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Abstract

Purpose: We sought to describe and validate an automated image registration method(AIR 3.0) based on matching
of voxel intensities.

Method: Different cost functions, different minimization methods, and various sampling, smoothing, and editing
strategies were compared. Internal consistency measures were used to place limits on registration accuracy for MRI data,
and absolute accuracy was measured using a brain phantom for PET data.

Results: All strategies were consistent with subvoxel accuracy for intrasubject, intramodality registration. Estimated
accuracy of registration of structural MRI images was in the 75 to 150 um range. Sparse data sampling strategies
reduced registration times to minutes with only modest loss of accuracy.

Conclusion: The registration algorithm described is a robust and flexible tool that can be used to address a variety of
image registration problems. Registration strategies can be tailored to meet different needs by optimizing tradeoffs
between speed and accuracy.

In 1992 Woods et al. (1) described a method for aligning PET images using a calculus-based minimization procedure
and voxel intensities. This technique also proved useful for intramodality registration of MR images (2) and was extended
to allow cross-modality registration of PET and MR images (3). A cost function based on the uniformity of the ratio of one
image to the other served to guide registration through iterative univariate calculus-based minimization. The method has
compared favorably with other registration techniques (4,5) and has been distributed to many laboratories as part of the
Automated Image Registration (AIR) package.

The AIR package has subsequently been revised to increase its speed and accuracy and to expand its ability to
address a broader range of registration problems. The univariate minimization algorithm has been replaced by more
robust multivariate methods; the cost function and rigid body spatial transformation models have been supplemented
with alternative approaches; and interpolation routines more appropriate for MR images have been added. Consequently,
earlier references (1,3) no longer accurately characterize the mathematics or the performance of the current version of
the AIR package.

The purposes of this article are (a) to describe the mathematical basis of the registration strategy used by AIR 3.0
and its relationship to several similar techniques; (b) to systematically compare different minimization procedures,
smoothing strategies, editing strategies, sampling strategies, and interpolation strategies for intrasubject, intramodality
registration; (c) to describe a method for combining all possible pairwise registrations of a set of images to generate
more accurate registration results; and (d) to describe the use of internal inconsistencies among redundant pairwise
registrations to place limits on true registration accuracy in the absence of known gold standards. Intermodality
registration will not be addressed, and intersubject registration is described and validated separately (6).
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REGISTRATION ALGORITHM

Figure 1 provides a schematic overview of the registration strategy used by AIR 3.0. After optional smoothing or
interpolation to cubic voxels, one image, which will be referred to as the reslice image, is resampled to match the other
image, referred to as the reference image. Resampling is based on the current parameters of the spatial transformation
model and also requires an interpolation model to compute voxel intensities. After thresholding to exclude voxels outside
the head and optional editing to exclude voxels outside the brain in the reference image, a cost function reflecting the
similarity of the two images is computed. For linear spatial transformation models, biases are avoided by reversing the
roles of the reslice and reference image and inverting the spatial transformation to compute a second estimate of the
cost function, which is then averaged with the first. This bias elimination procedure can be optionally omitted in AIR but
was always used here. To improve speed, the cost function is initially computed for only a limited sampling of the voxels
(the default is every 81st voxel) and sampling is increased with subsequent iterations (the default is by factors of three
to reach a final sampling of every voxel). The derivatives of the cost function with respect to the parameters of the
spatial transformation model are computed and are used to compute new parameters and iteratively minimize the cost
function. Termination criteria are tested with each iteration to decide whether to continue iterating, to increase sampling,
or to stop. The spatial transformation that produced the lowest value of the cost function is stored and can be used to
produce registered images. If desired, the parameters that produce the optimal transformation can also be stored
independently. Substantial modifications as compared with the original AIR algorithm (1) are described in the following
sections.
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FIG. 1. Schematic diagram of the registration algorithm. Boxes shown in dashed lines represent optional procedures. One
of the images is initially designated as the reference study and the other as the reslice study. Although not shown in the
diagram, the cost function is computed a second time with the roles of reference and reslice study interchanged, and it is
the average of these two cost function estimates that is minimized. Regions of the schematic images shown in solid black
are excluded from analysis (a) because they are below the specified threshold, (b) because they are excluded by the
optional editing mask, (c) because they are not part of the current sampling set, or (d) because they are outside the
field of view of the reslice study. These exclusions actually occur before or during interpolation of the reslice study, but
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this is not indicated in the diagram to preserve conceptual clarity of the other steps. When the sampling density is
increased, the spatial transformation parameters that gave the optimal value for the cost function at the prior sampling
density serve as the new starting point for minimization.

Optional Image Smoothing

Smoothing noisy PET images before registration improves accuracy (1). Whether to smooth MRI data will be
addressed in Validation Studies. An optional fast Fourier, Gaussian convolution routine replaces the box smoothing
strategy used previously. The width of the smoothing kernel is specified independently for each image axis. If applied,
smoothing is performed before resampling, thresholding, or application of any editing masks.

Optional Interpolation of Reference Study to Cubic Voxels

In the original AIR algorithm, the reference volume always consisted of voxels that had been linearly interpolated to
make them cubic. This is now an option, but not the default. Instead, anisotropic voxel sizes are taken into account
mathematically while still ensuring the integrity of the selected spatial transformation model in real world coordinates.
The tradeoffs between speed and accuracy as a function of whether the reference volume is interpolated will be
addressed by the PET validation studies.

Interpolation Model

To compare the images being registered, one image must be resampled according to the parameters of the spatial
transformation model. This requires interpolation of intensities at locations between the voxel locations represented in the
original image. After registration is complete, final images must be created, which again requires interpolation to
compute resampled voxel intensities. It is possible, but not necessary, to use the same interpolation model in both
contexts. In the distribution version of AIR 3.0, trilinear interpolation remains the only model used to compute the cost
function during minimization, whereas any of several models including nearest neighbor, trilinear, sinc, and chirp-z
interpolation (7) can be used to create the final images. Windowing (8) and scan line decomposition (9)[with precautions
to avoid aliasing (10)] are also available in the final resampling algorithm to improve speed. Hybrid models are also
included for multislice data sets that are not bandlimited along the axes between planes (8). A special implementation of
AIR that uses windowed sinc interpolation to compute the cost function is described in Validation Studies.

