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Abstract

Non-negative matrix factorization (NMF) is an excellent
tool for unsupervised parts-based learning, but proves to
be ineffective when parts of a whole follow a specific pat-
tern. Analyzing such local changes is particularly impor-
tant when studying anatomical transformations. Hence, we
propose a supervised method that incorporates a regres-
sion constraint into the NMF framework and learns maxi-
mally changing parts in the basis images, called Regression
based NMF (RNMF). The algorithm is made robust against
outliers by learning the distribution of the input manifold
space, where the data resides. Two of our main goals are to
achieve good local region visualization as well as recog-
nition accuracy. By incorporating a gradient smoothing
and independence constraint into the factorized bases, vi-
sual appeasement and accuracy are accomplished. We ap-
ply our technique to a synthetic dataset and structural MRI
brain images of subjects with varying ages. We find that the
localized regions which are expected to be highly changing
over age are manifested in our significant basis and we also
achieve the best performance compared to other statistical
regression and dimensionality reduction techniques.

1. Introduction

Magnetic Resonance imaging (MRI) is a popular imag-
ing modality used to study the anatomy of the brain. The
advancement of MRI image acquisition quality has led to
the development of many automated and computer-assisted
methods in the field of medical image analysis. Popula-
tion based inference of medical images, such as normative
anatomy has become an important image analysis problem.

For example, understanding normal changes of anatomy as
a function of age is important for distinguishing changes
due to disease progression. A central challenge is to de-
velop algorithms that can characterize individual data based
on data derived from cross-sectional samples. Consider the
data set in Figure 1: Can we predict the age of individ-
uals given their anatomical brain scan? Such a task can
be approached by previous a priori knowledge of region
of interest (ROI), followed by extracting statistical infor-
mation from these specific ROIs. However, these methods
are highly laborious and require a lot of manual interven-
tion. Moreover, it is not always known in advance which re-
gions certain diseases might affect. To overcome these lim-
itations of ROI analyses, alternative approaches based on
voxel-wise analysis without a priori hypothesis have been
developed in the past several years, but a fundamental limi-
tation of such approaches is that they cannot identify subtle
differences and also tend to be computationally expensive
[1, 7].

To develop an accurate predictor of a dependant vari-
able (age) from a set of cross-sectional data, two issues
need to be addressed. First, we need a tool to extract the
most relevant latent regions from the high dimensional im-
age space. Second, this information needs to be supplied to
a pattern recognition tool that provides information regard-
ing the trend of the region across the individual brains. In
this paper we propose a matrix factorization method to si-
multaneously perform dimensionality reduction and deduce
intrinsic features that regress, as well as quantize their trans-
formation, thus dealing with the above mentioned problems
in a unified and principled manner.

There are many well established matrix factorization al-
gortihms, such as Principal Component Analysis (PCA) [2,



Figure 1. A mid-axial slice is presented for a sample of images used. The images ordered according to increasing patient age from 14 (left)

to 40 (right)

14, 27], Independent Component Analysis (ICA) [2, 3, 5],
and Non-negative matrix factorization (NMF) [16, 17], that
learn to represent the data as a linear combination of basis
images; however, each algorithm factorizes the input into
these basis vectors subject to different constraints.

Our approach uses NMF [16], an algorithm that learns
a parts-based representation of the data. Previous studies
have shown that there is physiological and psychological
evidence for parts based representation in the human brain
[23] and hence NMF has received considerable attention in
recent years. It imposes non-negativity constraints on the
factored matrices, thus allowing only additive, not subtrac-
tive, combinations of the basis vectors, compatible with the
intuitive notion of combining parts from a whole.

Our focus is to estimate the age given an individual’s
structural MRI brain scan. Furthermore, we want to iden-
tify and visualize the transforming region of interest (ROI)
and understand the evolution of the ROI as age varies. As
we want to capture the regressing ROI, we use NMF in con-
junction with a regression constraint to identify the trend of
the ROI. As shown in Figure 2, the regression curve shows
an average increasing trend which represents the expansion
of the lateral ventricles as the age increases, which is well
known in the medical literature of aging [10, 21, 22]. Using
our proposed method we are able to isolate the lateral ven-
tricle region in the brain which shows maximal change and
depict its expansion with respect to age.

