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Abstract

We introduce a method for spatiotemporal data fusion and demonstrate its performance on three constructed data sets:
one entirely simulated, one with temporal speech signals and simulated spatial images, and another with recorded music
time series and astronomical images defining the spatial patterns. Each case study is constructed to present specific
challenges to test the method and demonstrate its capabilities. Our algorithm, BICAR (Bidirectional Independent
Component Averaged Representation), is based on independent component analysis (ICA) and extracts pairs of temporal
and spatial sources from two data matrices with arbitrarily different spatiotemporal resolution. We pair the temporal and
spatial sources using a physical transfer function that connects the dynamics of the two. BICAR produces a hierarchy of
sources ranked according to reproducibility; we show that sources which are more reproducible are more similar to true
(known) sources. BICAR is robust to added noise, even in a ‘‘worst case’’ scenario where all physical sources are equally
noisy. BICAR is also relatively robust to misspecification of the transfer function. BICAR holds promise as a useful data-driven
assimilation method in neuroscience, earth science, astronomy, and other signal processing domains.
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Introduction

Combining multiple data sets with complementary spatial and
temporal resolution in order to obtain an integrated view of a process of
interest with high spatiotemporal resolution is a difficult problem that
arises in many disparate contexts. Two examples are (i) combining
satellite measurements (slow, dense) with ground-based sensors (fast,
sparse) in earth science [1–4], and (ii) simultaneous electroencephalo-
graphic (fast, sparse) and functional magnetic resonance (slow, dense)
measurements of human brain activity [5–7]. When the data are
generated by a common process for which a good model exists, for
example in oceanic state estimation [8] and atmospheric science [9], it
is possible to ‘‘assimilate’’ the model and the data using least squares
techniques [10–12]. However, doing this for multiple sets of
measurements can be difficult, and when no reliable equations of
motion exist, no such data assimilation is possible. For these reasons, it
is desirable to develop purely data-driven techniques that aim to co-
associate features in two sets of dynamical measurements with vastly
different resolution.
Independent Component Analysis (ICA) is a nonlinear technique

used to ‘‘unmix’’ spatial and temporal data into statistically indepen-
dent sources and corresponding mixing (or unmixing) coefficients that
relate the degree to which each (statistical) source is present in each
(real) sensor [13–15]. While originally developed to solve the so-called
cocktail party problem [13], in which the goal is to separate the voices

of individual speakers from mixed room recordings, ICA has become
an extremely powerful and popular model reduction technique, with
applications in neuroscience [16,17], earth science [18], and astronomy
[19]. One of the most popular algorithms for performing this unmixing
is FastICA [20]. However, most ICA algorithms and analyses
(including FastICA) suffer from two difficulties: (i) unmixing to
statistically independent sources is a difficult nonlinear optimization
problem which can show sensitivity to the starting guess for the mixing
matrix and can become trapped in local optima, and (ii) in noisy data
where the sources of interest may represent only a small fraction of the
total variance in the data set (for example electroencephalographic
data) it can be difficult to objectively rank the ICA sources. Both of
these difficulties contrast with the far simpler case of unmixing to
linearly decorrelated, rather than statistically independent, sources.
Doing so is a linear algebra problem with a single global optimum, and
goes under the name principal component analysis (PCA) [21],
empirical orthogonal function (EOF) analysis [22], the discrete
Karhunen-Loeve transform (KLT) [23], or proper orthogonal
decomposition (POD) [24], depending upon the field the user of the
technique hails from (generally, statistics, geophysics, mathematics, and
engineering, respectively).
In order to attempt to surmount the difficulties in decomposition and

component interpretation described above, several investigators have
advanced proposals to make ICA more robust. These suggestions
include clustering components obtained from multiple ICA runs [25]
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and analyzing ICA sources for peaks at known frequencies [26]. Such
peaks could occur if the system is being forced by some other known or
measured process. Others have advanced the idea that the concept of
reproducibility, the degree to which a similar-looking source occurs
repeatedly in multiple ICA runs, could simultaneously address the
shortfalls in (i) and (ii) above [27]. Components that are produced in
multiple ICA runs from different starting conditions represent
particularly strong signals in the data, and ranking those components
by reproducibility aids in interpretability. This is the idea behind the
RAICAR algorithm [27], which produces reproducible components
for a single data matrix of interest. Even if it is possible to rank the
components by other means, reproducibility can always form an
additional comparative axis that indicates the order in which one
should look at ICA sources and quantifies the amount of trust that
should be placed in those sources.
We extend the concepts in Ref. [27] to develop BICAR, a new

algorithm to extract paired sources of interest from two sets of sensor
data with vastly different (hopefully complementary) degrees of sensor

coverage and sampling rate. This problem has attracted a good deal of
attention in human neuroimaging, in which a variety of attempts, some
of which use ICA [28,29], have been made to distill shared variability
from multiple measurements. If one wants to decompose these data
‘‘all at once’’ [6,30–32] a series of essentially arbitrary resamplings must
be made in order to bring at least one of the matrix dimensions of each
data set to conformability. An additional contribution to the ICA-based
multimodal fusion literature comes from Multimodal Independent
Component Analysis (MICA) [33], which attempts to solve an
augmented stochastic optimization problem incorporating indepen-
dence of sources within data sets and statistical dependence across data
sets. However, MICA also requires conformable matrix dimensions be
obtained via resampling, as direct source-source correlations are
required for data preconditioning and the subsequent minimization
problem. In addition, MICA by itself does nothing to alleviate the
component interpretation problem described above. Our method does
not require accidental conformability of the space and time dimensions
in either data set, and BICAR simultaneously addresses the problem of

