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The current experiment examined the neural substrates of response

selection, comparing conditions that required participants to make

criterion-free selections from sets of same-sex faces (i.e., inconsequen-

tial decision) to choosing a dinner date from opposite-sex faces (i.e.,

consequential decision). In each of these tasks, either a single face (i.e.,

no choice) or two or three faces (i.e., free choice) appeared for selection.

The results revealed that regions of dorsal premotor cortex (PMd) and

parietal cortex bilaterally, as well as an area along the medial surface of

the superior frontal gyrus, were activated by both consequential and

inconsequential decisions, thereby providing evidence for a common

selection network. Consequential decisions were further indexed by

activation of the insula/inferior frontal cortex (BA 47) and the

paracingulate gyrus (BA 32). The implications of these findings for

current accounts of response selection and social-cognitive functioning

are considered.

D 2004 Published by Elsevier Inc.

Keywords: Facial cue; Same sex; Opposite sex

Frith and Frith, 2003; Gallagher and Frith, 2003; Paulus and Frank,

2003).
UNCO‘‘You have brains in your head. You have feet in your shoes.

You can steer yourself any direction you choose. You’re

on your own. And you know what you know. And YOU

are the guy who’ll decide where to go.’’ (From: Oh, the

places you’ll go! Theodor Seuss Geisel, a.k.a. Dr. Seuss,

1990)

Whether it is selecting a tennis partner, a new car, or items from

the breakfast buffet, the ability to make effective choices is central

to successful human functioning. Underlying this social-cognitive

ability is a range of processing operations, such that selecting one

particular option from an array of competing possibilities involves

not only motor processes that carry out the selected action, but also
1053-8119/$ - see front matter D 2004 Published by Elsevier Inc.
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cognitive operations that guide response selection and evaluate the

consequences of the chosen item. The goal of the current inquiry is

to investigate the neural substrates that support an important aspect

of decision making—specifically personal choice. Previous

attempts to identify the processes that subserve volitional behavior

have provided mixed results (Frith et al., 1991; Grafton et al.,

1998) because of subtle differences in the paradigms employed and

the possible confounding of choice with working-memory oper-

ations (Spence and Frith, 1999). Noting these difficulties, the

current research investigated choice-related decision making under

conditions in which the influence of working memory was mini-

mized. In addition, extending the theoretical scope of previous

work on this topic, the current research considered the consequen-

tiality (i.e., personal relevance) of people’s judgments as there is

reason to suspect that this factor may be an important moderator of

the neural activity that supports decision making (Adolphs, 2001;
Response selection

Terms such as ‘‘free will’’, ‘‘willed action’’, and ‘‘free choice’’

have been used interchangeably to describe the manner in which

people select and execute actions to match the requirements of

particular task contexts. Indeed, Jahanshahi and Frith (1998) have

defined willed action as ‘‘being aware of selecting or rejecting

possible responses’’ (p. 489). Guiding this viewpoint is the notion

that volitional behavior (i.e., exercising free will) is more than

simply deciding to implement a particular action, it also entails

awareness that other responses could have been selected, but were

in fact rejected. Frith et al. (1991) and Jahanshahi and Frith (1998),

as well as others (Hyder et al., 1997; Spence et al., 1998), have

posited that willed action of this kind is supported by a network of

brain regions that include dorsolateral prefrontal cortex (DLPFC)

and anterior cingulate cortex (ACC). In this model of volitional

behavior, response selection is mediated by DLPFC, while ACC is

involved in conflict monitoring.

Although implicated in the execution of willed action, the

precise functional role played by DLPFC in this process remains
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open to debate. In their influential article, Frith et al. (1991)

instructed participants to move their fingers in an unconstrained

manner (i.e., free choice), but with the additional requirement that

they do so in a random sequence (i.e., working-memory load). As

random generation has been shown to increase activity in DLPFC

(Jahanshahi et al., 1997) and is associated with executive processes

in working memory (Miyake et al., 2000), this necessarily con-

flates working-memory operations with response selection, thereby

obscuring the functional significance of DLPFC in the generation

of volitional behavior. Noting this limitation, recent investigations

have attempted to explore willed action in tasks that make

equivalent or negligible demands on working-memory resources

(Desmond et al., 1998; Spence et al., 1997). In work of this kind,

willed action has been accompanied by increased activity in

DLPFC, thus suggesting that this structure plays a contributory

role in aspects of response selection (see Spence and Frith, 1999).