Thresholding, Optional Editing, and Bias Elimination

Simple thresholding can be used to exclude voxels from outside the body that provide no useful spatial information,
but it may also be advantageous to exclude voxels from the scalp, skull, and dura when computing the cost function for
MRI data (11). Exclusion of these structures could be accomplished by simply registering edited images, but tendencies to
align the artificial edges created by the editing process could be problematic. This can be avoided by allowing the
algorithm to apply user-generated mask files to the images. When an image is serving as the reference image, only
voxels that are non-zero in the associated mask file contribute to the cost function, and the mask associated with the
other image is ignored. The second mask file is used when the roles of the reference and reslice files are exchanged to
compute an unbiased cost function. Since edited versions of both images are never compared directly with one another,
alignment of artificial edges created by editing cannot lower the cost function. The effect of editing nonbrain structures
on registration accuracy will be addressed in Validation Studies.

Cost Functions

The cost function provides the algorithm with a quantitative measure of how well the images are registered. AIR 3.0
allows a choice of three different cost functions. The first cost function, referred to here as the ratio image uniformity
(RIU) cost function, is identical to the one described previously (1). A resampled image is divided by the image to which
it is being registered on a voxel-by-voxel basis to create a ratio image, and the uniformity of this ratio image is
measured by computing its standard deviation. The standard deviation is then divided by the mean ratio to provide a
normalized cost function value. Minimization of the cost function increases the uniformity of the ratio image, which is
independent of global intensity scaling of the original images, and improves registration.

The second cost function assumes that the images being registered have already been properly adjusted for global
intensity differences and uses a least-squares approach similar to that described by Hajnal et al.(8), and subsequently

http://gateway.tx.ovid.com/gw?2 /ovidweb.cgi Page 4 of 18


http://gateway.tx.ovid.com/gw2/ovidweb.cgi#103
http://gateway.tx.ovid.com/gw2/ovidweb.cgi#110
http://gateway.tx.ovid.com/gw2/ovidweb.cgi#109
http://gateway.tx.ovid.com/gw2/ovidweb.cgi#111
http://gateway.tx.ovid.com/gw2/ovidweb.cgi#110
http://gateway.tx.ovid.com/gw2/ovidweb.cgi#112
http://gateway.tx.ovid.com/gw2/ovidweb.cgi#113
http://gateway.tx.ovid.com/gw2/ovidweb.cgi#103
http://gateway.tx.ovid.com/gw2/ovidweb.cgi#110
http://gateway.tx.ovid.com/gw2/ovidweb.cgi#114

Ovid: Woods: J Comput Assist Tomogr, Volume 22(1).January/February 1998.139-152 10/17/07 3:59 PM

adopted by Friston et al.(12). This cost function will be referred to as the least-squared difference image (LS) cost
function. If no intensity rescaling is needed, the spatially resampled reslice image should be almost identical to the
reference image when the images are well registered. The difference between the resampled reslice image and the
reference image is computed at each voxel, and the square of this difference is averaged across voxels to generate this
cost function.

The third cost function is similar to the LS cost function but adds an extra parameter to the minimization that allows
global intensity rescaling of the images relative to one another. This approach has been advocated by Alpert et al. (13)
and by Snyder (14) and will be referred to as the scaled least-squared difference image (SLS) cost function.

Minimization Procedure and Spatial Transformation Model

The objective of the minimization procedure is to conduct an efficient search of the parameter space defined by the
mathematical spatial transformation model to minimize the cost function. By default, AIR starts this search with
parameters that will align the exact centers of the two image sets without additional real world rotation, translation, or
scaling. Alternatively, any set of starting parameters can be explicitly declared. All of the work described herein uses a
rigid body spatial transformation model, which has six parameters, so the minimization procedure must search a 6D
parameter space to find the optimal rigid body registration. The original AIR algorithm conducted this multidimensional
search by sequentially performing undimensional minimizations, each of which corresponded to only one of the six
parameters. The AIR 3.0 algorithm replaces this strategy with two variants of a multivariate calculus-based minimization
procedure. The first variant, which will be referred to as full Newton-type minimization, is similar to one briefly described
for 12 parameter intersubject registration (15) but has been generalized so that it is applicable to any spatial
transformation model. The method assumes that the cost function(as a function of the spatial transformation parameters)
can be approximated near its minimum by a parabolic surface. This parabolic surface can be fully characterized by a
vector b, consisting of the first partial derivatives of the cost function with respect to each parameter at a given point in
parameter space, and a Hessian matrix A, consisting of the second partial derivatives of the cost function with respect to
each pair of parameters at the same point in parameter space. If x is a vector representing the adjustment of each
spatial transformation parameter needed to reach the minimum of the parabolic surface, x can be derived fromb and A
by solving the simple matrix equation (16)

A*x = -b

The first and second derivatives of the cost function with respect to the transformation parameters are all calculated
analytically and are a function of the spatial transformation model, the interpolation model, and the particular cost
function. New estimates of the minimum are calculated iteratively until the termination criteria described in the next
section are met. In the event that the Hessian matrix A is not positive definite(indicating a saddle point or tendency
toward a maximum rather than a minimum), the algorithm either increases the sampling density or, if sampling is
already maximal, generates a warning message and terminates.

The second minimization procedure is an approximation to the first one. It assumes that the second derivatives of
the interpolated voxel values with respect to the sampling coordinate locations are all zero. This decreases the
computation time per iteration and reduces the likelihood of encountering problematic local maxima or saddle points.
Such approximations are commonplace in minimization algorithms. For example, the Levenberg-Marquardt algorithm (16)
makes this same assumption and also assumes that the second derivatives of the spatial transformation model with
respect to its parameters are all zero. This second minimization method will be distinguished from full Newton-type
minimization by appending LM after the cost function(i.e., RIU-LM, LS-LM, and SLS-LM) and for the sake of brevity will
be referred to as Marquardt-like minimization. Full Newton-type minimization should be assumed as the default.

