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Brain imaging experiments identify plausible circuits involved

in the genesis of the cardinal symptoms of Parkinson’s disease.

Akinesia is linked to hypoactivation of the supplementary motor

area secondary to insufficient thalamocortical facilitation.

Overactivation in other areas such as the lateral premotor

and parietal cortex probably represents a compensatory

mechanism. Bradykinesia is associated with abnormal

functioning within intrinsic basal ganglia circuitry for scaling

movements to appropriate magnitude. Parkinson’s disease

tremor is localized to pontine- and mesencephalic-cerebellar-

thalamic circuits, with abnormalities of both dopamine and

serotonin neurotransmission. There is a need to understand

the anatomic intersections where information is shared across

these circuits.
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Introduction
Despite rapid advancements in the characterization of

molecular and genetic events leading to the loss of

nigrostriatal dopaminergic neurons in Parkinson’s disease

(PD), there remains a large gap in linking this change at

the neural level to the emergence of cardinal signs of the

disease. Understanding the pathophysiological basis for

clinical signs in PD requires a systems level of analysis,

motivated by an understanding of the normal function of

the basal ganglia (BG). This systems level of analysis is

also crucial for the development of rational targets of
iencedirect.com
therapy, such as deep-brain stimulation and neural trans-

plantation. This review examines recent functional brain

imaging studies of PD patients that focus on akinesia,

bradykinesia and tremor. Clinically, these signs com-

monly appear and progress independently of each other.

Functional imaging suggests that there are dissociable

circuits for these signs as well, supporting functional

anatomic models with a differential specialization role

for motor initiation, scaling and online control.

Akinesia
The ability to initiate movements, particularly those that

are internally generated or sequentially structured, is a

function of the premotor areas in the medial wall of the

frontal lobe including the supplementary motor area

(SMA) [1]. The SMA is influenced by the limbic and

prefrontal cortex and has strong projections to the motor

cortex [2]. It is central to motor selection and preparation

of unimanual, bimanual and sequentially structured

action. In PD patients, functional imaging with tasks

requiring motor selection and initiation identified defec-

tive activation of the SMA [3]. This observation supports

a circuit model of akinesia characterized by insufficient

thalamocortical facilitation in PD [4]. This, in turn, is

linked to excessive inhibitory activity of the internal

segment of the globus pallidus (GP), resulting from

unbalanced control by the direct and indirect striatofugal

pathways because of dopamine deficiency within the

striatum. Clinical scores of akinesia correlate significantly

with the severity of striatal dopamine terminal integrity

in vivo, with maximal involvement in the posterior puta-

men [5]. Because ‘downstream’ SMA activation can be

normalized with dopamine therapy, ventral posterolateral

pallidotomy or subthalamic nucleus deep-brain stimula-

tion [6–11], it is argued that the crucial information-

processing abnormality in this circuit is excessive pallidal

inhibition of the ventrolateral thalamus.

Most functional imaging studies of akinesia in PD

patients have used positron emission tomography

(PET), which requires cross-sectional designs and small

sample sizes because of the limitations of radiation expo-

sure. An exciting new development is pharmacological

functional magnetic resonance imaging (fMRI), in which

the same patients can be studied across a range of tasks,

both off and on medication. One recent study identified

both SMA and contralateral motor cortex hypoactivation

in drug naive early PD patients performing a simple finger

movement task [12�]. This hypoactivation normalized

with L-dopa therapy. Motor performance was constant

across conditions, suggesting that any change could be
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ascribed to pharmacological modulation within basal

ganglia–thalamocortical loops [13]. The PD akinesia

model of reduced thalamocortical facilitation to the

mesial frontal cortex is currently being tested in other

disorders of motor initiation. For example, there is

hypoactivation in the SMA and sensorimotor cortex in

schizophrenic patients with severe akinesia during fMRI

[14�].

