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duction tasks are a standard tool to analyze motor learning, consoli-
dation, and habituation. As sequences are learned, movements are
typically grouped into subsets or chunks. For example, most Ameri-
cans memorize telephone numbers in two chunks of three digits, and
one chunk of four. Studies generally use response times or error rates
to estimate how subjects chunk, and these estimates are often related
to physiological data. Here we show that chunking is simultaneously
reflected in reaction times, errors, and their correlations. This multi-
modal structure enables us to propose a Bayesian algorithm that better
estimates chunks while avoiding overfitting. Our algorithm reveals
previously unknown behavioral structure, such as an increased error
correlations with training, and promises a useful tool for the charac-
terization of many forms of sequential motor behavior.

discrete sequence production; learning; memory

ONE OF THE CENTRAL QUESTIONS in neuroscience and cognitive
and behavioral psychology is how the brain allows move-
ment performance to improve with practice (Thorndike
1898; Pavlov 1927; Crossman 1959; Newell and Rosen-
bloom 1981; Skinner 1938). When learning to produce
sequences of actions, animals organize information into
groups or “chunks” (Miller and George 1956; Newell 1991),
and studying such chunks is a popular way of studying
learning and memory. One common experimental paradigm
to study movement chunking is the discrete sequence pro-
duction (DSP) task, where subjects learn, through many
repetitions, to rapidly generate a fixed sequence of finger
movements (Adams 1984; Gentner 1987; Verwey 1996;
Verwey and Dronkert 1996; Logan and Bundesen 2003).
Understanding how practice leads to improved performance
in this task promises to unveil how the central nervous
system organizes temporal information in a way that enables
fast, habitual processing (e.g., see Clerget et al. 2012).
Indeed, evidence suggests that chunking is what allows
efficient behavior. Performance gains in the DSP task correlate
with motor chunking (Verwey 1994, 1996; Verwey and
Dronkert 1996). This may be because long sequences cannot
be stored in short-term motor memory or the optimal control
problem for long sequences is generally infeasible (Todorov et
al. 2005; Parr 1998). Understanding motor chunking is crucial
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to understanding the organization of motor memory and move-
ment efficiency.

Motor chunks are known to leave characteristic traces on
observed response times. One of the prominent features is a
change in response times and errors at the beginning of chunks.
There is a longer-than-usual pause during chunk concatenation
(Verwey and Dronkert 1996; Verwey 1996). These differences
in response times are frequently described and used in algo-
rithms that reveal chunking behavior.

It seems natural to think of each chunk as controlled by a
single neural representation, and each representation should
be able to produce these movements at the right speed,
leading to additional predictions of features of chunking.
When a new chunk is started, the transition should slow
response times, and errors in the transition should lead to
errors in the execution. However, we should also expect that
each chunk is produced at a relatively fixed speed (Abra-
hamse et al. 2013). Reaction times and errors within a chunk
should therefore be correlated, forming a novel hypothesis
to test.

There exists a range of methods for inferring chunking
structure. The most common is to look at the mean response
times during a set of trials and detect significant increases in
certain elements of the sequence (Abrahamse et al. 2013;
Verwey 1994, 1996; Verwey and Dronkert 1996). These points
of significant increase are marked as the start of a new chunk.
This simple method limits the analysis by requiring the exper-
imenter to choose which ranges of trials to analyze. A recent
approach based on community detection in networks (Wymbs
et al. 2012) removes this limitation by modeling time explicitly
and providing time-varying evolution of chunk structures.
These methods, however, cannot readily incoporate multiple
signals (response times and errors) or deal with correlations of
these signals within trials.

In this article, we analyze data from 17 subjects who
participated in a DSP task over an average of 30 days of
practice. We do find that the features reaction time, error,
and their respective correlations are associated with chunk-
ing structure. Combining information across features and
time allows us to construct a Bayesian algorithm that is
consistently more precise than algorithms using only one
feature. To verify the general applicability of our algorithm,
we also analyze two datasets from nonhuman primates
producing and learning sequences over months or even
years. The resulting algorithm that combines the multimodal
features of behavior and across time allows precise esti-
mates of underlying chunking structure.
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METHODS
Experimental Data

We analyze data where humans or monkeys participate in a DSP
task. Subjects observe a cue that signals the next element of a
sequence of elements to be executed. Each element of the sequence is
signaled to the subject one at a time and after inputting the right
element, the system advances to the next element, and so on until the
end of the sequence (see Fig. 2A), which allows subjects to speed up
the task by predicting the next element.