It is not only the prefrontal and anterior cingulate cortices that

are believed to play a prominent role in volitional behavior.

Response selection may also be functionally dependent on a

cortical network that includes the rostral portion of the dorsal

premotor area (PMd—Deiber et al., 1991; Grafton et al., 1998;

Passingham, 1985; Sakai et al., 2000; Toni et al., 1999; see also

Picard and Strick, 2001 for a review). This region has important

connections with the parietal cortex (Petrides and Pandya, 1984)

and has been linked to motor preparation (Johnson et al., 1996) and

the anticipation of visual cues (Di Pellegrino and Wise, 1991). It is

implicated in selection for action and is thought to underpin the

execution of higher-level motoric behavior (Spence and Frith,

1999). Given these observations, the current investigation will

examine the relative contribution of both premotor and prefrontal

cortices to response selection in judgment tasks that vary in their

significance (i.e., personal relevance) to people.
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Types of choice

Through investigations of people’s random (or otherwise)

finger movements in response to stimulation (or the production

of words in response to cues), researchers have charted the neural

substrates of simple but essentially inconsequential, internally

guided behaviors (Frith et al., 1991). Daily life, however, presents

people with a range of other decision-making challenges. In

particular, response selection is frequently characterized by the

need to select an item from an array of competing alternatives (i.e.,

stimulus-driven choice). Consider, for example, a situation in

which one is confronted with the task of selecting a pair of shoes

from the multiple options available in a department store. In such a

setting, while available choice is enormous, response selection is

probably guided (i.e., simplified) by a couple of factors, notably

the relevance of the decision to be made (e.g., is being fashionable

important to me?) and the potential consequences of one’s selec-

tion (e.g., will inexpensive hiking boots hurt my feet?). Inspection

of the relevant literature reveals that little attention has been

directed to the issue of how the consequentiality of the decision

to be made may shape the neural correlates of response selection

(see Spence and Frith, 1999). Clearly, people can impose their own

priorities and preferences on decision making (Goldberg and

Podell, 1999; Paulus and Frank, 2003), but what impact, if any,

does this have on the neural operations that subserve free choice?

In a recent article, Goldberg and Podell (1999) drew an

important distinction between what they termed ‘‘veridical’’ and
ED P
ROOF

‘‘adaptive’’ choices. Veridical responses are akin to selecting the

correct option from an array of incorrect alternatives. In contrast,

adaptive responses are those in which an individual imposes his or

her own set of specific preferences and priorities on an ambiguous

situation to guide behavior (e.g., a context in which several

responses may be correct). As they then note, ‘‘the arsenal of

cognitive neuroscience is virtually bereft of paradigms capable of

examining how adaptive (as opposed to veridical) decisions are

made’’ (Goldberg and Podell, 1999, p. 366). Deciding which

clothes to wear for an interview, whom to invite on a date, or

where to take one’s summer vacation are judgments in which the

responses are decidedly meaningful to people. As such, decision

making is likely to be guided by people’s preferences and the

potential consequences (i.e., costs/benefits) of the competing

alternatives. In other words, this type of decision making is

criterion based. This then raises an interesting question. Do these

additional elements of the decision process increase activation in

the same cortical regions that underpin simple, inconsequential

decisions (Grafton et al., 1998; Spence and Frith, 1999), or are

supplementary regions engaged when people make personally

meaningful choices? We explored this important question in the

current experiment.