Appealing as the akinesia model is, many imaging studies

reveal a more complex pattern of cortical control in PD

[15]. With the hypoactivation of the SMA there can be

concomitant overactivation of the bilateral lateral premo-

tor cortex and motor cortex. These changes might repre-

sent compensation because the lateral premotor

association cortex is recruited to maintain task perfor-

mance. This is supported by studies demonstrating

increasing activity in mesial and lateral premotor areas

with task complexity and effort [16]. A recent study using

fMRI strongly supports the compensatory model by

showing that maintenance of movement is accompanied

by a shift of activation to lateral premotor areas [17]. In the

same subjects, dopaminergic therapy normalized these

activation patterns in the setting of constant motor per-

formance. This interpretation assumes that in PD, the

thalamocortical projection to the lateral premotor cortex is

recruited normally and pallidothalamic inhibition affects

only the projection to the mesial premotor areas. Alter-

natively, the overall selection pattern could be abnormal

owing to a general disruption of thalamocortical circuitry.

In the normal case, the BG–thalamocortical circuit is

modeled like a center-surround filter for choosing among

competing motor programs [18]. In PD, there might be

cross-talk between competing programs, leading to appro-

priate facilitation of the lateral, rather than the medial,

premotor areas. Imaging alone does not yet differentiate

these opposing interpretations.

Bradykinesia
Bradykinesia is the slowing of movement in PD second-

ary to reduced amplitude scaling and limb velocity [19]. It

is one of the most common signs of disease and a major

source of disability. Rating scores of bradykinesia corre-

late significantly with PET imaging of striatal fluoro-dopa

uptake, as well as the density of dopamine transporter

receptors, which is a complementary measure of presy-

naptic dopamine terminal integrity [5,20]. Numerous

PET imaging studies identify metabolic signatures of

PD using glucose metabolism [21,22]. Glucose metabo-

lism is a marker of local synaptic activity and thus is a

marker of both local neuronal and synaptic integrity, as

well as damage to remote sources of afferent input to a

site. In PD patients studied off or on medication and at

rest, there is usually increased metabolism in the striatum

and globus pallidus. Recent studies of patients on med-

ications show a significant correlation between the sever-

ity of bradykinesia and bilateral putamen and globus
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pallidus metabolism [23]. This is consistent with the

expected increase in excitatory striatopallidal synaptic

terminal activity as a result of nigrostriatal dopamine

denervation. Broadly speaking, these results support a

role for the BG in influencing motor amplitude or velocity

for particular contexts of action.

Recent brain activation paradigms provide stronger evi-

dence that the BG are involved in movement scaling. In

normal subjects, there is greater activity in the contral-

ateral GP with increasing movement velocity [24] and

greater activity in the GP and putamen with increasing

movement amplitude [25]. In PD patients performing

visually guided tracking movements, there is a general

underactivation of the sensorimotor cortex contralateral to

the moving arm, bilateral dorsal premotor cortices and

ipsilateral cerebellum [26��]. Unlike findings in the aki-

nesia activation experiments, there is a greater than

normal activation of the presupplementary motor cortex.

Increasing movement velocity led to increased regional

cerebral blood flow in many premotor and parietal cortical

areas, as well as the BG, in PD patients, as opposed to the

few cerebral locations that are velocity related in normal

subjects. These findings suggest that the functional cor-

relates of PD bradykinesia are: first, impaired recruitment

of cortical and subcortical systems that normally regulate

kinematic parameters of movement such as velocity; and

second, increased recruitment of multiple premotor areas,

including regions specialized for visuomotor control (ven-

tral premotor and parietal cortices) and some that are not

(presupplementary motor cortex). As with the akinesia

experiments, overactivation of cortical regions might be a

functional correlate of compensatory mechanisms or

impaired selection as a facet of the primary pathophysiol-

ogy of PD.

It remains unclear how basal ganglia circuits might be

specifically involved in influencing movement para-

meters such as velocity or amplitude. There are some

important clues. Behaviorally, there is extensive evidence

that direction and amplitude are coded independently

[27]. Pointing errors in PD patients consist of both under-

and over-reaching. Directional errors are no different than

in normal subjects [28]. This inaccuracy might partly

result from a loss of kinesthetic sense. Unlike patients

with cerebellar ataxia and normal individuals, PD patients

demonstrate an impairment in the ability to detect elbow

displacements in a passive movement task [29�]. Studies

in Huntington’s disease patients suggest that the BG

might be involved in some sort of error feedback control

during movement [30]. Pointing tasks in PD help to

characterize this. PD patients demonstrate no impair-

ment in automatic online adjustments while pointing

to a target that is shifted without their awareness

[31��]. By contrast, when patients are aware of a shift,

there is a dramatic loss in their ability to generate correc-

tive submovements.
www.sciencedirect.com
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Recording studies in monkeys demonstrate strong con-