Human data. We reanalyze data from a published study (Bassett et
al. 2013). In short, 25 subjects completed a training regimen involving
the simultaneous acquisition of 6 different 10-element motor se-
quences using a DSP task. Subjects were asked to input the elements
as fast and accurate as possible. Over the course of a 6-wk training
regimen, subjects trained on the sequences both at home using their
laptop computer as well as inside an MRI scanner. Training alternated
between scanner and home locations, such that following each train-
ing session in the scanner, subjects performed a minimum of 10
sessions (1 session/day) at home over the next 2 wk. This pattern of
training repeated 3 times, so that subjects completed on average 30
home training sessions and 4 scan sessions. We only analyze the home
training sessions. Sequence familiarity was manipulated during home
training at three exposure levels. Each home training session consisted
of 150 trials presented using a random schedule, so that two sequences
trained extensively (~2,000 trials), two sequences trained moderately,
and two sequences trained minimally. All subjects trained on the same
sequence set and each at the same exposure level, which were
maintained over the course of training. Only the highly trained
sequences were analyzed in the present study. Sequence one is 2, 1, 3,
5,4,1,3,4,5,2,and 5, and sequence two is 4, 2, 1, 3,5, 2, 3, 1, 4,
and 5. Fingers are sequentially numbered from (1) the thumb to (5) the
pinky. We excluded eight subjects because of either lower participa-
tion rate, increase response times, or error rates with practice.

Monkey data. We reanalyze data from a published study (Matsu-
zaka et al. 2007, dataset D1): in short, two rhesus macaques partici-
pated in a 12-element 5-target DSP task. We analyze data from one
monkey. Targets for the reaching movements were on a touch screen,
chosen by touching the screen with the hand, and visually cued 300
ms after the previous target contact. However, the task allowed the
monkeys to contact the next target in the sequence during the 300-ms
delay before it was shown. When the monkeys made correct antici-
patory responses, the task was incremented to the next element of the
sequence without display of the touched target. As a result, the
monkeys learned to perform the sequence in a predictive fashion
without requiring visual cues.

We reanalyze a second dataset from a previous study (Desmurget
and Turner 2010, dataset D2): in this task, two rhesus macaques
participated in a five-element eight-target DSP task (see also Desmur-
get and Turner 2008, 2010). Targets for the movements were dis-
played on a monitor, chosen by steering a cursor through a target area
with a joystick, and visually cued 230 ms after the previous target
acquisition. The task required the animal to move the cursor in five
consecutive out and back movements between the central start posi-
tion and a series of five peripheral targets. As in dataset D1, with
training, the monkey performed the task in a predictive fashion
without relying on visual cues.

Preprocessing

The aim of this study is to understand the evolution of chunking
structure over time. For this purpose, it is necessary to control for the
effect of practice on overall movement speed that is unrelated to the
within-sequence variability introduced by chunking. For example, by
computing the mean response time as a function of trials, we can
clearly see a trend that comes from practicing (see Fig. 2B). In our
analysis, we remove this unrelated effect by performing a detrending
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of the response time data using an exponential model (Logan and
Bundesen 2003). There are alternative models for detrending practice
curves, such as the power law, and depending on the circumstance
different curves might be used (Heathcote et al. 2000).

We assume that the practice component of response time depends
on trials across days and the interaction between elements and trial

RT,;=ay+a,-exp(=b,-1—=by-1-i) + RRT;

Practice effect

()

where ¢ is the trial and i is the element. We control for the interaction
of trial and element because response time tends to be faster in later
elements of the sequence, independent of the chunking structure
(Abrahamse et al. 2013). Other covariates assumed to be independent
of the chunking structure could be included in the detrending prepro-
cesing, such as finger used

Chunking+noise ’

5
RT,; =ay+a;-exp(—b,-t—b,-1-i)+ > finger,
~ i=

Practice effect L
Biomechanical effect (2)

+ RRT,;
Chm;ise
The residual response time (RRT), then, is assumed to come from
the joint contribution of chunking structure and the motor variability
(noise). This allows us to use the reaction times as a meaningful way

of estimating chunking structure.