Termination Criteria

If the associated parabolic approximations were exact, the full Newton-type minimization method would proceed to
the minimum of the cost function in a single iteration. However, they are not exact, and multiple iterations are required.
Criteria are necessary to decide when iteration should terminate. For the original AIR algorithm (1), the criteria were
based on the fact that the first derivative of the cost function with respect to each parameter should be very close to
zero near the minimum. The primary termination criterion of the new algorithm takes advantage of the fact that the
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derivatives used to compute the location of the minimum of a multidimensional parabolic surface can also be used to
predict the change in the cost function associated with moving from the current point in parameter space to the
predicted minimum. The predicted change ([DELTA]c) is given by the matrix equation. Equation

Axx = -b

Equation 4C

where b, x, and A are defined as before (16, p 414). So long as A is positive definite, the predicted change will be
negative and should get progressively closer to zero as the true minimum of an arbitrary differentiable surface is
approached. Thus, the predicted cost function change provides a single numerical value that simultaneously incorporates
information about all of the parameters in units that are independent of the particular spatial transformation model.
Termination occurs when the predicted cost function change drops below a prespecified small value.

To provide finer control, the new algorithm also has secondary termination criteria. The two secondary termination
criteria are (a) the total number of iterations performed at a given sampling interval and (b) the number of iterations
performed without improvement in the actual cost function at a given sampling interval. In another modification of the
original methodology, the new algorithm always retains a copy of the parameters that resulted in the lowest actual value
of the cost function at the current sampling density and uses this best value, rather than the most recent value, when
initializing the next sampling density or saving the final results.

Selection of appropriate primary termination criteria will be addressed in Validation Studies. For secondary
termination criteria, a default value of 25 total iterations or 5 iterations without any improvement in the actual cost
function should be assumed unless otherwise specified.

Implementation and Distribution

AIR 3.0 is written entirely in C and requires no proprietary code or third party packages. The registration algorithm
can be compiled to use either 8 or 16 bit internal image representation. The benchmarking work described here for PET
images was done on a SUnSPARC 10 workstation, compiled for 8 bit internal representation using the standard Sun C
compiler. The MRI validation work was performed on a Power Macintosh 8500/120 running the MachTen UNIX
environment, compiled for 16 bit images. Source code for the algorithm and supporting software are available to the
research community for research purposes free of charge. Documentation and information about downloading the
software are available on the World Wide Web at the Universal Resource Locator
(URL):http://bishopw.loni.ucla.edu/AIR3/index.html

VALIDATION STUDIES

Two separate sets of validation studies will be described. The first uses a previously described PET phantom data set
(1) that allows registration accuracy to be established with independent gold standards. The second uses high resolution
MR scans of a single subject to evaluate intrasubject MR registration. As often happens with real data sets, gold
standards are not available for the MRI validation study, and special attention is given in both validation studies to the
use of internal inconsistency measures as an alternative approach to validation in this setting. Before describing the
individual validation studies, some terms and methods common to both studies are described.

Discrepancies, Errors, and Internal Inconsistencies

Several terms will be used repeatedly and warrant explicit definition. The local discrepancy between two different
transformations for registering a pair of images will be defined as the 3D distance between the locations to which a
given voxel is mapped by the two transformations. The mean discrepancy between two different transformations for
registering a pair of images will be defined as the average of the local discrepancies over all voxels that constitute those
parts of the brain that are present in both images. The corresponding plural term mean discrepancies will refer
collectively to a set that specifically includes the mean discrepancy of every possible unique pairwise registration of a
group of images of the same object. The term global mean discrepancy will refer to the average mean discrepancy
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across such a collective set. The terms maximum discrepancy, maximum discrepancies, and global maximum discrepancy
will be defined analogously using the appropriate maximum, rather than the mean, across voxels or registrations. The
unqualified term discrepancies will refer collectively to mean discrepancies and maximum discrepancies, and the term
global discrepancies collectively to the global mean discrepancy and the global maximum discrepancy.

If, and only if, one of the two transformations (or sets of transformations) being compared is based on independent
gold standard measurements, the terms error or errors will analogously replace the words discrepancy or discrepancies in
all the above definitions. If, and only if, a set of transformations is being compared with reconciled mean
transformations(defined in the next section) derived from that same set, the terms internal inconsistency or internal
inconsistencies will analogously replace the word discrepancy or discrepancies in all the above definitions. Discrepancies
will always be characterized by indicating the two distinct registration strategies to which the discrepancy applies,
whereas errors and internal inconsistencies are properties of a single registration strategy.

Derivation of Reconciled Mean Transformations from Pairwise Registrations

If a perfect registration method were used to perform all possible pairwise registrations of a rigid body, the resulting
transformations would be completely internally consistent. For example, the direct pairwise registration of image A to
image C would be identical to the combined results for registering image A to image B and for registering image B to
image C. In this sense, a perfect set of all pairwise registrations should contain redundant information about the
interrelationships between the images. With imperfect registration, direct pairwise registration of image A to image C will
not be identical to the combined results for registering image A to B and image B to C due to errors. Conceptually, each
imperfect pairwise result can be viewed as the combination of the correct result and an error associated with that
particular pair. Better estimates of the correct results should be attainable by defining the minimal set of nonredundant
parameters sufficient to derive all pairwise registrations and then adjusting this set to somehow minimize local
discrepancies between the predicted pairwise results and those that are actually observed. For N images, N - 1 six
parameter rigid body transformations suffice to derive all possible pairwise registrations. The completely internally
consistent set of transformations defined by these six (N - 1) parameters will be referred to here as the reconciled mean
transformations.

AIR 3.0 includes an algorithm that computes reconciled mean transformations from an existing set of all possible
pairwise registrations. The algorithm initializes the six (N - 1) parameters by assuming that the images are all already
perfectly registered and refines these initial estimates iteratively. From a computational stand-point, it is advantageous to
minimize the summed squares of the distances defined by each local discrepancy between the observed and predicted
transformations rather than the sum of the distances themselves. Squared local discrepancies are computed for all voxels
that correspond to parts of the brain that are represented in all of the images, and these squared values are summed
across voxels and across all possible pairwise registrations to generate a global summed squared discrepancy.
Appropriate brain voxels need only be explicitly identified once in a single image since their locations can be remapped to
other images using the current estimates of the reconciled mean transformations. Full Newton-type minimization is used
to iteratively minimize the global summed squared discrepancy by adjusting the six (N - 1) parameters until the

predicted change for the next iteration is <1071°, The algorithm reports the final optimized global discrepancy, normalized
for the number of image pairs and the number of landmark locations, and writes out the reconciled mean
transformations.

