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Whole-brain network analysis of diffusion imaging tractography data is an important new tool for
quantification of differential connectivity patterns across individuals and between groups. Here we
investigate both the conservation of network architectural properties across methodological variation and
the reproducibility of individual architecture across multiple scanning sessions. Diffusion spectrum imaging
(DSI) and diffusion tensor imaging (DTI) data were both acquired in triplicate from a cohort of healthy young
adults. Deterministic tractography was performed on each dataset and inter-regional connectivity matrices
were then derived by applying each of three widely used whole-brain parcellation schemes over a range of
spatial resolutions. Across acquisitions and preprocessing streams, anatomical brain networks were found to
be sparsely connected, hierarchical, and assortative. They also displayed signatures of topo-physical
interdependence such as Rentian scaling. Basic connectivity properties and several graph metrics consistently
displayed high reproducibility and low variability in both DSI and DTI networks. The relative increased
sensitivity of DSI to complex fiber configurations was evident in increased tract counts and network density
compared with DTI. In combination, this pattern of results shows that network analysis of human white
matter connectivity provides sensitive and temporally stable topological and physical estimates of individual
cortical structure across multiple spatial scales.
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Introduction

Recent advances in diffusion-based magnetic resonance imaging
(MRI) techniques and complementary white matter tractography
have made it possible to estimate the locations of anatomical
highways spanning the cortex in the healthy and diseased human
brain (Basser et al., 2000; Lazar et al., 2003; Behrens et al., 2003;
Hagmann et al., 2003; Parker and Alexander, 2003). Collectively, these
large-scale pathways form a network architecture which, far from
being random or haphazard, suggests that the cortex has precise
internal structure. Studying this measured architecture may therefore
provide insight into how macroscopic white matter structure both
constrains and facilitates healthy cognitive function (Johansen-Berg,
2009; Bandettini, 2009; Assaf and Pasternak, 2008). For example,
large-scale anatomical brain networks constructed from diffusion
imaging data display a clustered or community structure, where
groups of brain regions are more highly connected to each other than
to regions in other groups (Iturria-Medina et al., 2007; Hagmann et al.,
2008; Gong et al., 2009; Zalesky et al., 2010). These clusters of highly
interconnected regions are then bridged by a few important tracts,
forming a topological structure which is thought to be theoretically
conducive to both segregation (through clusters or modules) and
integration (through connecting paths) of information processing
(Sporns et al., 2000, 2004). Through a complex structure–function
relationship (Honey et al., 2007; Honey and Sporns, 2008), this
delicate balance of segregation and integration in anatomical
architecture may form the backdrop of modular cognitive function
(Simon, 1962). Despite this confluence of results, it is not yet clear
how similar our measured network structure is to true cortical
organization, an uncertainty which is complicated by the availability
of multiple different measurement streams including diffusion tensor
imaging (DTI) (Basser et al., 1994; Pierpaoli et al., 1996), diffusion
spectrum imaging (DSI) (Wedeen et al., 2005) and a variety of high
angular resolution diffusion imaging (HARDI) based methods such as
Q-ball imaging, spherical deconvolution, and PAS-MRI. In the present
work, we restrict ourselves to a comparison of classical DTI and the
more recently developed DSI, which has been shown to better resolve
diffusion directions where white matter fibers cross (Wedeen et al.,
2008).

While large-scale network descriptions have enabled an under-
standing of the global structure of anatomical connectivity, contem-
poraneous studies of single tracts or small portions of white matter

http://dx.doi.org/10.1016/j.neuroimage.2010.09.006
mailto:dbassett@physics.ucsb.edu
http://dx.doi.org/10.1016/j.neuroimage.2010.09.006
http://www.sciencedirect.com/science/journal/10538119


Table 1
Comparison of DSI and DTI: synopsis of results. See Supplementary Table 4 for a
complete report of graph metric values and their associated reproducibility in the two
imaging modalities.

DSI DTI

Density 0.16 0.15
Clustering 0.55, non-random 0.53, non-random
Pathlength 2.10, short 2.15, short
Assortativity 0.11, assortative 0.09, assortative
Hierarchy 0.52, hierarchical 0.47, hierarchical
Rentian scaling p=0.79, present p=0.81, present
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have begun to elucidate the underlying forces constraining individual
connectivity (Bosnell et al., 2008). In particular, it has been suggested
that anatomical connectivity is not completely hard-wired for an
individual's lifetime, but instead changes appreciably with age (over
long time scales) (Giorgio et al., 2010; Wozniak and Lim, 2006),
during development (over intermediate time scales) (Bava et al.,
2010; Cascio et al., 2007), and with rehabilitation or training (over
short time scales) (Scholz et al., 2009; Bosnell et al., 2008). In addition
to their sensitivity to time-dependent changes, measures of white
matter integrity are also modulated by disease and cognitive ability
(White et al., 2008; Sexton et al., 2009; Madden et al., 2009).

Together, these two important strands of global and local
interrogation suggest that it may be possible to characterize the
large-scale anatomical connectivity of an individual and to map
connectivity properties to individual cognitive ability, traits, and the
effects of training. Theoretically, the utility of network theory in the
study of individual variation lies in its increased power to capture
large-scale alterations in structure as a combined result of many
small-scale changes. However, before embarking on a study of
behavioural or cognitive correlates of individual network properties,
it is important to assess the sensitivity of network analysis to
individual variation as well as its robustness to iterative measure-
ment. Therefore, in this study we sought to answer two distinct but
complementary questions: 1)What network properties are conserved
across individuals and robust to changes in image acquisition and
analysis methods? and 2) Do network properties have the ability to
characterize individual differences that are both accurate and
reproducible in large-scale cortical structure across multiple scanning
sessions?

In order to address these questions, we acquired diffusion imaging
scans from healthy individuals and systematically varied our proces-
sing stream to ascertain the effects of imaging acquisition (DSI/DTI),
atlas, and spatial resolution onmeasured cortical architecture over the
whole population as well as on its reproducibility in a single
individual. More specifically, both diffusion tensor imaging (DTI)
and diffusion spectrum imaging (DSI) scans were each acquired in
triplicate from a group of healthy young adult individuals. Determin-
istic tractographywas used to construct subject-specific networks and
a whole-brain atlas was then applied to the tractography data in order
to attain an inter-regional connectivity matrix; see Fig. 1 for a
schematic of brain network construction. Atlases used in this work
included the Automated Anatomical Labeling Atlas (AAL), the
Harvard–Oxford Atlas (HO) and LONI Probabilistic Brain Atlas
(LPBA40). In order to probe the effects of spatial resolution, each
atlas was iteratively upsampled into twice as many regions of interest
(ROIs) (‘Sub 1’), four times as many ROIs (‘Sub 2’), and eight times as
many ROIs (‘Sub 3’); see Fig. 1 for a schematic of the upsampling
scheme and Materials and methods for details.

Structural properties of cortical connectivity were measured on
both raw connectivity matrices and binarized brain graphs. We
hypothesized that while exact values of network metrics might vary
from individual to individual, qualitative architectural properties
would be conserved across the population and robust to effects of
individual variability, diffusion scanning technique, and methodolog-
ical variation. To complement topological analysis, we also tested for
the existence of relationships between graph measures of connectiv-
ity and physical measures of connectivity, such as the length of
connections in stereotactic space. Finally, in order to determine
whether network properties can accurately measure individual
differences, we used the intra-class correlation coefficient (ICC) to
quantify the reproducibility of network measures across the 3
scanning sessions and its dependence on type of acquisitions (DTI
and DSI), anatomical parcellation and spatial resolution. Specifically,
by using the ICC we were able to test whether the variance between
subjects in a given network property was larger than the variability
within a subject over scanning sessions. By these means both the
conserved and individually varying properties of healthy brain
architecture, robust to imaging modality, atlas, and spatial scale,
could be identified.

Materials and methods

Data acquisition

After having obtained informed consent, seven healthy volunteers
each completed three DSI scans acquired on separate days (mean time
from first scan to last was 21 days, range 11–37). In addition, 6 of the 7
subjects also completed three DTI scans acquired on separate days
(mean time from first scan to last was 5.5 days, range 3–9). All scans
were acquired at 3 T with a Siemens Tim Trio MRI scanner with a 12
channel phased array head coil using an echo-planar diffusion-
weighted technique acquired with iPAT and an acceleration factor of
2.

For the DSI, the timing parameters of the pulse sequence were TE/
TR=133/10,500 ms, 258 diffusion directions with a maximal b-value
of 5000 s/mm2; for the DTI, the timing parameters of the pulse
sequence were TE/TR=94/8400 ms, 30 diffusion directions with a
maximal b-value of 1000 s/mm2 and two averages. A single b0 image
was acquired during the DSI scan, and two were acquired during the
DTI scan. For both scans, the matrix size was 128×128 and the slice
number was 60. The field of view was 230×230 mm2 and the slice
thickness 2 mm. Acquisition time: 45:42 min per DSI scan and
9:08 min per DTI scan. See Supplementary Materials for a plot of b-
values used in both DTI and DSI acquisitions; note that points were
taken on a Cartesian grid.

In addition to diffusion scans, a three dimensional (3D) high-
resolution T1-weighted sagittal sequence image of the whole brain
was obtained by a magnetization prepared rapid acquisition gradient-
echo (MPRAGE) sequence with the following parameters:
TR=15.0 ms; TE=4.2 ms; flip angle=9°, 3D acquisition,
FOV=256 mm; slice thickness=0.89 mm, matrix=256×256.

Data preprocessing

Motion artifact and image distortions caused by eddy-currents
were corrected in FMRIB's Diffusion Toolbox in FSL software by
applying an affine alignment of each diffusion-weighted image to the
b0 image. In the current study, we did not correct for EPI distortions.
In this Siemens scanner, the geometric distortion for diffusion imaging
from EPI was found in prior tests to be less than 2 mm (i.e., less than a
single voxel), and mainly along the anterior posterior (phase
encoding) direction. Because the resolution of the diffusion images
was larger than the magnitude of the distortion, no correction was
required.