Figure 1. Schematic for the BICAR algorithm. This diagram illustrates the change in size and number of matrices during the steps of BICAR. A.
During the decomposition step, both the temporal data X and spatial data Y are decomposed into K sets of Ne sources, where Neƒmin(sX ,tY ). The
other necessary assumptions, tXwtY and sYwsX , are also schematically depicted. B. The matching step can be viewed as a concatenation, in which
K sets of Ne super-sources and corresponding mixing elements are obtained. This step calculates permutations of the spatial decompositions to give
the groupings. C. In the alignment step, the K sets of Ne matched sources are sorted into Ne sets of K super-sources and their corresponding mixing
matrices. Here KvNe, but there need be no particular relationship between these two quantities. Finally, after averaging and reproducibility
calculations, matrices whose sizes correspond exactly with one of the X decompositions and one of the Y decompositions shown in A remain.
doi:10.1371/journal.pone.0050268.g001
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component reliability. We also preserve the physical link between the
two data sets by assuming that the spatial data represents a transformed
(filtered), downsampled version of the temporal data.
The purpose of this paper is threefold: (a) to introduce the BICAR

algorithm, (b) to show it works in a quasi-simulation context with data
of real-world complexity, and (c) to explore robustness of the algorithm
to assumptions. In what follows we describe BICAR in detail, and
consider its performance on three constructed data sets of varying
difficulty: one set of simulated data, one which employs temporal
speech signals and simulated spatial images, and a third which uses
musical time series paired with astronomical images. We show that
BICAR recovers the true sources that constitute the data even when
both data matrices have been corrupted by Gaussian noise and the
transfer function that connects the two data matrices is imperfectly
known.

Methods

Algorithm
The BICAR pipeline is summarized in Fig. 1. BICAR proceeds

under relatively mild assumptions. The first is that there are two data
matrices,X andY .X is of size sX|tX , andY of size tY|sY . The s,t
notation has been deliberately chosen to indicate space and time. The
sizes are assumed to follow the relationship tXwtY and sYwsX , that
is, theX matrix (the ‘‘temporal’’ data) has high temporal resolution and
coarse spatial resolution, while the Y matrix (the ‘‘spatial’’ data) has
high spatial resolution and coarse temporal resolution. (In practice,
usually tX&tY and sY&sX .) None of these matrix dimensions need
be equal. In what follows, we describe each of BICAR’s steps in detail
and give an equivalent pseudocode representation at the end of each
subsection. The pseudocode is to be understood as pedagogical, in
which efficiency has been sacrificed for explanatory clarity.

Unmixing
BICAR begins by performing stochastic ICA K times on each

data matrix separately (see Figure 1A). X and Y are arranged in
such a way that ICA produces independent temporal sources for X
(and a mixing matrix), and independent spatial sources for Y
(again, with a mixing matrix). Specifically, each ICA decompo-
sition uses the linear source separation model

X~ATzN1 ð1Þ

Y~BSzN2, ð2Þ

where N1 and N2 are noise, A and B are mixing matrices, and T
and S are matrices of temporal and spatial sources, respectively,
and the K sets of decompositions are denoted as follows:

X?A(1)T (1), . . . ,A(K)T (K) ð3Þ

Y?B(1)S(1), . . . ,B(K)S(K): ð4Þ

Ne sources are extracted from each of X and Y ; Ne may be as
large as min(sX ,tY ). Usually, sXvtY , which, if Ne were as large as
possible, would generate a full-rank decomposition of X and a
reduced-rank one of Y . One could alternately ask for fewer
sources, using a variety of criteria to reduce the number of sources
to less than min(sX ,tY ) [34–36].

Algorithm: Unmixing of temporal and spatial data
input: X[RsX|tX , Y[RtY|sY

output: A(i)[RsX|Ne , T (i)[RNe|tX , B(i)[RtY|Ne , S(i)[RNe|sY ,
for i~1, . . . ,K

for i~1,:::K do

A(i),T (i)/ fastica (X)

B(i),S(i)/ fastica (Y)

end

Matching
After decomposition, a match step is used that associates features in

the temporal decompositions with features in the spatial decomposi-
tions (see Figure 1B). Specifically, the temporal mixing coefficients
(columns) of the B(k) matrices are assumed to be functions of the

temporal sources (rows) of the T (k) matrices. For the numerical
experiments in this paper, a particular form is assumed, which is
convolution followed by decimation. Specifically,

bbb(k)i ~aDHt(k)i zb: ð5Þ

H is a circulant matrix representation of the convolving function (for
example a lowpass filter with delay),D is a decimation operator of size
tY|tX , and a,b are scalars representing potentially unknown unit

transformations. Both bbb(k)i and t(k)i are to be understood as column

vectors. With reference to T (k) and B(k) in Eqns. 3 and 4, t(k)i is the

transpose of one of the rows of T (k) and bbb(k)i will be compared to the

columns of B(k).
The matching step proceeds as follows. For k~1, . . . ,K , each row

of T (k) is transformed according to Eqn. 5 and correlated with all

columns of B(k). The columns of B(k) are then paired with the rows of

T (k) without degeneracy: the pair with the largest absolute correlation
are paired and removed from the pool, and the process is repeated until
all temporal sources in realization k have a pair in the spatial

realization. This pairing with B(k) automatically pairs T (k) with the

spatial sources S(k), as column j inB(k) corresponds with source (row) j

in S(k). This process can be envisioned as creating a row permutation

matrix P(k), that when (left) multiplying S(k) the spatial sources are
ordered so they are paired, row-by-row, with their best matching row

in T (k), according to Eqn. 5.

