right hemisphere also showed
differential premotor activity when planning during the random
schedule, with smaller premotor clusters localized to the PMd,
rostral PMd (PMdr), and the pre-SMA. A similar left hemi-
sphere bias was reflected in the parietal lobe, with extensive
acivation in the superior parietal lobule (SPL), angular gyrus
(ANG), and supramarginal gyrus (SMG). In addition, the
random schedule led to greater activation of the lateral occip-
ital cortex and the occipital pole (Table 1). These results show
that, by the end of training, the random training schedule leads
to extensive recruitment of regions associated with the prepa-
ration of learned motor skills compared with a blocked training
schedule.

Sequence production at the end of training. Brain activity
during sequence execution was significantly greater for trials
practiced under a random training schedule in a largely poste-
rior cortical and cerebellar network (Fig. 6B). This also in-
cluded right hemisphere activation of the primary motor cor-
tex, left inferior frontal gyrus (IFG) and PMv, and extensive
activation of the superior and lateral parietal cortex (supramar-
ginal gyrus, superior parietal lobule), the occipital pole, and the
lateral occipital cortex (Table 2). Additional activation was
found in the lateral (Crus 2) and the middle (VIIIA/VIIB)
cerebellum. There were no regions above the corrected thresh-
old that showed greater activation for the block training sched-
ule compared with the random schedule by the end of training.
These results demonstrate that training under a random sched-
ule, relative to a block schedule, recruits a cortical–cerebellar
network known to be involved in the mapping and production
of skilled motor sequences. The differences in motor produc-
tion areas occurring with random training compared with block
training are likely to be independent of movement rate because
measured MTs were equivalent at the time of fMRI measure-
ments, and any residual MT effects for individual trials were
added as a separate covariate of noninterest to the design
matrix.

INTERACTION OF PRACTICE SCHEDULE AND TIME ON SEQUENCE
PREPARATION BOLD ACTIVITY. The next analysis focused on how
BOLD activity measured during sequence preparation changes

B

FIG. 5. Main effects of task. Regions of greater blood oxygenation level–
dependent (BOLD) activity for the main effects of sequence preparation (A)
and sequence production (B) during training, generated using the contrast
“task ' baseline.” Results are displayed at the corrected threshold of P " 0.05.
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with practice and whether this is different as a function of practice
schedule. This takes into consideration how brain regions, critical
to sequence preparation, change over the course of the entire
training session. Because sequence-preparation events were short
and held constant between subjects, the amount of time spent
preparing block and random sequences was equivalent. Note that
an analogous test could not be made for sequence production trials
because of significant MT performance differences between the
two groups during early training.

The interaction (random late ' block late) ' (random
early ' block early) was tested using all sequence preparation
trials and is shown in Fig. 7. These results reveal an expansive

cortical and subcortical network that is modulated by both
practice schedule and training time (Table 3). To further
characterize the interaction effect between the conditions, per-
centage signal change relative to baseline (e.g., block early '
baseline) was extracted from those regions showing a signifi-
cant interaction effect. For each region, mean percentage signal
change was calculated by averaging the 26 voxels adjacent to
and including the local maxima. Thus the interaction effect at
each site could be characterized by a mean percentage signal
value for each of the four conditions. Two primary observa-
tions can be made. First, there was a dramatic reduction in
sequence-preparation–related activity over time for the block

TABLE 1. Brain regions differentially activated as a function of training structure during sequence planning