Tractography

Reconstruction of the diffusion images was performed using
Diffusion Toolkit (DTK) (Ruopeng Wang, Van J. Wedeen, TrackVis.
org, Martinos Center for Biomedical Imaging, Massachusetts General



Fig. 1. Schematic of brain network construction. Diffusion images were attained for each subject and deterministic tractography was performed using the MGH Diffusion Toolkit (see
Materials and methods). The voxel-based tract reconstruction was then parcellated using a variety of templates including 3 whole-brain atlases (AAL, HO, and LPBA40) and
iteratively upsampled versions of these atlases: Sub 1 containing twice the number of regions (2×N), Sub 2 containing four times the number of regions (4×N), and Sub 3
containing eight times the number of regions (8×N). We next determined the number of tracks originating in one region and terminating in another; this value became the edge
weight in an N×N connectivity matrix, M. Basic properties of this connectivity matrix, such as nodal strength and edge diversity, could be immediately portrayed using a surface
visualization technique in Caret. Alternatively, the connectivity matrix could be thresholded to retain a certain percentage of highly weighted edges, creating a binary adjacency
matrix, Aij, where any ij element equal to 1 indicated that the ijth edge passed the threshold, while an element equal to zero indicated that it did not. Binary, undirected graphmetrics
could then be calculated based on this adjacency matrix.
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Hospital (MGH) (Wang et al., 2007)), a recently constructed
software toolbox which provides precise diffusion imaging analysis
and visualization capabilities (Granziera et al., 2009; Wedeen et al.,
2008; Wahl et al., 2009; Vishwas et al., 2010; Lagana et al., 2010;
Nezamzadeh et al., 2010). Diffusion tensor estimation was per-
formed using the linear least-squares fitting method (Wang et al.,
2007). The raw data was not smoothed or sharpened prior to
reconstruction. Deterministic tractography was subsequently per-
formed in TrackVis software using the fiber assignment by
continuous tracking (FACT) algorithm (Mori et al., 1999; Mori and
van Zijl, 2002; Xue et al., 1999). In this process, a single seed was
placed in the center of each voxel, and the path was continued in the
adjacent voxel which minimized the path curvature; paths were
terminated for curvatures greater than 35°. Fiber tracts which were
rejected by the algorithm, for example due to high curvature, were
not included in the present analysis. Similarly, fiber tracking for DSI
data was performed using a FACT-like algorithm in which each voxel
was treated as having multiple principle diffusion directions (Wang
et al., 2007), and a path was seeded for every orientation density
function (ODF) maximum vector in each voxel. No further
fine tuning of parameters within the software toolbox was
performed. Importantly, in using DTK, we performed an exhaustive
search approach in which fiber tracking is performed in all voxels,
rather than in a priori specified regions of interest. Inter-regional
connectivity was then examined by applying a set of gray matter
masks to the complete tractography solution and counting the
number of tracts which passed between any two masks.
Inter-regional connectivity

In order to attain regional rather than voxel-based connectivity, a
set of N brain region masks were applied to the reconstructed fiber
tracts, using the UCLA Multimodal Connectivity Package (UMCP).
We determined the number of tracks that originate in one mask, i,
and terminate in another mask, j, for all possible pairs of N masks,
creating an N×N inter-regional anatomical connectivity matrix, Mij,
where the value of any element of the matrix Mij is equal to the
number of tracts originating in mask i and terminating in mask j.
The matrix sum of the connectivity matrix is the total number
of reconstructed fiber tracts, F, between gray matter masks:
F=∑ i≠ jMij. The number of fiber tracts, F, between gray matter
regions uncovered by the algorithm was data driven rather than
defined a priori, and was therefore variable from individual to
individual and from scan to scan. In addition to the connectivity
matrix, we determined the tract lengthmatrix, Tij, where the value of
any element of the matrix Tij is equal to the average length of the
tracts originating in mask i and terminating in mask j.
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Brain region masks

Masks for each of the N regions of a cortical atlas were transformed
into the subject's native space in amulti-step process (Gong et al., 2009;
Shu et al., 2009). The subject's MPRAGE scans from the three sessions
were averaged together to createamean structural scan,whichwas then
registered to the subject's b0 diffusion image using the affine transform
provided by FSL's linear registration toolbox, FLIRT. This native space
MPRAGE was then registered to the nonlinear Montreal Neurological
Institute 152 T1 2 mm brain. The inverse of this transformation matrix
was then used to warp the atlas ROIs into subject native space.

Atlases and upsampling procedure

Three separate atlases were used in this study: 1) the Automated
Anatomical Labeling Atlas (AAL) (Tzourio-Mazoyer et al., 2002; Desikan
et al., 2006), 2) the Harvard–Oxford Atlas (HO), and 3) the LONI
Probabilistic Brain Atlas (LPBA40) (Shattuck et al., 2007). The AAL atlas
included 90 cortical and subcortical regions, the HO atlas 110 cortical
and subcortical regions, and the LPBA40 54 cortical regions; none of the
atlases included cerebellar structuresor the brainstem. Inorder to assess
the effect of spatial resolution, we further upsampled each atlas to 3
additional levels of spatial resolution: 1) Sub 1,where each regionof the
original atlas is cut into 2 equally sized regions, 2) Sub 2, where each
region of the Sub 1 atlas is cut into 2 equally sized regions, and 3) Sub 3,
where each region of the Sub 2 atlas is cut into 2 equally sized regions.
For example, the AAL (N=90) atlas was decomposed into AAL Sub 1
(N=180), AAL Sub 2 (N=360), and AAL Sub 3 (N=720), and
similarly for the other two atlases (for HO, N=110, 220, 440, and 880
and for LPBA40, N=54, 108, 216, and 432). The upsampling algorithm
used took a single brain region, found its principal spatial axis, and
bisected the region perpendicular to that principal spatial axis to create
2 equally sized sub-regions.

Network properties

Basic connectivity properties
Before turning to complex graph metrics, we can quantify several

basic connectivity properties of both the connectivity matrix, Mij,
including the density, average weight, nodal diversity, and edge
diversity and the tract length matrix, Tij.

Density. Arguably one of the most simplistic measures of network
structure is its density, simplydefinedas thenumberofnon-zeroedges in
the graph, E, divided by the total number of possible edges in the graph:

κ =
E

N N−1ð Þ ; ð1Þ

whereN is the number of nodes in the graph, or in this case the number
of or brain regions (Coleman and More, 1983). The density is therefore
proportional to the total number of connected pairs of brain regions,
irrespective of the number of tracts passing between those pairs.

Weight. The average weight is a normalized version of the total weight
(Garlaschelli, 2009), and is given by

W =
1

N N−1ð Þ∑ij
Mij; ð2Þ

where i and j=1,2,3,…N and Mij is the connectivity matrix. The
average weight is therefore proportional to the total number of
reconstructed white matter tracts, F. A measure of the number of
reconstructed white matter tracts per brain region, the nodal strength
of node i is given by the column sum of the connectivity matrix:

S ið Þ = 1
N−1

∑
j

Mij: ð3Þ
Diversity. Diversity measures were originally introduced in the
context of social networks (Campbell et al., 1986), and have more
recently been applied to the study of functional brain networks in
schizophrenia (Lynall et al., 2010). The nodal diversity is defined as
the variance, over nodes, of the nodal strength

Dn =
1
N
∑
i

S ið Þ− Sh ið Þ2
� �1=2

; ð4Þ

while the edge diversity is given by the column variance of M:

De ið Þ = 1
N
∑
j

Mij−S ið Þ
� �2

" #1=2

: ð5Þ

Tract length. The average tract length is a normalized measure of the
total tract length, and is defined as

T =
1

N N−1ð Þ∑ij
Tij; ð6Þ

where i and j=1,2,3,…N and Tij is the tract length matrix, where the
value of any element of the matrix Tij is equal to the average length of
the tracts originating in mask i and terminating in mask j.

Binary graph properties
Graph metric properties were determined in two ways: as single

values on unthresholded binary graphs and as a range of values on
thresholded binary graphs. Unthresholded binary graphs are perhaps
the simplest to construct, and are formed such that two regions are
considered to be connected with a strength of unity if at least one
reconstructed tract was found linking them. These simple graphs
provide a direct representation of the full complex topological
organization of the anatomical brain network and are useful for
determining basic structural characteristics such as small-worldness,
assortativity, or hierarchy.

Unthresholded networks were mathematically defined as those in
which a binary edge was said to exist if at least 1 tract was found
connecting region i to region j, and the density of these networks was
denoted by K=Kmax. In the current work, the average Kmax was
consistently less than the theoretical maximum of 1, which would
indicate a completely connected graph. This property of anatomical
matrices derived from tractography, of having a maximum density
less than the theoretically possible maximum density of 1, is unlike
association matrices derived from functional data. For example, an
association matrix defined by the temporal correlation between
regional time series provides a completely connected network where
all possible connections between any two regions, i and j, are given a
weight equal to the correlation between the time course of region i
and the time course of region j (Achard et al., 2006). For anatomical
networks derived from tractography, however, many connectivity
matrix elements, Mij, are equal to zero because no tract was found
connecting region i to region j.

However, unthresholded binary graphs do not retain any infor-
mation regarding the weight of any of the edges which make up the
network. For this reason, we also studied thresholded binary graphs
which are constructed over a range of connection densities by
iteratively thresholding the weight matrix to retain connections with
stronger or weaker edge weights in the resultant network.

Mathematically, in order to assess the network structure over a
range of network densities, the connectivity matrix was thresholded
to retain a given percent of strongest connections; the percent of
connections remaining (also known as the density, or network costK)
ranged from 0 to a maximum comparable density Kcom defined as the
maximum density common to all subjects in the particular atlas and
resolution under study. The range 0bKbKcom was defined as the
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available cost regime. It is important to note that in order to achieve a
constant K across subjects, different thresholds were applied to
different subjects. The requirement of a common density across
subjects in a given atlas and resolution ensured that subsequently
determined network metrics were mathematically comparable across
subjects. This requirement was particularly necessary to ensure that
the reproducibility of graph metrics over scanning sessions was not
purely predicted by changes in density.