Algorithm: Nondegenerate matching of temporal and spatial
sources

input: T (k),B(k) for k~1, . . . ,K
output: a set of permutation matrices P(k)[RNe|Ne that reorder

B(k), S(k) so that row i of T (k) and row i of P(k)S(k) are
paired spatiotemporal sources

for k~1, . . . ,K do

set P(k)~0;
for i~1, . . . ,Ne do
bbb(k)i /transform t(k)i

! "

for j~1, . . . ,Ne do

r(k)ij /abscorrelate bbb(k)i ,b(k)j

! "

end

end

for l~1, . . . ,Ne do

(m,n)/argmax r(k)ij

P(k)
mn~1

delete row m and column n from r(k)ij

end

end

BICAR for Multiresolution Data Fusion
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Cross-realization correlations
Once temporal and spatial sources are matched, a set of

K(K{1)=2 cross-realization correlation matrices (CRCMs) is
computed [27]. These matrices represent the absolute value of the
correlation coefficients between all paired sources in two realiza-
tions. In BICAR, each realization contains two sets of sources that
have been linked via the matching step. The CRCMs are therefore
computed as follows:

r(k,l)~
1

2
DS T (k),T (l)
# $

Dz
1

2
DS P(k)S(k),P(l)S(l)
# $

D: ð6Þ

In this equation, each r(k,l) is a Ne|Ne matrix of absolute cross
correlations. We have used the symbol S to represent a single
cross-correlation matrix; for example, the i,j element of

S T (k),T (l)
# $

consists of the Pearson correlation between row i in

T (k) and row j in T (l). Absolute value bars are understood to be
applied element-wise to each cross correlation. BICAR source
similarity is computed in both time and space, hence the presence

of two terms, one measuring correlations among T (k) and T (l)

(time) and one for S(k) and S(l) (space). Multiplication by P(i) in the

second term reorders the rows of S(i) so that it is in the matching
row order described above. Alternatively, one can think of
computing r(k,l) as correlating sets of super-sources, in which

T (k) is concatenated with P(k)S(k). The calculation of the set of r
matrices in Eqn. 6 assumes that tX~sY . If this is not the case, the
factors of 1=2 can be replaced with weights wT~tX=(tXzsY ) and
wS~sY=(tXzsY ).

Algorithm: Cross-realization source correlation calculations
input: T (k), P(k)S(k) for k~1, . . . ,K
output: K(K{1)=2 cross realization correlation matrices

r(a,b)
for a~1, . . . ,K do

for b~az1, . . . ,K do

r(a,b)/0:5 # abscorrmatrix T (a),T (b)
# $

z

0:5 # abscorrmatrix P(a)S(a),P(b)S(b)
# $

end

end

Source alignment
The goal of searching the CRCMs and aligning similar

components is to resort the K sets of Ne super-sources into Ne

sets of K super-sources. Once this is done, these sets will be
averaged to obtain an ICA-like decomposition that uses all K
realizations (see Figure 1C). This sorting step proceeds as
follows. Once the set of matrices in Eqn. 6 are calculated, they
are searched exactly as in the RAICAR algorithm [27];
pseudocode is therefore suppressed for this step. Briefly, the
largest element among all the matrices is selected first. Denote

the location of this element as (p(m),q(n)), that is, row p and
column q in the matrix coming from cross-correlations
between realizations m and n. This element represents the
two most similar sources, out of all cross realization pairs. After
finding this element, an additional K{2 sources are selected to
pair with source p from realization m and q from realization n.
This is done by searching row p of matrices r(m,i) for i=n and
column q of matrices r(i,n) for i=m for their respective
maxima. In cases where the row and column maxima for
realization i are identical, the super-source corresponding to
that location is added to the growing super-component. If they
are not equal, the source from the realization with the larger of

the two correlation values is added to the growing super-
component. Once all realizations have been searched via the
CRCMs, one super-source from each component has been
extracted. The rows and columns in each r matrix associated
with these extracted super-sources are then deleted, and the
process is repeated Ne{1 more times.

Sign canonicalization
Alignment has resorted the super-sources so that, rather than K

sets of Ne sources, there are now Ne sets of K sources, arranged to
be maximally within-group similar (again see Figure 1C). Before
averaging over the K realizations in each group, it is necessary to
deal with a sign problem. While ICA is guaranteed to produce a
set of sources and mixing matrix that reconstruct the data matrix,
one can easily flip the sign of one or more sources and the signs of
the corresponding columns in the mixing matrix and leave the
reconstructed data matrix invariant. Because sources are aligned
using absolute Pearson correlation coefficients, sources in one
realization and their sign-reversed versions will be aggregated
together. Therefore, before averaging and reproducibility calcu-
lation, a simple procedure is employed to attempt to ‘‘canonica-
lize’’ the signs. Recall that the first two sources added to one of the
Ne groups represent the two most similar sources remaining,
across all realization-realization pairs. Therefore the sign of the
first source is adopted as canonical, and the signed correlation of
that source with the other K{1 sources in its group are computed.
For any correlations which are negative, flip the sign of both the
source and the corresponding mixing matrix column, which has
been carried along in the alignment process for both the temporal
and spatial decompositions. This manipulation is repeated for all
Ne groups.

Algorithm: Sign canonicalization for super-sources
input: Z(i)[RK|(tXzsY ) the paired, aligned sources;

M(i)[R(sXztY )|K , the corresponding mixing matrices,
for i~1, . . . ,Ne

output: ~ZZ(i) and ~MM (i), the sign corrected sources and mixing
matrices

for i~1, . . . ,Ne do

z1/row Z(i),1
# $

for k~2, . . . ,K do
zk/row Z(i),k

# $

mk/col M (i),k
# $

sk/sign correlate z1,zkð Þð Þ
if skv0 then
~zzk/{zk
~mmk/{mk

end

end

end

BICAR source and reproducibility calculation
After canonicalization, the sources are combined as follows (see

Figure 1C). This step has the effect of producing pseudo-realizations.
The results have the same shape as the single ICA decompositions in
Eqn. 2; however, the BICAR averaged sources are not in general true
independent components, and they have a ranking in terms of
reproducibility. We define the reproducibility of one of the Ne super-
sources as the sum of the unique intra-group absolute cross-correlations
divided byK(K{1)=2. This places the reproducibility indexR[½0,1%.
Each of theNe groups ofK sources are then collapsed to one source by
weighted averaging; the weight for each source is its average absolute
cross-correlation with the other K{1 sources. The sources are then
ranked in order of reproducibility.

