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Procedural learning of skills depends on dopamine-mediated striatal plasticity. Most prior work investi-
gated single stimulus-response procedural learning followed by feedback. However, many skills include
several actions that must be performed before feedback is available. A new procedural-learning task is
developed in which three independent and successive unsupervised categorization responses receive
aggregate feedback indicating either that all three responses were correct, or at least one response was
incorrect. Experiment 1 showed superior learning of stimuli in position 3, and that learning in the first
two positions was initially compromised, and then recovered. An extensive theoretical analysis that used
parameter space partitioning found that a large class of procedural-learning models, which predict prop-
agation of dopamine release from feedback to stimuli, and/or an eligibility trace, fail to fully account for
these data. The analysis also suggested that any dopamine released to the second or third stimulus
impaired categorization learning in the first and second positions. A second experiment tested and con-
firmed a novel prediction of this large class of procedural-learning models that if the to-be-learned
actions are introduced one-by-one in succession then learning is much better if training begins with
the first action (and works forwards) than if it begins with the last action (and works backwards).

� 2016 Elsevier Inc. All rights reserved.
1. Introduction

Many skills are acquired via procedural learning, which is char-
acterized by gradual improvements that require extensive practice
and immediate feedback (Ashby & Ennis, 2006). Most motor skills
fall into this class (Willingham, 1998), but also some cognitive
skills, including certain types of category learning (Ashby,
Alfonso-Reese, Turken, & Waldron, 1998; Ashby & Maddox, 2005,
2010; Maddox & Ashby, 2004). Much evidence suggests that proce-
dural learning is mediated largely within the striatum, and is facil-
itated by a dopamine (DA) mediated reinforcement learning signal
(Badgaiyan, Fischman, & Alpert, 2007; Grafton, Hazeltine, & Ivry,
1995; Jackson & Houghton, 1995; Knopman & Nissen, 1991). The
well-accepted theory is that positive feedback that follows suc-
cessful behaviors increases phasic DA levels in the striatum, which
has the effect of strengthening recently active synapses, whereas
negative feedback causes DA levels to fall below baseline, which
has the effect of weakening recently active synapses (Schultz,
1998). In this way, the DA response to feedback serves as a
teaching signal, with successful behaviors increasing in probability
and unsuccessful behaviors decreasing in probability.

Experimental studies of DA neuron firing have focused on sim-
ple behaviors in which a single cue is followed by a single discrete
response (e.g., button or lever press) or no response at all. The
seminal finding from these experiments is that DA neurons fire
to reward-predicting cues and unexpected reward (e.g. Schultz,
1998). Despite the importance of this work, it does not address
the role of DA in the learning of skills that include multiple behav-
iors that must be precisely executed in response to discrete cues,
and in which the feedback is delivered only after the final behavior
is complete. Our goal is to investigate the putative role of DA in
these more complex settings. We take an indirect approach by
collecting behavioral data and then testing a wide variety of com-
putational models that make qualitatively different assumptions
about the role of DA in the learning of such multi-step behaviors.

Understanding howmultistep behaviors are learned requires an
understanding of how the feedback after the final behavior is used
to learn the responses to each of the cues in the sequence. One
possibility is that feedback propagates backward through each
sub-behavior in the sequence, such that the learning of the
response to a later cue in the sequence facilitates the learning of
a preceding cue. A wealth of data show that once a cue comes to
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predict reward, it begins to elicit a vigorous response from DA neu-
rons (Pan, Schmidt, Wickens, & Hyland, 2005; Schultz, 1998, 2006;
Waelti, Dickinson, & Schultz, 2001). If a new cue is added before a
learned cue that perfectly predicts reward, then the DA response to
the learned cue shifts back (backpropagates1) to the new (earliest)
cue (Schultz, Apicella, & Ljungberg, 1993). This works well when no
response is required, as in classical conditioning, or in simple
instrumental conditioning with only one available response (e.g.
lever press), or in tasks requiring choices among different cues while
navigating a maze. In such scenarios, DA release due to the reward
prediction of the learned cue serves as a teaching signal to train
the preceding, new cue, and in this way, sequences of cue-cue asso-
ciations can be learned (Suri & Schultz, 2001). Importantly, such
backpropagation of the DA response has only been demonstrated
in tasks in which characteristics of later cues directly depend on
decisions made to earlier cues (i.e., dependent decisions). Unfortu-
nately, almost no empirical data exist on how DA neurons respond
in tasks where a sequence of independent decisions must all be made
correctly to earn positive feedback, nor have any models been
proposed. If several independent decisions about unrelated cues
are made in a row, and each has to be correct to earn positive
feedback at the end of the sequence, then an earlier cue is not a
predictor of a later cue.

Current efforts to study the learning of sequential, multistep
decisions have focused on tasks in which the first-step choice
predicts the available choices in the next step (Daw, Gershman,
Seymour, Dayan, & Dolan, 2011; Gläscher, Daw, Dayan, &
O’Doherty, 2010;Walsh & Anderson, 2011). This is important work,
and many real-life tasks include such dependencies between
sequential cues. However, the demonstration in such work that
the effect of the feedback backpropagates to earlier cues in the
sequence confounds two issues. One possibility is that the back-
propagation occurs only because of the perfect dependency, and
another is that all sequential skills, including those with indepen-
dent actions, benefit from such backpropagation. This article inves-
tigates the backpropagation of the feedback signal during the
learning of a sequence of independent skills. Our results strongly
contradict the latter of these two hypotheses. In fact, we show that
virtually all models that predict any type of backpropagation of the
DA signal to earlier independent cues are incompatible with our
results. Furthermore, our results also suggest that any such back-
propagation that did occur must have a detrimental effect on
learning. Even models that use eligibility traces to update distant
cues with the feedback signal (instead of the backpropagation) fail
to account fully for our results.