Having constructed either unthresholded or thresholded binary
graphs, we next examined the organization of these graphs using a
variety of graph metrics recently proposed in the literature (Rubinov
and Sporns, 2009; Deuker et al., 2009): pathlength and clustering
coefficient (Watts and Strogatz, 1998), global and local efficiency
(Latora and Marchiori, 2001; Achard and Bullmore, 2007; Bassett et
al., 2009), betweenness centrality (Freeman, 1977), modularity
(Leicht and Newman, 2008; Meunier et al., 2009b), hierarchy (Ravasz
and Barabasi, 2003; Bassett et al., 2008), synchronizability (Barahona
and Pecora, 2002; Bassett et al., 2006), assortativity (Newman, 2006;
Bassett et al., 2008), and robustness (Achard et al., 2006; Lynall et al.,
2010). In addition to topological metrics, we also studied the purely
physical measure of mean connection distance (Bassett et al., 2008),
as well as a combined topo-physical property known as Rent's
exponent (Bassett et al., 2010) which provides information regarding
the efficiency of topological embedding into a physical space. Because
themajority of thesemetrics have been previously defined andwidely
used, we will only define those which are of particular importance to
the interpretations and conclusions presented in this paper, including
hierarchy, assortativity, mean connection distance, and Rent's
exponent. See Supplementary Materials for detailed mathematical
definitions of all other properties.

Degree. To begin, a network is composed of units, called nodes, and
connections between those units, called edges. The number of edges
emanating from a node, i, is called the degree of node i, and is
commonly denoted by ki.

Pathlength. The pathlength between nodes i and j is defined as the
shortest number of edges onewould have to traverse in order to move
along the network from node i to node j (Dijkstra, 1959). In binary
networks, the pathlength, Lij, between any two nodes is therefore an
integer and the pathlength of an entire network, L, is defined as the
average pathlength from any node to any other node in the network:

L = 1
N N−1ð Þ ∑ij Lij.

Clustering coefficient. The clustering coefficient, C, is defined as the
ratio of the number of connected triples to the number of triangles
(Watts and Strogatz, 1998). A connected triple is a set of 3 nodes, the
pathlength between any of which is less than infinity (for example,
imagine nodes 1, 2, and 3 in a line with node 1 connected to node 2
and node 2 connected to node 3). A triangle is a particular type of
connected triple where each node is connected to both of its
neighbors, the trio forming a fully connected triangle.

Hierarchy. Networks may display a hierarchical structure in which
hubs extend many long-distance connections but lack a degree of
local connectivity while non-hubs extend only a few connections
largely to their immediate neighbors. This hierarchical structure of a
network can be characterized by the coefficient β, which is a
parameter quantifying the power-law relationship between the
clustering coefficient C and the degree k of all nodes in the network
(Ravasz and Barabasi, 2003):

C∼k−β
: ð7Þ
Assortativity. The degree assortativity of a network, or more
commonly simply ‘assortativity’, is defined as

r =
E−1∑i jiki− E−1∑i

1
2
ji + kið Þ

h i2
E−1∑i

1
2

j2i + k2i
� �

− E−1∑i
1
2
ji + kið Þ

h i2 ; ð8Þ

where ji,ki are the degrees of the nodes at either end of the ith edge,
with i=1…E (Newman, 2006). The assortativity measures the
preference of a node to connect to other nodes of similar degree
(leading to an assortative network, rN0) or to other nodes of very
different degree (leading to a disassortative network, rb0). Social
networks are commonly found to be assortative while networks
such as the internet, World-Wide Web, protein interaction networks,
food webs, and the neural network of Caenorhabditis elegans are
disassortative.

Mean connection distance. The estimated connection distance of an
edge, dij, is defined as the Euclidean distance between the centroids of
the connected regions i and j in standard stereotactic space. The mean
connection distance, d, is defined as the average connection distance
over all edges in a network (Bassett et al., 2008). Thus connection
distance differs from the other, topological and dimensionless graph
metrics in that it represents a spatial or topographic property of the
network and has units of distance (mm) or voxels. The mean
connection distance also differs from the average tract length, T , in
that it provides a standardized estimate of the physical extent of
network structure which is comparable across subjects while the tract
length provides a direct measurement of connection lengths in an
individual subject's brain. While the two measures therefore provide
complementary theoretical value, they are in practice highly
correlated (see Supplementary Fig. 2).

Rent's exponent. Rent's exponent is a topo-physical property of a
network; that is, it describes how a non-physical topology is
embedded into a physical space, which in the case of neuronal fiber
tracts is the physical space of the brain (Bassett et al., 2010). Rent's
rule, first discovered in relation to computer chip design, defines the
scaling relationship between the number of external signal connec-
tions (edges), e, to a block of logic and the number of connected nodes,
n, in the block (Christie and Stroobandt, 2000):

e∼np
; ð9Þ

where 0≤p≤1 is the Rent exponent. Following Bassett et al. (2010),
the Rent's exponent is found by tiling the Euclidean space of the
network with Nbox=5000 overlapping randomly sized boxes (e.g.,
three-dimension cubes). In each box we determine the number of
nodes (n) and the number of connections (e) that cross the box
boundaries. The gradient of a straight line fitted to log(n) vs log(e)
using iteratively weighted least-squares regression is an estimate of
the Rent exponent p. To minimize boundary effects, p is estimated
using the subset of boxes which contains less than half the total
number of nodes, nbN /2.

Random network null models
In order to determinewhether the organization structure apparent

in brain networks was significant, we constructed two types of
random network null models: pure random networks and pseudo
random networks. Pure random networks were composed of an
identical number of undirected (symmetric) edges as the true brain
networks, but those edges were randomly distributed across all
possible pairs of nodes. Pseudo random networks were constructed to
retain not only the density of the true brain network but also the
degree distribution. We used the process proposed by Maslov and
Sneppen (2002) to construct pseudo random networks by rewiring
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individual edges by careful substitution in order to preserve the true
degree distribution. In our calculations, each edge in the real network
was thus rewired at least 20 times, ensuring significant random
structure within the confines of the empirical degree distribution.

Measures of individual variability

In the present study, we used several measures to characterize the
individual variability of connectivity patterns or graph metrics
including a general measure of matrix similarity and two statistical
measures of reproducibility: the intra-class correlation coefficient and
the coefficient of variation. In an initial analysis of the similarity
between connectivity matrices themselves, we computed the (Pear-
son's) correlation coefficient between the edge weights of two
different matrices, either from different scanning sessions to
determine inter-scan variability or from different subjects to
determine inter-subject variability. This method has previously been
used to show a higher similarity between scanning sessions in a single
individual than between the same scanning session in different
individuals (see Supplementary Information Fig. S2 in Hagmann et al.
(2008)) in a DSI network analysis study.

In order to specifically test the hypothesis that variation within an
individual between scanning sessions is larger than the variation
across individuals, we used the statistical measure of the intra-class
correlation coefficient (ICC), which is a measure of the total variance
accounted for by between-subject variation (Lachin, 2004; McGraw
and Wong, 1996). The ICC is defined as:

ICC =
σ2
bs

σ2
bs + σ2

ws
; ð10Þ

where σbs is the between-subject variance and σws is the (pooled)
within subject variance. While the ICC is a normalized measure and
therefore has a maximum of 1, values above 0.5 indicate that there is
more variability between subjects than between scans.

Throughout this work, we determined the reproducibility of basic
connectivity and graph metric values over scanning sessions, and
these metrics can be placed into two main categories: global network
measures, where a single network metric value is attained per
network, and regional measures, where a value of a metric is obtained
for each brain region in the atlas. Global measures which were tested
for reproducibility include the density, average weight, nodal
diversity, edge diversity, pathlength, global efficiency, betweenness,
clustering, local efficiency, modularity, hierarchy, synchronizability,
assortativity, robustness, Rent's exponent, and mean connection
distance. The sole regional measure tested for reproducibility was
nodal strength.

A complementary statistic, the coefficient of variation (CV) is a
normalizedmeasure of the variability of a metric. The CV indicates the
minimum percentage signal change detectable in repeated measures
and is defined as the mean within subject standard deviation, σws,
divided by the overall measurement mean, μ, (Lachin, 2004):
CV = σws

μ
. As a result, the CV is particularly useful in comparing

results between datasets with widely different means.

Statistics and software

All computational and simple statistical operations (such as t-tests
and correlations) were implemented using MATLAB (2007a, The
MathWorks Inc., Natick, MA) software. Graph metrics were estimated
using a combination of in-house software, the Brain Connectivity
Toolbox (Rubinov and Sporns, 2009), and the MATLAB Boost Graph
Library (http://www.stanford.edu/~dgleich/programs/matlab_bgl/).
The repeated measures ANOVA was performed using Statistica
(version 9, StatSoft Inc.) software.
Visualization

Brain networks were visualized using both ball-and-stick methods
(gplot.m, MATLAB File Exchange http://www.mathworks.com/
matlabcentral/fileexchange/6793-gplot) and surface projections
(Caret, Van Essen Laboratory, http://brainvis.wustl.edu/wiki). The
mapping of the image volume to the surface was performed using the
Caret PALS-B12 (Population-Average, Landmark- and Surface-based)
atlas, which is derived from 12 healthy young adult subjects. The
image volume is mapped to each subject separately, and the average
surface rendering is used for visualization; the inter-region bound-
aries are therefore blurred due to inter-subject differences, and the
complete mapping therefore gives a realistic depiction of group
effects.

Results

Conserved connectivity structure

Graph analysis is a powerful data reduction technique, and the
wide variety of available metrics provides a compelling means of
characterizing connectivity profiles of both anatomical and functional
neuroimaging data. However, no single metric provides tight
constraints on the interpretation of the true architecture of the
cortex; instead, a diverse ensemble of architectures is consistent with
a given value of any particular metric. For example, two systems with
equal values of global efficiency could produce that value by very
different architectural means, i.e., through very different topologies. In
combination, however, graph metrics can provide meaningful con-
straints on our understanding of the systems architecture of the
cortex. In order to uncover which constraints on anatomical structure
are measured by diffusion imaging, we first quantified the most
simplistic characteristics of cortical architecture and progressively
built a more detailed understanding using more complicated
measures.

We begin our foray into the architecture of human brain
anatomical networks by considering unthresholded binary graphs,
where two regions are considered to be connected with a strength of
unity if any reconstructed tracts were found linking them. Such a
definition is arguably the simplest path to anatomical brain network
construction and in subsequent sections we will consider more
nuanced network definitions.