BICAR for Multiresolution Data Fusion
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Algorithm: Source averaging and reproducibility calculation
input: ~ZZ(i) and ~MM (i), the sign corrected sources and mixing

matrices, for i~1, . . . ,Ne

output: BICAR sources ẐZ[RNe|(tXzsY ) and mixing matrix

M̂M[R(sXztY )|Ne with associated reproducibilities Rm,
for m~1, . . . ,Ne

for m~1, . . . ,Ne do

C/abscorrmatrix ~ZZ(m),~ZZ(m)
# $

C/C{IK|K

Rm/
1

2

X
ij
CijzCji

# $

for n~1, . . . ,K do

zn/row ~ZZ(m),n
# $

;

mn/col ~MM (m),n
# $

;

for l~1, . . . ,K do

zl/row ~ZZ(m),l
# $

wn/abscorr zn,zlð Þ
end

end

z&m/
P

i wizi=
P

i wi

m& m/
P

i wimi=
P

i wi

end

Numerical experiments
The primary considerations in constructing validation data are

(a) to demonstrate BICAR’s performance on data with ‘‘real-
world’’ complexity and (b) to deliberately construct paired
temporal and spatial data in a manner that avoids domain-specific
attributes that would arise in neuroscience, earth science, or any
other specific signal processing domain. Testing BICAR on data
constructed and conjoined in a pre-specified way validates the
capabilities and robustness of the algorithm in a situation where
the underlying signals and their relationships are known exactly. A
detailed description of the validation data and some comments on
algorithm parameters follow.

Hyperparameters
Number of realizations. The number K of ICA realizations

in the unmixing step needs to be specified. K~30 is used for all
studies in this manuscript. The choice of K~30 is motivated by
the RAICAR algorithm [27] (see particularly Figure 11 in that
reference). While simulations to fine tune K were not conducted
for this study, doubling K (to K~60) yielded no improvement in
algorithm performance but imposed a substantial computational
cost (not shown). Drastically reducing K (to K~2{5) resulted in
much poorer algorithm performance (not shown). This is to be
expected since repeated estimations are a critical feature of
BICAR.

Linkage between the spatial and temporal data. In our
numerical experiments, we assume the temporal and spatial
datasets are linked via convolution followed by decimation (see
Eqn. 5). Many methods for downsampling real data are possible;
for the numerical experiments in this paper, D (the decimation
matrix) is simply integer downsampling. While other methods
could be used, they are not considered here. By using correlation
to match the spatial and temporal sources, we can ignore the
unknowns a and b. For most of the numerical experiments in this
manuscript H (the convolving function) is assumed to be known
(see Mixing), but mismatches in H are also considered (see
Results). BICAR is not confined to linking the datasets via only this
transformation; the transformation between spatial and temporal
data could be linear or nonlinear, and parametric or nonpara-
metric (i. e. empirical filter coefficients). This transformation will
likely depend on the data domain; see Mixing for details on H and

its rationale. The important assumption is the connection between

the T (k) and B(k) matrices, not the particular form of that
connection.

Matching method. It is not essential to use the ‘‘online’’
matching method described here, in which paired decompositions
are compared in turn; all-against-all matching is more computa-
tionally intensive but similar in procedure. Degenerate matching,
in which different temporal sources are paired with the same
spatial source, is also possible. In this study we consider only
nondegenerate matching, in which each temporal source in each
realization has a unique pair among the spatial sources.

Temporal sources
BLOBS. Five simple signals with limited temporal support

and overlap were created and are shown in Figure 2A. The signals
are composed of simple waveforms (sinusoidal, Blackman
windows, Gaussian pulses, etc.). Each signal was designed to
mimic a 1 second recording at 256 Hz. The signals were
standardized to have zero mean and unit variance.

SPEECH. Five mp3 files were obtained from a repository of
public domain audiobooks (librivox.org) and downsampled to
2.75 kHz. The works used were ‘‘Flatland,’’ by Edwin A. Abbott,

Figure 2. The three sets of temporal and spatial signals used in
this study. For each of the three cases (A, B, and C) five representative
temporal sources are shown at left and five representative spatial
sources are shown at right; for details on source construction see
‘‘Methods.’’ The constructed spatial sources are shown in an
astronomical convention, whereby darker color indicates higher image
intensity (reversed grayscale). A. The BLOBS data set has temporal
sources constructed from simple windows and spatial sources made
from Gaussian blobs. B. The SPEECH data set has temporal sources
extracted from five different public domain audiobooks, and spatial
sources constructed of Gaussians. C. The MUSIC data set features
temporal sources extracted from five different public domain live
concerts, and spatial sources that are small frames extracted from much
larger astronomical images from the Sloan Digital Sky Survey (http://
www.sdss.org).
doi:10.1371/journal.pone.0050268.g002
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The ‘‘Confessions’’ of St. Augustine, ‘‘Huckleberry Finn’’ by Mark
Twain, Herman Mellvile’s ‘‘Moby Dick’’, and ‘‘History of the
Peloponnesian War’’, Book 5, by Thucydides. Each realization of
this data pulled 1282 contiguous samples from a random location
in the overall file, corresponding to a roughly six second block of
speech. Each block was standardized to have zero mean and unit
variance; a representative set of these speech signals is shown in
Figure 2B.

MUSIC. Five mp3 files were obtained from a repository of
public domain sound recordings (www.archive.org/details/etree).
The artists used were Andrew Bird, Bela Fleck and the Flecktones,
Cowboy Junkies, The Mekons, and The National. These two-
channel recordings were averaged to monaural and downsampled
to 2.75 kHz. From each processed recording, 1282 contiguous
samples were extracted from a random location in the overall
recording, corresponding to a roughly six second block out of
several minutes of total recording time. Each block was then
standardized to have zero mean and unit variance; a representa-
tive set is shown in Figure 2C.