Anatomical Region Side

MNI Coordinates

Functional Name Voxels Z-Valuex y z

A. Random ' Block

Cerebellum R 14 (84 (36 Crus2 1,289 4.04
Precuneus R 4 (58 62 220 3.96
Occipital pole R 18 (96 12 1,690 3.78
Middle occipital gyrus R 40 (82 28 sLO 3,038 3.67
Precentral gyrus R 50 16 34 PMd 133 3.64
Angular gyrus L (60 (50 14 ANG 651 3.61
Precentral gyrus L (44 4 48 PMd 809 3.55
Middle occipital gyrus L (38 (72 42 sLO 2,780 3.53
Inferior frontal gyrus R 52 32 2 IFG 54 3.50
Occipital pole L (32 (92 (2 2,840 3.46
Superior parietal lobule L (14 (56 64 SPL 1,657 3.44
Cerebellum R 44 (68 (32 Crus1 53 3.42
Cerebellum L (18 (84 (42 Crus2 235 3.37
Inferior temporal gyrus R 46 (4 (42 aITG 39 3.36
Superior parietal lobule R 28 (56 62 SPL 999 3.35
Middle occipital gyrus R 42 (84 12 iLO 547 3.35
Postcentral gyrus L (42 (34 60 678 3.34
Percentral gyrus L (54 16 26 PMv 119 3.33
Superior frontal gyrus L (4 38 52 pre-SMA 56 3.27
Middle frontal gyrus R 14 (4 68 PMd 11 3.26
Supramarginal gyrus L (54 (46 46 SMG 598 3.26
Precentral gyrus L (2 (30 82 SMA 42 3.22
Cerebellum L (16 (86 (26 Crus1 276 3.14
Superior frontal gyrus R 0 56 32 pre-SMA 70 3.09
Middle frontal gyrus R 24 4 62 PMdr 10 2.93
Supramarginal gyrus R 46 (50 52 SMG 138 2.93

B. Block ' Random

Putamen/insula R 26 (8 20 331 3.80
Globus pallidus, external R 16 (4 (4 GP 200 3.70
Superior temporal gyrus R 48 (20 (4 pSTG 456 3.74
Fusiform gyrus R 36 (32 (30 663 3.65
Dentate nucleus R 16 (42 (36 CBdn 64 3.69
Cerebellum R 14 (50 (10 Lobule V 151 3.71
Red nucleus R (2 (24 (16 24 3.72
Transverse temporal gyrus L (50 (14 (2 180 3.91
Globus pallidus, external L (18 (6 (6 GP 168 3.92
Fusiform gyrus L (42 (26 (20 269 3.95
Dentate nucleus L (28 (54 (44 CBdn 84 3.94
Brain stem L (4 (40 (58 42 3.92
Middle frontal gyrus R 42 54 22 VLPFC 28 3.76
Medial frontal gyrus R 10 66 4 MeFG 91 3.09
Anterior cingulate/Orbital R 0 10 (26 rsACC/OFG 2,529 3.62
Anterior cingulate/Orbital L 44 69 23 rsACC/OFG 2,407 3.42
Cingulate gyrus L (16 (10 34 pCing 70 3.48

Significance for all voxels was tested with a group mixed-effects analysis—false discovery rate—corrected P " 0.05. M1, primary motor cortex; PMd(r),
dorsal premotor cortex (rostral); PMv, ventral premotor cortex; (pre)SMA, (pre-)supplementary motor area; (r)CMA, (rostral) cingulated motor area; SMG,
supramarginal gyrus; SPL, superior parietal lobule; sLO, superior lateral occipital cortex; iLO, inferior lateral occipital cortex; ITG, inferior temporal gyrus;
MTG, middle temporal gyrus; STG, superior temporal gyrus; IFG, inferior frontal gyrus; MFG, middle frontal gyrus; DLPFC, dorsolateral prefrontal cortex;
VLPFC, ventrolateral prefrontal cortex.
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schedule trials. All of the regions listed in Table 3 show this
pattern, indicating that little preparation activity occurs later in
block training. Second, activation for the random trials dem-
onstrated two distinct temporal patterns over training. Some
regions maintained a pattern of constant activation over train-
ing, as exemplified in Fig. 7B and referred to as Type 1 in
Table 3. Reflecting this stable pattern includes the occipital
lobe (left lateral occipital, right fusiform, bilateral occipital
pole), the cerebellar hemispheres (Crus 2), and the left caudate
tail. In contrast, other regions demonstrated an increase in
activation over time for randomly scheduled trials (Fig. 7C)
and referred to as Type 2 in Table 3. Regions with this
activation pattern include left M1, lateral (PMd, PMv) and
medial premotor regions (pre-SMA, SMA), expansive activa-
tion in the posterior superior parietal lobe (SPL, ANG) as well
as lateral occipital cortex, and posterior inferior temporal
gyrus. Areas that were classified as Type 2, or increasing, were
to have signal change values that were !50% greater during
late training compared with early training. Otherwise, they
were considered Type 1, or having stable activation across
early and late training. These results indicate that, with random