Conserved topological architecture
Based on a simple measure of the number of inter-regional

connections, all networks studied, across individuals, diffusion
scanning techniques, atlases, and resolutions, were sparse: that is,
brain regions or nodes were usually connected to few other brain
regions. More specifically, the density of a network, or the proportion
of connected pairs of brain regions, was relatively lowwith an average
value of 0.15; see Fig. 2A and Table 1. Sparse networks, unlike fully
connected networks, may vary topologically from perfectly random to
highly organized. It is therefore also important to note that all brain
networks constructed in this study showed hallmarks of non-random
topology (Fig. 2B) which have been consistently identified in similar
networks previously, such as a normalized clustering coefficient (C /
Cr) greater than one and a normalized pathlength (L /Lr) roughly equal
to one (Hagmann et al., 2008; Gong et al., 2009; Iturria-Medina et al.,
2007). However, this combination of high clustering and short
pathlength, also known as ‘small-worldness’, is found in systems
with very different inherent network architectures, and we therefore
next turned to a characterization of the local connectivity of individual
nodes in the anatomical network.

Topological hierarchy indicates a structured local connectivity
where ‘provincial’, or less connected, nodes have disproportionately
high clustering (Ravasz and Barabasi, 2003); see Fig. 2C, top. This

http://www.stanford.edu/~dgleich/programs/matlab_bgl/
http://www.mathworks.com/matlabcentral/fileexchange/6793-gplot
http://www.mathworks.com/matlabcentral/fileexchange/6793-gplot
http://brainvis.wustl.edu/wiki


Fig. 2. Conserved network properties of measured cortical architecture. (A–B) Graph metrics as a function of the number of nodes in the atlas: AAL (left), HO (middle), and LPBA40
(right). Imaging modality is indicated by color: DSI (red) and DTI (black). Data points represent individual subject networks. (A) The density of the network as a function of the
number of nodes in the atlas, indicating that networks are sparse. (B), top The small-world numerator, γ, the ratio of the clustering coefficient of the real brain network to the
clustering coefficient of a comparable random network. (B), bottom The small-world denominator, λ, the ratio of the pathlength of the real brain network to the pathlength of a
comparable random network. (C), topHierarchical networks are made up of ‘provincial’ nodes (blue) which have a low degree but high clustering and ‘connector’ nodes (red) which
have high degree but low clustering, i.e., their neighbors are not connected to one another (Ravasz and Barabasi, 2003). (C), bottom The difference between the network hierarchy
parameter and the hierarchy expected in a random graph of the same size. (D), top An assortative network is one in which hubs connect to other hubs, and low degree nodes connect
to other low degree nodes. We can link up hierarchical subnetworks in an assortative way in order to produce a hierarchically modular topology (Bassett et al., 2010). (D), bottom The
difference between the assortativity of the brain and that of a comparable random network. Horizontal gray lines indicate expected values if the brain were a random system.
Random networks used in the generation of this figure were pure random networks (see Materials and methods); consistent results were obtained when comparing to pseudo
random networks, indicating the results are robust to the choice of random network generator. Network metric values shown here were calculated at a density of K=Kmax (see
Materials and methods).
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property, evident in all networks studied here (see Fig. 2C, bottom), is
more specifically defined as a negative relationship between the
degree of a node (one mathematical predictor of its pathlength) and
its clustering coefficient, and thereby combines the two global
properties we just studied. To put this result in context, it is important
to note that pure random networks do not display any significant
relationship between clustering and degree. For the majority of
density values, the slope of a line fitted through the clustering vs
degree plot should remain close to zero, although for very sparse
random networks, a non-significant small negative slope may exist
due to finite size effects. In addition to hierarchical and random
networks, alternative network architectures may display inverse
hierarchies, characterized by a positive relationship between cluster-
ing and degree (see Bassett et al. (2008) for a clinical example).

While the hierarchical architecture quantifies the nodal building
blocks of the network, assortative mixing provides information
about what types of nodes connect to one another (Newman, 2002).
The simplest type of assortativity is called degree assortativity,
which quantifies the relationship between a node's degree and the
average degree of its neighbors. All networks in this study
consistently demonstrated an assortative nature (see Fig. 2D,
bottom), indicated by a positive correlation between these two
topological metrics. In contrast, pure random networks do not
display a correlation between nodal degree and neighbor degree,
and therefore assortativity values remain close to zero throughout
the full density range.

In synthesizing this sequence of results, we find that we are
studying a sparse, highly clustered, hierarchical, assortative network,
for which we can construct a hypothetical schematic, as given in
Fig. 2D, top. Importantly, the combination of these properties is
consistent with the hypothesis that anatomical cortical networks are
hierarchically modular systems: the whole system is made up of small
modules or subsystems, which are in turn made up of even smaller
modules or subsubsystems.

image of Fig.�2
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Conserved topo-physical relationships
The network properties considered thus far do not give us any

information about how this complex network topology is mapped
within the physical boundaries of the cortex. Previous work in
anatomical neural networks indicates that long-distance connections
in both topological (Watts and Strogatz, 1998; Hilgetag et al., 2000)
and physical space (Sakata et al., 2005; Kaiser and Hilgetag, 2006;
Chen et al., 2006; He et al., 2007; Bassett et al., 2008) are rare, arguably
due to energetic constraints (Bassett et al., 2009; Attwell and
Laughlin, 2001; Niven and Laughlin, 2008). Interestingly, across
atlases, resolutions, and modalities, topological and physical distance
were inversely correlated in the anatomical networks in this study
(Fig. 3A): a ‘provincial’ node with predominantly short range physical
connections was topologically more separated from other nodes by a
large pathlength, than nodes with longer range physical connections.

It has been previously suggested that the hierarchically modular
structure of the human brain is efficiently mapped into physical space
(Bassett et al., 2010), which suggests there may be further relation-
ships between local connectivity, or clustering, and physical distance.
A negative correlation between these twometrics would indicate that
highly clustered nodes have neighbors close by in physical space,
suggesting that anatomical modules are spatially localized within the
cortex. Indeed, networks constructed in this study displayed a
significant negative correlation between nodal clustering and nodal
connection distance which was increasingly evident when using finer
spatial parcellation schemes (see Fig. 3B). Importantly, the relation-
ships between clustering or pathlength and connection distance, as
estimated by the Euclidean distance between the centers of regions,
Fig. 3. Conserved topo-physical properties of measured cortical architecture. (A–B) Conse
constructed using the original HO atlas applied to DSI (red) and DTI (black) data (see Supplem
using estimated tract length rather than Euclidean distance). (A) Relationship between the t
p=2e−17) of a node's connections. (B) Relationship between the clustering coefficient and e
node's connections. (C) In order to determine the presence or absence of Rentian scaling, th
nodes, n, inside each cube and the number of edges, e, crossing the boundary of each cube are
the number of edges (e) crossing the boundary of the arbitrarily sized region of cortex and t
original network of a single subject. Note thatRentian scalingdid not seemtobe largelymodula
and for DTI networks was p=0.0.81±0.03 (SD over subjects). See Supplementary Fig. 8 for co
were further confirmed by significant correlations between these
topological metrics and average tract length as estimated during
tractography (see Supplementary Material).

These simple relationships suggest a very strong link between
topology and physical space in the human brain. Interestingly, such a
link has also been described in very large-scale integrated circuits
where it is commonly tested for by assessing the presence or absence
of Rentian scaling. Rent's rule describes a relationship between the
number of nodes in a physical patch of the network, and the number
of edges crossing the boundary of that patch (Bassett et al., 2010); see
Fig. 3C for a schematic. The presence of Rentian scaling in a system
suggests that the network topology has been mapped cost-efficiently
into physical space. Indeed, this measure of topo-physical interde-
pendence was evident in both DSI and DTI networks across all atlases
and resolutions (see Fig. 3D).

Modulation of connectivity structure
While our results suggest that many architectural principles of

anatomical networks are highly conserved across modalities, atlases,
and spatial resolutions, specific network metric values can be
modulated by changes in network size (e.g., number of nodes and
edges) even if the underlying topology of the graph remains constant
(Anderson et al., 1999). In this study, network size changed
appreciably over spatial resolutions: atlases with higher spatial
resolution contained more nodes than atlases with lower spatial
resolution. As might therefore be expected, exact values of the
majority of graph metrics used in this study were strongly modulated
by spatial resolution (see, for example, the normalized clustering
rved relationships between space and topology, here exemplified in brain networks
entary Figs. 4–7 for comparable results from other atlases and resolutions in addition to

opological and estimated physical length (left: DSI, r=−0.45,p=4e−7; DTI, r=−0.69,
stimated physical length (left: DSI, r=−0.47, p=1e−7; DTI, r=−0.61, p=5e−13) of a
e physical brain network is partitioned into randomly sized cubes (top). The number of
counted (bottom). (D) Rentian scaling is then defined as a scaling relationship between

he number of nodes (n) within that region: e=np. Here we show the results for the HO
tedby imagingmodality: the averageRent's exponent inDSI networkswasp=0.79±0.03
mparable results from other atlases and resolutions.
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coefficient in Fig. 2B); however, a few metrics surprisingly remained
largely constant (see, for example, hierarchy and assortativity in
Figs. 2C and D).

The relationship between graph metric values and the number of
nodes in the atlas is, however, complicated by the inextricable link
between nodes and edges: atlases with higher spatial resolutions not
only contained more nodes but also contained a lower density of
edges. In fact, the number of nodes in an atlas was inversely
correlated with the connectivity density: Pearson's correlation
coefficient over atlases, resolutions, and modalities was R=−0.69,
P=0.0002. Upon inspection, the relationship between the density
and the number of nodes was found to follow a power-law with
similar exponents in both DSI and DTI networks; see Supplementary
Fig. 3. By extension, network metrics highly dependent on density
also displayed power-law scaling with the number nodes in the atlas.
Due to these complicated interactions between graph metric values
and the variable size of the networks under study, we were unable to
make further comparisons between network property values across
atlases.
Fig. 4. Individual variability in measured cortical architecture. (A) Sample connectivity matri
and for two different subjects in the same session using DTI data (bottom row). (B) Sample c
different scanning sessions (left) and different subjects in the same scanning session (right)
from the same subjects (‘Within’) and derived from different subjects (‘Between’) for DS
(D), reproducibility (E), and variability (F), of the basic connectivity properties for DSI (red
atlases and resolutions.
Variability and reproducibility of raw connectivity

In a second branch of analysis, we were specifically interested in
determining whether connectivity properties which were conserved
across the population could be reproducibly quantified in an
individual over multiple scanning sessions, and whether that
reproducibility could be potentially influenced by methodological
variation. We began by assessing the variability and reproducibility of
the raw connectivity matrices before turning to binary graph metrics.