Generative Model for RRT and Errors

Our Bayesian algorithm is based on a so-called generative model,
a probabilistic description of how statistical properties of the task, the
chunking structure, are reflected in the statistical properties of mea-
surable data-response time and errors. In our modeling, “error” refers
to the failure of a participant to correctly generate an element and it is
therefore an observation of the behavior rather than a statistical
estimation error. Here we assume that the chunking structure tends to
stay similar from trial to trial but may change a great deal over many
trials. Based on preliminary analysis described below, we build into
the model the assumption that the first element of each chunk may
have prolonged RRT and raised error probabilities and that, within
each chunk, response times and error locations are correlated.

We thus can define a probabilistic graphical model (Jordan 2004)
of how the data are stochastically related within a trial and across
trials. The RRTs depend on the parameters of the features and the
chunking structure at trial #. The goal of our algorithm is to estimate
these parameters.

We assume that there is a chunking structure, ¢, which slowly
evolves across trials. Statistically, this is captured by the following
generative model:

co~ (€))

eilemy ~ (e~ -), 4)
RRT, | ¢~ Normal( MERT, ECR,RT ) 4)
ER,| ¢, ~ Normal( IU«E,R’ o ) (6)

Our model is a hidden Markov model with Gaussian emissions
(Murphy 2012). There is a finite number of chunking structures (¢ €
{1, ..., K}), and the matrix [I(c—c") governs the probability of going
from chunking structure ¢ to ¢’. The distribution 7 is the probability
of starting at any of the K chunking structures. Conditioned on the
chunking structure, multivariate normal distributions are assumed for
RRT and errors (Egs. 5 and 6). Modeling errors as normally distrib-
uted can only capture their means and covariance but not their
skewness, but we made this modeling choice for statistical simplicity
and computational efficiency. More specifically, the mean RRT at trial
t for element i is
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Table 1. Parameters needed by the model to estimate chunks
Parameter Description
™ Initial distribution of chunking structures
11 Transition probability matrix between chunking
structures
WRRT Mean RRT at beginning of chunk
[T Mean RRT within a chunk
Megtart Error rate at beginning of chunk
HER Error rate within a chunk
RRT RRT variance
TR Error rate variance
PRRT Correlation between RRT of elements within
same chunk
PER Correlation between error of elements within
same chunk

These parameters are fitted by expectation maximization. RRT, residual
response time.

RRT
Meggart i is start of chunk
BIRRT, e = | rar . (7)
Mnonstart otherwise
and, similarly, the mean error at trial ¢ for element i is
ER ..
Mestart i is start of chunk
BIER, e = | er . ®
nonstart otherwise

The variance across elements is assumed to be homogenous over
chunks, i.e., Var[RRT, lc,] = ogpyr and Var[ER, lc,] = opp.

The covariance takes on a simple structure, assumed constant
within a chunk and zero across chunks. Because a constant variance
is assumed as well, the correlation within a chunk is constant, and the

A
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correlation across chunks is null. Mathematically, the correlations in
RRTs and errors at trial # between elements i and j are

prrr @ and j are in same chunk

Corr[RRT, ;, RRT, c;] = i
orr[ 1 rjlcil {0 otherwise

and

i and j are in same chunk
PER J (10)

Corr[ER,;, ER, jl¢;] = {o otherwise

To infer the chunking structure, we must simultaneously learn the

RRT  RRT ER ER
parameters , H’ Mstart » Mnonstarts Mstarts Mnonstarts UZRRT’ O%R’ PRRT> and

per and compute the distribution over chunking structures (see
Table 1). We use a standard expectation maximization scheme in
which we alternate between finding the expected chunking structure
of the model through a forward-backward algorithm (Welch 2003)
and then finding the parameters that most likely would have generated
those chunking structures. This scheme is proven to find a local
maximum on log-likelihood (Murphy 2012). The algorithm optimally
estimates an interpretation of the data (response times, errors, and
correlations) in terms of a slowly varying chunking structure. The
code of the algorithm is available at https://github.com/daniel-acuna/
chunk_inference).