Spatial sources
BLOBS. Each simulated spatial source is a 16616 pixel array,

viewed as a pixelisation of ½0,1%|½0,1%. This image size was chosen
to correspond to the number of samples in each simulated
temporal source, described above. Each spatial source contains a
random number of non-normalized Gaussians (between two and
four) of the form

g(x,y)~exp({xc
TR(h)THR(h)xc=2), ð7Þ

where xc
T~½x{x0 y{y0%, with a random center (x0,y0) in

½0,1%|½0,1%, H is a 2|2 diagonal Hessian matrix with random

entries in the range ½5|10{5,1|10{2%, and R(h) is the following
2|2 rotation matrix:

R(h)~
cos(h) sin(h)

{sin(h) cos(h)

% &
ð8Þ

As with the simulated temporal sources, each simulated spatial
source was standardized. The data are shown in Figure 2A.

SPEECH. These spatial sources were constructed in an
identical fashion to those in BLOBS, with the following
differences: there are between four and fifteen Gaussians, the
diagonal Hessian matrix has random elements in

½1|10{6,2|10{3%, and the images are 1286128 pixels. A
representative set of sources is shown in Figure 2B.

MUSIC. Five astronomical images were downloaded from the
image gallery of the Sloan Digital Sky Survey (www.sdss.org). The
images were of varying sizes, so they were all interpolated and
downsampled to 640|640 pixels. Each spatial source is a random
1286128 pixel subimage extracted from one of these images, one
source per image. Thus the chosen sources are 4% of the total
number of pixels in the downsampled image. Following extraction,
the spatial sources were standardized as before; a representative set
of images is shown in Figure 2C.

Figure 3. Mixing coefficients, shown for the MUSIC data set. At top, the process of transformation and decimation/downsampling of the
temporal sources which leads to the spatial mixing coefficients (see Eqn. 5) is shown. At bottom, the temporal mixing coefficients are obtained by
spatial downsampling; each image is divided into sixteen blocks, and the mean intensity in each block gives one column of the temporal mixing
matrix. This process is repeated for each image, resulting in 16 mixtures of the five temporal sources. Four of these regions are numbered in blue in
the third image, with the numbering suppressed in other images for clarity. Mixing coefficients for the BLOBS and SPEECH data sets are constructed
analogously; see Methods for details.
doi:10.1371/journal.pone.0050268.g003
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Mixing
A schematic showing the mixing of the spatial and temporal

sources is shown in Fig. 3. X and Y are assumed to be related via
the transformation in Eqn. 5. A delayed, low-pass filtered version
of the temporal sources was simulated by convolving with the
following function

H(t; a,t,t0)~H(t{t0)
t{t0
t

! "a

e{(t{t0)=t, ð9Þ

where H is the Heaviside function. This function has a single peak
at t#~t0zat. If not otherwise noted in the text, a~1, t~0:15,
and t0~0:1. After this transformation, the resulting signals were
further decimated by a factor of either 16 (BLOBS) or 128
(SPEECH, MUSIC). This delayed, filtered, decimated signal
forms one set of mixing coefficients; there are five in total, one for
each source.
To mix the temporal sources, the area occupied by the spatial

sources was divided into sixteen blocks. One column of temporal
mixing coefficients was obtained by computing average intensity
values in those sixteen blocks. This was repeated for each spatial
source, yielding a mixing matrix of size 1665. This process is
identical in BLOBS, SPEECH, and NOISE, although the
SPEECH and NOISE blocks are larger because those images
are larger (128 pixels on a side versus 16).
For the validation simulations, this transfer function was chosen

a priori. It has a form (a low pass, delayed LTI filter) commonly
observed in physical systems, including fMRI [37–39]. This
particular transfer function was chosen for its familiarity, its
generality, and because it is relatively easy to manipulate the
function’s shape parameters and thereby investigate robustness to
TF misspecification. The TF will depend on the process being
studied and could take a different form, including that of a
nonlinear model linking the spatial and temporal data, in which
case Eqn. 5 would need to be modified. Linking the simulations as
described above allows validation of BICAR in a situation in
which both the input data and the form of the linkage between the
spatial and temporal data is known.

Noise
After mixing of temporal and spatial sources, noise was added in

a symmetric way to both data matrices, allowing a signal-to-noise
(SNR) measure to be defined for each simulation. Both the
noiseless temporal and spatial mixtures were first normalized such
that the variance of each matrix was equal to unity. Then matrices
of Gaussian random noise of the appropriate size with zero mean
and variance s2G ranging from 10{3 to 102 were added to the data
matrices. The SNR of the resulting noisy data was defined as

1=s2G.

Reconstruction quality
A quality factor Q was defined for BICAR reconstructions as

follows. Every BICAR source, consisting of paired temporal and
spatial components, was absolute correlated with the five known
noiseless sources. The resulting correlation matrix was searched
for successive maxima and reduced in dimension by one unit at
each step. Thus each BICAR source becomes associated with a
unique best match among the known paired sources. Denoting the
value for BICAR source i during this search by ri, define

Q~
1

5
Siri, the average of the absolute correlations.

Q alone does not uniquely inform us about the BICAR
decomposition; one could obtain Q~0:5 by having perfect
matches from the temporal parts of the BICAR sources and

terrible ones from the spatial portions or vice versa. In some cases
it is useful to distinguish the contribution of Q from temporal
source similarity and the contribution coming from spatial source
similarity. Hence sub-measures Qt and Qs were also defined.
These simply sum the pieces of the rif g coming from absolute
correlations between the temporal parts of joined sources (Qt) and
similarly for the spatial pieces (Qs). Qs and Qt are both bounded
above by 0.5, while Q[½0,1%.