Connectivity matrices
Before addressing complex network architecture, we focused on

the raw connectivity matrices themselves where we noted that
connectivity matrices derived from DSI data had consistently higher
weights than those derived from DTI data, indicating a relative
increase in the number of reconstructed tracts; see Fig. 4A. In fact, the
average weight of DSI connectivity matrices was ∼3.5× higher than
DTI matrices (one-sample t-test, t=2.23 , P=0.047), consistent with
both the increased number of diffusion directions and ability to
ces reconstructed for the same subject in two different sessions using DSI data (top row)
orrelation between the edge weights in connectivity matrices from the same subject in
. (C) Boxplots indicating the average similarity between connectivity matrices derived
I (left) and DTI (right) data for all atlases and resolutions. Plots of the average value
) and DTI (black) networks. Error bars indicate standard deviations in the mean over
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Table 2
Results for separate repeated measures ANOVAs on the reproducibility (ICC) and
variance (CV) of weighted connectivity measures including the average nodal strength,
nodal diversity, and edge diversity where modality (DSI or DTI) was treated as a
categorical factor and atlas and resolution were treated as repeated measures.
Significant main effects were followed by posthoc testing, for which results are also
reported.

Measure ICC CV

Effect df Statistic P-value Statistic P-value

Modality (1,6) F=93.86 6e−4 F=345.77 4e−5

Posthoc: DTI vs DSI t=9.68 6e−4 t=18.59 4e−5

Atlas (2,12) F=94.41 3e−6 F=66.74 1e−5

Posthoc: AAL vs HO (1,4) F=4.08 0.113 F=5.26 0.083
Posthoc: HO vs LPBA40 (1,4) F=149.83 2e−4 F=143.55 2e−4

Posthoc: AAL vs LPBA40 (1,4) F=218.15 1e−4 F=123.45 3e−4

Resolution (2,12) F=11.78 6e−4 F=18.39 8e−5

Posthoc: Original vs Sub 1 (1,4) F=14.31 0.019 F=7.90 0.048
Posthoc: Sub 1 vs Sub 2 (1,4) F=12.53 0.024 F=18.65 0.012
Posthoc: Sub 2 vs Sub 3 (1,4) F=7.27 0.054 F=10.34 0.032
Atlas×modality (2,12) F=110.27 2e−6 F=93.24 3e−6

Resolution×modality (3,18) F=7.86 0.003 F=0.98 0.431
Atlas×resolution (6,36) F=1.75 0.152 F=2.15 0.083
Atlas×resolution×modality (6,36) F=2.11 0.088 F=3.27 0.016
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resolve complex fiber configurations. In addition to track numbers,
the density of a network derived from DSI was consistently
higher than that of a network derived from DTI (one-sample t-test,
t=3.19, P=0.0085), as was the nodal diversity (∼3.0× higher;
t=5.40, P=2e−4), and edge diversity (∼3.6× higher; t=2.71,
P=0.02).

In addition to the differences in connectivity between the two
modalities, we also noted that networks derived from the same
subject were more similar than those derived from different subjects,
suggesting that the pattern of connectivity contained in these
matrices is highly specific to a given individual; see Fig. 4A. We
quantified this similarity between any two connectivity matrices by
computing the correlation coefficient between their respective
weights (Hagmann et al., 2008); see for example Fig. 4B andMaterials
and methods for details. As might be expected, the average similarity
between connectivity matrices derived from the same subject was
consistently higher than the similarity betweenmatrices derived from
different subjects for both DSI and DTI networks, and these differences
were significant in both cases, although modestly more robust in DTI
(two-tailed t-test, t=6.15 P=3e−6) than DSI (t=2.57 P=0.017)
networks; see Fig. 4C.
Basic connectivity properties
Given the sensitivity of raw connectivity matrices, we next asked

whether basic connectivity properties, which are global measures
derived from those matrices, also displayed sensitivity to individual
variability. As shown in Fig. 4D, DSI and DTI networks had vastly
different weighted network properties; nodal strength, nodal diver-
sity, and edge diversity were all higher in DSI networks, indicating not
only that more tracts were reconstructed in DSI networks (as
indicated by increased nodal strength) but also that the variability
over brain regions (nodal diversity) and tracts (edge diversity) was
higher in DSI networks.

Using the intra-class correlation coefficient (ICC), we specifically
tested whether basic connectivity properties including the average
weight, nodal diversity, edge diversity, and density showed more
variability between subjects than within subjects over scanning
sessions (see Materials and methods). While the reproducibility of
density was fairly poor, as shown in Fig. 4E, the reproducibility of
weighted connectivity measures was high (mean ICCN0.72) for all
networks reconstructed from both DSI and DTI data.

We next sought to assess the relative effects of imaging modality
(DSI or DTI), atlas and resolution on the reproducibility of weighted
connectivity properties. A repeated measures ANOVA where mo-
dality (DSI or DTI) was treated as a categorical factor and atlas and
resolution were treated as repeated measures showed a significant
main effect of modality and posthoc comparisons confirmed that DTI
was more reproducible than DSI; see Table 2. The ANOVA also
showed a significant main effect of atlas, where posthoc compar-
isons confirmed that, collapsed across modalities, the AAL and HO
atlases producedmore reproducible results than the LPBA40. Finally,
upon closer inspection, a significant main effect of Resolution
revealed an increasing reproducibility in all atlases at finer spatial
resolutions.

In addition to quantifying inter-scan reproducibility, we assessed
the inherent variability in these metrics using the coefficient of
variation, defined as the standard deviation of measurements
normalized by the overall measurement mean; see Fig. 4F. An
identical repeated measures ANOVA showed a pattern of effects
similar to those reported for the ICC, and in particular again showed a
main effect of modality where measurement variability was lower in
the DTI networks (CV∼4%) compared to the DSI networks (CV∼6%);
see Table 2. Similar to the ICC, the CV decreased as a function of
increasing spatial resolution indicating more robust measurement at
finer spatial scales.
Anatomical location of connectivity
The results up to this point have assessed global connectivity

measures and their modulation by spatial resolution and imaging
modality (DSI/DTI). We now build on these global findings by
mapping the anatomical location of reconstructed tracts and assessing
their reproducibility. Fig. 5 shows the nodal strength (or average
number of tractography streamlines emanating from a brain region)
of all regions in the DSI (left) and DTI (right) networks (averaged over
subjects and sessions) for the 3 whole-brain atlases (AAL, top; HO,
middle; LPBA40, bottom).

Several important results are evident from these visualizations.
Perhaps the most striking is that connectivity appears to be strongly
dependent on the atlas used, and regional connectivity appears higher
for the larger regions in each atlas. Indeed, the size of a region (in
mm3) was highly correlated with the strength of a region: Pearson's
correlation coefficient RN0.78 and Pb4e−16 (see Supplementary
Fig. 12 for scatterplots over all atlases and resolutions). An immediate
correlate of this result is that hub distributions in upsampled
templates will be qualitatively similar to those in their mother atlas
(Supplementary Figs. 10–11). Importantly, the dependence of
connectivity on region size indicates a degree of homogeneity in
cortical connectivity structure, where the measured connectivity is
highly predicted by the size of the sample whose connectivity is being
measured.

Beneath each mapping of nodal strength provided in Fig. 5 is a
mapping of the reproducibility (ICC) of that nodal strength over the 3
sessions. Across atlases and modalities, the strength of middle frontal
and central cortices is largely reproducible while the strength of
inferior temporal and occipital cortices is less reproducible.

Variability and reproducibility of network architecture

In a final branch of analysis, we determined the variability and
reproducibility of measured network architecture using binary net-
works thresholded over a range of network densities.

Reproducibility of graph metrics
Graph metrics are inherently diverse in definition, variability, and

sensitivity. It is therefore intuitive that variability and reproducibility
might vary frommetric to metric, as is indeed evident from Fig. 6. The
most reproducible metrics retained information regarding the
physical length of connections. In DSI, the mean connection distance
was the most reproducible (ICC = 0:64), while in DTI networks the
Rent's exponent was the most reproducible (ICC = 0:70); see



Fig. 5. Anatomical localization of connectivity and its reproducibility in DSI (left) and DTI (right) networks for the Automated Anatomical Labeling Atlas (AAL, top), the Harvard–
Oxford Atlas (HO, middle), and the LONI Probabilistic Brain Atlas (LPBA40, bottom). In the first row of each atlas, we have plotted the nodal strength on the surface of the cortex; red
indicates high strength areas while blues indicate low strength areas. Directly below the surface visualizations for strength, we have plotted the reproducibility of nodal strength
(ICC) for the same atlas; again, red indicates highly reproducible areas while blues and whites indicate poorly reproducible areas. See Supplementary Table 1 for a list of the 10 nodes
with the highest strength in each atlas and Supplementary Table 2 for a list of the 10 nodes with poorest reproducibility.
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Supplementary Table 3 for a list of all graph metrics in order of
reproducibility. Interestingly, the thirteen binary graph metrics used
in this study were less reproducible on average than basic connec-
tivity properties as measured by a two-tailed t-test of their ICC values
(t=7.40, P=2e−9); see Fig. 6A.

In order to distill the relative effects of varying methodological
parameters, we performed a repeatedmeasures ANOVA on the ICCs of
the graph metrics, where modality (DSI vs DTI) was treated as a
categorical factor, and atlas and resolution were treated as repeated
measures; see Table 3. This ANOVA showed a significantmain effect of
modality where posthoc comparisons confirmed that graph metrics
derived from DSI networks were less reproducible than those derived
from DTI networks. The atlas applied to the brain had a significant
effect on reproducibility and posthoc comparisons showed that the
AAL atlas produced more reproducible results than either the HO or
the LPBA40. The ANOVA also showed a significant main effect of
resolution, and posthoc comparisons showed a steady decrease in
reproducibility with increasing resolution (the original atlas is
significantly more reproducible than the densest upsampling, Sub 3
but no other pairwise comparisons were significant). Interestingly,
this result highlights differential effects of spatial resolution on basic
connectivity and graph properties: basic connectivity properties
increase in reproducibility with increasing spatial resolution while
graph metrics decrease in reproducibility.