In this paper, we propose a novel supervised NMF al-
gorithm called regression based non-negative matrix factor-
ization (RNMF). Our contributions are as follows:

e A new supervised NMF model, that captures local
parts representing the variability evident in the data by
exploiting labeled information of the data. This modi-
fication directs the encoding coefficients in the factor-
ization to reflect the trend within these features.

e Improving localization of the basis images by impos-
ing a novel gradient based smoothing constraint which
also enhances visual appeal. The convergence proof
with this constraint is elaborated in Appendix A.

e By learning the distribution of the data in the input
manifold space, we strengthen the robustness of the
algorithm to outliers.

The rest of the paper is organized as follows: Section 2.1
introduces the original NMF algorithm. This is followed by
a brief overview of regression in Section 2.2 and discussion
of learning the manifold space in Section 2.3. We address
our proposed algorithm in the subsequent Section 3. Exper-
iments and results with synthetic and structural brain MRI
data-sets with RNMF are illustrated in Section 4.

2. Review
2.1. Non-Negative Matrix Factorization

Non-negative matrix factorization (NMF) [16, 17], un-
like other methods such as Principal Component Analysis
(PCA) [14], is distinguished by its use of non-negativity
constraints. NMF has attracted considerable attention [15,
13, 20, 4, 24, 12, 29] because of its many advantages, such
as simple yet efficient decomposition of the data, definite
physical meaning to parts without negative values, and its
lower storage requirement.

Similar to SVD and PCA, NMF decomposes a set of
high dimensional vectors to representative lower dimen-
sional vectors using a set of bases under certain constraints.
NMF decomposes a non-negative matrix (V) to a set of
non-negative basis (W) and corresponding non-negative
coefficients (H),

annt %WnXmHant (1)

where V = [v; ;] = [y, ..., vpe] is a n X 0y matrix , n is
the total number of pixels in each image, v; is the jth input
image represented as a column vector, and n; is the number
of training images. We denote the basis matrix W = [w; ;]
= [wW1, ..., W,,] @s an n x m matrix (where (n + ny)m <
nn). The low dimensional embedding of every column of
V is the corresponding column in H = [h; ;]=[hy, ..., hy].
This factorization is achieved by minimizing the divergence
between V and WH with the constraints that both should
be non-negative. The divergence between V and WH is
defined as [16, 17]

Viq
D(V|[WH) =Y ( log 24—y + y) s

A 1
] J

where WH =Y = [y;;].
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Figure 2. Kernel Regression on ventricle volume versus patient
age.

NMF tries to mimic the way humans perceive visual in-
formation as a composite of simpler objects. Its basis vec-
tors contain localized features that correspond better with
intuitive notions of the parts of the images. While eigen-
faces have a statistical interpretation as the directions of
largest variance, many of them do not have obvious visual
interpretation. However, the additive parts learned by NMF
are not necessarily localized and intuitive. In addition, our
main goal is to identify transforming regions which NMF
fails to do.

2.2. Regression

Regression [11] is a technique used to estimate the re-
lationship, on average, between independent random vari-
ables and dependent random variables. A large body of
techniques for carrying out regression analysis has been de-
veloped and widely used for prediction of dependent vari-
able. Familiar methods such as linear regression and or-
dinary least squares regression are parametric, in that the
regression function is defined in terms of a finite number of
unknown parameters that are estimated from the data. Non-
parametric regression, such as kernel regression, is also a
popular methodology where the regression function can lie
in a specified set of functions (kernels). In Figure 2 above,
we illustrate the use of kernel regression to demonstrate the
effect of age on ventricle volume in the brain.