Reflecting the various components of human decision making,

one might expect consequential choices to be accompanied by

neural activity in cortical regions that support both cognitive and

affective aspects of social cognition. Elliott and Dolan (1998), for

example, observed activity in medial prefrontal cortex (MPFC)

when participants were requested to select one of two abstract

stimuli. In task settings of this kind, preference judgments may

recruit areas of MPFC that track with self-referential mental

activity (Kelley et al., 2002; Macrae et al., in press), notably,

establishing one’s preferred option from a range of competing

alternatives (see Frith and Frith, 2003; Gallagher and Frith, 2003;

Paulus and Frank, 2003). As Adolphs (2001) has noted, areas of

prefrontal cortex play a pivotal role in executive (i.e., higher order)

aspects of social cognition, such as response selection and the

volitional control of behavior. As such, one might expect activity in

these regions to subserve people’s consequential decisions when

competing options are available.

In addition, activity may also be expected in areas of the brain

that are associated with the evaluative aspects of response selec-

tion. According to recent theorizing (Bechara et al., 1997; Damasio

et al., 1996), stimuli induce an internal state that is associated with

pleasurable or aversive somatic markers. In turn, these markers

serve to guide people’s behavior towards pleasurable outcomes.

Neuroimaging investigations have suggested that the insula plays

an important functional role in preference judgments with obvious

hedonic implications (Paulus and Frank, 2003); hence, one might

expect activity in this structure to be modulated by the consequen-

tiality of people’s choices (Adolphs, 2001; Bechara, 2002; Dam-

asio, 1994, 1996). Finally, as volitional action entails not only

response selection, but also competitor suppression (Jahanshahi

and Frith, 1998), it is possible that cortical regions associated with

cognitive inhibition may also be implicated in the execution of free

choice, especially in consequential task contexts. Paradigms that

specifically measure response inhibition, such as the Go/No–Go

task, have identified regions of ventrolateral prefrontal cortex

(VLPFC) that track with response suppression (Anderson et al.,

2004). Furthermore, patients with damage to this region are

generally impulsive and have difficulty inhibiting inappropriate

responses (e.g., Horn et al., 2003; Verfaellie and Heilman, 1987).
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Given these observations, it is possible that areas of VLPFC may

also subserve people’s consequential choices when competing

alternatives are available.

To summarize, the current experiment has two objectives: (i) to

determine the neural substrates of choice and (ii) to identify brain

regions that track with the consequentiality of people’s judgments.

To explore these issues, neural activity was measured while

participants viewed varying numbers of faces and selected either

a dinner date (i.e., consequential choice) or an arbitrary same-sex

target (i.e., inconsequential choice).
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Methods

Participants

Eighteen right-handed, heterosexual participants between the

ages of 18 and 35 (nine men and nine women; mean age, 22 years)

were recruited from the local Dartmouth community. Participants

reported no significant abnormal neurological history and all had

normal or corrected-to-normal visual acuity. Participants were

either paid for their participation or received course credit. All

participants gave informed consent in accordance with the guide-

lines set by the Committee for the Protection of Human Subjects at

Dartmouth College.

Image acquisition

Imaging was performed on a 1.5-T whole body scanner

(General Electric Medical Systems Signa, Milwaukee, WI) with

a standard head coil. Visual stimuli were generated using an Apple

G3 laptop computer running PsyScope software (Cohen et al.,

1993). Stimuli were back projected to participants with an Epson

(model ELP-7000) LCD projector on a screen positioned at the
UNCORRE

Fig. 1. Schematic represen
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head end of the bore. A fiber optic, light-sensitive keyboard with

four keys interfaced with the PsyScope Button Box (New Micros,

Dallas, TX) was used to record participants’ behavioral responses.

Cushions were used to minimize head movement.

Anatomical images were acquired using a high-resolution 3D

spoiled gradient recovery sequence (SPGR; 128 sagittal slices;

TE = 3 ms, TR = 7 ms, flip angle = 15j, voxel size = 1 �1 �
1.2 mm). Functional images were collected in runs using a

gradient spin-echo, echo-coplanar sequence sensitive to BOLD

contrast (T2*) (TR = 2500 ms, T2* evolution time = 35 ms, flip

angle = 90j, 3.75 � 3.75 mm in-planer solution). During each

functional run, 64 sets of axial images (25 slices; 4.5-mm slice

thickness, 1-mm skip between slices) were acquired allowing

complete brain coverage.