Statistical Comparisons

Distributions of mean (or maximum) errors or internal inconsistencies among all possible pairwise registrations
generated by two different registration strategies will be compared with one another using the two sided two sample
Kolmogorov-Smirnov test implemented in the statistical package, S-Plus(MathSoft, Seattle, WA, U.S.A.). This test
evaluates whether two samples are drawn from the same distribution by comparing their empirical cumulative distribution
functions (16) and does not presuppose any particular shape for the underlying distribution. All unqualified or implicit
references to significance testing will pertain specifically to Kolmogorov-Smirnov tests applied to mean or maximum
errors or internal inconsistencies. Results reported as significant will indicate a p value of<0.05. All results to be reported
as significant have been verified graphically to involve a consistent shift in one of the empiric cumulative distribution
functions rather than an isolated change in shape of one of the empiric cumulative distribution functions.
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PET Phantom Validation

AIR 3.0 was validated for intramodality, intrasubject registration of PET data using the same brain phantom data set
used to validate the original AIR algorithm (1). It consists of 31 PET scans of the Hoffman brain phantom (17) acquired at
various known scanner gantry and bed positions. Image pairs with rotational misalignment of>30° and translational
misalignment up to 10 mm are included. The amount of radioisotope in the phantom was selected to simulate the poor

counting statistics of 2D PET H,°0 studies. Inflatable balloons containing higher levels of activity were deflated partway

through the data acquisition to simulate focal changes in activity. The data set was acquired in 2D mode using a
Siemens/CTI 831-08 tomograph (Siemens, Hoffman Estates, IL, U.S.A.). Images were reconstructed with a Shepp

reconstruction filter with a roll-off frequency of 0.16 mm~! to generate images with a full width at half-maximum (FWHM)
in-plane resolution of 6.1 mm. Voxels in the reconstructed images were 1.745 x 1.745 x 6.75 mm, and the image
matrix dimensions were 128 x 128 x 15 planes. All images were smoothed with a 2D isotropic Gaussian filter to an in-
plane resolution of 10 mm. During smoothing, images were scaled to map the hottest voxel in an image to the highest
representable 8 bit value.

The goals of the phantom validation studies were (a) to compare AIR 3.0 with the original version of AIR: (b) to
compare the different cost functions implemented in AIR 3.0 with one another; (c) to determine whether interpolation of
the reference image to cubic voxels improves registration accuracy in data sets with highly anisotropic voxel sizes; (d) to
determine whether sparse sampling of the data can be used to increase registration speed without adversely influencing
registration accuracy; (e) to test the hypothesis that reconciling all possible pairwise registrations improves registration
accuracy; and (f) to evaluate internal inconsistencies as a metric for registration accuracy.

To address these issues, all 465 unique pairs of the 31 phantom images were registered using several different
strategies (see Table 1). These strategies also included the original AIR algorithm. In all cases, an 8 bit threshold value of
55 served to segment the reference image into brain and nonbrain values. Gold standard registration parameters were
computed for each pair of images based on the known scanner gantry and bed positions: All 31 of the original data sets
were resampled into a single common space using the gold standard transformation parameters and averaged(with
weightings necessary to adjust for missing data from outside the field of view) to produce a single mean phantom image
set. This image set was manually edited to remove all peripheral nonbrain voxels. The resulting brain mask was projected
back onto the original 31 data sets using the gold standard registration parameters and used to distinguish brain from
nonbrain voxels when measuring errors and internal inconsistencies. For each registration strategy, mean and maximum
errors were computed. The mean registration times were recorded for each strategy. Reconciled mean transformations
and mean internal inconsistencies were derived, and the mean errors of the reconciled mean transformations were
computed for each strategy.

Global mean
Global errors (mm) mntemnail
Coavergence Fual sampling Mean registranon mean NCONSISIENCy Global reconciled

Method threshold (voxels) Cubic voxels ume (s} maximaum) {(mm) nean errors (mm

RIL 10 1 Yes 185 1323 (1.557) 0.11 0.297

RIU 10 3 Yes 50 1323 (1.557) 0111 0.297
RIU 10 9 Yes 51 0112 (.208
RIU 0= 27 Yes 4 011 0.299
RIU 10 | Yes 141 0.114 0.299
RIU-IM 10 I Yes 82 0.115 0.298
RIU 1w ! Yes 138 0.133 0.309
SLS o | Yes 123 0.112 0.306
SLS o | Yes 93 alis 0.30
SLS-ILM 0 I Yes 3] o.ll4e 0.30
SLS i) I Yes L 0.12 0.30%
SLS 10 27 Yes 26 01,308
LS 10°* I Yes 03 0.323
RI1 10 Na 2 1311
SLS 10 Nao 68 23
SLS 1077 No 23 23
LS 10" N¢ '3
Results are based on 465 unigue pairwise comparisons, Yes indicates that the reference volume was interpolated to cubic voxels before computing

the corresponding reshice volume voxels and the cost function. See text for abbreviations

TABLE 1. Average registration times, global errors, and global internal inconsistencies for PET phantom validation
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To evaluate whether the focal activity changes simulated by inflating or deflating the balloons within the phantom
affected registration accuracy, transformations derived using a given strategy were subdivided into those in which the
balloons were in the same state in both scans (either both inflated or both deflated) and those in which the balloons were
in different states. The error distributions were then compared across these two subgroups using Kolmogorov-Smirnov
tests. This was repeated for each registration strategy independently.