training, regions that are active during preparation trials remain
engaged or actually increase in activity over training. This is
substantially different from the block schedule regions, which
show over time a dramatic reduction in recruitment.

CORRELATES OF SUCCESSFUL CONSOLIDATION FROM RANDOM SE-

QUENCE PREPARATION AND PRODUCTION BOLD ACTIVITY IN M1. The
random schedule promoted off-line learning, yet there was
considerable variability between participants (Fig. 4). This
suggests that participants with exceptional off-line gains might
recruit more activity in motor areas during random training. To
investigate whether motor cortex activity is related to perfor-
mance gains during off-line learning, BOLD estimates of brain
activity obtained during late random sequence preparation and
also production were correlated with individual participant PD
scores. The PD score reflects the amount of performance gain
(or loss) between the end of training and the start of the test
session on the following day. Off-line learning was correlated
with activation in left M1 for both random preparation and
execution by the end of training under the random schedule
(Table 4). This finding extends our recent TMS study, which
showed stimulation to left (ipsilateral) M1 during preparation
disrupts random schedule off-line learning (Cohen et al. 2009).

D I S C U S S I O N

Capitalizing on a beneficial effect of practice structure
known as contextual interference (CI), we were able to mod-
ulate training-related brain activity and alter subsequent off-
line learning. Our results clearly demonstrate the feasibility of
a within-subject design to test for the relative benefits of a
random practice schedule compared with a blocked practice
schedule. This establishes the CI effect to be trial type specific.
Furthermore, these results establish the efficacy of using a
single-group approach and manipulation of training structure to
manipulate off-line learning. Thus training structure itself is an
important means of altering skill consolidation that can be
applied to a broad range of learning problems. Three key
observations can be made regarding the neural substrates of
learning motor sequences under a random schedule. First, the
random schedule, relative to the block schedule recruited
greater neural activity in regions at the end of training that are
known to be involved in the preparation and production of
learned motor skills. Second, brain areas associated with se-
quence preparation either maintained a constant state of activ-
ity or even increased activity over the course of training under
a random schedule. In contrast, the same regions all showed a
dramatic longitudinal decrease in activation for the trials
learned under a block schedule. This provides empirical sup-
port for the behavioral theory, suggesting that random training
benefits off-line learning due to persistent active preparation.
Third, we were able to show, based on individual differences of
random sequence performance, that activity in the left ipsilat-
eral M1 correlates with off-line learning, during both prepara-
tion and execution. This finding in ipsilateral M1 expands a
large body of experimental evidence that has previously linked
changes of contralateral M1 with off-line learning (Muell-
bacher et al. 2002; Richardson et al. 2006; Robertson et al.
2005).

A

B

FIG. 6. Effects of random schedule training. Greater BOLD activity for late
(final two thirds) trials practiced under a random schedule compared with a
blocked schedule for (A) sequence preparation and (B) sequence production.
All cortical surface data have the same color scale and orientation as those in
Fig. 3. Results are shown at the corrected threshold of P " 0.05.
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Off-line learning and motor cortex

Our finding that activity in contralateral M1 was greater at
the end of random schedule training while subjects generated a
sequence is consistent with converging evidence indicating that

M1 is critical for the storage and retrieval of motor sequence
knowledge. This includes studies involving nonhuman pri-
mates (Ben-Shaul et al. 2004; Carpenter et al.1999; Lu and
Ashe 2005; Matsuzaka et al. 2007) as well as human imaging
experiments (Kansaku et al. 2005; Zang et al. 2003). Further-
more, numerous experiments using TMS have shown M1 to
have a temporally specific role in performance retention
(Muellbacher et al. 2002; Cohen et al. 2009; Richardson et al.
2006; Robertson et al. 2005). Disruption immediately follow-
ing acquisition resulted in reduced performance during the day
of training, but not following a night of sleep (Muellbacher et
al. 2002; Robertson et al. 2005), and disruption prior to the
start of acquisition resulted in diminished skill retention even
after a night of sleep (Richardson et al. 2006).