Generation of Candidate Chunking Structures

A candidate set of chunking structures must be provided to our
method. In this study, we tested all combinations of chunking struc-
tures with one or more elements. For example, for a 10-element
sequence, there are 511 possible chunking structures, from the hypo-
thetical that each element is in its own chunk to all 10 elements being
in one chunk (Fig. 1A). Each chunking structure defines mean and

Possible chunking structures for 10-element sequence

10
X
g
<
5 O
1
1 100 200 300 400 500
Chunk structure index
Chunk structure 5 Mean Covariance
1 Mstart o> po? pa? po? pe’ pod pst 0 0 0 Fig. 1. A: exhaustive list of chunking struc-
Hnonstart pc? o> po® po? po’ po? pod 0 0 0 tures that might be present during a trial of a
Hnonstart po? po? o> po? po? pce? ped 0 0 0 10-element sequence. B: example of mean
'qC: Unonstart po? po? po? o¢® po? po? pod 0 0 0 and covariance of residual response time
g 5 => Hnonstart pa* po* po’ po’ o> pa’ pat 0 0 0 (RRT) or error of the elements given 2 exam-
L% Hnonstart po’ po’ po’ po’ po’ o’ po’ 0O 0 0 ple chunking structures.
Hnonstart pc? po? po? po? po pot 62 0 0 0
Hstart 60 0 0 0 0 0 0 o po’ po?
Hnonstart 0 0 0 0 0 0 0 P o2 o P o2
10 Hnonstart 0 0 0 0 0 0 0 po? po? o2
Chunk structure 81
1 Hstart c? P c? P c? 0 0 0 0 0 0 0
Hnonstart po®> o> ps> 0 0O 0O 0O 0O 0 O
- Hnonstare po® po> o> 0 0 0 0 0 0 0
= 0 0 0 o ps> 0 0 0 0 0
@ Hstart 5
£ 5 => Unonstart 0 0 0 po? o> 0 0 0 0 0
= Hstar 0 0 0 0 0 ¢ po’ ps’ pa* po’
Hnonstart 0 0 0 0 0 po> o> po’ po’ pc’
Hnonstart 0 0 0 0 0 p o’ p o> o P o’ P o’
Hnonstart 0 0 0 0 0 po’ po’ po’ o> po’
10 Hnonstart 0 0 0 0 0 po® po’ po’ po’ of
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covariance RRTs and errors, as defined by Egs. 7, 8, 9, and 10 (for
concrete examples, see Fig. 1B). After the list of possible chunking
structures is defined, the algorithm estimates the parameters of the
hidden Markov model, inferring the distribution of chunking structure
present at each trial.

Alternatives to the Full Model and Model Comparison Measures

The model presented in the previous sections uses four features of
the data to infer chunking structure. These features are mean RRT and
errors, and RRT/RRT, and error/error correlations. By enabling or
disabling each of these features, it is possible to fit simpler variations
of the full model. In this study, we test three variations of the model:

1) RT + ER: full model with correlations set to zero (pgrr = 0,
Per = 0).

2) RT + ER + RRT/RRT: full model with error correlations set to
zero (pgr = 0).

3) RT + ER + ER/ER: full model with RRT correlations set to
ze10 (pgrr = 0).

Model comparison will be performed by fitting the parameters
needed for each model in a training dataset and reporting the predic-
tion performance of the model in a separate festing dataset. This
procedure is a standard technique in machine learning where models
of differing complexity need to be compared (Hastie et al. 2009).
Specifically, if a model is too complex for a dataset, it fits the training
data very well but it performs poorly during the prediction of the
testing dataset due to overfitting. Similarly, if a model is excessively
simple, it poorly fits the training and testing datasets. The model
comparison method used here will favor models that capture real
trends in the data rather than the noise.

RESULTS

We want to understand how chunking affects behavior and,
based on that knowledge, build an algorithm that estimates
chunks given response times, errors, and correlations. We base
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our analysis on results from several previously published
experiments that used humans and monkeys as subjects. In the
human study, subjects had to type out sequences, while given
visual information about the correct key to press in sequential
order (Fig. 2A). Similarly, in the monkey studies, subjects had
to reach over a screen or use a joystick to select the correct
element in the sequence. Over the course of extensive training,
subjects learned to predict each element, and, by the end of the
training, response times were very fast, indicating predictive
behavior (~150 ms). We characterize the statistics of the
multimodal structure of this data and use it to calibrate an
algorithm that efficiently estimates chunking structure.

In the human dataset, subjects get better over time (Fig. 2B),
independent of the actual chunking structure. The exponential
fit (1) reveals that parameters across subjects and sequences
were similar, suggesting that practice had a similar effect on
response time across subjects and sequences. Subjects clearly
learn to become more efficient, but this effect is orthogonal to
the way they chunk the sequence.