Behavioral tasks

An event-related fMRI protocol was used to collect BOLD data.

Participants were scanned during six functional runs that consisted

of three functional runs of inconsequential-choice trials (selecting a

same-sex face), and three functional runs of consequential-choice

trials (selecting a dinner date from an array of opposite-sex faces).

The run order was counterbalanced across participants using an

ABBAAB design. Each run consisted of 64 events; comprising 12

zero-choice trials, 12 two-choice trials, 12 three-choice trials, and

28 fixation trials presented in a fixed-random order. Fixation trials

invariably consisted of four black square plates presented across

the horizontal axis in the center of the screen. These plates were

directly mapped onto the response keys so that the plate to the far

left mapped on to the leftmost key. At the zero-choice level, a

single face appeared and the corresponding key had to be pressed.

In the two-choice condition, two faces appeared and participants

had to select one of two competing responses. In the three-choice

condition, selection of one of three competing faces was required.
tation of one event.
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In the consequential-choice condition, participants were told to

select one item from the array and to make their selection on the

basis of their preferred choice of dinner date. In the inconsequen-

tial-choice condition, participants were told to select any face from

the array. We examined personal choice by comparing criteria-free

responses to faces (same-sex faces) with the selection of a dinner

date (opposite-sex faces). Each trial consisted of four black plates

in which one, two, or three faces appeared. The stimuli were

presented for 2000 ms before returning to the fixation-state (see

Fig. 1). All responses were made with the right hand.

Data analysis

The fMRI data were analyzed using Statistical Parametric

Mapping (SPM99, Wellcome Department of Cognitive Neurology,

London, UK; Friston et al., 1995). For each functional run, data

were screened for sources of noise or artifact. Functional data were
UNCOR
Table 1

Inconsequential and consequential choice

Region Talairach coordinates left hemisphere

K value x y z

Inconsequential choice

Medial surface of superior frontal

gyrus (BA 8)

Dorsal premotor cortex (BA 6) 21 �20 7 62

Ventral premotor cortex (BA 6) 50 �48 6 33

Occipitotemporal cortex 546 �39 �71 �13

Parietal cortex

Consequential choice

Medial surface of superior frontal

gyrus (BA 8)

602 0 18 47

Dorsal premotor cortex (BA 6) 99 �32 �9 63

Ventral premotor cortex (BA 6) 22 �44 2 33

Occipital/parietal/temporal cluster 1721 �44 �63 �10

Insula/VLPFC 139 �36 27 �5

Summary of the significant results ( P < 0.0001) for response selection in both th

Threshold, P < 0.001.
ED P
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corrected for differences in acquisition time between slices for each

whole-brain volume, realigned within and across runs to correct for

head movement, and coregistered with each participant’s anatom-

ical data. Functional data were then transformed into a standard

anatomical space (2 mm isotropic voxels) based on the ICBM 152

brain template (Montreal Neurological Institute), which approx-

imates Talairach and Tournoux’s (1988) atlas space. Normalized

data were then spatially smoothed (8 mm full width half maximum

[FWHM]) using a Gaussian kernel. Analyses took place at two

levels: formation of statistical images and regional analyses of

hemodynamic responses.

First, for each participant, a general linear model, incorporating

task effects (modeled with a canonical set of three functions: the

hemodynamic response function; the temporal derivative; and its

dispersion derivative; Friston et al., 1998), mean, linear, cubic, and

quadratic trends were used to compute parameter estimates (b) and
t contrast images (containing weighted parameter estimates) for

each comparison at each voxel. These individual estimates were

then submitted to a second-level, random-effects analysis to create

mean t images (threshold at P = 0.001, uncorrected; minimal

cluster size = 10). An automated peak search algorithm identified

the location of peak activations and deactivations based on the z

value and cluster size. This analysis allowed both within- and

between-condition comparisons to be made (e.g., [CHOICE > NO-

CHOICE] or [DATE > FACE]).