To study how feedback provided at the end of multiple indepen-
dent behaviors affects the learning of each behavior in the
sequence, we developed a new experimental paradigm called the
aggregate-feedback procedural category-learning task (for a similar
declarative memory-based task, see Fu & Anderson, 2008). In this
task, three highly discriminable visual images are presented
sequentially, each requiring an A or B category response. Feedback
is given only after all three responses are complete. Positive feed-
back is given if all three responses were correct, and negative feed-
back is given if any of the three responses were incorrect, without
any information about which response or responses were in error.

This study addresses a number of fundamental questions
regarding DA’s involvement in aggregate-feedback learning. These
include the following: How do the DA reward prediction signals
that develop during learning respond to multiple independent cues
before feedback? How does the DA release to the reward prediction
of a cue impact learning of cues earlier in the sequence? And do
1 Note, our use of the word ‘‘backpropagate” refers to the phenomenological
dynamics of DA firing to reward predicting events, and not to the popular
backpropagation algorithm that is commonly used to train artificial neural networks.
learning rates for cues depend on how far back in time they are
from the feedback? We took a computational cognitive neuroscience
approach to address these questions (Ashby & Hélie, 2011). First,
we collected behavioral data from human participants in the
aggregate-feedback category-learning task. Second, we used a
computational approach called parameter space partitioning
(PSP; Pitt, Kim, Navarro, & Myung, 2006) that allowed us to inves-
tigate the ability of a broad class of alternative procedural-learning
models to account for our results. As we will see, none of these
models successfully accounts for all aspects of our data. Third,
we used these models to make novel predictions about which of
two different training procedures is optimal with aggregate-
feedback. Fourth, we tested these predictions with behavioral data
from human participants, and identified the best training regime
for procedural learning with aggregate feedback.
2. Experiment 1

Our goal was to extend behavioral neuroscience work on DA
neuron firing properties to human behavioral experiments. The
relevant behavioral neuroscience studies almost all used some
form of classical or instrumental conditioning. So the ideal task
would share properties with conditioning studies and present
some nontrivial cognitive challenges. Our solution was to use an
unstructured category-learning task in which highly unique
stimuli are randomly assigned to each contrasting category, and
thus there is no rule- or similarity-based strategy for determining
category membership. This task is similar to instrumental condi-
tioning tasks in which animals must learn to emit one response
to one sensory cue and another response to a different cue (e.g.,
turn left in a T-maze to a high-pitched tone and turn right to a
low-pitched tone). But it is also similar to high-level categorization
tasks that have been studied for decades in the cognitive psychol-
ogy literature. For example, Lakoff (1987) famously motivated a
whole book on a category in the Australian aboriginal language
Dyirbal that includes seemingly unrelated exemplars such as
women, fire, dangerous things, some birds that are not dangerous,
and the platypus. Similarly, Barsalou (1983) reported evidence that
‘ad hoc’ categories such as ‘‘things to sell at a garage sale” and
‘‘things to take on a camping trip” have similar structure and are
learned in similar ways to other ‘common’ categories. Thus, the
unstructured category-learning task that forms the foundation of
our studies is simple enough that we should be able to relate our
results to those from instrumental conditioning studies, while
resembling the structure of ad hoc categories.

Although intuition might suggest that unstructured categories
are learned via explicit memorization, there is now good evidence
– from both behavioral and neuroimaging experiments – that the
feedback-based learning of unstructured categories is mediated
by procedural memory. First, several neuroimaging studies of
unstructured category learning found task-related activation in
the striatum, as one would expect from a procedural-learning task,
and not in the hippocampus or other medial temporal lobe struc-
tures, as would be expected if the task was explicit (Lopez-
Paniagua & Seger, 2011; Seger & Cincotta, 2005; Seger, Peterson,
Cincotta, Lopez-Paniagua, & Anderson, 2010). Second, Crossley,
Madsen, and Ashby (2012) reported behavioral evidence that
unstructured category learning is procedural. A hallmark of proce-
dural learning is that it includes a motor component. For example,
switching the locations of the response keys interferes with
performance in the most widely studied procedural-learning task
– namely the serial reaction time task (Willingham, Wells,
Farrell, & Stemwedel, 2000). In addition, several studies have
shown that switching the response keys interferes with perfor-
mance of a categorization task known to recruit procedural
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learning (i.e., information-integration categorization) but not with
performance in a task known to recruit declarative memory (i.e.,
rule-based categorization; Ashby, Ell, & Waldron, 2003; Maddox
& Ashby, 2004; Maddox, Glass, O’Brien, Filoteo, & Ashby, 2010;
Spiering & Ashby, 2008). Crossley et al. (2012) showed that
switching the locations of the response keys interfered with
unstructured categorization performance but not with perfor-
mance in a rule-based categorization task that used the same
stimuli. Thus, feedback-mediated unstructured category learning
seems to include a motor component, as do other procedural-
learning tasks.

Stimuli in the experiments described here were perceptually
distinct fractal images (Experiment 1a and 2) or real life scenes
(Experiment 1b). High perceptual dissimilarity is important in
order to minimize the possibility that performance for an item
early in the sequence improves because it is highly similar to an
item later in the sequence, rather than because of its ability to
make use of the aggregate feedback that is provided.

Experiment 1a examined aggregate-feedback category learning
using 12 highly discriminable fractal patterns as stimuli. Half of the
12 fractal images were randomly assigned to category A and half to
category B. Participants received enough single-trial fully super-
vised training to achieve single-stimulus performance of about
80% correct. On these single-trial fully supervised trials, feedback
followed every response. This was followed by an extended period
of aggregate-feedback training in which participants made catego-
rization responses to three successive stimuli with aggregate
feedback after the third response. The single-trial pre-training
was included so that once aggregate feedback began, participants
would receive positive feedback with probability approximately
equal to 0.5 (i.e., 0.83). Without such pre-training, the positive
feedback rate under aggregate feedback would be only 0.125
(i.e., 0.53), and pilot studies showed that under such conditions
many participants never learn.2

At the start of the experiment, 4 of the 12 stimuli (2 from
category A and 2 from category B) were randomly assigned to
appear in position 1, another 4 (2 from A and 2 from B) were
randomly assigned to appear in position 2, and the remaining 4
appeared in position 3. A full-feedback control condition with a
separate set of participants was also included for which feedback
was presented on a trial-by-trial basis following each response.