The raw data show interesting structure that is consistent
with the existence of chunks (Fig. 2C). We clearly see that
some response times tend to be longer throughout the
experiment (e.g., elements 1, 5, and 6) while others are only
longer during parts of the experiment (e.g., element 7 from
trial 400 to 1,400). However, chunking structure based on
response time is salient early in learning and decays in
importance later. Errors also follow a similar but substan-
tially more subtle trend. Importantly, the increased error
probabilities and reaction times are temporally coherent: if
the time is longer on one trial, it tends to be longer on the
next trial. These are signs of chunking structure and its slow
evolution over time.

A B Error RT/RT ER/ER
. . rror
ce identity cue = 1 = eXponential fit 1" corr.  corr. ser p<0.01
Q 02 w | s+ RT
0, 0.1 ** p<0.05
E o
p Error
[
(0]
= RTRT
0 corr.
0 1000 2000 0
Trial
C
residual response time seconds errors
H”'M vm \I\ L 1l HHHIH\H TR T 0.2 N [ Lo I [ EE"OF
‘qc: wuu\u' T ‘H \ il 1’ \‘ ‘ BT A ‘”| ‘ it \[ T No error
£ © \ A e g ‘\ il 0 I nzw w1 m H | I
Qo \ W‘l“ Wl” M| ‘"’” /H |‘u” \uuw‘u‘wmwth‘\“H n‘\ H\\H H‘ H‘\ \‘\ \ oo ‘ h i u‘\ | ’ o HH
@ w 11l MW ‘ I TR IR n |‘ " \
=3 i (il Hif 0.2 Ly ful ut Ly L h \
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[} ) g = . ~ 12% L LR LT - 12%
T e T T e e P A A e T T
2 H | 0% bW, = W - 0%
®element

Fig. 2. A: experimental setup for human experiment. Subjects repeatedly and rapidly inputted a 10-element sequence of 5 targets (1 for each finger). B: reaction
times decreased over trials and an exponential fit captures the bulk of this effect. C, top left: RRTs as a function of element (y-axis) and trial (x-axis). Green depicts
a higher-than-average residual, and red depicts a lower-than-average residual. C, bottom left: element-element RRTs correlations in 200-trial blocks. Blue color
represents strength of correlation. C, top right: errors by element and trials. C, bottom right: error-error correlations in 200-trial blocks. D: correlations between
estimated features used by the algorithm. This analysis empirically shows that most features are positively associated with one another. DSP, discrete sequence

production; ER, error rate.
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As we hypothesized, there may be structure in the data that
goes beyond mean RRTs and error probabilities. We find clear
evidence of chunking structure in the RRT/RRT and error/error
correlations for this example subject (Fig. 2C, bottom). Empir-
ically, we found that these four features (mean RRT and error,
and RRT/RRT, and error/error correlations) are positively
associated with one another, suggesting that they represent one
underlying structure. Reaction times are correlated to the
probability of making an error. However, if long reaction times
indicate the start of a chunk, then the next two items will
usually be part of the same chunk and should have correlated
reaction times. Also, as predicted, we find a correlation of
reaction times with the correlation of reaction times with the
next item. In addition, in the same manner we find the expected
relation to the error-error correlations. Similarly, we find the
correlation of errors and error-error correlations (see Fig. 2D
for all associations across these 4 features). Chunking is not
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just a phenomenon of reaction times but is reflected in the full
set of hypothesized features.

Our model is now driven by the insights from the data (Fig.
2D). 1) Reaction times and errors, as well as their correlations
across elements are indicators of chunking structure. 2) Chunk-
ing changes slowly over time. These four features we use are
complimentary: response times are powerful features early in
learning but later they require significant integration over time
while errors and correlational information provide a constant
secondary source of information, in particular later in learning.
Combining these insights allows our model to estimate the
chunking structure.