We also found that activity in ipsilateral M1 for sequences
learned under a random practice schedule correlated with
subsequent off-line learning across subjects. This complements
a recent TMS study using a CI task similar to our own, which
also highlighted the importance of ipsilateral left M1 in off-line
learning (Rice et al. 2009). Off-line learning was particularly
vulnerable when left M1 was stimulated during sequence
preparation prior to movement onset for sequences learned
under a random practice structure. These two studies implicate
ipsilateral (left) M1 in having a critical sequence planning role,
independent of effector, that is not generally recognized in the
skill learning literature. These results suggest that on-line
recruitment of left M1 during training is necessary for effective
off-line learning. Taken from this perspective, the disruption of
left M1 by TMS likely interferes with the initial storage of
motor sequences, which is probably lateralized to the left
hemisphere that, in turn, interferes with latent learning during
an extended retention interval.

Off-line learning and changes outside of motor cortex

The effects of a random practice schedule were observed
beyond M1, both during sequence preparation and execution.
During late training, executing random sequences led to greater
activation in the posterior parietal cortex (PPC) extending
along much of the IPS, as well as the cerebellum lobules. These
regions have been described previously in an extensive litera-
ture of motor learning in which longitudinal changes during

A

B C

FIG. 7. Differences of schedule-related activity over the entire course of
training. Regions demonstrating a significant interaction between time (early
vs. late training) and practice schedule type (random or blocked). Data are for
sequence preparation trials only. Extracted percentage signal change data from
anatomical templates reflected a strong reduction in activation for the block
schedule over time, and either stable (B) or increasing (C) activation for the
random schedule over time. Bar plots reflect examples, and not actual data, of
the trends shown among the regions evaluated. See Table 3 for areas that
capture these trends over the course of training. Results are shown at the
corrected threshold of P " 0.05.

TABLE 2. Brain regions differentially activated during sequence execution as a function of training structure

Anatomical Region Side

MNI Coordinates

Functional Name Voxels Z-Valuex y z

Middle occipital gyrus L (44 (76 14 iLO/sLO 2,409 4.29
Middle occipital gyrus R 32 (84 20 iLO/sLO 2,082 4.26
Occipital pole L (10 (94 8 752 4.11
Occipital pole R 4 (96 12 863 4.04
Superior parietal lobule R 28 (56 50 SPL 313 3.94
Superior parietal lobule L (34 (56 52 SPL 437 3.94
Supramarginal gyrus R 44 (42 46 SMG 172 3.88
Cerebellum R 6 (76 (42 Lobule VIIB 659 3.82
Cerebellum L (16 (74 (48 Crus2 314 3.61
Planum temporale R 48 (30 10 224 3.57
Cerebellum R 10 (68 (14 Lobule VIIIA 219 3.53
Inferior frontal gyrus L (50 40 12 IFG 34 3.46
Precentral gyrus R 26 (24 50 M1 16 3.46
Precentral gyrus L (34 4 30 PMv 64 3.43

See Table 1 for explanatory details.
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task execution are identified (Bischoff-Grethe et al. 2004;
Doyon et al. 2002; Shadmehr and Holcomb 1997).

Preparing sequence movements late in random training led
to greater recruitment of all of the classic premotor regions
(PMd, PMv, pre-SMA, SMA), as well as a large area extending
from PPC through the lateral occipital cortex. Additionally,
there were large foci of activation within the posterolateral
cerebellum (Crus 2). These differences were apparent even
though task performance between block and random schedules
was equated. The recruitment of a predominantly left premo-
tor–parietal circuit is consistent with previous studies that
suggest these regions are critical for the integration of spatial
goals with effectors in visuomotor tasks (Cavina-Pratesi et al.
2006; Thoenissen et al. 2002; Toni et al. 1999, 2001). We
suggest the increased recruitment of this premotor–parietal
circuitry is a critical factor contributing to the superior savings
for those sequences practiced with the random schedule.