2.1. Methods – Experiment 1a

2.1.1. Participants
Forty-eight participants completed the aggregate-feedback task

and 28 participants completed the full-feedback control task. All
participants received course credit or payment of $10 for their
participation. All participants had normal or corrected to normal
vision.

2.1.2. Stimuli and stimulus generation
For each participant, we randomly selected 12 fractal patterns

(Fig. 1a) from a pool of 100. On each trial, a single stimulus was
presented in the center of a 1280 � 1024 pixel computer screen
(subtending approximately 3� of visual angle).
2 There are at least two prominent and competing accounts of this failure. One
possibility is that the failure is mostly motivational. At the beginning of the session,
all participants are told they are incorrect on 7 out of every 8 trials (on average). This
can be discouraging and cause many participants to give up. Of course, we cannot
learn much about procedural learning from this group. The second, and much more
theoretically interesting possibility is that procedural learning is defeated when the
positive feedback rate is so low. Unfortunately, it is not clear how to determine
whether the poor performance of an individual participant is due to the first or second
of these possibilities. Thus, considerable research would be required to fully
understand the effects of providing aggregate feedback from trial 1.
2.1.3. Procedure
Participants were informed that there were two equally likely

categories and that they should be accurate and not to worry about
speed of responding. The experiment consisted of 15 24-trial
blocks with each stimulus being presented twice in each block.
To facilitate initial learning, the first four blocks included trial-
by-trial feedback. We denote these as ‘‘full-feedback blocks 1–4”.
On each trial, the stimulus appeared until the participant gener-
ated an ‘‘A” (‘‘z” key) or ‘‘B” (‘‘/” key) response, followed by the
word ‘‘correct” or ‘‘incorrect” for 1000 ms, a 500 ms blank-screen
inter-trial interval (ITI), and the next trial. The 4 full-feedback
blocks were followed by 11 aggregate-feedback blocks, denoted
as ‘‘aggregate-feedback blocks 1–11”. On aggregate-feedback trials,
feedback was presented only following every third response.
Specifically, the first stimulus appeared until the participant gener-
ated an ‘‘A” or ‘‘B” response, followed by a 500 ms blank screen ITI,
and then presentation of the second stimulus. The second stimulus
appeared until the participant generated an ‘‘A” or ‘‘B” response,
followed by a 500 ms blank screen ITI, and presentation of the third
stimulus. The third stimulus appeared until the participant gener-
ated an ‘‘A” or ‘‘B” response, followed by the words ‘‘All responses
were correct” or ‘‘At least one response was incorrect” for 1000 ms,
a 500 ms blank screen ITI, and the next triple of trials. In the
full-feedback control task, trial-by-trial feedback was included on
every trial in all 15 blocks.

2.2. Results – Experiment 1a

To exclude non-learners, we included only participants who
exceeded 60% correct in the final full-feedback block of the
aggregate-feedback task3 (i.e., full-feedback block 4). This excluded
5 participants from the aggregate-feedback condition (43 remain-
ing). For consistency, the same criterion (>60%) was applied in the
full-feedback condition’s fourth block, excluding 2 from the full-
feedback condition (26 remaining). Average accuracy in the four
full-feedback and 11 aggregate-feedback blocks by position in the
aggregate-feedback task are displayed in Fig. 2a, along with the
average accuracy rates for the full-feedback control task.

2.2.1. Aggregate-feedback task
A repeated-measures ANOVA on the accuracy rates across the

four full-feedback blocks suggests learning [F(3,126) = 82.84,
p < 0.001, g2 = 0.664] with performance reaching 87% by the fourth
block. Next we conducted a 3 position � 11 block repeated-
measures ANOVA on the accuracy rates in the aggregate-
feedback blocks. The main effects of block [F(10,420) = 6.28,
p < 0.001, g2 = 0.130] and position were significant [F(2,84) =
6.14, p < 0.005, g2 = 0.128]. Post hoc tests with Bonferroni correc-
tion for multiple comparisons showed that position 3 accuracy
was superior to both position 2 accuracy (p < 0.05), and to
position 1 accuracy (p < 0.05), with no significant difference in
positions 1 and 2 accuracy. The position � block interaction was
not significant [F(20,840) = 1.00, p = 0.45, g2 = 0.023].

2.2.2. Comparing full-feedback control and aggregate-feedback
accuracies

To verify that initial learning did not differ between the
aggregate-feedback and full-feedback tasks, we conducted a mixed
design ANOVA comparing task performance across the four full-
feedback blocks from the aggregate-feedback and full-feedback
tasks. As a visual examination of Fig. 2 suggests, the main effect
of block was significant [F(3,201) = 136.03, p < 0.001, g2 = 0.670],
3 This is a conservative criterion, because any participant failing to reach 60%
correct would not be performing significantly above chance.



Fig. 1. (A) Two sample fractal stimuli used in Experiment 1a. (B) Two sample real-world stimuli (indoor scenes) used in Experiment 1b. (A and B) At the start of both
experiments, 12 stimuli were randomly sampled from a pool of 100, independently for each participant. Four of these 12 stimuli (2 from category A and 2 from category B)
were randomly assigned to appear in position 1, another 4 (2As and 2Bs) were randomly assigned to appear in position 2, and the remaining 4 (2As and 2Bs) appeared in
position 3.
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but the main effect of task [F(1,67) = 0.023, p = 0.88, g2 = 0.001]
and the task � block interaction [F(3,201) = 0.14, p = 0.94,
g2 = 0.002] were not.