Results

Figure 4 illustrates sample BICAR reconstructions for the
MUSIC data at both high and low signal-to-noise. Fig. 4A shows
the true temporal and spatial sources; colored circles next to the
temporal signals and colored boxes around the spatial signals give
the source pairing. For example, the fourth temporal source from
the bottom (green dot) has been paired with the fourth spatial
source from the left (green box). Fig. 4B shows a BICAR
reconstruction at low noise (SNR~100). The colors now indicate
both the temporal and spatial pairing, as well as the best true

Figure 4. Low and high noise BICAR reconstructions for MUSIC
data. A. The noiseless true sources. Colored dots and boxes have been
used to show both the pairing between temporal and spatial sources
and the association between BICAR sources in B, C and the true
sources. For example, the temporal source on the bottom of the signal
plot is paired with the leftmost spatial source in the image series. B. A
BICAR reconstruction at low noise (SNR~100). The colors have been
assigned according to the best match with a true source; note that
some sources have reversed signs (green and black), but pairing the
BICAR sources with the true sources is quite easy. C. A high noise BICAR
reconstruction (SNR~0:1). While features of the true spatial sources
are evident in the BICAR sources, the temporal sources are pure noise.
doi:10.1371/journal.pone.0050268.g004
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match for each BICAR source. Notice first that two of the spatial
signals (first and fourth from the left) have had their signs reversed;
this is no cause for concern, as the sign canonicalization procedure
ensures consistent signs, but not necessarily the same sign as a true
source. At this low noise level, it is easy to determine which
BICAR source matches which true source; the BICAR sources
strongly resemble the true sources.
Figure 4C shows a BICAR reconstruction at high noise

(SNR~0:1). Once again, several spatial sources have reversed
signs with respect to their true counterparts. Also note that the
BICAR sources are much noisier than in the low noise case; the
temporal sources are basically unrecognizable, but some of the
features of the true spatial sources can still be seen in their BICAR
equivalents - however they have begun to be spread across
multiple sources. For the scenario we have constructed — all
sources with identical signal-to-noise — it is entirely expected that
the sources may become much noisier as the added noise
increases. Since ICA reconstructs each data matrix (temporal
and spatial) with little error, the added noise must go somewhere,
either into the sources themselves or the mixing coefficients.
Clearly, BICAR can help to reduce this noise via source averaging,
at least in the case of the spatial sources in this example. There are
additional remarks on this asymmetry between the temporal and
spatial source quality below.
Illustrated in Figure 5 are the reproducibility spectrum and

reconstruction quality, averaged over ten independent BICAR
runs, at each of seven different inverse signal-to-noise ratios for the
BLOBS, SPEECH, and MUSIC data sets. Reproducibility values
are always shown sorted in descending order. Since the problem
setup is entirely symmetric (uniform addition of noise), absolute
source order is meaningless; within each group no real source is
easier or harder to extract than any other. Note that BICAR
performs quite well even in the presence of moderate noise for all
three data sets. The quality of reconstruction is quite poor at the
highest noise levels (10 and 100-fold more noise than signal), but
this is an extreme regime where good ICA performance will be
hard to achieve. In all three data sets, BICAR is quite robust to
small amounts of noise, and can even form reasonable recon-
structions at a SNR of unity.
We have deliberately chosen challenging problems on which to

test BICAR; BLOBS is relatively simple, but SPEECH and
MUSIC are not. Variations in BICAR performance are not due
only to added noise; for SPEECH and MUSIC (and the spatial
part of BLOBS) each BICAR run used an entirely different set of
sources. Different (random) images were created or selected and
different (random) pieces of the audio recordings were extracted.
No particular effort was made to ensure that the sources were
always sparse, which is essentially the criterion FastICA is using to
decompose the data. Indeed, the results for Qt for SPEECH (panel
B) and MUSIC (panel C) are somewhat surprising. Despite the fact
that Blind Source Separation was originally developed for speech
signals [13], and that the MUSIC sources, being noisy live
recordings of rock bands, may in some sense already be mixtures,
Qt shows a very similar pattern in both SPEECH and MUSIC. In
all, BICAR does remarkably well on quite challenging data sets.

In both SPEECH and MUSIC spatial source quality decays
more slowly than temporal quality, while they are more symmetric
in BLOBS. This is easy to understand given the amount of data
available for estimating the temporal and spatial sources. BLOBS
contains sixteen mixtures of five temporal sources and sixteen
mixtures of five spatial sources, so the amount of data available for
ICA to do the estimation in both the spatial and temporal case is
identical. However, in SPEECH and MUSIC, there are still
sixteen mixtures of five temporal sources, but 128 mixtures of five
spatial sources. Hence there is much more redundant data
available for spatial estimation, and the quality of extraction Qs is
subsequently higher over a wider range of added noise. SPEECH
and MUSIC were not made as symmetric as BLOBS because real
applications are quite unlikely to be nicely symmetric. For
example, human neuroimaging typically involves roughly 100
temporal sensors but 800–1000 spatial time points, giving a ratio
very similar to the 128=16 ratio in MUSIC and SPEECH.
Another feature of Figure 5 is the limited dynamic range in

component reproducibility. In both BLOBS and SPEECH, all the
sources are basically perfectly reproducible with little variance,
except at the most extreme noise levels. Even in MUSIC, where
there is more variation in component reproducibility, all five
BICAR sources have Rw0:8, regardless of the value of Q for the
BICAR run. In the simplest data sets this high R is easy to
understand. FastICA produces different results from run to run
because of local minima and convergence failures; it is inferences
contaminated by these difficulties that we wish to guard against by
using BICAR. In BLOBS, there may simply not be multiple
minima; the signals are so simple that ICA reproduces the same
decomposition every time, until the noise variance is much larger
than the signal variance. However, the apparent decoupling of Q
from R begs the question: is there a relationship between
reproducible components and ‘‘correct’’ (true) ones?
Figure 6 shows the answer to this question using the MUSIC

data, and the answer is ‘‘yes.’’ As components become less
reproducible, they look less and less like the true sources that
comprise the mixture. Figure 6A (upper panel) repeats the left
panel from Figure 5C, with all reproducibility spectra rescaled so
that the most reproducible source in each set has R~1. In
Figure 6A (lower panel), the correlation between BICAR source
reproducibility and similarity to a true source is shown. These
similarity values are simply row maxima of the absolute
correlation matrix between the BICAR sources and the true
sources. In each case, these correlations are computed for a single
BICAR run across all the added noise values. So, for instance, one
set of BICAR simulations in Figure 6A at seven different noise
values yields five correlations, one for each source. Each horizontal
black bar denotes the result from one set of simulations, and the
red bar marks the mean over ten sets. The sources have been
sorted by decreasing reproducibility. One can see that there is
indeed a high degree of correlation between reproducibility and
true source similarity. However, this degree of correlation does not
really fall off as the sources become less reproducible.
Figure 6B clarifies this result. In extracting five sources from our

mixtures, we have incorporated all prior knowledge — we know
the mixtures contain five true sources and we ask for five.