In subspace analysis, there have been several techniques
to simultaneously perform dimensionality reduction and re-
gression [18, 19]. These algorithms reduce the data to a
subspace whereafter simple regression techniques can be
used for prediction. However, the bases computed by these
methods do not highlight the parts that regress, and lack vi-
sual appeal. Support vector regression (SVR) [28] is an
approach that estimates the regression function directly in
the higher dimension. However, SVR fails to indicate the
varying region and its corresponding trend. Our proposed
algorithm isolates the maximally regressing part and quan-
tifies the change which these algorithms fail to indicate.

2.3. Learning the distribution in Manifold Space

Images can be considered as points in a high dimensional
space. We want to learn how these points are distributed on
a high dimensional manifold. Assuming a smooth mani-
fold, local neighborhood geodesic distance can be approxi-
mated by Euclidean distance. However, for distant points in
the high dimensional space the approximation is not valid.
Thus, similar to the manifold learning algorithm Isomap
[26], a k-nearest neighbor graph with the Euclidean distance
as edge weights is constructed; after which the shortest path
distance matrix D = [d(v;, v;)] on the graph is calculated
using Floyd’s algorithm [6].

Understanding the distribution of the data based on im-
age content, irrespective of the labels, will help avoid the
influence of outliers. Section 3 details how this is imposed
as a constraint to enhance the performance of our algorithm.

3. Regression based Non-Negative Matrix Fac-
torization (RNMF)

The main goal of this paper is to simultaneously per-
form dimensionality reduction and capture regressing fea-
tures within a cross-sectional data-set. Standard NMF on
its own fails to realize the underlying intrinsic regressing
parts within the data, which is essential to real world appli-
cations. We therefore incorporate a novel regression con-
straint within the factorization framework to achieve di-
mensionality reduction and emphasize local features which
regress. Furthermore, the robustness of our algorithm is en-
hanced by learning the distribution of the data in the higher
dimensional manifold space. In addition, for more desir-
able feature visualization purposes, we integrate our method
with a gradient based smoothing constraint. This also helps
to obtain highly localized contiguous parts. We describe our
approach in detail in the following section.

3.1. Constraints

The NMF model defined by the constrained minimiza-
tion of Equation 2 does not impose any constraints given the
labels of the data, being an unsupervised learning technique.
We propose a supervised factorization algorithm with the
following constraints to achieve our goal:

1. In order to produce regressing features, we want the
data to be smoothly separated; which implies, if labels
i, y; for corresponding data points v;, v; are close,
then the lower dimensional embedding h;, h; should
reflect this proximity. Hence, under this assumption
we incorporate the regression methodology by impos-
ing the following:

> F i y;)(hi — hy)T(h; — hy)
> fWisys)

Sk = min

. ()



The function f(-) is a weighting function with all posi-
tive values. We define f(y;,y;) = exp(w) (heat
kernel), and ¢ depends on the range of the labels, so as
the distance between data increases in the dependent
variable space, the weight decreases accordingly.

We could have segmented the data-set into several
classes based on some fixed boundaries and applied the
Fisher constraint similar to [29]. However, the results
would have been highly dependent on how the data
was sectioned and the number of classes used. More-
over, this approach would fail to take into account sim-
ilarities between the different classes. Hence, we use
the heat kernel to account for the continuous nature of
the target variable.

The above constraint only considers the labels as-
signed to each sample in the cross-sectional data.
However, it is also necessary to ensure some robust-
ness to outliers in the data-set. For example, if a pair
of points have similar labels, but are highly distant in
the input space, we would want to reduce the influence
of such a pair on the overall system. Hence, we learn
the distribution of the data in the higher manifold space
by calculating the geodesic distances between each in-
dividual sample as mentioned in Section 2.3. We then
compute weights that are inversely proportional to the
geodesic distance between the sample points, thus pe-
nalizing outliers. This is imposed by

min d(vi, v;)
J— ¢ ] . .
m;; = d(Vi,Vj) f(yz7yg)7 “4)

where d(v;, v;) is calculated as mentioned in Section
2.3. Including this in the first constraint above we get,