Do response times and errors inform us about the same
underlying chunking structure? To ask this question we ask
how the models based on only response time or errors predicts
the other. We find that when estimating chunking based on
errors only, response times at chunk boundaries are signifi-
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c .o y -
8 0.02 L .
1S * .
= 9
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o I I I I I I I I I I I I
o
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] . . . *
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123456 7 8 91011121314151617 1 2 3 4 5 6 7 8 9 1011121314151617
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5 5 5 B RRT+ER +ER/ER
2 2 2 [ Full model
[0 [0 [0}
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[one monkey]
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[only errors]

Fig. 3. Predictive quality of the model. Error bars represent 95% confidence intervals. A, top: when only errors are used to estimate chunking then chunk starts
are slower. A, bottom: when only response times are used to estimate chunking then chunk starts have more errors. Error and response time data are coherent,
coinciding with the algorithm’s assumptions. B and C: model performance on testing data which controls for the differing complexity of the models. We
compared models based on various subsets of features (see plot legends). For the human dataset, we tested the model in residual response without finger control
(Eq. 1) and with finger control (Eg. 2). Across all datasets, our full model based on all features performed best without overfitting.
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cantly longer than within chunks (Fig. 3A, top). We also find
that when estimating chunking based on reaction times only,
chunk starts have more errors (Fig. 3A, bottom). This suggests
that the various features are all reflections of one underlying
chunk structure.

We additionally tested the applicability of these ideas to very
long learning studies. We use two datasets from two laborato-
ries that involved macaques performing DSP tasks. The steps
used to analyze the data were analogous to those used in the
human experiment previously described. For one dataset (D1),
from Matsuzaka et al. (2007), we analyzed response times and
errors, and for the second dataset (D2), from Desmurget and
Turner (2010), we only analyzed errors. Dataset D1 contains
~120,000 trials of 12-element 5-target sequences from 1
monkey, and Dataset D2 totals ~138,000 trials of 5-element
8-target sequences from 2 monkeys. The extent and controlla-
bility achieved by these experiments make them ideal for
testing the introduced algorithm. Indeed, we find that for all
datasets, when we train on the first 80% of the data to predict
the last 20% of the data, we are better than a no-chunking
algorithm (Fig. 3, B and C). These results show that our
algorithm is able to describe meaningful aspects of sequence
production tasks over long time scales.

A more detailed analysis of the human data with the full
model is performed next. The algorithm provides us with
time-varying fits to response times, errors, and correlations.
The model can provide the most probable chunking structure at
each trial (see example inference in Fig. 4B) and qualitatively
fits the response times and errors, exhibiting a block-diagonal
correlational structure consistent with the data (compare Fig.
2C with Fig. 40).

ALGORITHM FOR CHUNKING INFERENCE

Over the course of learning, the nervous system may use
chunks of varying size. Indeed, we see that smaller chunks are
replaced by larger ones (Fig. 5A), consistent with the literature
(Abrahamse et al. 2013). It seems that subjects encode se-
quences by using many chunks at the beginning of learning and
then slowly “compiling” them into longer chunks as has been
suggested by the prior literature (Newell 1991; Ericsson 2006;
Wymbs et al. 2012).

The algorithm uses whichever features are indicative about
the chunking structure which may evolve over time. Response
times and errors at chunking boundaries evolves over time
(Fig. 5B). Response time/response time correlations remain
relatively constant throughout the experiment and, interest-
ingly, error-error correlations increase over time (Fig. 5C).
Across learning our algorithm identifies chunks using reaction
times, errors, and their correlations, and how chunks are
expressed evolves over time.

DISCUSSION

In this work, we have analyzed reaction times, errors, and
their correlations and found all of them to be indicative of an
underlying chunking structure. Interestingly, signs of chunking
structure change over time. The importance of the response
time signal is larger than errors, and error correlations become
increasingly important at the end of the trials. We also found
chunking structure to evolve slowly over time, with more
chunks at the beginning and fewer chunks at the end. Com-
bining these properties into a joint model for chunking infer-
ence enabled an algorithm that uses the breadth of available
data. Our algorithm consistently outperforms simpler algo-
rithms across datasets from humans and monkeys. Our algorithm