Figure 5. Mean reproducibility spectrum and quality index. A. BLOBS. B. SPEECH. C. MUSIC. Results are averaged over ten BICAR runs at each
of seven different noise-to-signal ratios (1/SNR). In the reproducibility plots (left panels of A, B, and C), the values for each inverse SNR have been
offset for clarity. All BICAR sources have been ranked in order of decreasing reproducibility before averages are computed. In the bottom right panels,
the spatial (blue x) and temporal (red x) portions of the quality index are also offset for clarity. All vertical bars in the upper right panels represent one
standard deviation, computed across all the BICAR runs. For the quality indices (right panels), mean and standard deviation for Q are shown (black
symbols, upper right panels). Qs and Qt are shown without averaging; each BICAR run generates one pair of red and blue symbols (red and blue x,
lower right panels).
doi:10.1371/journal.pone.0050268.g005
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However, in more realistic applications, the user will have no idea
how many real sources there are and would have to use some
method to estimate that number [34–36] or simply guess. Faced
with this problem, one might simply ask for as many sources as
possible (sixteen in this case), or at least close to that number. If the
calculations in Figure 6A are repeated, but this time requesting ten
sources (twice as many as truly exist) in each decomposition,
Figure 6B is obtained. A dramatic change is immediately
apparent. The dynamic range of the reproducibility spectrum
increases, and for noiseless data (black circles) the R spectrum
immediately tells us that there are only five sources actually

present (Figure 6B, upper panel). As the noise increases, it becomes
harder to immediately see the true number of sources present in
the mixture.
There is a similarly dramatic change in the correlations between

extracted and true components (Figure 6B, lower panel). The
degree of correlation between reproducibility and source similarity
falls off as components become less reproducible. In every case the
five most reproducible BICAR components show strong correla-
tions between R and similarity to the true sources, while the second
five show no relationship. This demonstrates two principles. First,
the more reproducible a BICAR component is, the more it
resembles a true source, even as that overall level of similarity drops
as the noise power increases. Second, even if the number of real
sources cannot be clearly identified via a gap in the reproducibility
spectrum, components should always be analyzed in order of
decreasing reproducibility, as the larger the reproducibility the
closer to a physical source that component will be. In certain real
applications [26] there may be criteria that could be used to sort
components; reproducibility should form an additional criterion.
So far the transformation in Eqn. 5 has been assumed known. In

most real applications the user has imperfect knowledge of the
transfer function that connects the temporal sources with the
spatial mixing coefficients. The parametric transfer function (Eqn.
9) employed in this study can be manipulated in several ways, and
Figure 7 shows the results of mixing the data using one H and
running BICAR with a different transfer function.

N With t0~0, the function has a peak at at. Both the rise time
and decay rate of h can be adjusted while keeping the location
of the maximum constant. This is achieved via the transfor-
mation at? mað Þ t=mð Þ, for variable m (Fig. 7A).

N With t0~0, the location of the peak can be adjusted while
keeping the asymptotic decay rate t constant by simply
adjusting a (Fig. 7B).

N The shape of h can be fixed and the delay t0 adjusted
(Fig. 7C,D).

All BICAR runs in Figure 7 were performed on the BLOBS
data at an SNR of unity. Reproducibility is not shown for any of
these calculations; as demonstrated in Figure 5 the BLOBS data is
simple enough that all extracted components are highly repro-
ducible. This remains the case here (not shown). Figure 7A
indicates robustness to the lack of knowledge about rise time and
decay rate of the transfer function (note the logarithmic m axis).
However, if one is unsure about those parameters in a real
situation, one is better off guessing the transfer function is sharper
rather than broader. In Figure 7B, there is a much more
pronounced asymmetry; there is little cost when reconstructing
with a transfer function with a peak close to zero but a pronounced
decay in quality for overshoots of the true the peak location.
Figures 7C and D show the effects of changing t0 but keeping all
other shape parameters constant. Here there is sensitivity to t0 in
both directions, although it should be noted that these ranges are
rather extreme; they reflect up to 100% error in t0 in both
directions. Figure 7D illustrates that the filter width interacts with
t0; a larger range of t0 is tolerated when the transfer function is
broader. In each case Qs falls off more quickly than Qt, which is
expected; the dominant effect of transfer function mismatch is
pairing errors between the reconstructed sources.
As a practical guide to transfer function uncertainty, we would

offer the advice to guess sharp and early; the results of Figure 7
show that BICAR is quite robust to certain types of misspecifica-
tion in the transfer function. It is possible in principle to estimate
the transfer function (either parametrically or as a set of filter

Figure 6. Mean reproducibility and correlations between
component reproducibility and similarity to known sources
using the MUSIC data. See text for definitions of these quantities. In
the reproducibility plots (upper panels in A, B), sources have been
rescaled so that the most reproducible source for each BICAR run at
each noise level has reproducibility equal to unity. The lower panels in
A, B show the correlation of reproducibility with known source
similarity (see text), computed across all noise levels. The values for
each of ten BICAR runs are black horizontal lines, and the mean over
runs is shown in red. A. Five components were extracted in each BICAR
run. The upper panel is identical to the left subpanel of figure Fig. 5C,
with the exception of the rescaling already mentioned. Higher
reproducibility is indeed correlated with similarity to a true source,
but this is basically true for all five sources. B. Identical to A, except that
ten sources were extracted in each BICAR run. There is greater dynamic
range in the reproducibility spectrum than in A, particularly at low
noise levels, where there is a clear break between sources five and six.
As the noise increases, the reproducibility spectrum flattens out. The
lower panel shows that less reproducible sources are less similar to true
sources, with the second five sources (recall there are five true sources)
having no consistent relationship to the known sources.
doi:10.1371/journal.pone.0050268.g006
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coefficients) from within BICAR itself, using matching quality as
an objective function. This area is outside the scope of this
manuscript but is an extension of BICAR which we are actively
studying.