A masking analysis was employed to determine common brain

networks that support both consequential and inconsequential

choice. These regions may therefore provide evidence for a

response selection network irrespective of the type of choice to

be made. This was done using the ImCalc feature in SPM, and

according to the following formula: [(condition 1 t score > 3.65) �
(condition 2 t score > 3.64)]. This procedure yields a mask

containing only those voxels that were significantly activated

above t = 3.65 (P < 0.001) in each and both contrasts. The

resulting mask provided information about the extent of the over-

lapping activations associated with the conditions involved. This

mask was then applied to the contrast image files for each

participant and a group analysis was then performed on the masked
Talairach coordinates right hemisphere

Z max K value x y z Z max

15 4 18 51 3.79

3.73 50 20 3 52 4.11

4.57 10 48 �7 22 3.70

5.46 596 20 �78 �13 6.09

21 38 �56 54 4.74

extending to right PMd

4.30 24 �1 63 4.50

3.76 45 48 5 26 4.72

5.68 40 �78 �3 5.42

4.64 108 32 27 �5 5.61

e FACE and DATE tasks.
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Common brain regions activated by inconsequential and consequential choice taskst2.2

Region Talairach coordinates left hemisphere Talairach coordinates right hemispheret2.3

K value x y z Z max K value x y z Z maxt2.4

Medial surface of superior

frontal gyrus (BA 8)

10 4 18 51 4.34t2.5

Dorsal premotor cortex (BA 6) 13 �24 �1 55 3.79 32 20 3 51 4.31t2.6
Occipitotemporal cortex 436 �39 �71 �13 5.57 532 20 �78 �13 5.76t2.7
Parietal cortex 14 28 �56 54 4.43t2.8

Summary table of common regions activated by the FACE and the DATE tasks. Mean Z scores for the DATE > FACE and FACE > DATE contrast are

presented in the table.t2.9

t3.1
t3.2

t3.3

t3.4

t3.5
t3.6
t3.7

t3.8
t3.9
t3.10
t3.11

t3.12
t3.13
t3.14

t3.15
t3.16
t3.17
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data (DATE > FACE or FACE > DATE) to provide a table of the

common clusters across both choice conditions.
T
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Results

Behavioral data

Response latencies for each type and level of choice were

analyzed using a 2 (type of choice: consequential or inconsequen-

tial) � 3 (level of choice: zero or two or three) repeated measures

analysis of variance (ANOVA). This revealed main effects of type

of choice [F(1,17) = 116.345, P < 0.0001], level of choice

[F(2,34) = 157.3, P < 0.0001], and a type of choice � level of

choice interaction [F(2, 34) = 126.43, P < 0.0001]. The interaction

showed that (i) participants responded more rapidly on inconse-

quential than consequential trials and (ii) for both types of choice,

increasing the number of possible responses increased response

latency, but this effect was most pronounced for consequential

judgments (see Fig. 2).

fMRI data

Analysis of the imaging data focused on two specific questions.

First, is there a common network of brain regions engaged in the

execution of both consequential and inconsequential choice?
UNCO
Table 3

Contrasting inconsequential and consequential choice

Region Talairach coordinates left hemisphere

K value x y z

DATES > FACES

Insula/VLPFC (BA 47) 26 �32 23 �
Medial surface of the superior

frontal gyrus (BA 8)

47 8 6 5

Dorsal ACC (BA 8/32)

Paracingulate gyrus (BA 32)

Fusiform gyrus (BA 37)

Occipital cortex/fusiform

gyrus (BA 18)

FACES > DATES

Occipital cortex extending into posterior

fusiform gyrus (BA 18)

119 �40 �67 �1

Regions showing significant BOLD increases for the contrast.

DATE (3 and 2 > zero) > FACE (3 and 2 > zero).