(2 . - 8
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\ \ GC) Lle o
gw 5 ¢
Chunking structure o 4 2
evolves over time ° 3 ©
2
=) 1
/ 1 850 1700
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C
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Fig. 4. A: chunking structure at time #, denoted by the node c,, is assumed to evolve slowly over time and governs the probability of the next chunking structure
¢, Given the current chunking structure, c,, the model assumes a likelihood on the estimated RRT. Multifaceted aspects of chunking enable robust algorithms
18 (RRT,), errors (ER,), and correlations (not shown). The effect of chunking structure on the data is parameterized by the vector 6. B: maximum a posteriori
estimation of chunking structure based on the data. Each color represents a different chunk. C: expected mean response times and errors and their correlations

inferred by the model. Compare to Fig. 2C.
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Fig. 5. Smoothed evolution of key features for DSP tasks on humans (=SE).
A: mean number of chunks as a function of trial. Number of chunks used by
subjects decreased over time B: standardized increase of response times and
errors at the beginning of chunks. The reaction times signal is bigger than the
error signal across the task. C: running mean correlation of response times and
errors within chunks. Response times correlation stays strongly correlated
within chunks while error correlations become a strong signal at the end of the
task. The evolution of the error correlation within chunks is a novel feature
revealed by the algorithm.

promises to help us better understand how motor memory is
organized in sequence production tasks and how the central
nervous system improves performance through practice.

Any model needs to make simplifying assumptions, and we
want to discuss their effect. First, there could be different ways
in which the central nervous system structures chunking. For
example, we have assumed that, at any point during training,
there is only one underlying chunking structure that we need to
uncover. In principle, different brain regions could chunk
differently, and chunking in one brain area could affect reac-
tion times while the other affects error probabilities. However, our
finding that response times can predict errors and vice versa
suggests that at least some of the chunking structure is shared.

The data we analyzed come from experiments with several
interleaved sequences, which is ignored by our analysis. We
believe, however, that the interaction across sequences does
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not strongly affect our results. First, the parameters obtained
during the detrending suggested that the effect of learning is
essentially equal across subjects and sequences. Second, the
sequences were originally created so that they do not have
regularities (e.g., 121, 123, 11), lowering the potential for
across-sequence interactions. Interference across sequences,
however, could be potentially added by considering higher
order hidden Markov models or hidden semi-Markov Models
(Murphy and Paskin 2002). It seems unlikely that the structures
we uncovered were produced by the interleaved sequences.

Previous studies have examined possible brain substrates of
chunking behavior in the DSP task. Distinct areas have been
found to correlate with chunk splitting (left-hemisphere front
parietal network) and chunk concatenation (bilateral sensori-
motor putamen) (Wymbs et al. 2012). Other studies have
related the ability of humans to learn with the “flexibility” they
have to change the representation of motor sequences (Bassett
etal. 2011, 2013). Taken together, these results suggest that the
sequence production tasks are a powerful, yet simple, paradigm
to study learning and skill acquisition and its relationship to the
brain. A tool like the one presented here can be used to
pinpoint more precisely individual differences in learning per-
formance as a result of improved chunking inference. A po-
tential extension could penalize chunking structures that have
either too few or too many chunks (Verwey 1994). This
modeling assumption would add to the intuition that remem-
bering many chunks adds to the cognitive load and therefore is
less likely to occur (e.g., Verwey 1996), and also having one
long chunk is unlikely because it would require the motor
system to store the entire sequence in one chunk of memory
(Sternberg et al. 1978). In our algorithm, this notion could be
added by regularizing the initial distribution (Eq. 3) with an
appropriate prior that penalizes too few or too many chunks.

We have introduced a coherent and statistically meaningful
approach for dealing with chunking inference in sequence
production tasks. While alternative methods can provide esti-
mates of the chunking structure (e.g., Wymbs et al. 2012;
Bassett et al. 2013; Mucha et al. 2010; Fortunato 2010), they
start from a time-invariant evolution of chunking structure and
do not deal with multiple features and correlations. Our algo-
rithm produce estimates for each trial, by design, while other
approaches provide an estimate for a window of trials whose
size needs to be provided (Verwey 1996). Also, since our
method is a fully generative model of how data are produced,
it can gracefully deal with missing data, and it could be
extended to provide estimates and predictions of any random
variable with Bayesian credible intervals (“errors bars”).

The fundamental ideas used in our algorithm also provide a
framework to understand other motor learning tasks beyond
DSP. For example, our algorithm is amenable to include
hierarchical and non-Markovian probabilistic structures (e.g.,
see Heller et al. 2009). Our algorithm runs relatively fast
(analyzing 2,000 trials requires around a minute on an ordinary
desktop computer) and can be easily brought into the analysis
of more complex tasks that involve varying, continuous motor
command execution (e.g., grasping or reaching). Similar to the
work that has been done in DSP tasks, our algorithm may serve
to improve understanding of how motor memory is consoli-
dated in general by using the same probabilistic principles we
used here.
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