To determine whether position 3 accuracy in the aggregate-
feedback task was as good as that observed in the full-feedback
control task, we conducted a mixed design ANOVA comparing
the position 3 aggregate-feedback accuracy rates across the 11
aggregate-feedback blocks with the overall full-feedback control
accuracy rates across the final 11 blocks of that task. The main
effect of block was significant [F(10,670) = 6.78, p < 0.001,
g2 = 0.092], but the main effect of task [F(1,67) = 2.192, p = 0.14,
g2 = 0.032] and the task � block interaction [F(10,670) = 0.54,
p = 0.74, g2 = 0.008] were non-significant. Despite the lack of a
significant main effect of task, the full-feedback learning curve is
significantly higher than the position 3 learning curve during
aggregate-feedback blocks by a sign test (p < 0.01).

2.3. Methods – Experiment 1b

Experiment 1b was identical to Experiment 1a except that the
fractal stimuli were replaced with real-world stimuli, and the
full-feedback control condition was excluded.

2.3.1. Participants, stimuli and stimulus generation
Thirty-nine individuals participated. All aspects of participants,

stimuli and stimulus generation were identical to those from
Experiment 1a, except that the stimuli were real-world indoor
scenes (Fig. 1b).

2.3.2. Procedure
The procedure was identical to that from Experiment 1a.

2.4. Results – Experiment 1b

We applied the same exclusion criteria used in Experiment 1a
to the Experiment 1b data and were left with data from a total of
35 participants. Fig. 2b displays the average accuracy rates for
the four full-feedback and the 11 aggregate-feedback blocks
separately by position. A repeated measures ANOVA on the accu-
racy rates across the four full-feedback blocks suggests learning
[F(3,102) = 59.38, p < 0.001, g2 = 0.636] with performance reaching
90% by the fourth block. Next we conducted a 3 position � 11 block
repeated measures ANOVA on the accuracy rates in the aggregate-
feedback blocks. The main effects of block [F(10,340) = 2.42,
p < 0.01, g2 = 0.066] and position were significant [F(2,68) = 4.84,
p < 0.01, g2 = 0.125]. There was also a significant position � block
interaction [F(20,680) = 2.11, p < 0.005, g2 = 0.058]. To further
characterize these results, we ran post hoc tests with Bonferroni
correction for multiple comparisons. Position 3 accuracy was
superior to both position 2 accuracy (p < 0.05), and to position 1
accuracy (p < 0.05) with no significant difference between
positions 1 and 2 accuracy; and the interaction was characterized
by effects of position during aggregate-feedback blocks 3–6, and
no effect of position in the remaining blocks.
2.5. Discussion – Experiment 1

We developed a novel task for studying how aggregate feedback
is used to learn three separate categorization responses to an inde-
pendent sequence of stimuli. The paradigm allowed us to compare
the learning profiles of stimuli that were far, intermediate, or near
the aggregate feedback. Results from two qualitatively different
types of stimuli (fractal images and real-world scenes) were
qualitatively similar, which establishes the generalizability of the
aggregate-feedback task.

Full-feedback control learning was slightly better than position 3
aggregate-feedback learning. The full-feedback advantage
may occur because the feedback is perfectly contingent on full-
feedback trials, whereas incorrect feedback on an aggregate-
feedback trial could occur because of an error in one or more of
the earlier positions despite a correct response to the stimulus in
position 3. In other words, given equal single-stimulus accuracy,



Fig. 2. Proportion correct (averaged across participants) from the aggregate-feedback and full-feedback control tasks across blocks in (A) Experiment 1a, and (B) Experiment 1b.
Standard error bars included. (acq: acquisition, agg: aggregate).
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the overall positive feedback rate is necessarily higher on full-
feedback trials than with aggregate feedback.

Learning in positions 1 and 2 was worse than in position 3
during the early aggregate-feedback blocks. In fact, for the
first 5 aggregate-feedback blocks, there was no apparent learning
at all in positions 1 and 2, and accuracy in positions 1 and 2
even dipped by the second or third aggregate-feedback block
(by 3.6% and 3% for Experiment 1a and 1b, respectively). After
the learning curve in position 3 plateaued, accuracy gradually
increased (by 6% and 7% for Experiment 1a and 1b, respectively)
in positions 1 and 2.

Fu and Anderson (2008) also investigated sequential learning
with aggregate feedback, but their task required explicit, rather
than procedural learning (and two, rather than three independent
responses). They found faster learning in position one than two,
consistent with a primacy effect in declarative memory. However,
a dual-task reversed this dominance ordering, which they inter-
preted as suggesting a switch to implicit learning mechanisms.
Learning in position one gradually caught up to position two,
which they took as evidence that the feedback signal propagated
back to the first stimulus.

Unlike Fu and Anderson, we did not observe a first-position pri-
macy advantage, so this difference supports the assumption that
our unstructured category-learning task recruits procedural, rather
than declarative memory. Instead, we found a recency effect, with
better learning for the stimulus closest to the feedback. The even-
tual learning in positions 1 and 2 could indicate a backpropagation
of the feedback signal, although the initially compromised learning
seems incompatible with this hypothesis. An alternate hypothesis
is that procedural learning of sequential skills composed of inde-
pendent actions do not benefit from DA signal backpropagation
to the stimuli.



Fig. 3. A hypothetical example of parameter space partitioning (PSP) for a model
with two parameters (a1 and a2). Note that in this example, much more of the
model’s parameter space is partitioned into the ‘‘No learning” than the ‘‘Poor
Learning” data pattern.
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3. Theoretical analysis

This section examines the theoretical implications of our results
for models of DA-mediated synaptic plasticity. Our focus will be on
learning in positions 1 and 2 during aggregate feedback. There are
several reasons for this. First, the primary motivation for
developing the aggregate-feedback task was to study the possible
backpropagation of the feedback signal to earlier actions in a
sequence. Only positions 1 and 2 require backpropagation, since
the response to the stimulus in position 3 is followed immediately
by feedback. Second, many different models can account for learning
in the single-stimulus control condition, and these same models
can account for learning to the stimulus in position 3 during
aggregate-feedback training because of its proximity to the feed-
back. Preliminary modeling though, showed that these same
models have much greater difficulty accounting for learning to the
stimuli in positions 1 and 2 during aggregate-feedback training.
Thus, instead of pursuing a traditional model-fitting approach that
would likely be unsuccessful, we took a less common approach to
this problem that allows us to make stronger inferences.