Discussion

We have presented a data-driven method that extracts
reproducible pairs of spatial and temporal components from pairs

of data sets with arbitrarily different spatial and temporal
resolution. In cases where a credible model already exists for data
assimilation [8–12], BICAR provides a complementary approach
that is purely data-driven. In situations where a credible model is
unknown, impossible, or suspect, an algorithm like BICAR may be
the only option for joint mining and/or model reduction of such
data.
BICAR is inspired by and shares methods with RAICAR [27]

but improves and extends RAICAR in several ways. Most obvious

Figure 7. Effect of transfer function parameters on quality of BICAR reconstructions of the BLOBS data. Each of the four panels shows
the mean and standard deviation of Qs (filled circle) and Qt (filled square) over ten BICAR simulations. In all cases the mixing data was generated
using one set of parameters for the transfer function, and BICAR was used to recover the true sources using another set of parameters. Each panel has
a vertical line that indicates simulations with a perfect match between mixing and recovery parameters. In all cases the parametric transfer function
given in Eqn. 9 was used. Sample transfer function shapes are shown above each panel, color coded to match the appropriate data point. A.
Adjustment of function rise time and decay, keeping the location of the peak constant (see text). B. Adjustment of peak location with the decay rate
(t) held fixed. Note the sharp decline in quality for a delayed peak. C. Adjustment of the lag parameter. Performance is plotted as a function of
fractional difference in the t0 used for recovery versus the one used for generation. D. Here the lag parameter has been adjusted in an identical
manner to C, but with wider transfer functions. Note that the loss of recovery quality seen in C is mitigated here by the wider transfer functions.
doi:10.1371/journal.pone.0050268.g007
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is the pairing of spatial and temporal components in order to
perform multiresolution data fusion. This opens up a set of
powerful BICAR extensions already alluded to. One is the use of
temporal source/spatial source matching quality as an objective
function to optimize over a family of transfer functions, when the
BICAR transfer function is unknown or poorly specified. Another
is the choice between nondegenerate versus degenerate matching.
While only nondegenerate matching was considered in this study,
there may be advantages to allowing multiple temporal sources to
match the same spatial source. This would be the case if ICA
‘‘oversplits’’ the temporal data such that one physical process is
broken into several ICA components. These sources could be
recombined if they match the same spatial source. It would also be
useful to compare ‘‘all against all’’ matching, in which a temporal
source from any of the K realizations could match a spatial source
in any other realization, to the ‘‘online’’ matching considered in
this manuscript, in which matching occurs between pairs of
realizations, one pair at a time.
BICAR could also be expected to deal well with mismatches.

This would occur when sources in one of the datasets have no true
pair in the other dataset, as defined by Eqn. 5. With nondegen-
erate matching each source in the temporal data will be paired
with a source in the spatial data, but mismatched sources would
not be expected to pair reproducibly — repeatedly in many
iterations. Therefore, these mismatched sources should end up
near the low end of the reproducibility spectrum. This is as it
should be, as BICAR is designed to find paired reproducible
sources, not simply two sets of reproducible sources with no
relation to one another.
In the process of developing BICAR, important modifications to

the published RAICAR algorithm have also been made. For one,
the definition of reproducibility, and the way in which sources are
averaged to obtain BICAR components, differ from RAICAR
[27]. The way these issues are handled in BICAR ensures that all
sources from all ICA realizations are used to calculate reproduc-
ibility and construct the BICAR components. This is obtained via
favoring the weighted averaging scheme described in Algorithm,
as opposed to selective averaging of only components passing some
similarity threshold. In addition, the sign canonicalization step,
while simple, is absolutely necessary to enable the use of BICAR
on a broad range of data. Sign reversals of the type described in
Algorithm are ubiquitous and, if ignored, lead to nonsensical
BICAR components. This seems to be particularly true when
performing ICA on temporal data.

Extremely stringent tests have been set for BICAR in this
manuscript. While BLOBS, SPEECH, and MUSIC are of
relatively low dimension (five sources), much of the data that
produces them comes from real world signals — audiobooks,
astronomical images, and recorded music. No particular randomly
drawn data set is guaranteed to be easily ICA-decomposable even
in the low noise case, so our performance measures study
ensembles both of different signals and increasing noise levels.
Finally, the way exogenous noise has been added makes for a
difficult problem as the noise level increases. Our measures of
good performance demand that all BICAR sources be close to the
true sources. Since ICA decompositions reproduce the data matrix
with minimal error, the added noise must go somewhere, either
into the mixing elements or the sources. Hence it would be very
difficult for us to obtain high Q values at all noise levels. If instead
some sources were made noisier than others — effectively adding
the noise directly to the sources and not the mixtures — the least
noisy sources could have potentially been extracted at much
higher noise levels.
For neuroimaging applications, no epoching, trial averaging, or

statistical parametric mapping [40] is required to run BICAR.
This means that decomposition and reproducibility calculation are
completely decoupled from experimental design. One can
therefore employ this task information at the end of the process
to construct component ranking criteria that are independent of,
and can be used in tandem with, reproducibility.
The transfer function that links the two data sets is particularly

relevant for human neuroimaging [39], an application area in
which we are interested [7]. However, the function is quite simple
and generic, and essentially stands in for any delayed low-pass
filter. Using a parametric transfer function has made it easy to
study how robust BICAR is to transfer function misspecification.
Even without attempting to estimate the transfer function from
within BICAR, BICAR has good robustness properties to
relatively large transfer function errors in both location and shape
parameters.
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