>, mij(hy —hy) T (h; —hy)
Zi,j mij

®)

Skrm = min

. In order to highlight and segregate the most regressing
feature in the data-set, good visual perception as well
as localization of the bases are necessary. The aim is to
compute basis images (Wj) that are less noisy and re-
stricted to comprise of compact regions. Furthermore,
we want to ensure that local parts are captured as con-
tiguous regions and not separated among different ba-
sis. To accomplish this, we include a novel gradient
based smoothing constraint, where we minimize the
energy of the gradient of each of the basis Wj in the
image co-ordinates. This is achieved by enforcing the
following constraint:

Sa = minz / |[VW,(x)|?dx. (6)
J

3. Similar to LNMF [20] we impose Zl u;; = min, where
U = [u;;] = WT'W. This constraint attempts to mini-
mize the number of basis components required to rep-
resent V. This implies that a basis vector should not be
further decomposed into more components. Further-
more, to reduce redundancy between different bases,
LNMF [20] attempts to make bases as orthogonal as
possible. This is imposed by Z#j u;; = min. There-
fore

So = min Z Uij. (7

2%

The inclusion of the above three constraints leads to the fol-
lowing constrained divergence to be minimized:

D(V||WH) = min {Z (vij log Y _ Vi + y¢j>

.. 3
i, 7

+ aSpm + B8Sg + 750} ()

where WH =Y = [y;;], and , 3, v > 0 are constants. The
following update rules can be found by minimization of the
above constrained cost function:

b, 16amy
-b b2 Ui Wik My ( ki
+ + 27‘ il Zk’ wik/h;_,l Zi,j mij

QM|
(Ei,j m,7)
)
Wit 3, Vhj 5~
Wy S (10)
Zj hlj + Bgr + v Zj W
Wk
Wy — =P (11)
kl Zk’ W]
where,
4
b=1 a (12)

— 27/,-” Z(hkk’/mk/l)
L2V R W

and [g;;] = [g1,82,....8n] where —V?W (in the image
coordinates) is vectorized as gj. The proof of convergence
is provided in Appendix A.

4. Experiments and Results

We present the performance of our proposed algorithm
with two data-sets: synthetic data and structural MRI brain
scans of subjects with varying ages. We also compare our
algorithm against two statistical regression methods, Sliced
Inverse Regression (SIR) [18] and Principal Hessian Direc-
tions (PHD) [19], as well as PCA [2, 14, 27], SVR [28],
LNMF [20] and the original NMF [16, 17] techniques.



Figure 3. Example of synthetic data for I; where j = 1, 50, 100,
150, 200, % = 0.14. p1, p2, p3, pa corresponds to bottom right
(yellow), bottom left (green), top left (pink), top right (purple)

blocks respectively. This figure is best viewed in color.

4.1. Synthetic Data

We begin our analysis on a synthetic data-set as illus-
trated in Figure 3. The data-set consists of 200 images
[I;]j=1,...,200, Where each image is of size 200x200. Ev-
ery image consists of four distinct square parts p;, ¢ €
[1,2,3,4], locally varying in intensity with a specific re-
gressing pattern. The data-set is labeled using y; = j. The
following are the variations formulated for each square box

n

Ij(x):ﬁj+N,x€p1 (13)

I(x) = 505 (200~ j) + Nox€ps (14)
I(x) = 2g—()(loo-u—100|)+J\Lxep3 (15)
L(x) = 505(li = 100)) + N.x € ps,  (16)

where 7 is an arbitrary constant that models the foreground
intensity and N = A (i,02). We randomly select 100 im-
ages for training and the rest 100 for testing. We create 5
synthetic datasets where 7 = constant, ;= 0 and vary o be-
tween 5-25. Hence, we have data-sets with varying noise
levels and divided into the same training and testing sets for
our analysis.