The traditional approach is to propose a model and then show
that it provides reasonable fits to the data of interest. Our more
ambitious goal is to begin with a large class of models and then
identify subsets within this class that are and are not qualitatively
consistent with our results. If successful, we should then be able to
identify the critical qualitative property or properties that any
successful model must have to account for our results. Because
of this rather unique modeling goal, our primary methodology
was parameter-space partitioning (PSP; Pitt et al., 2006).

Fig. 3 offers a schematic representation of a generic PSP analy-
sis. In this example, a hypothetical class of models is characterized
by two free parameters (a1 and a2). The goal of PSP is to determine
what different kinds of qualitative behaviors this class of models
can produce. For example, suppose these are learning models and
we are interested in whether there are models within the class
that can account for good learning (say two-alternative accuracy
above 80%), poor learning (accuracy between say 55% and 80%),
or no learning (accuracy below 55%). In the hypothetical Fig. 3
example, the PSP analysis systematically explored the (a1, a2)
parameter space and discovered that by simultaneously vary-
ing these parameters, it was possible to construct models that
could only account for two different possibilities: either poor
learning or no learning. The PSP analysis then measured the area
(or volume when there are 3 or more parameters) of the parameter
space that predicts each of these two outcomes. In this case, the
analysis revealed that for most parameter combinations, no
learning occurs, but for more restricted sets of parameters, some
learning is possible. Thus, this hypothetical PSP analysis tells us
that there is no model in this class that can account for good
learning and that most models predict no learning.
3.1. Overview of the PSP analysis

Standard modeling approaches work well when some version
of the model of interest provides a good fit to the available data,
but not when all versions of the model are inconsistent with
the data. It is in this latter case where a PSP analysis is most
valuable. Our preliminary attempts to follow the standard
modeling approach failed, which made us suspect that no
currently popular procedural-learning model would be able to
account for the results of Experiment 1. So we turned to PSP to
test this hypothesis.

The first step in preparing for a PSP analysis is to define qualita-
tive properties of the data that may be a challenge for the models
to reproduce. We focused on two aspects of the Experiment 1 data
that seemed potentially problematic for procedural-learning
models. The first property was the good learning that occurred in
positions 1 and 2, which seemed potentially problematic because
the stimuli in positions 1 and 2 are so far removed from the feed-
back. So we used PSP to ask whether any of a large class of
procedural-learning models could account for good learning in
positions 1 and 2, and if some were successful, to identify the
mechanisms that allowed them to learn. The second property
was that the learning that did occur in these positions occurred
near the end of the session. During the early aggregate-feedback
blocks there was little or no learning in positions 1 and 2. So we
used PSP to explore whether any of our procedural-learning
models that were able to learn in positions 1 and 2 were able to
reproduce this late-learning profile.

Note that a standard modeling approach cannot address these
questions. For example, suppose we used a standard approach to
fit a set of alternative models that included procedural-learning
models and models that were incompatible with procedural learn-
ing. Further suppose that the procedural-learning models were
unable to match either of these qualitative properties of our data,
whereas at least one model incompatible with procedural learning
was able to match both properties. Unfortunately, goodness-of-fit
statistics penalize for a poor quantitative fit, not a poor qualitative
fit. As a result, it is easily possible that one of the qualitatively mis-
matching procedural-learning models would provide the best
overall fit to the data, thereby supporting the incorrect conclusion
that our results are consistent with current theories of procedural
learning.

The next step in any PSP analysis is to construct the general
class of models to be explored. The more general this class, the
stronger the conclusions. Our approach to this problem exploited
the fact that there is good evidence that: (1) unstructured category
learning recruits procedural learning and memory (Crossley et al.,
2012; Lopez-Paniagua & Seger, 2011; Seger & Cincotta, 2005; Seger
et al., 2010); (2) procedural learning depends critically on the basal
ganglia (Ashby & Ennis, 2006; Doyon & Ungerleider, 2002; Packard
& Knowlton, 2002; Willingham, 1998; Yin & Knowlton, 2006); and
(3) reinforcement learning within the basal ganglia is based on
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DA-mediated synaptic plasticity, for which the actor-critic archi-
tecture4 is a popular computational metaphor (Houk, Adams, &
Barto, 1995; Joel, Niv, & Ruppin, 2002). In the present application,
the actor-critic architecture included two components: (1) a proce-
dural category-learning network (actor) and (2) a reward-learning
algorithm that predicts DA release (critic) at the times of stimulus
presentation and feedback during full- and aggregate-feedback
training. The critic determines the value of the feedback based on
the current reward prediction, and the actor is updated by using
information from the critic.

Our theoretical analysis focused on the critic, and specifically,
on what we can learn about the critic from our results. Even so,
our analyses require that we specify a model of the actor. Fortu-
nately, an extensive literature has rigorously tested neurobiologi-
cally detailed network models of procedural (category) learning
(e.g., Ashby et al., 1998; Ashby & Waldron, 1999; Ashby &
Crossley, 2011; Ashby, Ennis, & Spiering, 2007; Crossley, Ashby, &
Maddox, 2014; Gurney, Humphries, & Redgrave, 2015; for a review
see Hélie, Chakravarthy, & Moustafa, 2013). So our approach was to
model the actor with a simple, non-controversial version of these
validated models that makes minimal assumptions. This model is
elaborated below.