Intrasubject MRI Validation

A single normal subject was scanned eight times consecutively on a Phillips 1.5 T MR scanner. Sagittal volumes of
140 1 mm slices were acquired with a field of view of 256 x 204 mm. A 3D spoiled GRASS sequence [TR/TE = 18/10
ms, flip angle 30°, NSA (NEX) 1, flow compensation] was used with a total scan time per volume of 10 min 50 s. The
subject (one of the authors) was highly motivated to prevent any head movements during the course of any given
acquisition. Head packing was used to help prevent movements during acquisition, but no precautions were taken to
prevent small head movements between acquisitions. The data were stored at 12 bit precision in 16 bit format with
guantitative preservation of absolute scaling across studies. A set of 160 planes covering the brain from the bottom of
the cerebellum to the top of the brain was selected in the first data set. The same planes (with respect to the scanner,
not with respect to the anatomy) were selected in the other seven data sets, so any apparent movement between scans
accurately reflects true movement by the subject. The images were similarly reduced along the right-left axis of the brain
so that only the ears were visible in the most extreme sagittal planes of the first data set. The resulting data sets
consisted of isotropic 1 mm voxels with dimensions of 256 x 160 x 160 voxels. All 28 possible unique pairwise
registrations of the data were performed using several different registration strategies. The goals were (a) to compare
the speed, internal consistencies, and results of the three cost functions; (b) to investigate the effects of smoothing on
registration; (c) to investigate the effects of editing nonbrain structures on registration; (d) to determine the tradeoffs
associated with different convergence criteria, minimization procedures, and data sampling strategies; and (e) to use
internal inconsistencies to establish limits for true registration accuracy. The effects of cost function, smoothing, and
editing of the images were investigated first. Isotropic, 3D smoothing filters with a FWHM of 0, 2.0, 4.0, and 8.0 mm
were applied. The two images being registered were always filtered identically. To ensure consistency, manual editing to
remove nonbrain structures was performed only once on an average of the eight unedited, unsmoothed images after co-
registration with the LS cost function. The results of manual editing were then transformed back into the eight native
image spaces (using the inverse of the transformations used for co-registration) in the form of masks. The registration
algorithm masked each unedited image internally to avoid any tendency to align artificial edges created by the editing
process. The default sampling intervals, convergence criteria, and minimization procedure were used. A 16 bit voxel value
of 480 served to separate the head (brain and surrounding tissues) from background. For each registration strategy, the
mean and maximum internal inconsistencies were measured after computing the corresponding set of reconciled mean
transformations. Mean and maximum discrepancies between selected pairs of strategies were also computed.

The effects of different primary convergence thresholds, sampling densities, and the two different minimization
procedures for each of the cost functions were investigated using unedited and unsmoothed data. A modified version AIR
was also used to investigate whether computation of the LS cost function using windowed sinc interpolation would
improve the internal inconsistency of the results. A cosine half-bell windowing technique identical to that described by
Hajnal et al. (8) was used with full 3D sinc interpolation. Because sinc interpolation is extremely slow, the sinc version of
the algorithm was always initialized with optimum parameters obtained using trilinear interpolation.

RESULTS
PET Phantom

Table 1 shows the average registration times, global mean errors, and global maximum errors for the various PET
registration strategies. It also shows the global internal inconsistencies associated with each registration strategy and the
global mean errors of the reconciled mean transformations. All methods resulted in subvoxel accuracy with global
maximum errors of <2.0 mm.

As compared with using an uninterpolated reference image, interpolation of the reference image to cubic voxels
universally resulted in significantly smaller errors and internal inconsistencies, independent of all other factors. This was
achieved at the expense of registration time, which increased by a factor roughly proportional to the increase in the
number of voxels through interpolation. Because of this consistent and significantly poorer performance, registrations
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without interpolation to cubic voxels were excluded from the remainder of the analyses reported here. A convergence
threshold of 1074 for the RIU cost function gave significantly larger mean errors, maximum errors, and internal
inconsistencies than more stringent thresholds of 107> or 1076. Similarly, a convergence threshold of 10! for the SLS cost

function resulted in significantly higher internal inconsistencies than more stringent thresholds of 1072 or 10°°. These least
stringent thresholds only modestly reduced registration times. The most stringent thresholds resulted in longer
registration times with no significant improvement in accuracy compared with intermediate thresholds.

The LS cost function produced significantly larger mean errors than the RIU cost function. No other significant
differences between the RIU, SLS, and LS cost functions were identified when using stringent or moderate convergence
thresholds. The SLS cost function tended to be faster than the RIU cost function. The original AIR algorithm (1) produced
a global mean error of 0.323 mm and a global maximum error of 1.568 with a mean registration time of 180 s. The
errors are similar to those produced by the new algorithm using the RIU cost function.

Increasing the final sampling interval from every voxel to every 27th voxel for the RIU and SLS cost function did not
significantly increase errors or internal inconsistencies and reduced computation times by a factor of 3-5. Speed
improvements without significant loss of accuracy were also achieved by using Marquardt-like rather than full Newton-
type minimization. The reconciled mean transformations invariably resulted in significantly smaller errors than the original
transformations. Internal inconsistencies, reflecting deviations from these reconciled mean transformations, were always
smaller than the errors based on the gold standards. Larger errors were correlated with larger internal inconsistencies for
any individual cost function, but the internal inconsistency measures were insensitive to the differences between cost
functions.

The sites of focal differences in activity resulting from inflation or deflation of the balloons had no significant effect on
accuracy. The distributions of errors was invariably statistically indistinguishable for registrations in which the balloons
were in the same state as for registrations in which the balloons were in different states.

Intrasubject MRI

Visual inspection of the resampled MR images from the single subject confirmed that the registrations were
qualitatively correct. Images of a transverse brain section through the anterior commissure before and after registration
are shown in Fig. 2. The estimated maximum initial misalignment in the brain between pairs of images ranged from 0.26
to 3.80 mm. The estimated average initial misalignment across all brain regions and image pairs was 0.76 mm. Based on
results from the SLS cost function, which were confirmed by direct inspection, the global intensity scaling varied to a
small extent from one image to the next with the largest pairwise differences being [almost equal t0]6%.
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FIG. 2. A single transverse section from four of the eight image sets used for MRI validation. The first row shows the
section before registration. Subtle differences due to misregistration can be seen and are highlighted by black arrows.
The second row shows the same section after registration of the corresponding volumes using the LS cost function with
sparse sampling at every 81st voxel, requiring <70 s per registration. Data resampling was performed using windowed

sinc interpolation. All registration strategies investigated resulted in images virtually indistinguishable from those on the
second row.