Results : The problem in hand is to predict the depen-
dent variable (label) y; given the independent variable (im-
age) I;. In addition, good visualization of the identified
regressing regions and computing the associated change is
necessary. We find that RNMF significantly performs bet-
ter than other methods in prediction. In addition, in Figure
5(b) we compare the error (mean of the difference between
predicted and actual value) vs increasing normalized noise
level (%) and observe RNMF outperform all the other meth-
ods. Figure 4 shows the ability of our method to factor out
different regressing parts in separate bases, consistent with
the parts based notation in Equations 13-16. Other methods
fail to decompose the images into their constituent parts.
Also, the coefficients obtained by RNMF (Figure 4(a)) re-
flect the nature of the change unlike other methods. We in-
tuitively expect RNMF to perform better than NMF, LNMF
and PCA as these are unsupervised learners. RNMF being
a parts-based factorization, captures local parts efficiently,
thus outperforming global regression techniques such as
SIR, PHD and SVR. We also note that irrespective of the

Number of basis
5 ‘ 10 ‘ 15 ‘ 20 ‘ 25 ‘ 30
PCA 81|71 | 115 |13.0 9.6 |99
SIR 64 | 8.1 | 8.1 8.1 | 81| 8.1
PHD 92 |61 | 6.7 65 | 69|73
SVR 9.7
LNMF | 80 | 85| 6.9 63 | 74 | 7.1
NMF 69 | 75| 7.1 75 | 74199
RNMF | 57| 6 5.2 47 | 52 | 55
Table 1. Average recognition error with varying the number of

bases. Bold numbers represent the least recognition error for each
method.

Methods

choice of the number of bases, the recognition ability of
RNMF supasses other techniques and it remains consistent
as shown in Figure 5(a).

4.2. Structural MRI Brain Data

The data-set consists of T1-MPRAGE structural MRI
scans of 200 incarcerated prisoners acquired at a spatial res-
olution of Imm X Imm X Imm using a 1.5 Tesla head-only
scanner. We preprocess the images, first skull extraction fol-
lowed by spatial alignment to an atlas using affine registra-
tion using the standard software program FMRIB Software
Library (FSL) [25, 30]. All brains are normalized, where
each voxel contains a value between 0 and 1. Each of our
images are 40x45x40 in size after downsampling them by
4. Each scan has an associated age (y;) that ranges from
14-58 years.

The scans are randomly partitioned into a training subset
of 130 and a test set of 70 images. The training set is then
used to learn the regressing basis components and the test
set for evaluation. All the compared methods use the same
training and testing set. The constants «, 3 and y are em-
pirically determined such that we get non-negative updates.

Results : Our focus is to estimate the age given an indi-
vidual’s structural MRI brain scan. Furthermore, we want to
identify and visualize the maximally transforming anatomi-
cal part and understand its evolution as age varies. We com-
pare our method with other techniques mentioned in Section
4. We noticed that the bases for NMF, PCA, PHD and SIR
were highly holistic. Moreover, the encoding coefficients of
LNMF and NMF hardly convey information regarding the
regression pattern (6(e), 6(f)). Figure 6 shows the most sig-
nificant basis for RNMF, LNMF and NMF. Significance of
bases was computed according to the regression coefficient,
defined as the slope of the best fit line to the distribution of
the corresponding row in H. Also SVR, PHD and SIR give
global bases where the regressing part cannot be localized
and segregated easily.

Our RNMF method leads to a parts-based representation,
where solely the expanding lateral ventricle is captured in
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Figure 4. Comparing basis and encoding coefficients of RNMF and NMF for %=0.14 . Figure best viewed in color.
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Figure 5. Comparing recognition error of the different methods with regards to changing noise level and number of bases. Figure best
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the basis component. The corresponding encoding coeffi-
cients 6(d) reflect the expansion of the region. Figure 6(a)
shows the horizontal slices of the brain captured in the ba-
sis depicting the lateral ventricle region. Furthermore, as
the number of bases increases, Figure 6(a) remains to be the
most significant basis using RNMF, unlike other methods.
Note that our findings in Figure 6(d) agree with volume-
based regression analysis in Figure 2 and are consistent with
the results obtained by [8] and in the medical literature
[10, 21, 22], where we see that as age increases the ventricle
volume increases. Table 1 shows the recognition errors for
the different methods across various numbers of basis com-
ponents. The output is predicted using the standard multi-
variate kernel regression on the lower dimensional represen-
tation (H). We computed the recognition error as the mean
of the absolute age difference between the actual and pre-
dicted ages. RNMF achieves the best performance where
the mean absolute error is 4.7 years as seen.