The final step in the PSP analysis is to examine all possible pre-
dictions of this general model. As in the Fig. 3 example, this is done
by an exhaustive search of the parameter space that defines the
general model with the goal of mapping out regions (i.e., specific
parameter combinations) that lead to predictions that are qualita-
tively consistent with our results, as well as regions leading to
predictions that are qualitatively inconsistent with our findings.
Because the computational demands of searching the parameter
space increase dramatically with the number of parameters, PSP
uses an efficient Markov chain Monte Carlo search algorithm
(Pitt et al., 2006). We performed two separate PSP analyses – one
for each of the key data properties described above.

The next two sections describe the procedural-learning (actor)
and reward-learning (critic) components of the model, respec-
tively. Then we describe the results of the PSP analyses.
3.2. Procedural category learning (actor) component

The procedural-learning component is a simple two-layer con-
nectionist network that learns to associate a response to each stim-
ulus via reinforcement learning (Ashby & Waldron, 1999). Details
are given in Appendix A, but basically the model simply assumes
that every stimulus has an association strength with each of the
two response alternatives. Initially these strengths (i.e., synaptic
weights) are random, but they are adjusted during learning via a
biologically-motivated model of reinforcement learning. Following
standard approaches, the model assumes that the stimulus-
response (i.e., cortical-striatal) synaptic weights are increased if
three conditions are met: (1) strong presynaptic activation, (2)
strong postsynaptic activation (i.e., above threshold), and (3) DA
levels above baseline (Arbuthnott, Ingham, & Wickens, 2000;
Calabresi, Pisani, Centonze, & Bernardi, 1996; Reynolds &
Wickens, 2002). If the first two conditions hold but DA levels are
below baseline, then the synaptic weight is decreased.

More specifically, let wK;JðnÞ denote the synaptic strength
or connection weight between input unit K and output unit J
following the nth presentation of stimulus K. We assume these
4 For our purposes, the important characteristic of actor-critic models is that they
postulate two separate neural networks – one network that categorizes the stimulus
(the actor) and another that uses the feedback to determine how much DA is released
(the critic), which is then used to improve the performance of the actor. Actor-critic
models are contrasted with other models in which both of these tasks are mediated
within the same network. For more details see Sutton and Barto (1998).
weights are updated after each trial using the following reinforce-
ment learning rule:

wK;Jðnþ 1Þ ¼ wK;JðnÞ þ a½DKðnÞ � Dbase�þ½IKðnÞ�½SJjKðnÞ � hNMDA�þ
� ½1�wK;JðnÞ� � b½Dbase � DKðnÞ�þ½IKðnÞ�
� ½SJjKðnÞ � hNMDA�þ½wK;JðnÞ� ð1Þ

where DKðnÞ is the amount of DA released on the trial when the nth

presentation of stimulus K occurs (described in detail below), IKðnÞ
is the input to unit K, and SJjKðnÞ is the amount of activation in
striatal unit J on the nth trial that stimulus K was presented. The
function [g(n)]+ = g(n) if g(n) > 0, and otherwise g(n) = 0 (e.g.,
½DKðnÞ � Dbase�þ ¼ DKðnÞ � Dbase when DA is above baseline and 0
otherwise). Eq. (1) includes two constants: Dbase represents the
baseline DA level and was set to 0.2 in all applications (see Eq. (4)),
and hNMDA represents the activation threshold for postsynaptic
NMDA glutamate receptors. This threshold, which was set to
0.0118 in all applications, is critical because NMDA receptor activa-
tion is required to strengthen cortical-striatal synapses (Calabresi,
Maj, Pisani, Mercuri, & Bernardi, 1992). The terms a and b are free
parameters that were manipulated during the PSP analysis.

The a term in Eq. (1) describes the conditions under which
synapses are strengthened (i.e., striatal activation above the NMDA
threshold and DA above baseline, as on a correct trial) and the b
term describes conditions that cause the synapse to be weakened
(postsynaptic activation is above the NMDA threshold but DA is
below baseline, as on an error trial). Note that synaptic strength
does not change if postsynaptic activation is below the NMDA
threshold.

The critic described in the next section specifies exactly how
much DA is released on each trial [i.e., the value of DKðnÞ in
Eq. (1)]. Note that the parameters a and b in Eq. (1), which are
the focus of the PSP analysis, act as gains on this DA response.
Specifically, we will explore predictions of a wide variety of alter-
native models of how the DA system responds in our aggregate-
feedback task over a large range of possible a and b values.

As mentioned above, many previous studies have validated this
general model of procedural category learning (e.g., Ashby et al.,
1998; Ashby et al., 2007; Ashby & Waldron, 1999; Ashby &
Crossley, 2011; Crossley et al., 2014). In the current application,
procedural learning of the stimulus-response associations occurs
independently in the three stimulus positions according to the
constraints on DA release specified by the critic. As described in
Section 3.3 below, this is done by allowing different a and b values
for each stimulus position.

3.3. Reward-learning (critic) component

The learning model used by the procedural component requires
specifying exactly how much DA is released on every trial
[i.e., DKðnÞ in Eq. (1)]. These computations are performed by the
reward-learning component of the model (i.e., the critic). The
amount of DA released serves as a learning rate on the association
strengths in the actor. The more DA deviates from baseline, the
greater the learning. On trials when DA remains at baseline, no
learning occurs.