Interestingly, block preparation trials, relative to random
trials, showed greater activity in both the medial prefrontal
cortex (retrosplinal ACC, medial prefrontal gyrus, orbital fron-
tal gyrus) as well as the left posterior cingulate gyrus during

late training. These areas constitute part of a default network of
regions, including the medial prefrontal cortex and posterior
cingulate, that have been reliably shown to be anticorrelated
with task-related activity (Fox and Raichle 2007; Mason et al.
2007). Although this finding was not a particular focus a priori,
it nevertheless presents an intriguing insight as to why block
schedule off-line learning is so poor, by suggesting that block
training leads to less active preparation and increased stimulus
independent processing. This pattern is opposite of the active
preparation fostered through the random training schedule.

The neural circuitry preferentially recruited during sequence
planning under the random practice schedule is quite comple-
mentary with regions commonly reported in motor imagery
experiments. Motor imagery is the ability to simulate move-
ment without overt execution and is thought to underlie move-
ment preparation (Jeannerod 1994). The classic finding in
motor imagery experiments is the degree of overlap of brain
activity between the conscious reenactment of a movement and
the actual production of the same movement. Similarly, pre-
paring to generate sequences with the random training schedule
requires the active reconstruction of motor programs. This is
supported by our results that show the random schedule en-
gages sequence preparation regions throughout training,
whereas the block schedule does not. Because both motor
preparation and motor imagery are thought to retrieve, con-
struct, and encode motor information they are often regarded as
sharing similar processing elements. This was illustrated in a
recent experiment that found activation for an imagery condi-
tion to overlap considerably with preparation activity, includ-
ing activation of the lateral and medial premotor (PMv, PMd,
pre-SMA, SMA), parietal (SMG, SPL) and the posterolateral
cerebellum. Interestingly, these regions are similar to the prep-

TABLE 3. Brain regions that reflect active preparation during random training

Anatomical Region Side

MNI Coordinates

Functional Name Voxels Z-Value Interaction Typex y z

Precuneus R 6 (56 62 294 4.94 2
Cerebellum R 28 (78 (40 Crus2 736 4.71 1
Fusiform gyrus R 12 (90 (8 229 4.52 1
Tail of caudate L (20 (36 14 138 4.47 1
Cerebellum L (16 (84 (30 Crus2 893 4.29 1
Occipital pole R 6 (88 30 1,724 4.15 1
Precuneus L (10 (66 58 701 4.15 2
Middle occipital gyrus R 36 (84 20 sLO 3,947 4.13 2
Occipital pole L (18 (92 22 1,450 4.09 1
Angular gyrus L (58 (52 14 ANG 1,264 4.07 2
Middle occipital gyrus L (48 (66 40 sLO 3,587 4.00 1
Inferior occipital gyrus L (48 (72 14 iLO 1,001 3.99 2
Middle occipital gyrus R 44 (78 14 iLO 929 3.83 2
Superior parietal lobule R 46 (42 58 SPL 4,305 3.78 2
Superior parietal lobule L (44 (38 56 SPL 4,701 3.78 2
Precentral gyrus L 30 (12 54 PMd 408 3.75 2
Precentral gyrus L (10 (30 72 SMA 165 3.74 2
Inferior frontal gyrus L (56 18 22 PMv 221 3.32 2
Angular gyrus R 65 37 60 ANG 628 3.32 2
Inferior temporal gyrus L (48 0 (42 pITG 85 3.29 2
Inferior frontal gyrus R 52 12 30 PMv 98 3.27 2
Precentral gyrus R 14 (4 62 PMd 447 3.23 2
Inferior temporal gyrus R 46 0 (42 pITG 44 3.08 2
Superior temporal gyrus R 58 (6 (18 STG 41 2.96 2
Superior frontal gyrus R 2 34 50 pre-SMA 169 2.92 2

Interaction type: 1 ! random activity constant over time; 2 ! random activity increase over time. Examples depicting these interaction trends are displayed
in Fig. 7, B and C, respectively. See Table 1 for additional details.