Table 2 shows the average registration time and internal inconsistencies of the three different cost functions with and

without smoothing and editing of the data.Tables 3-5 show discrepancies between results obtained when cost function,
smoothing, or editing was varied while keeping all other factors constant.
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Cost Smoothing filter Mean time per Global mean (maximum) internal
function (mm FWHM) Edited registration {min) inconsistency (pm)

LS 0 No 12.3 22(75)

LS 2 No 13.0 6(19)

LS 4 No 13.0 4(15)

SLS 0 No 49 22(74)

SLS 2 No 6.7 6(19)

SLS R No 6.7 4(15)

RIU 0 No 7.5 27 (96)

RIU 2 No T 6(23)

RIU 4 No i 4(20)

LS 0 Yes 6.6 40 (125)

LS 2 Yes 8.3 5(20)

LS 4 Yes 8.5 4(17)

SLS 0 Yes 28 40(124)

SLS 2 Yes 53 4(16)

SLS 1 Yes 5.2 5(24)

RIU 0 Yes 43 341

RIU 2 Yes 1 4(14)

RIU 4 Yes i 5(16)

Editing indicates whether masks were applied to exclude voxels outside the brain. Primary convergence
thresholds were 1.0 for the LS and SLS cost functions and 10™* for the RIU cost function. See text for
abbreviations.

“Times are not listed because the registrations were initialized with optimal parameters obtained from the
corresponding unsmoothed RIU registration.

10/17/07 3:59 PM

TABLE 2. Effects of cost function, smoothing filter, and data editing on MRI registration time and global internal

inconsistency
L Cost function comparison
Gaussian A - - —— -
smoothing filter LS vs. SLS global SLS vs. RIU global
(mm FWHM) discrepancies mean LS vs. RIU global discrepancies discrepancies mean
and editing {maximum} {(um) mean (maximum) (pm) (maximum) (pm)
0 I (5) 22(123) 22 (121)
2 4(13) 15(62) 13(59)
- 10(32) 25(69) 18 (50)
(Nedited) 1 (6) 15(59) 15 (59)
2{edited) 3(23) 10 (33) 10 (33)
diedited) T(32) 19(62) 19 (60)
Registration results from the different cost functions were compared with one another. The Gaussian smoothing filters were
applied before any editing 10 exclude nonbrain voxels. Carresponding registration times can be compared in Table 2. See text for
abbreviations.

TABLE 3. Global mean and maximum discrepancies between MRI registration results obtained with the three different

cost functions as a function of smoothing filter and editing

Gaussian smoothing filter companson

0 vs. 2 mm FWHM global

Registrution discrepancies mean 0 vs. 4 mm FWHM global 2 vs. 4 mm FWHM global
method (maximum) {pum) discrepancies mean (maximum) (pm} discrepancies mean (maximum) (pm)
LS 109 (327) 140 (383) 40(121)
SLS 108 (326) 137 {375} 3902
RIU 98 (283) 125 (331) 38(149)
LS (edited) 101 (245) 159 (38%) 72(171)
SLS (edited} 101 (263) 160 (400) 73(167)
RIU (edited) 104 (259) 170 (391} IR (184)

Registration results after applying vanous Gaussian smoothing filters to the data were compared with one another. Editing
excluded nonbrain voxels. Corresponding registration times can be compared in Table 2. See text for abbreviations.

TABLE 4. Global mean and maximum discrepancies between MRI registration results obtained with different smoothing

filters as a function of registration method (cost function and editing)
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Gaussian smoothing filter
0 mm FWHM 2 mm FWHM 4 mm FWHM
Edited vs. unedited global Edited vs. unedited giobal Edited vs. unedited global

Cuost discrepancies mean (maximum) discrepancics mean (maximum) discrepancies mean (maximum)
function {pm) (pm) pm)

LS Y9 (312 14 (274) 108 (406)

SLS 99 (311) 75(273) 110 (401)

RIT R4 (261) T4 (258) 118 (394

Registrution results obtained when using editing masks to exclude nonbrain voxels were compared with results obtained without
using ediing masks, Corresponding registration times can be compared in Table 2. See text for abbreviations

TABLE 5. Global mean and maximum discrepancies between results obtained from edited versus unedited MRI data as a
function of registration method and Gaussian smoothing filter

None of the three cost functions produced significantly better internal inconsistencies than either of the others. The
SLS cost function was fastest and produced results within 32 um of the LS cost function. The RIU cost function was
unexpectedly faster than the LS cost function for unsmoothed images and gave results that always agreed with the other
two cost functions to within 123 um. The mean discrepancy between cost functions was always<=25 um for a given
smoothing and editing strategy.

Data smoothed with a 2 mm Gaussian filter invariably produced significantly smaller mean and maximum internal
inconsistencies than unsmoothed data. This was true even for the RIU cost function, which required initialization with the
optimal registration parameters obtained from the corresponding unsmoothed RIU registration when using smoothed
data. Without such initialization, the RIU (and likewise the RIU-LM) cost function made excessively large steps at the
first iteration and failed to find any way to improve the default initialization parameters. For unedited data (but not for
edited data), even heavier smoothing with a 4 mm Gaussian filter produced additional significant improvements in
internal inconsistencies. However, when smoothing with an 8 mm Gaussian filter was investigated for the LS and SLS
cost functions, internal inconsistencies were always worse than with 4 mm smoothing but still superior to those with
unsmoothed data. Smoothing increased registration time.Table 4 shows that smoothing altered registration results
substantially. Results from unsmoothed images differed from those obtained with smoothed images and otherwise
identical strategies by distances as large as 400 um, and even global mean discrepancies were at least 98 pm.

To verify that these differences between the smoothed and unsmoothed results were not simply due to local minima,
the unsmoothed, unedited registrations were repeated, using the corresponding optimal registration parameters obtained
with 4 mm Gaussian smoothing as the starting parameters for minimization. Likewise, the unedited registrations using 4
mm Gaussian smoothing were repeated, using the optimal parameters obtained with unsmoothed data as starting
parameters. To eliminate sparse sampling as a potential confound, both sets of repeat registrations utilized full sampling
at every voxel from the first iteration. Despite being initialized with a different set of parameters, the final results were
unchanged. For all three cost functions, global mean discrepancies between the original and repeat registrations never
exceeded 10 um.

The effects of editing the data to exclude scalp, skull, and dura varied depending on the smoothing strategy. In the
absence of smoothing, editing led to significantly worse internal inconsistencies for the SLS and LS cost functions. In the
presence of 2 mm Gaussian smoothing, editing led to significantly better internal inconsistencies for the SLS and RIU
cost functions, and in the presence of 4 mm Gaussian smoothing, editing had no significant effect. Editing always
reduced registration times, but by a factor of <2. Editing also substantially changed the registration results with global
maximum discrepancies between edited and unedited results in Table 5 as large as 406 um and global mean discrepancies
always larger than 74 pm.