When building a general model of the critic, there are two sep-
arate questions to consider. First, what do the DA neurons do when
each of the three categorization stimuli are presented, and second,
what do DA neurons do when the aggregate feedback is presented?
There is strong consensus in the literature on the answer to the
second question, but the first question is novel to this research.
Thus, our goal is to build a general model of the critic that allows
for a wide variety of different possible DA responses to the catego-
rization stimuli. We begin with the more straightforward question
of how the DA neurons respond to the feedback.
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3.3.1. DA response to the feedback
An extensive literature suggests that over a wide range, the DA

response to feedback increases with the reward prediction error
(RPE; e.g., Schultz, 1998, 2006) – that is, with the difference
between obtained and predicted reward. During single-stimulus
full-feedback trials, the RPE following feedback to the nth presenta-
tion of stimulus K equals

RPEKðnÞ ¼ RKðnÞ � RPKðnÞ; ð2Þ
where RK(n) is the value of the feedback (i.e., reward) received on
this trial (0 or 1 depending on whether the feedback was negative
or positive, respectively) and RPK(n) is the predicted value of
the feedback computed after the nth presentation of stimulus K
(where K 2 f1;2; . . . ;12g). Note that RPK(n) equals the predicted
reward probability (because negative feedback has a value of 0
and positive feedback has a value of 1). On aggregate-feedback
trials, RPK(n) is replaced in Eq. (2) by a prediction that depends on
all three presented stimuli. Consider an aggregate feedback trial
where stimulus K1 appears in position 1, stimulus K2 appears in
position 2, and stimulus K3 appears in position 3. Then we denote
the overall estimate of the probability that all three responses
were correct by RPOveralljK1 ;K2 ;K3 ðn1;n2; n3Þ, where n1, n2, and n3 are
the numbers of times that each of the three stimuli have been
presented in the experiment up to and including the current trial.

The next task in our model construction is to specify exactly
how predicted reward is computed. In the full-feedback control
conditions this is a straightforward exercise. Following the current
literature, we assume predicted reward is computed using stan-
dard temporal discounting methods (e.g., Sutton & Barto, 1998).
More specifically, we assume that the predicted value of the
feedback that follows the response to the (n + 1)th presentation of
stimulus K equals5

RPKðnþ 1Þ ¼ RKðnÞ þ ðCn � 1ÞRPKðnÞ
Cn

ð3Þ

where Cn ¼ Pn
i¼1ci�1, and c is a constant that specifies the amount

of discounting (e.g., c = 0.2). The initial value [i.e., RPK(0)] for all
stimulus-specific reward predictions is 0.5 (chance accuracy).
Eq. (3) states that predicted reward is just a weighted average of
all previous rewards, with the weight given to a trial diminishing
exponentially as it recedes further away in time from the present
trial.

In the aggregate-feedback category-learning task, the stimulus
presented in each position is selected independently on each trial.
Thus, the probability that all three responses are correct, and
therefore the probability that positive feedback is received, equals
the product of the 3 probabilities of a correct response in each
position. Thus, we assumed that RPOveralljK1 ;K2 ;K3 ðn1;n2;n3Þ is the
product of the three RPK(n) values that are associated with the
three stimuli6 presented on trial n. Consequently, as it should,
5 Note that Eq. (3) updates RPK values only for presented stimuli. Thus, on single
feedback control trials, only one RPK gets updated, and on aggregate-feedback trials,
only 3 of the 12 possible RPK’s get updated. Eq. (3) can be derived as follows

RPK ðnþ 1Þ ¼ RK ðnÞ þ cRK ðn� 1Þ þ c2RK ðn� 2Þ þ � � � þ cn�1RK ð1ÞPn
i¼1ci�1

¼ RK ðnÞ þ c½RK ðn� 1Þ þ cRK ðn� 2Þ þ � � � þ cn�2RK ð1Þ�
Cn

¼ RK ðnÞ þ cCn�1RPK ðnÞ
Cn

¼ RK ðnÞ þ ðCn � 1ÞRPK ðnÞ
Cn

:

6 Of course, when the stimulus in position 1 is presented, the stimuli that will
appear in positions 2 and 3 are not yet known. Therefore, when calculating RPOverall
for position 1, to compute the RP for position 2, we averaged the RPK of all stimuli that
could appear in position 2, and to compute the RP for position 3, we averaged the RPK
of all stimuli that could appear in position 3. Similarly, to compute RPOverall for
position 2, we used the RPK of the actual stimuli presented in positions 1 and 2 and
the average RPK of all possible position 3 stimuli.
RPOveralljK1 ;K2 ;K3 ðn1;n2;n3Þ will be less than each stimulus-specific
RPK(n) (provided each is less than 1). Note that this model assumes
participants compute RPOverall K1 ;K2 ;K3j ðn1;n2;n3Þ in an optimal fashion.
Other, suboptimal models could also be constructed. Fortunately,
however, this is not a critical issue. As will be elaborated in the next
section, the PSP analysis explores such a wide range of Eq. (1) a and b
values that our results would not appreciably change if we
assumed participants computed RPOverall K1 ;K2 ;K3j ðn1;n2;n3Þ using some
(moderately) suboptimal method.

Finally, following Ashby and Crossley (2011), we assumed that
the amount of DA release is related to the RPE in accord with a
simple model that accurately accounts for the single-unit DA cell
firing data reported by Bayer and Glimcher (2005):

DKðnÞ ¼
1 if RPEKðnÞ > 1
0:8RPEKðnÞ þ 0:2 if � 0:25 6 RPEKðnÞ 6 1
0 if RPEKðnÞ < �0:25

8><
>:

ð4Þ

Note that the baseline DA level is 0.2 (i.e., when the RPE = 0) and
that DA levels increase linearly with the RPE between a floor of 0
and a ceiling of 1.
3.3.2. DA response to the categorization stimuli
In classical conditioning studies, the DA response to a cue or

stimulus is an increasing function of the predicted probability that
the stimulus will be followed by reward (Fiorillo, Tobler, & Schultz,
2003; Schultz, 1998). Perceptual categorization is more similar to
instrumental conditioning than to classical conditioning, and we
know of no studies that have examined DA response in an instru-
mental conditioning analogue of our aggregate-feedback category-
learning task. Even so, one obvious possibility is that DA neurons
will respond to the stimuli in our task in a similar manner to the
way they respond to cues that predict reward in classical condi-
tioning tasks – that is, proportionally to the predicted reward
associated with each stimulus. Another possibility, however, is that
the DA neurons will not respond to the stimuli in our task, and
instead will only respond to the feedback. For this reason, we
explored models in which the DA response to each stimulus is
proportional to predicted reward, and models in which the DA
neurons do not respond to the stimuli. For models in the first class,
we were not interested here in how this DA response develops
(e.g., via temporal-difference learning; Sutton & Barto, 1998) – only
in whether any models within this class are compatible with our
results. The PSP analysis explored predictions of this model class
over the entire range of possible values of a and b in Eq. (1). Thus,
included in this class are models in which the DA neurons respond
strongly to an expectation of reward and models in which the DA
neurons respond weakly to the same expectation.