Threshold, P < 0.001.
ED P
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additional cortical regions or by an increased BOLD response in

same areas that subserve choice per se? To address these issues,

three specific contrasts were performed: (i) choice (three faces and

two faces) > no choice (one face) in the FACE condition; (ii)

choice (three faces and two faces) > no choice (one face) in the

DATE condition; and (iii) DATE (consequential choice) > FACE

(inconsequential choice). In the group analyses, all contrasts were

thresholded at a t value of P < 0.001 (uncorrected), with a

minimum cluster size of 10 contiguous voxels.

The neural correlates of response selection

The significant clusters for the activation maps for the first two

contrasts (i.e., regions that show a higher BOLD response for the

three-choice and two-choice conditions compared with the zero-

choice condition for both consequential and inconsequential

choice) are shown in Table 1.

A masking analysis revealed common regions of activation

across both consequential and inconsequential choice (see Table

2). These included portions of the occipital cortex extending

dorsally to the posterior parietal cortex bilaterally, a region

around the intersection of the precentral sulcus and the superior

frontal sulcus, which we have labeled the dorsal premotor region

(PMd—BA 6), and the medial surface of the superior frontal

gyrus (BA 8—pre-SMA).
Talairach coordinates right hemisphere

Z max K value x y z Z max

1 3.85 57 36 23 �1 4.51

1 3.76

8 25 3 3.53

10 0 40 16 3.49

16 40 �59 11 3.86

11 36 �74 0 3.56

3 4.92 114 24 �74 �6 4.82
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The neural correlates of consequential decisions

Our second question pertained to the degree to which conse-

quential choice may be indexed by the recruitment of additional

cortical regions, or by a higher BOLD response in the same regions

that subserve choice. To examine this issue, we contrasted the

BOLD responses for the consequential and inconsequential deci-

sions (see Table 3). Consequential choice was indexed by a higher

BOLD response in seven clusters. These contrast-specific regions

are made up of areas that show BOLD activation for both

consequential and inconsequential choices (as described above),

and those that only show increased activity for consequential

decisions. Regions that appear to respond to both consequential

and inconsequential decisions include the occipitotemporal cortex,

D.J. Turk et al. / Neur6
UNCORRECT

Fig. 3. Contrast for DATE > FACE. Regions that show significantly higher BOLD

baseline.
F

fusiform gyrus, and the medial surface of the superior frontal

gyrus. In addition, the dorsal portion of the anterior cingulate

cortex (BA 8/32) also seems to be active for both consequential

and inconsequential decisions. These areas show greater BOLD

responses for the DATE condition, but the FACE condition also

shows a significant hemodynamic response function (see Fig. 3).

The remaining foci of activation in the DATE > FACE contrast

included bilateral regions of the anterior insula/inferior frontal

cortex (BA 47) and the paracingulate gyrus (BA 32). The BOLD

response for inconsequential decisions was at a subthreshold level

in these regions as demonstrated by the FACE contrast. The

timecourse data show that in these regions, the BOLD response

was not modulated by the amount of available choice. That is,

these regions show significant activation for any level of choice in
ED P
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response for DATE, but which still show BOLD responses to FACE above
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Uthe consequential condition (see Fig. 4). The FACE > DATE

contrast revealed significantly greater hemodynamic response in

two bilateral regions of the occipitotemporal cortex including the

posterior fusiform gyrus.

Gender effects in consequential choice

To explore if the sex of participants moderated the neural

activity associated with date selection (Goldberg and Podell,

1999), we further analyzed the consequential choice data using a

two-sample t test. This contrast showed no significant regions of

activation for the female > male contrast, but did reveal a region

that was significantly more active for male than female partici-

pants. This region was part of the superior parietal cortex (BA 7)
(20, �76, 41). Importantly, however, no significant differences

were observed in the frontal regions identified in Table 3.
General discussion

The current research had two basic objectives: (i) to identity the

neural substrates of choice and (ii) to determine if additional

regions of the brain are involved in consequential (i.e., personally

relevant) decisions. With regard to the first of these issues, the

results revealed common regions of the dorsal premotor cortex

(PMd), the medial surface of the superior frontal gyrus (BA 8), and

the posterior parietal cortex that showed higher levels of activation

in the choice than no-choice conditions, regardless of the judgment
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under consideration (Jenkins et al., 1992; Mushiake et al., 1991).