A similar repeated measures ANOVA on the coefficient of variation
(Fig. 6B) revealed no significant effects, suggesting that the variability
of graph metrics was not significantly affected by modality, atlas, or
spatial resolution; see Table 3. However, it is important to note that
the CV of several graph metrics is consistently lower in DSI networks
compared to DTI, indicating a potential advantage of DSI networks in
producing reliable estimates of graph parameters with very little
variability. In general, CV values were close to 1%, being smallest for
the metric of robustness to random attack and highest for the
assortativity. However, it is important to note that the CV as a
statistical measure is sensitive to low values of the mean, which is
particularly true for the assortativity measure especially in DSI
networks, which may explain the unusually high CV value for this
metric.

Alternative weighting schemes
The definition of edge weight that we have used in this work is the

number of tracts that have been reconstructed traveling from any
node i to any node j. It is important to be cautious in interpreting tract
counts as a direct measurement of the absolute volume of connec-
tivity between two regions, largely because several important factors
may artifactually inflate or deflate tract counts. These factors include
crossing fibers, fiber length, and proximity to large tracts like the
corpus callosum, each of which may not be homogenous throughout
the brain. However, it is important to note that this definition of edge
weight is not the only one that is available to the investigator. Tract
counts may be weighted by the size of a region to create a tract
density, or by the length of tracts as an attempt to correct for any
distance bias in tractography algorithms (Hagmann et al., 2008). Even
more broadly, edge weights may be based on alternative variables
such as average FA or tract curvature.

While it was not the purpose of the present study to provide an
exhaustive account of the effect of weighting scheme on reproduc-
ibility, we did consider the effects of a single alternative weighting
scheme in which the size of a cortical region was no longer a predictor
of its connectivity. In Fig. 7A, we show that after regressing out the
effect of region size for all three classical atlases, high strength nodes
or ‘hubs’ are located in lateral regions adjacent to the central sulcus
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Fig. 6. Individual variability and reproducibility of graph architecture. The intra-class
correlation coefficient (ICC) (A) and coefficient of variation (CV) (B) of graph metrics
for both DSI (red) and DTI (black) networks, averaged over subjects and scans. The ICC
and CV are each computed for the value of each network metric averaged over the
available cost regime. Properties in (A) and (B) are listed along the x-axis in the
following order: global connectivity (pathlength, global efficiency, and betweenness),
local connectivity (clustering and local efficiency), global–local properties (modularity
and hierarchy), dynamics (synchronizability), mixing (assortativity), robustness
(robustness to targeted attack and robustness to random attack), topo-physical (Rent's
exponent), and physical (mean connection distance). Error bars indicate standard
deviation in the mean over atlases and resolutions.

Table 3
Results for separate repeated measures ANOVAs on the reproducibility (ICC) and
variance (CV) of graph properties where modality (DSI or DTI) was treated as a
categorical factor and atlas and resolution were treated as repeated measures.
Significant main effects were followed by posthoc testing, for which results are also
reported.

Measure ICC CV

Effect df Statistic P-value Statistic P-value

Modality (1,22) F=5.18 0.032 F=1.41 0.246
Posthoc: DTI vs DSI t=2.27 0.032
Atlas (2,44) F=3.99 0.025 F=0.46 0.632
Posthoc: AAL vs HO (1,22) F=7.36 0.012
Posthoc: AAL vs LPBA40 (1,22) F=6.83 0.015
Posthoc: HO vs LPBA40 (1,22) F=0.02 0.883
Resolution (3,66) F=4.07 0.010 F=0.54 0.654
Posthoc: original vs Sub 3 (1,22) F=5.20 0.032
Atlas×modality (2,44) F=4.28 0.019 F=1.48 0.237
Resolution×modality (3,66) F=2.64 0.056 F=1.46 0.232
Atlas×resolution (6,132) F=1.57 0.157 F=0.72 0.629
Atlas×resolution×modality (6,132) F=0.40 0.087 F=1.26 0.279
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and perisylvian fissure as well as in medial regions including the
precuneus, cingulate, and medial frontal cortex. Note that after
regression of region size, the hub distributions are significantly more
similar across atlases than was seen previously (Fig. 5).

Following this analysis, it is natural to ask whether alternative
weighting schemes have an impact on measured network architec-
ture or its reproducibility. We note that weighting schemes do not
have any impact on binary graph metrics derived from unthresholded
graphs such as those we analyzed above in the first section of the
Results, where we identified conserved architectural principles such
as high clustering, short pathlength, assortativity, hierarchy, and
small-worldness. However, weighting schemes may have an impact
on network measures derived from thresholded graphs at any
particular network density or averaged over a range of network
densities. To assess the extent of this impact, we redefined the edge
weight between any two regions by dividing the total tract count by
the sum of the sizes of the two regions that it connects (Hagmann et
al., 2008). In Fig. 7B, we see that the value of some graph measures,
averaged over network densities, may be modulated by this
alternative weight definition (pathlength), while others may not
(clustering). However, the variability and reproducibility of graph
metrics are on average unaffected by the choice of weighting scheme;
see Fig. 7C.

Discussion

In this study, we demonstrated the presence of robust architec-
tural principles in measured networks of white matter connectivity
which are independent of modality (DSI and DTI), atlas (AAL, HO, and
LPBA40), and spatial resolution (for networks ranging in size from 54
to 880 nodes). These highly conserved properties include sparsity,
small-worldness, hierarchy, assortativity, and several measures of
topo-physical interdependence including the property of Rentian
scaling. We further assessed the ability of both basic connectivity
properties and graph theoretical properties to successfully measure
individual variability in brain structure. We found that weighted
connectivity properties of networks derived from both DSI and DTI
data were consistently reproducible (ICCN0.72) and displayed low
variability (CV∼5%), suggesting their potential usefulness in clinical
applications. While reproducibility of network properties was higher
in DTI, DSI networks were characterized by an increased number of
reconstructed tracts, as well as a higher diversity of that number over
brain regions and inter-regional connections. Given the number of
biological models, including schizophrenia, in which diversity is
thought to play a critical role, our results suggest that there may be
questions in which DSI acquisition will be preferred over DTI for
network generation. In the following discussion we attempt to place
our findings within the larger context of previous work.

Global conservation of measured architecture

Density
We found several properties of the measured cortical connectivity

to be robust to changes in spatial resolution, imaging modality (DSI
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Fig. 7. Alternative weighting scheme. (A) Hub distributions for DSI and DTI networks using all three original atlases (AAL, HO, and LPBA40) where the size of a region has been
regressed out of the strength of that region. More specifically, we used MATLAB robustfit to regress out the log of region size from the log of nodal strength. The positive residuals
(hubs) of this regression analysis are plotted on the surface of the cortex using Caret. (B) Topological measures pathlength (left) and clustering (right) as a function of weighting
scheme for both DSI (red) and DTI (black) networks on average over the available cost regime. The pathlength was significantly higher in DTI (two-sample t-test, t=−3.57
p=0.023) but not DSI (t=−2.21 p=0.090) networks when graphs were constructed using weight densities (tracts per unit volume) than when networks were constructed using
raw weights (tract counts). Clustering was unaffected by the weighting scheme in both DSI (t=0.74, p=0.498) and DTI (t=0.65, p=0.546) networks. (C) The average variability
(left) and reproducibility (right) of all graph metrics combined was unaffected by the weighting scheme: for the coefficient of variation, t=0.75 p=0.491 for DSI and t=−0.70
p=0.517 for DTI networks, while for the intra-class correlation coefficient, t=−0.55 p=0.608 for DSI and t=−0.72 p=0.507 for DTI networks.
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and DTI), and parcellation atlas. All reconstructed networks were
characterized by a sparse connectivity between nodes, a property
which has consistently been reported for anatomical networks
derived from both direct and indirect measurements in humans
(Bassett et al., 2008; He et al., 2007; Hagmann et al., 2008; Gong et al.,
2009), macaque (Felleman and Van Essen, 1991; Young et al., 1995;
Hilgetag et al., 2000), cat (Scannell et al., 1995, 1999), and C. elegans
(White et al., 1986; Kaiser and Hilgetag, 2006; Choe et al., 2004). Such
sparse connectivity is thought to be caused by an evolutionary
pressure for energy efficiency (Attwell and Laughlin, 2001; Niven and
Laughlin, 2008), where connections cluster in brain regions where
integrated information processing must occur, and only sparsely link
these clusters, creating a modular structure (Sporns et al., 2000, 2004;
Bassett and Bullmore, 2006). The robust presence of network sparsity
over multiple spatial resolutions (e.g., with N varying from 54 to 880)
is a necessary prerequisite for non-random topological structure over
a broad range of spatial scales; see Fig. 2A.

Conserved topological relationships
Ashas been consistently observed in functional and anatomical brain

networks in a wide variety of species, all networks studied in this work
displayed distinctly non-random topological properties including a
relatively high clustering coefficient and a relatively short pathlength
(Bassett and Bullmore, 2006; Bullmore and Sporns, 2009); see Fig. 2B.
The combination of these two non-random properties, known as small-
worldness, is robust to atlas choice in functional brain networks (Wang
et al., 2009) and robust to spatial resolution in both anatomical and
functional networks (Zalesky et al., 2010; Hayasaka and Laurienti,
2010). The term ‘small-world’ was coined several decades ago in the
context of the social phenomenon of friendship (Milgram, 1967; de Sola
Pool and Kochen, 1978), and the property has since been suggested to
confer a degree of efficiency in information transfer through a system
(Barahona and Pecora, 2002). However, thepresence of the small-world
property in systemswith very disparate network architectures suggests
that it alone cannot fully describe the details of graph organization.
Therefore, it is important to note that assortative degreemixing, or
‘assortativity’, was also consistently displayed in the human cortical
networks studied here; see Fig. 2D. Assortativity, a measure of the
preference for a node to connect to other nodes with the same degree,
has been previously reported for a subnetwork of the human brain
(Bassett et al., 2008), and for whole-brain networks derived from DSI
data (Hagmann et al., 2008). Our current results both confirm and
extend these finding to whole-brain networks derived from DTI data.
In comparing this result to other biological systems, it is interesting to
note that the canonical neuronal network of C. elegans has been
previously demonstrated to be disassortative rather than assortative
(Newman, 2002). In fact, a variety of biological networks including
foodwebs and protein interaction networks are broadly disassortative
while social networks such as coauthorship and collaboration
networks have been found to be assortative (Newman, 2002). The
unique character of these white matter connectivity profiles as
assortative biological networks suggests that this metric in particular
has some discriminatory power, and this result may give us further
insight into appropriate neurodevelopmental paradigms for modeling
growth and development of these systems.