TABLE 4. M1 activity correlated with individual differences of
consolidation

Condition Side

MNI Coordinates

Voxels Z-Valuex y z

Preparation L (38 (30 60 151 2.76
Production L (34 (16 52 10 2.85

Shown are results that reflect correlations of off-line leaning in the senso-
rimotor cortex. Corrected, P " 0.05. See Table 1 for additional details.
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aration network sustained by the random schedule. We suggest
this overlap indicates that both random sequence preparation
and imagery share similar neural circuitry used to retrieve and
reconstruct motor plans rather than conscious appraisal of the
task.

Practice structure and the pharmacology of consolidation

By relating the current study to recent human learning
experiments that characterize the role of sleep, several impor-
tant links can be defined that lead to plausible mechanisms for
future investigation. Our task is very similar to a motor learn-
ing paradigm that is known to result in overnight changes in
behavior and increased corticospinal excitability for partici-
pants that learned simple motor sequences (Nishida and
Walker 2007; Walker et al. 2003). These studies show that
off-line motor learning is influenced by sleep and, in particular,
the amount of stage 2 nonrapid eye movement (non-REM)
sleep. This has been extended to studies not only of daytime
napping but also of nocturnal sleep (Nishida and Walker 2007;
Walker et al. 2003). Moreover, these increases have been
localized using EEG to motor regions that are active during
task performance (Morin et al. 2008; Nishida and Walker
2007). A key finding is the presence of increased sleep spindle
activity in frontal (F3/F4), motor (C3/C4), and parietal (P3/P4)
cortices (Morin et al. 2008; Nishida and Walker 2007). Sleep
spindles are generated by reticular thalamic neurons, which
lead to the propagation of synchronous 12- to 16-Hz neural
activity of the thalamocortical loop. Further, spindle activity is
linked to long-term potentiation (Rosanova and Ulrich 2005), a
cellular mechanism known to be involved in learning. Impor-
tantly, the benefits of sleep spindle activity increase as a
function of task complexity (Morin et al. 2008). The random
schedule offered a more complex training regimen relative to
the block schedule, suggesting a parallel mechanism between
the tasks. Interestingly, regions that were predictive of success-
ful off-line learning, including M1, are similar to those regions
that have higher sleep spindle densities when recorded during
consolidation. This indicates that the random schedule might
be beneficial not simply because it offers a more complex
version of the task, but because it maximally recruits those
neural systems that are used to perform and store specific
motor memories, which are further enhanced during sleep.

Recent evidence also shows that rapid eye movement (REM)
sleep and related neurochemical processes are important for
successful off-line learning and it appears that the different
stages of sleep cooperate for successful consolidation to occur
(Marshall and Born 2006). One of the neurochemical signa-
tures of REM is the presence of high, wake-like levels of the
neurotransmitter acetylcholine (ACh). High levels of ACh
activity are integral for the encoding of memories in a wakeful
state (Bartus et al. 1982; Rasch et al. 2006) and for long-term
potentiation (Rasmusson 2000). Extensive animal research has
shown that REM sleep is enhanced following procedural skill
learning (for a review see Peigneux et al. 2001). A recent study
has shown that blockade of muscarinic and nicotinic receptors
significantly impaired off-line motor sequence consolidation
but not the memory for word pairs also studied prior to sleep
(Rasch et al. 2009). This suggests that, unlike declarative
memory, memory for motor skills depends on the action of
ACh during REM sleep. Further, this finding suggests that

impaired REM sleep might block any gains from stage 2 sleep.
Because ACh receptors are distributed throughout cortical and
subcortical regions, the location of their effect is unknown. We
speculate that the extensive differences in premotor, motor, and
parietal cortices as a function of task scheduling could be
mediated in large part via cholinergic projections during wake-
fulness, or possibly during posttraining REM sleep.