Table 6 shows the effects of sampling intervals, convergence thresholds, and minimization procedures for each cost
function using unsmoothed, unedited data. Baseline measurements for each cost function were performed using full
Newton-type minimization with a primary convergence threshold of zero, forcing as many iterations as the secondary
termination criteria allow. Different sampling intervals and minimization strategies were then compared against the

corresponding baseline values to compute the discrepancies shown in the table. The RIU convergence threshold of 107° is
perhaps not optimally stringent for MRI data since the results with this threshold differed by as much as 83 pm from
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those obtained with a convergence threshold of zero. The SLS and LS thresholds of 1.0 gave results within 10 pym of
those obtained with a threshold of zero. For all three cost functions, sparser sampling was associated with a modest
increase in global discrepancies from the baseline, an increase in global internal inconsistencies, and a substantial
reduction in registration time. Marquardt-like minimization was also associated with shorter registration times, giving
results almost identical to full Newton-type minimization for the LS and SLS cost functions, but more divergent results
for the RIU cost functions. Both minimization strategies proved several times faster than the strategy used in the original
version of AIR (data not shown).

Global mean (maximum)
discrepancies (pm)
Cost Full Newton-type Convergence Mean ume per compared with convergence
tunction minimization threshold Samplhing registration (min) threshold of zero

LS Yes 0 | 118.7 0

LS Yes 1.0 I 123 2(10)

LS Yes 1.0 9 2.8 3(22)

LS Yes 1.0 81 l 10(37)

LS No 1.0 1 | 2(10)

LS No 1.0 9 1.3 3(22)

LS No 1.0 81 0.8 11 (35)

SLS Yes 0 i 2049 00

SLS Yes 1.0 | 1.9 2(10)

SLS Yes 1.0 9 14 322

SLS Yes 1.0 2l 0.8 10 (36)

SLS No 1.0 I 44 2(10)

SLS No 1.0 9 14 3 (22

SLS No 1.0 31 0.8 11 {38)

RIL Yes 0 i 5.9 0

RIL Yes - 1 7.5 6(83)

RIU Yes 0 9 1.9 7(83)

RIL Yes mn sl 0.9 13 (83)

RIU No 107 | L0 7(113)

RIL No 10~ 9 1.3 8(113)

RIL No -’ 81 0.8 417

For each cost function, the first registration strategy with a convergence threshold of zero served as the basis for companson

when computing discrepancies, Unsmoothed, unedited data were used in all cases. See text for abbreviations

TABLE 6. The effects of minimization method, convergence threshold, and final sampling interval on MRI registration

With use of sinc interpolation to compute the LS cost function with a very stringent convergence threshold of 107>
and a final sampling interval of every voxel with unedited, unsmoothed data resulted in a global mean internal
inconsistency of 20 um and a global maximum internal inconsistency of 63 um. The distributions of internal
inconsistencies were not significantly better than with comparable use of trilinear interpolation and a less stringent
convergence threshold.

Within the ranges investigated, the sampling interval and minimization method made the least difference, the
primary convergence threshold, the cost function, and the interpolation model had an intermediate effect, and smoothing
and editing had the greatest impact on the final results. All methods were in general agreement with global maximum
discrepancies always<500 pym. The results are compatible with, but not conclusive proof of, typical registration accuracies
on the order of 75-150 um. It is possible that one of the strategies included here may be more accurate than the others,
possibly with typical accuracies <10 um, but this clearly cannot be the case for all of the strategies simultaneously.

DISCUSSION

The AIR 3.0 registration algorithm is robust, fast, accurate, and applicable to a diverse range of registration
problems. Except for the difficulties with registration of smoothed MRI data using the RIU cost function, no registration
failures were identified, and the algorithm consistently achieved subvoxel accuracy. Reconciling internal inconsistencies
among all possible pairwise registrations further improved registration accuracy, and quantification of these internal
inconsistencies provided a basis for evaluating registration accuracy in the absence of gold standards.

Estimating Registration Accuracy

When sufficiently accurate gold standards are available, quantification of registration accuracy is straight-forward. For
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real data from living humans, gold standards sufficient to quantify subvoxel accuracy are difficult to achieve, especially
when even movements between the brain and the skull cannot be disregarded as negligible (11). Accurate gold standards
can be produced for phantoms or for simulated data sets, but the resulting assessments may be unrealistically optimistic
since these methods generally fail to model all of the factors that contribute to scan-to-scan variability in real human
data. These factors include noise, non-rigid body movements due to respiratory or cardiac cycles (18), artifacts due to
rigid body movement during scan acquisition, distortions due to field inhomogeneities (2,19), and inaccuracies in distance
calibration (20). For PET data, noise and spatial resolution are probably the main factors limiting registration accuracy.
The PET phantom models these particular factors reasonably well, and the accuracies on the order of 2 mm can
reasonably be extrapolated to humans.

For MRI data, phantom studies and simulations suggest that registration accuracies of a fraction of a millimeter are
possible, but this may have little bearing on real human data. Hajnal et al.(8,11) have suggested that a statistical method
(16) applicable to least-squares minimization can be used to assess registration accuracy for real human data. However,
the errors estimated by this method are only the errors in identifying the true minimum of the cost function. Errors in
the underlying assumption that the images are correctly registered when the cost function is minimized are not
evaluated. When applied to the MRI least-squares minimizations reported here, this method confirms that the true
minimum of the cost function should be identified within 10 ym, but the associated internal inconsistencies and
discrepancies between strategies indicate that the true accuracy cannot be uniformly this good.

Even in the absence of gold standards, internal inconsistencies place an irrefutable limit on the degree of registration
accuracy that can be achieved since the true inaccuracy as measured against any gold standard is guaranteed to be at
least as large as the internal inconsistency. However, true accuracy can always be worse than the internal inconsistencies
imply, so a strategy that performs worse in terms of internal consistency might nonetheless turn out to be the more
accurate strategy as measured against independent gold standards. All other things being equal, it would seem prudent
to prefer a method that produces significantly smaller internal inconsistencies over some less consistent method; but so
long as the internal inconsistencies do not indicate intolerably poor accuracy, any valid advantage could provide sufficient
justification for use of a less consistent method.