5. Conclusion and Future Work

We have presented a novel method of factorization for
regression problems. RNMF bases are more suitable to cap-

ture local regressing features. The gradient smoothing con-
straint improves visual appeal and manifold learning makes
the algorithm robust against outliers. Experimental results
on synthetic and structural brain MRI data show superior
performance in terms of accuracy and visual perception.

We are able to isolate the lateral ventricle region in the
brain which shows maximal change with respect to age
without prior ROI assumptions. The method is also general
in nature and it finds numerous applications in identifying
diseased regions which are visually undetectable. Our cur-
rent work involves identifying the maximally distinguish-
ing anatomical region that can classify psychopaths from
non-psychopaths, based on a psychopathy score assigned to
them. In addition, we would like to extend our method to
a multivariate scenario by modeling the dependence over
different output variables, such as age, psychopathy score,
etc.
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A. Convergence Proof of RNMF

Our update rules are based on a technique which min-
imizes an objective function L(X) by using an auxiliary
function. G(X,X’) is defined as an auxiliary function for
L(X) if G(X,X') > L(X) and G(X,X) = L(X) are sat-
isfied [9]. If G is an auxiliary function, then L(X) is non-
increasing when X is updated by

XD — arg min G(X, X(t)) a7
X

L(X(Hl)) < G(X(Hl),X(t)) < G(X(t) X(t)) -

L(X®)

W is updated by minimizing L(W) = D(V||WH) with H
fixed. We construct an auxiliary function for L(W) as

GY(‘Af7 W/) = Z Vi log ’Uij+
0,
_ wighk WP
v; log(wikhi;) — log () ]
ZXJ% Y >k Wighij { R >k Wighij
=3 vij+ > _(wh)ij + aSkm + BSa + 750 (18)
2% 2%

It is easy to verify that G(W, W) = L(W), so we will
just prove that G(W, W') > L(W) as follows. We know

that log (>, wirhy;) is a convex function, and the follow-
ing holds for all 4, and >, oy, =1:

—log (Z wikhkj) < ZO'”]C log ( khk]) . (19)
k

!’
Wi hej

2ok wWighes
—log wirhg; | < Wil [IOg(wikhk i)
(zk: ! Z Zk wzkhkj !
ikhkj

()|
>k Wikl

which is G(W, W’) > L(W).
Now to minimize L(W) w.r.t W, we can update W us-
ing W+ — argx min G(W, W®) such that W can be

Let oy, = Then

(20)

found out by letting m = 0 for all kI. We make use

of the fac 6SG = VZW (usmg Variational Calculus) and
we get the update rule for W as

hij
Wht Z Ukj Y wk’lhlJ
>0 g+ Bgr + >0 wiy

Wil < 21

where [g;;] = [g1 g2...-8x) and —V?W; (in the image
coordinates) is vectorized as g;. Similarly H is updated
by minimizing L(H) = D(V||WH) with W fixed. Here



G(H, H’) is constructed as

GH,H) = Z v;; log v+
wzkhkj [ wikh%
Vi log(wixhy;) — log | =——2—
% 3k wikhi ’ 2 Wikhy;

- Zvij + Z('Wh)ij + aSgpm + BSa +vSo

,J 2

(22)

After setting w = 0 for all kI, we get the following
update rule

b
b+ Vit il
Z i PV wik’h;/l

) (e

h
kL ( S8amy; )
Zz g Mg
(23)
where, A
«
b=1— —— (hkkrmk/l). (24)
Zi,j My ;
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