A complementary measure, the property of topological hierarch-
ality, where network hubs tended to be less clustered than non-hubs
indicating their ‘connector’ rather than ‘provincial’ role in the network
(Ravasz and Barabasi, 2003; Guimerà et al., 2007), was also
consistently expressed in these networks; see Fig. 2C. Topological
hierarchy directly impacts network dynamics (Zhou et al., 2006;
Müller-Linow et al., 2008) by allowing for a structured segregation of
function into small modules while that function is in turn governed by
nodes at higher levels of the hierarchy. Hierarchy is common in
corporate, information, social and language networks (Ravasz and
Barabasi, 2003), and has also been reported in a subnetwork of
heteromodal association cortices in the healthy human brain (Bassett
et al., 2008). Interestingly, in the original derivation and application of
the hierarchical measure (Ravasz and Barabasi, 2003), networks
which were not physically embedded showed hierarchical structure

image of Fig.�7
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while networks which were embedded lacked hierarchical structure.
However, as we see here, some physically embedded systems can
display robust hierarchical structure perhaps even due to their
physical constraints on wiring (Bassett et al., 2008).

This combination of results, i.e., that the anatomical networks are
characterized by sparsity, high clustering, short pathlength, assorta-
tivity, and hierarchy, could form the topological basis for the
hierarchically modular structure of anatomical connectivity that has
been both theoretically expected (Simon, 1962) and empirically
described (Felleman and Van Essen, 1991; Hubel and Wiesel, 1961)
for several decades. Recently, hierarchically modular network
topology has been shown to exist in a wide range of biological
networks (Ravasz, 2009; Reid et al., 2009) as well as information
processing systems like the human brain and complex computer
circuits that have been cost-efficiently embedded into physical space
(Bassett et al., 2010).

Physical embedding of topology
We in fact find that there is a strong coupling between topological

structure and physical structure in the human brain, consistent with
previous results in other species (Costa et al., 2007). Perhaps the
simplest display of the complementary structure in topological and
geometric space is the striking relationship between topological
distance (pathlength) and physical distance (Euclidean distance
between center of mass of regions); that is, two regions which are
far from each other in physical space are close to each other
topologically (see Fig. 3). While the topological distance is a measure
of global connectivity, it is interesting to note that this interdepen-
dence between space and topology extends to local connectivity,
where regions clustered in topological space are more likely to be
clustered in physical space, suggesting an inherently physical basis for
anatomical (Bassett et al., 2010) and by extension functional
(Meunier et al., 2009a,b) modularity. The combination of these two
properties is compatible with the known importance of geographical
constraints imposed on the brain both through evolution and during
neurodevelopment (Durbin and Mitchison, 1990; Chklovskii et al.,
2002; Chklovskii, 2004).

Geographical considerations can fundamentally constrain a net-
work, e.g. through the physical size of the cortex determined at birth,
or they may restrict the development of that network, for example, by
imposing a metabolic cost on the development of long, myelinated
axons (Durbin and Mitchison, 1990; Chklovskii et al., 2002;
Chklovskii, 2004; Niven and Laughlin, 2008). Such a selection pressure
for efficiency of cortical wiring may explain the robust presence of
Rentian scaling in these networks, a property originally discovered in
very large-scale integrated computer circuits (Christie and Stroo-
bandt, 2000; Ozaktas, 1992), and characterizing efficient physical
embedding of the system. While Rentian scaling has been reported to
exist in a small sample of DSI networks for a single template and
resolution (Bassett et al., 2010), here we report for the first time the
robust presence of this phenomena across imaging modality (DSI or
DTI), atlas, and spatial resolution; see Fig. 3D.

Modulation of measured architecture by size and anatomical
parcellation

While the density of connections was consistently sparse in these
anatomical networks, it was also modulated by spatial scale, dropping
off exponentially with the number of nodes in the parcellation applied
to the brain, and therefore the number of nodes in the network (see
Fig. 2A and Supplementary Materials). While it has been previously
suggested that density and the number of nodes are related (Zalesky
et al., 2010), we have further extended this finding to multiple
parcellation schemes and imaging modalities in addition to mathe-
matically characterizing the form of that relationship as a power-law
with consistent exponents in both DSI and DTI networks. Power-law
relationships between measures of total connectivity (edges) and
measures of total processing blocks (nodes) are a well-known
phenomenon in the very large-scale integrated circuit literature
(Bakoglu, 1990) and indicate a consistent organizational structure
over variations in system size. In the current context, this finding that
cortical white matter connectivity has architectural properties which
are conserved over a range of scales, is consistent with similar recent
findings in human brain functional networks (Bassett et al., 2006,
2009; Kitzbichler et al., 2009).

In addition to density, the majority of network metrics studied
here also varied with spatial resolution to different degrees: some
strongly (e.g., exponentially, due to a strong dependence on density)
and some weakly (see Fig. 2). For example, as reported for DTI
networks previously (Zalesky et al., 2010), the clustering coefficient
and pathlength both increased with increasing spatial resolution. It
may be that this modulation of structural topology by spatial
resolution underlies apparent alterations in functional topology at
varying spatial scales, due to the complex structure–function
relationship (Honey et al., 2007, 2009, 2010). Our results may
therefore partially explain the reported dependence of degree
distributions in functional networks on spatial resolution (van den
Heuvel et al., 2008; Eguíluz et al., 2005; Hayasaka and Laurienti,
2010), where larger hubs are more likely to occur at higher spatial
resolutions.

Because density varied with the number of nodes in the network,
we cannot disassociate the effects of these two measures of network
size on graph metric values. It is interesting to note, however, that the
amount of variation was metric-dependent; modularity, hierarchy,
assortativity, synchronizability, and mean connection distance were
more stable across spatial resolutions than the other graph metrics
studied here. It has been previously reported that graph metrics are
independently sensitive to variations in density (Anderson et al.,
1999), and until we better understand these inter-dependencies,
holding the number of nodes and edges fixed in an experimental
analysis will likely remain a common practice. It is as yet not well
understood what sorts of organizational structures could display this
combination of sensitivity of some graph metrics to spatial scale and
insensitivity of others, and this will likely be an important and
interesting area of future research.

Individual variability of measured architecture

Our results showed that connectivity matrices derived across both
individuals and scans were highly similar in both imaging modalities,
suggesting a robust conservation of human connectivity diagrams.
Our work did, however, uncover strong differences between the
coverage and sensitivity of DSI and DTI networks. DSI networks were
characterized by ∼1.1× greater density, ∼3.5× greater average
weight, ∼3.0× greater nodal diversity, and ∼3.6× greater edge
diversity than their DTI counterparts. This modality dependent extent
of connectivity can be understood in the context of the inherent
differences between the two imaging techniques. DSI data is acquired
using an order of magnitude more diffusion directions and can
successfully resolve the crossing of fiber tracts (Wedeen et al., 2005),
providing a significantly more complete wiring diagram (Hagmann
et al., 2008). Possible scientific questions in which DSI acquisitions
may therefore be preferred include those which would benefit from
more extensive cortical coverage and those that would require
sensitivity to the diversity of connectivity profiles over cortical
regions (for example, in schizophrenia (Lynall et al., 2010)).

Furthermore, intra-subject similarity was in general higher than
inter-subject similarity, arguably indicating that these analysis
methods highlight biologically relevant individual variation in
connectivity structure. The fact that intra-subject and inter-subject
similarities are less different in DSI than in DTI matrices may be due to
their relatively higher connectivity. It is intuitively plausible that a few
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individual signatures of connectivity in the dense DSI matrices have a
smaller statistical impact on the matrix similarity than the same
number of signatures in the sparser DTI matrices.

The subsequent results for reproducibility of both basic connec-
tivity properties and graph metrics highlight a potential trade-off
between accuracy and reproducibility in diffusion imaging networks:
while DSI networks are arguably more comprehensive, containing
more tracks, and more successfully resolving the crossing of tracts,
they are also less reproducible. On the other hand, DTI networks are
highly reproducible but provide less information, being sparse and
containing fewer tracts. Despite these dramatic differences in network
constituents, it is impressive to note that both types of networks
consistently displayed a large range of conserved architectural
characteristics, as discussed above. Further, it is important to note
that while higher for DTI networks, reproducibility of weighted
connectivity properties was still significant in all DSI networks studied
(〈ICC〉=0.72), indicating that measures derived from either modality
can be successfully applied to studies of individual variation in
cognitive ability, clinical or drug studies, or studies requiring multiple
scanning sessions.

A second important trade-off between variability and reproduc-
ibility is evident from our results. The coefficient of variation, which
measures the variability of metrics, was not significantly different
between graph metrics derived from DTI and DSI networks, while the
intra-class correlation coefficient, which measures the differences
between individuals compared to the differences between scans, was
significantly different. In combination, these results suggest that the
DSI networks provide a robust estimate of structure that is consistent
across individuals but are less sensitive to differences over time
within an individual. Examining these results from a different
perspective, we note that it is potentially possible that global graph
metrics, due to their agglomerative nature, are relatively less sensitive
to small changes in network structure in more homogeneously
connected graphs (DSI networks) than in less connected graphs (DTI
networks). If this were true, it would suggest that assessing regional
network statistics or using weighted network measures may enable
more robust estimation of individual differences in DSI than DTI
networks. These and other possibilities need to be addressed
systematically, and we are actively pursuing these research questions.