Choice of Minimization Procedure

The performance of the multivariate calculus-based minimization procedures in AIR 3.0 matched and sometimes
substantially exceeded the univariate minimization procedure used by the original AIR algorithm. The full Newton-type
minimization procedure is a direct implementation of the theoretical foundation of all calculus- based minimization
procedures for image registration (16). Other minimization procedures, such as those used by Hajnal et al. (8), Alpert et
al.(13), and Friston et al. (12) are based on approximations to full Newton-type minimization, as is the Marquardt-like
approximation described here. All these approaches are valid from a theoretical standpoint (16), and in many contexts the
differences in speed and accuracy between them are probably unimportant. Use of the predicted change of the cost
function as the primary termination criterion for minimization avoids the registration failures that can be seen in the
presence of large movements when using a small, fixed number of iterations (12). For the RIU cost function, a primary

convergence criterion of 107> is generally sufficient for intrasubject registration of PET data, but a more stringent criterion
might be better for MRI data. For the least-squares cost functions with 16 bit data (12 significant bits), a primary
termination criterion around 1.0 is effective. For 8 bit data, a lower value around 0.1 may be appropriate. The ideal
termination criteria may vary as a function of the nature of the data, so these values should be viewed as only
approximate guidelines.

Choice of Cost Function and Interpolation Model

The LS cost function performed significantly worse than the RIU cost function for PET data. This probably relates to
the fact that the LS cost function was unable to take differences in global intensity scaling of the images into account.
The SLS cost function, which includes an explicit intensity scaling factor, did not perform significantly worse than the RIU
cost function for PET data. For MRI data, no significant differences among cost functions were found, except that the RIU
cost function failed with smoothed data unless initialized with parameters already very close to the correct answer. The
SLS cost function is probably the best overall choice for MRI data since it is insensitive to global intensity differences by
design and was robust and generally the fasted in all contexts.
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Snyder (14) has suggested that the SLS cost function should be superior to the RIU cost function on theoretical
grounds and has presented phantom PET data using the LS cost function in support of this suggestion. The discrepancy
between Snyder's PET results and those presented here may be due to differences in methodology since Snyder kept the
phantom's position stationary in all scans and quantitatively scaled the image intensities to a consistent value. This
approach does not simulate interpolation errors or positional distortions related to image acquisition, nor does it evaluate
performance when image intensity is variable. Eberl et al. (21) have also performed PET phantom studies and concluded
that a cost function similar to the LS cost function is more accurate than the RIU cost function. However, interpretation
of their results is clouded by the fact that their independent implementation of the RIU cost function produced errors far
larger than have been reported previously (1) or than were identified here.

Although sinc interpolation is theoretically the ideal interpolation function for resampling hand-limited MRI data when
a fully 3D acquisition technique is used, the results presented here suggest that trilinear interpolation is adequate for
registration. The results thus obtained can then be used to resample the data using sinc or chirp-z interpolation to
generate high quality final images.

Image Smoothing and Editing

For PET registration, smoothing has been shown previously to improve registration accuracy of noisy images (1). For
the MRI data presented here, modest smoothing with a 2 to 4 mm isotropic Gaussian filter improved the internal
consistency of registration results. Smoothing systematically changed the registration results more than expected based
on the associated internal consistencies, showing that optimal minimization of the cost function does not necessarily
imply optimal registration of the images. In the absence of gold standard MRI data that would allow definitive
determination of which resolution gives the most accurate results, smoothing of MRI images with a 2 to 4 mm Gaussian
filter is a reasonable approach.

Hajnal et al. (11) recommend routine editing of nonbrain structures for intrasubject registration since the brain can
move with respect to the skull between image acquisitions. This is presumably less likely to be problematic during a
single imaging session than with images acquired on separate days. If no relative movement has actually occurred, such
editing effectively throws away sharply defined boundaries that could have served to improve registration accuracy. No
evidence was found to suggest that movement of the brain relative to the skull occurred in MRI data sets used here, and
editing sometimes significantly worsened internal inconsistencies. Nonetheless, editing of the images is certainly
appropriate if movements of the brain relative to the scalp and skull are known or likely to be present. Editing might also
be helpful in situations where the rigid body model is significantly violated by imaging artifacts.

Spatial Transformation Model

For intrasubject registration, a rigid body model is generally assumed to be the spatial transformation model of
choice. However, if distances are poorly calibrated, a more general linear model with 7-11 parameters, depending on
which distances are known to be inaccurate, may give better results. In data not presented here, use of a 12 parameter
affine model to register the MRI data sets resulted in internal inconsistencies that were worse than those obtained with
the rigid body model. Alternatively, calibration errors estimated from anatomic landmarks within the images can be used
to adjust voxel dimensions before registration with a rigid body model (20). It is advisable to correct significant spatial or
intensity distorations associated with magnetic susceptibility artifacts (19) or with the use of local gradient coils (22)
before registration since these distorations are not readily modeled with linear scaling of spatial distortions or intensity.
For extremely fast MR techniques such as echo planar imaging, it may be appropriate to consider the use of nonlinear
spatial transformation models (6) to compensate for distorations associated with respiratory and cardiac cycles. For
slower imaging techniques, it should be kept in mind that, at best, the acquired images represent a temporal average of
an object that is subject to constant small scale physiologic fluctuations. To the extent that this temporal averaging
varies from one image to the next, the very notion of an absolutely correct spatial transformation model may be
unjustified.

Registration Speed

If reduced accuracy can be tolerated, sparse sampling of the data can be used to substantially increase registration
speed. For PET data with anisotropic voxels, sparse sampling is a more accurate way to increase speed than omitting the
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step of interpolating the reference volume to cubic voxels. If initial misregistration is large, the secondary termination
criteria may need to be adjusted when using sparse sampling to allow a sufficient total number of iterations.

Generality of Results

Because of its generality, AIR is not restricted to any specific modality, species, or anatomic structure. The
systematic investigation of various factors that might alter speed or accuracy reported here provides insights that are
applicable not only to AIR, but also to other similar registration algorithms. To the extent that the results may depend
on the specific data sets investigated here, the general approaches described for validation are nonetheless broadly
applicable. This is particularly true of the internal consistency measures, which require only that three or more images be
available for pairwise registration. We hope that the methods and results described here will help users of a variety of
registration methods ensure the accuracy of their results while maintaining practical levels of performance.
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