The observed activity in this parietal-PMd network is consistent

with other work of this kind and identifies these areas as the

cortical loci of response selection (Deiber et al., 1991; Grafton et

al., 1998; Passingham, 1985; Sakai et al., 1999; Spence et al.,

1997). Importantly, however, response selection was not accom-

panied by increased activity in DLPFC. This implies that prior

research demonstrating the recruitment of this area in free choice

may have been a consequence of the working-memory demands

(e.g., random generation) of the tasks under investigation (Frith et

al., 1991; Hyder et al., 1997). It is possible therefore that DLPFC

may only be implicated in volitional behavior when the demands of

the task necessitate that multiple items (e.g., current options,

competing alternatives, previous responses) be retained or manip-

ulated in temporary storage (Desmond et al., 1998; Fuster, 1995;

Hadland et al., 2001).

Extending previous work on this topic, the current inquiry also

considered the extent to which response selection may be moder-

ated by the nature of the decision under consideration (i.e.,

inconsequential vs. consequential). The results of this comparison

revealed two distinct patterns of activation: regions that showed

higher activity for consequential decisions, but were also above

threshold for inconsequential decisions, and regions in which

activity was specific to consequential judgments. Brain regions

that showed greater BOLD response for consequential than incon-

sequential decisions included two areas of the right ventral tem-

poral cortex, dorsal ACC, and the medial surface of the superior

frontal gyrus or pre-SMA (BA 8). These ventral temporal regions

located around the putative fusiform face area (Kanwisher et al.,

1997) are presumably associated with increased face processing in

the consequential-choice condition (i.e., selecting a dinner date).

Activity in the ACC has been associated with task monitoring

and the detection of conflict (Ernst et al., 2001; MacDonald et al.,

2000). When one is faced with the task of choosing an item from

several alternatives, conflict inevitably ensues. The magnitude of

this conflict, however, would appear to be related to the judgment

at hand. The hemodynamic response in ACC was elevated when

the judgment was consequential (i.e., criterion-based) rather than

arbitrary (i.e., criterion-free). Interestingly, the dorsal anterior

cingulate has strong connections with the SMA, premotor cortex,

and parietal cortex (Bush et al., 2000), areas that were also found to

be active in the current experiment (see Table 2). Activation of

ACC during response selection is also consistent with previous

studies on willed action (Frith et al., 1991). The current findings

therefore offer support for a network of regions including the

parietal cortex, premotor cortex, and ACC in response selection

and evaluation (Adolphs, 2001).

Of additional theoretical importance, several brain areas were

only active during consequential decisions. These included bilat-

eral portions of the insula/ventrolateral prefrontal cortex (BA 47)

and the paracingulate gyrus (BA 32). Activation of the insula has

been observed in a range of studies investigating aspects of

emotional processing. One suggested role for the insula is that it

indexes autonomic changes that take place in the body during the

processing of emotive stimuli (Damasio, 1994, 1996). In this way,

insula activation can be taken as a marker of people’s preference

for specific stimuli (e.g., attractive faces—Nakamura et al., 1998).

Paulus and Frank (2003), for example, reported activity in this

region when participants were required to select a preferred item

from two competing alternatives (e.g., types of soft drink). Thus, in

addition to aversive events (Chua et al., 1999) and negative
ED P
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emotional material (Morris et al., 1998; Phillips et al., 1998), the

anterior insula also appears to be involved in processing contexts

that may have positive consequences for perceivers, such as

selecting a beverage or a dinner data (Adolphs, 2001; Bechara,

2002; Damasio, 1994, 1996; Paulus and Frank, 2003). In addition,

the ventral frontal activity observed in the DATE > FACE contrast

may also index response inhibition (Anderson et al., 2004). If,

during criterion-based decision making (e.g., selecting a dinner

date), more than one target is a plausible candidate, decision

making may be supported by inhibitory processes that suppress

possible but nonselected options.