In addition to differences in connectivity and properties of global
graph metrics, there are several other potential reasons for the
decreased reproducibility evident in the DSI networks in this study
primarily related to acquisition and preprocessing. Firstly, it is
important to note that the DSI acquisition is 5 times longer than
the DTI acquisition (45 min as opposed to 9 min), increasing the
probability of significantly more cumulative head movement at the
conclusion of the DSI scan. Furthermore, movement correction in the
current acquisition sequence is difficult because the b-values of each
scan increase with scan duration, and high b-value scans not only
have a lower signal-to-noise ratio but also have a larger number of
diffusion directions. More extensive movement correction may be
possible in alternative scanning sequences where multiple b0 scans
are acquired throughout the protocol or by decreasing total scan
duration using the technique of simultaneous image refocusing echo-
planar imaging (Reese et al., 2009).

Preprocessing steps including the brain parcellation and diffusion
tractography may also have a nontrivial impact on the reproducibility
of connectivity structure. The choice of tractography algorithm could
theoretically affect the reproducibility of DSI network structure for
example by altering the estimation of the ODF peaks, the maximum
number of ODF peaks detected per voxel, and the propagation
through fiber crossings. Furthermore, in deterministic tractography,
noise artifacts increase with streamline length, a relationship which
may differentially impact reproducibility in DSI networks which have
longer tracts than DTI networks. Secondly, the application of whole-
brain atlases like the HO, AAL, and LPBA40 to individual subjects and
scans necessarily blurs the boundaries between individuals. Because
DSI networks are composed of more tracts, and more spatially
distributed tracts, they may be more sensitive to poor inter-subject
concordance of brain regions. In order to retain more individual
information regarding cortical structure, a subject-specific cortical
surface reconstruction and parcellation, such as that provided by
FreeSurfer (Destrieux et al., 2010), could be performed.

In light of this discussion, it is important to note that it was not the
purpose of this particular study to determine the optimal processing
pathway to create the most robust human brain white matter
connectivity atlas. Instead the relative power of our approach lies in
its simplicity. Using freely available software and minimal adaptation,
we have uncovered a range of conserved network architectural
principles which are robust across multiple scanning sessions to
variability in imaging technique, whole-brain atlas, and spatial
resolution, and which we therefore have reason to expect will also
be robust to alternative processing streams. It is, however, possible
that fine tuning the current approach or using alternative approaches
may significantly increase reproducibility of connectivity structure in
human brain anatomical networks derived from both DTI and DSI
data.

Graph metrics
Our results show that network metrics were differently sensitive

to individual variation, as measured by the ICC of network metrics
over scans; see Fig. 6. Graph properties derived from both DSI and DTI
networks varied largely in reproducibility, with ICC values ranging
from 0.30 to 0.70, similar to those reported for functional MEG
networks (Deuker et al., 2009). The small variation in reproducibility
with methodological variation is consistent with a recent study
showing that reproducibility of topological measures in DTI networks
is largely independent of gradient scheme, number of diffusion
directions, and gradient amplitude Vaessen et al. (2010). Interesting-
ly, the most reproducible network metrics, across atlases, resolutions,
and modalities (DSI and DTI), were those which retained information
regarding the physical extent of connections. In DSI networks, the
mean connection distance was the most reproducible while for DTI
networks, both the mean connection distance and the Rent's
exponent showed the highest ICC values. Such metrics may retain
proportionally more power than purely topological metrics by
combining individual variation in both space and topology (Bassett
et al., 2010). The fact that basic connectivity properties were more
reproducible than graph properties may be due to their relative
mathematical simplicity, based on simplemeans and variances, which
could make them robust to alterations in the number of edges.
Conversely, graph properties measure more complicated relation-
ships between edges and the nodes they connect, and therefore may
be both more sensitive and more fragile to edge alterations.

We finally provide preliminary evidence for the modulation of
graph metric values by and the robustness of variability and
reproducibility metrics to alternative weighting schemes. However,
further work is necessary to systematically assess the effects of
multiple weighting schemes, including those with length bias
corrections (Hagmann et al., 2008), on network architecture and its
reproducibility, work which is unfortunately outside of the scope of
the present study.

Anatomy
In addition to global connectivity, networks are often assessed for

anatomical distribution of connectivity from poorly connected
‘provincial’ nodes to highly connected ‘hubs’ (Albert and Barabási,
2002; Amaral et al., 2000). These hubs likely support the majority of
network traffic, and so their identity and characterization is important
in describing the robustness and sensitivity of the network architec-
ture (Albert and Barabási, 2002; Albert, 2005). In brain graphs,
functional hubs have been found predominantly in association cortex
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(Achard et al., 2006). In anatomical networks, hubs have also been
reported in association areas (He et al., 2007), but Zalesky et al. (2010)
suggest that this result may depend on the spatial resolution of the
atlas used to parcellate the brain. Our results uncover a strong
relationship between region size and strength, such that “hubs” are
predictably the largest brain regions in the atlas; see Fig. 5. The
strength of this relationship indicates a degree of homogeneity in
cortical connectivity such that the number of tracts measured in a
given region depends strongly on the size of the measured region. A
similar result has in fact been reported for tract-tracing studies in
macaque monkeys, where the strength of a connection originating
from a cortical area was found to be positively correlated with the size
of the region's surface (Hilgetag and Grant, 2000).

However, an important corollary of this finding for the current
study is that highly connected nodes identified using raw connectivity
weights cannot be interpreted as ‘hubs’ in the common network
understanding of the word. Instead, hubs are those regions which are
more highly connected than might be expected due to their size, and
these occur predominantly in regions adjacent to the central sulcus
and perisylvian fissure as well as regions along the medial wall largely
associated with the functional default mode network of the resting
state brain (Greicius et al., 2003), consistent with previous work
(Hagmann et al., 2008).

In addition to the anatomical localization of connectivity, we
mapped the reproducibility of that connectivity across the surface of
the cortex. In both DTI and DSI networks, we found that regions with
poorly reproducible connectivity strength were consistently located
in the inferior temporal and occipital cortex while regions with highly
reproducible connectivity strength were located in the middle frontal
and distributed medial cortices; see Fig. 5. The anatomical localization
of reproducibility suggests that it is driven at least in part by magnetic
susceptibility (Vargas et al., 2009).

Methodological limitations

Atlas and upsampling
There are several methodological limitations to the current work,

perhaps the simplest of which being that we have not performed an
exhaustive analysis of all possible whole-brain atlases. We have
instead chosen to focus on three commonly used and representative
atlases (AAL, HO, and LPBA40) which span a range of spatial scales
(from the 54 regions of the LPBA40 atlas to the 110 regions of the HO
atlas) and which further provide alternative parcellations to multiple
brain regions including large portions of the frontal, temporal, and
occipital cortices. We have also used a uniform upsampling of these
atlases in order to retain the original cytoarchitectonic boundaries of
the mother atlas, and therefore our results do not address the effects
of random upsampling, non-uniform upsampling, or upsampling
performed without respecting anatomical boundaries (Zalesky et al.,
2010).

Tractography and acquisition
Construction of a human connectome depends upon tracking

individual neuronal fiber tracts through diffusion-based images.
Such tracking can be performed using a wide variety of methods
including streamline tracking such as deterministic tractography
(Basser et al., 2000; Conturo et al., 1999; Mori and Barker, 1999;
Lazar et al., 2003) probabilistic tractography (Behrens et al., 2003;
Hagmann et al., 2003; Parker and Alexander, 2003), front evolution
tracking (Parker et al., 2002; Campbell et al., 2005), and graph-based
tracking (Iturria-Medina et al., 2007, 2008; Sotiropoulos et al., 2010).
We restricted our attention in the current work to deterministic
streamline tracking methods. Deterministic algorithms generate
tracts using locally optimal decisions while probabilistic algorithms
generate continuous probabilities of a tract's existence. Both
methods have had many successes, but also come with some
limitations (Behrens et al., 2007; Sherbondy et al., 2008). Determin-
istic tractography is both simple and swift, and produces discrete
and therefore easily interpretable results and is simply applicable to
both DTI and DSI acquisition streams. However, probabilistic
algorithms have the advantage of assessing a wider pathway search
space, and therefore an important future study will focus on
reproducibility of DTI network structure as a function of tractogra-
phy algorithm (Moldrich et al., 2010). Determining the best
algorithms for both deterministic and probabilistic tractography is
still a growing field of important research (Behrens et al., 2007;
Descoteaux et al., 2009; Sherbondy et al., 2008), and current efforts
are complicated by false positives, false negatives, and biases against
long-distance connections. Future advances in tractography algo-
rithms will therefore likely provide a better springboard for further
reproducibility studies of this kind. While a systematic study of
preprocessing strategies is outside the scope of this paper, it would
theoretically be interesting to address in future whether reproduc-
ibility can be increased by altering the acquired slice thickness, using
more or less diffusion directions, using a higher channel coil, and
alternating between low and high b-values during the acquisition.
Network metrics
The current network analysis described in this paper has focused

on quantifying the reproducibility of global network properties using
a combination of basic connectivity and binary graph metrics, the
most commonly applied methods to date (Gong et al., 2009; Vaessen
et al., 2010; Shu et al., 2009; Li et al., 2009; Zalesky et al., 2010).
However, additional work could also include an assessment of
weighted network measures in addition to more detailed quantifica-
tion of regional reproducibility (Hagmann et al., 2008; Iturria-Medina
et al., 2007). While it was not the subject of the current work, it would
be interesting in future to determine whether or not alternative
thresholding algorithms based on local thresholds or minimum
spanning trees (Hagmann et al., 2008) might provide better
reproducibility.
Conclusion

In this work, we have explored the topological basis of hierarchical
modularity using metrics which are consistently expressed in
measured cortical architecture across multiple alternative mappings.
Combined with conserved topo-physical relationships, these results
point to a highly structured and physically-dependent nervous
system. Our work also highlights specific network properties, such
as Rent's exponent, that are particularly sensitive to individual
variation in anatomical connectivity while remaining insensitive to
inter-scan variability. We demonstrate that the network connectivity
architecture of both DSI and DTI networks is highly reproducible.
Because both of these imaging acquisition techniques and subsequent
tractography algorithms are still being developed, our understanding
of canonical cortical architecture is likely to deepen in future. Based on
our work, however, we suggest that network analysis of human white
matter connectivity can currently provide sensitive topological and
physical measurements of cortical structure across multiple temporal
and spatial scales.
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