Neurophysiology of contextual interference

Our training results extend the findings of Cross et al.
(2007), the first neuroimaging study examining the CI effect.
They compared brain activity for the random schedule relative
to the block schedule at the end of training to identify prefer-
ential recruitment of areas that might support performance
retention. Their key neural differences were related to se-
quence preparation but not execution. They found greater
activation in motor preparation areas for the random training
schedule. Our results share a similar trend, but identify a much
larger cortical network at a higher level of statistical certainty.
The current results identified more training-schedule–related
differences during sequence execution than were observed by
Cross and colleagues (2007). One explanation is that they used
a between-groups design, whereas the current design used a
within-groups approach. This alone will significantly enhance
statistical sensitivity for detecting a difference. Another key
difference between the two neuroimaging CI studies was the
amount of time given for subjects to prepare their response.
Cross and colleagues (2007) allowed both groups an unlimited
amount of time to prepare their responses. Although this is a
useful precaution for a demanding task, the sequences were
simple four-element versions performed with the dominant
hand. Our task used short-timed durations for all preparation
trials, allowing for a more constrained estimate of preparation-
related brain activity. In terms of analysis, this was advanta-
geous because we were able to compare the brain activation
related to preparation between schedules because the latencies
for each were held constant. The extensive behavioral literature
of the CI effect suggests that block and random practice
schedules differ in how they interact with the processes that
determine how motor memories are consolidated. One domi-
nant account for the CI effect suggests that random schedules
promote deeper motor memory processing because, for each
trial, a new motor program must be retrieved, interfering with
the motor memory for the previous trial. Recent studies using
the CI effect support this theory of active preparation (Immink
and Wright 1998, 2001). They found the CI effect to be
modulated by the amount of time subjects were given prior to
generating sequences during training. When given enough time
to process the previous trial outcome and retrieve the motor
plan for the upcoming sequence, the performance for random
and blocked sequences was similar by the end of training and
random training was the most beneficial for performance re-
tention. Interestingly, our study replicated their retention effect
but did so with a fixed study interval for both blocked and
random schedules. One potential explanation for this finding is
that the amount of study time was sufficient for the random
group. This is supported by the response time (RT) data
measured over the duration of the training session. Because
there was no change in RT with continued training, it is
reasonable to suggest that subjects were given enough time to
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prepare upcoming movements. Further, our behavioral results
are consistent with off-line learning research showing that
behavioral performance can be modulated with a particular
posttraining retention interval and sleep, (Korman et al. 2007;
Walker et al. 2003) as well as the awareness of sequential
material (Robertson et al. 2004). Critically, time and sleep
were not factors of interest and were held constant in the
current experiment. Instead, our off-line learning results were
modulated by training schedule alone, which is consistent with
other recent experimental evidence showing that the presenta-
tion of intermittent practice trials supports motor memory
formation (Overduin et al. 2006).

Intermittent practice may also be beneficial because it re-
duces the amount of interference of previously learned contex-
tual cues (Cothros et al. 2006; Krakauer and Shadmehr 2006;
Krakauer et al. 2007). Cothros and colleagues (2006) tested
whether prospective interference of a previously learned skill
could be blocked by rTMS to contralateral M1 immediately
following training. Indeed, following rTMS, performance was
impaired on the skill learned prior to stimulation, but not the
memory for a second force field learned after the rTMS
session. This supports the role of M1 in retention and also that
M1 is susceptible to interference if skills are learned in a block
structure. This leads to the intriguing interpretation that the
block schedule is inherently flawed because learning of the
initial sequence interferes with the retention of the additional
sequences. To date there is no imaging-based correlate of this
interference effect including the current data. On the other
hand, the random schedule circumvents this potential pitfall
because to-be-learned sequences are presented in an unpredict-
able fashion. Because no one sequence is learned quicker than
the others active preparation must be used. The current imag-
ing results are consistent with and highly supportive of this
view.
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