text sensitivity by GP neurons [32]. Although putamen

and GP neurons are classically associated with motor

execution, a recent study affirms that approximately

25% of neurons demonstrate preparatory responses

[33]. Recent human behavioral data on reaching move-

ments suggest that the transformation to encode limb

position and velocity in intrinsic coordinates is made via a

gain field; the representation is directionally dependent

and modulated monotonically with limb position [34��].
Combining these observations, one can propose a model

in which this gain field is organized within the BG. Motor

output, goal and sensory feedback are merged before

movement onset and are used to adjust ongoing motor

commands in reference to a desired gain field. Online

corrections appear in the form of submovements

amended to an ongoing movement. Disruption of this

adjustment in PD would not abort movement but would

limit the ability of the motor plant to scale rapidly to a

desired context. Testing this hypothesis further will

require a compilation of imaging, neurophysiology and

behavioral studies.

Tremor
It is widely recognized that multiple mechanisms are

involved in genesis of tremor, and there are probably

multiple anatomic correlates for different types of tremor.

Resting 3–5 Hz and postural 4–8 Hz tremors might

develop independently of the other signs of PD, suggest-

ing that tremor could represent a special phenotype [35].

Attempts to show that tremor phenotype is linked to

specific changes within cortical–BG–thalamic loops have

been unsuccessful. To date, there is no definitive evi-

dence for a specific pattern of striatal dopamine defi-

ciency or postsynaptic dopamine receptor density

reduction corresponding to this phenotype. One early

imaging study showed a relationship between isolated

rest tremor and presynaptic putamen dopamine loss [36].

However, most studies correlate dopamine loss to akine-

sia or rigidity, and do not reliably distinguish tremor

patients [37–39]. A recent study using a sensitive measure

of tremor amplitude improved on these findings by noting

that rigidity and tremor were inversely related in their

study patients. After accounting for variance associated

with rigidity, there was no relationship between tremor

and magnitude of dopamine loss [40]. Within the cere-

bellum, there is a correlation between resting metabolism

and disease severity; however, this is not linked specif-

ically to tremor [23,39]. Thus, the spatial distribution of

striatal dopamine loss, or the change in glucose metabo-

lism, is weak at identifying a specific tremor phenotype.

A more fruitful approach for understanding rest or pos-

tural tremor might be to examine alterations in neuro-

transmitter systems or neural circuits that could develop

in parallel with dopamine deficiency of PD. Most animal

models of tremor have focused on localization within
www.sciencedirect.com
cerebellar or brainstem circuits rather than the cortical–

BG–thalamic loops. Lesioning midbrain tegmentum is a

reliable method of inducing a rest tremor by interrupting

nigrostriatal projections, cerebellar connections to the red

nucleus and rubrospinal projections [41,42]. With this

lesion, there is a reduction in serotonergic and noradre-

nergic projections from the brainstem [43]. In concert

with these animal studies, a recent PET imaging study

identified a 27% reduction in midbrain raphe 5-HT1A

receptors in PD patients compared with normal subjects

[44�]. Tremor scores, but not rigidity or bradykinesia,

correlated with this reduction. This area is also probably

interconnected with pontothalamic circuits. Using regio-

nal brain metabolism as the dependent measure, a PET

study identified a network of correlated activity within

pontothalamocortical areas in PD patients with tremor

[45].

A second important approach has been to examine the

effects of deep-brain stimulation to the ventral intermedi-

ate thalamic nucleus in PD patients with severe tremor.

Tremor suppression is typically associated with a reduc-

tion in regional cerebral blood flow of the contralateral

cerebellum [46]. A recent PET study found that regional

cerebral blood flow correlated with tremor acceleration in

the sensorimotor cortex and SMA, and tremor frequency

correlated negatively with changes in the contralateral

dentate nucleus and pons [47�].

Conclusions
Studies to date support the concept that the cardinal signs

of PD are a result of differential involvement of motor

circuits spanning the cortex, BG, cerebellum and brain-

stem. Anatomically, the BG and thalamus are in a privi-

leged position for integrating information across these

circuits [48,49]. In the future, it will be crucial to identify

information sharing between BG and the cerebellar cir-

cuit, which are typically considered to be parallel and

independent [50].
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