Importantly, consequential choice was also accompanied by

increased activity in the paracingulate gyrus. Recent research has

identified this structure as a critical component of the cortical

network that supports Theory of Mind (i.e., mentalizing—see Frith

and Frith, 2003; Gallagher and Frith, 2003). As Gallagher and Frith

(2003) have observed, ‘‘several functional imaging studies have

been undertaken to isolate the neural substrates of mentalizing

ability. These have demonstrated remarkably consistent results . . .
this ability is mediated by a highly circumscribed region of the

brain, the anterior paracingulate cortex’’ (p. 78). Interestingly, areas

of MPFC have also been shown to play a critical functional role in

self-referential mental activity, such as reporting one’s personality

characteristics (Kelley et al., 2002; Macrae et al., in press). The

activation of the paracingulate gyrus during consequential decision

making (i.e., selecting a dinner date) provides further support for

the importance of prefrontal regions in fundamental aspects of

social-cognitive functioning. Selecting a potential dinner date

likely entails a combination of mentalizing (e.g., ‘‘I wonder what

she’s like?’’) and self-referential processing (e.g., ‘‘have I been

successful with blondes in the past?’’), operations that are sup-

ported by activity in regions of MPFC (Frith and Frith, 2003).

In considering the observed patterns of neural activity for

consequential and inconsequential decisions, a potential limitation

with the current paradigm must be acknowledged. Whereas incon-

sequential judgments were always undertaken on same-sex faces,

opposite-sex faces were used trigger participants’ consequential

decisions. It might be argued therefore that the resultant neural

activity is indicative of stimulus-driven effects (i.e., judging

opposite-sex faces), rather than the personal relevance of the

judgments that were furnished. Although the available neuroimag-

ing literature on this topic is quite limited, discrete effects appear to

emerge when people process attractive, opposite-sex faces (see

Senior, 2003). In particular, facial attractiveness is associated with

activity in regions of the brain that are associated with the reward

value of stimuli, such as the orbitofrontal cortex (O’Doherty et al.,

2003), the nucleus accumbens (Aharon et al., 2001), and the insula

(Nakamura et al., 1998). As can been see from the timecourse data

in Fig. 4, the current results do not simply reflect the neural activity

that accompanies the processing of attractive opposite-sex faces.

For the observed bilateral activity in the insula, the BOLD response

in the inconsequential condition (viewing same-sex faces) was

similar to that found in the consequential condition (viewing

opposite-sex faces) at the zero-choice level. That is, viewing both

same and opposite-sex faces modulated activity in this region.

Importantly, however, only when participants were required to

choose between two or more opposite-sex faces (i.e., consequential

choice) was there a significant increase in the BOLD signal. This

would suggest that consequential choice is an important moderator

of neural activity in the insula during preference-related decision

making.
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In sum, at least as indexed in the current investigation, response

selection appears to be reliant on a network of cortical regions that

include the parietal cortex, dorsal premotor cortex, pre-SMA, and

dorsal areas of the ACC (Deiber et al., 1991; Grafton et al., 1998;

Passingham, 1985; Sakai et al., 2000; Schluter et al., 2001; Toni et

al., 1999; see also Picard and Strick, 2001 for a review). Supple-

menting these regions are additional frontal areas, including the

anterior insula/VLPFC and the paracingulate gyrus, that are impli-

cated in the execution of consequential judgments. Daily life

confronts people with a variety of decisions, some trivial, others

consequential. When competing possibilities are available, re-

sponse selection appears to be supported by activity in regions of

the dorsal premotor cortex (PMd) and the posterior parietal cortex,

cortical areas that are insensitive to the nature of the judgment at

hand. When a decision is personally meaningful or emotionally

salient, however, additional frontal areas are recruited. Activity in

these areas (e.g., insula, paracingulate gyrus) likely tags the

hedonic relevance and personal significance of stimuli for people,

thereby facilitating response selection in the future.
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