On either single-stimulus or aggregate-feedback trials, an obvi-
ous prediction is that if there is a DA response to the presentation
of a stimulus, then it should be proportional to predicted reward.
We do not need to account for this possible source of DA release
during single-stimulus feedback training because any DA released
to the stimulus would precede the response and each response is
followed immediately by feedback, so learning should be mediated
by DA released to the feedback and the DA released to the stimulus
should play little or no role. However, during aggregate-feedback
training, DA released to each stimulus could have significant
effects on learning. For example, consider the stimulus in position
1. After the participant responds to this stimulus, the next DA
released will be to the presentation of the stimulus in position 2,
and the DA released to the feedback will occur several seconds in
the future. For these reasons, our primary modeling task was to
build a reasonable model of how much DA might be released to
each stimulus during aggregate-feedback training.
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Chance accuracy on every stimulus is 0.5, so chance accuracy on
any aggregate-feedback trial is 0.125 (i.e., .53 = 0.125 = probability
of receiving positive feedback if the participant is at chance on
every stimulus). Crossley, Ashby, and Maddox (2013) reported
behavioral and computational modeling evidence from a
similar perceptual categorization task suggesting that DA levels
remain at baseline during random feedback. Thus, we
assumed that DA levels would rise above baseline when
RPOveralljK1 ;K2 ;K3 ðn1; n2; n3Þ > 0:125, and remain at baseline when
RPOveralljK1 ;K2 ;K3 ðn1; n2; n3Þ ¼ 0:125. Fortunately, we do not need to
be concerned with values of RPOverall below 0.125 because this
never occurred since the single-stimulus feedback training guaran-
teed that all RPK were well above chance at the beginning
of aggregate-feedback training. Therefore, following Eq. (4) we
assumed that

DKðnÞ ¼
1 if RPOverall > 1
0:91RPOverall þ 0:09 if 0:125 6 RPOverall 6 1
0:2 if RPOverall < 0:125

8><
>:

ð5Þ

Note that the baseline DA level is again 0.2 (i.e., when the
RPOverall = 0.125) and that DA levels increase linearly from 0.2 to a
ceiling of 1 (when RPOverall = 1).
7 Note that there is no need to explore predictions for a b parameter because DA
levels always rise when the stimulus in position 2 or 3 is presented. This is because
performance and predicted reward probability are well above chance by the time
aggregate feedback begins.
3.3.3. Creating a general critic model
In any PSP analysis, the model classes are defined both by their

architecture and by the parameters that are explored. Including
every possible parameter in the analysis is impractical because
the dimensionality of the parameter space would be so large that
the computational costs would be prohibitive. For this reason,
our analysis focused only on the a and b parameters of Eq. (1) since
these are the parameters most relevant to our main research
question – namely, what is the effect of the DA response on the
earliest stimulus positions during aggregate-feedback training.
All other parameters were set to values that allowed the model
to provide good fits to the single-trial control data, and the position
3 data. To simplify the analysis even further, we assumed no differ-
ence in a and b parameter values for positions 1 and 2 because the
results of Experiment 1 showed no learning differences between
these two positions.

Using this general framework, we constructed three qualita-
tively different types of models – one type assumed that the DA
neurons respond to the feedback but not to the stimuli (referred
to as feedback-update models below), and two types assumed
the DA neurons respond both to the stimuli and to the feedback
(referred to as stimulus-feedback-update models and immediate-
update models below).

The feedback-update models assume that the DA neurons
respond to the feedback but not to the categorization stimuli.
These models allow the DA response to the feedback to have a scal-
able effect on the position 1 and 2 synaptic weights, and therefore
they include as special cases models that postulate an eligibility
trace (i.e., a sort of memory trace that facilitates the backpropaga-
tion of the feedback signal). The idea here is that position 3 stimuli
should always benefit from a full DA response to the feedback
(because of temporal adjacency), whereas positions 1 and 2 have
limited access to this DA signal due to the temporal separation
and masking from intervening trial events. The PSP explored the
full range of possible DA magnitudes available for updating posi-
tion 1 and 2 weights, and therefore it explored the predictions of
models that postulate an eligibility trace of almost any magnitude.
This was done by separately exploring all possible values of the
position 1 and 2 (Eq. (1)) a and b parameters that are associated
with DA release to the feedback (the position 3 a and bwere fixed).
Thus, this PSP analysis explored a 2-dimensional parameter space
(since we assumed that both stimulus positions were characterized
by the same values of a and b).

The stimulus-feedback-update models assume that the DA neu-

rons respond to the feedback and to each stimulus. These models
require position 1 weights to be updated three times and position
2 weights to be updated twice on each trial – once after DA release
to each later stimulus, and again after DA release to feedback. For
example, the position 1 weights are updated after presentation of:
the stimulus in position 2, the stimulus in position 3, and the
aggregate feedback. This class also assumes a scalable DA response.
The PSP explored 4 DA-scaling parameters – one a to scale the
above-baseline DA response to the next stimulus (for position 1:
the DA response to the stimulus in position 2; for position 2: the
DA response to the stimulus in position 3), one a to scale the
position 1 effects of the DA response to the stimulus in position 3,
and an a and a b to scale the effects of the feedback.

The immediate-update models generate a DA response to each
stimulus and to the feedback, but each DA burst could update
synaptic weights only for temporally adjacent responses. This
means that the synapses currently active are strengthened by
whatever DA release immediately follows, whether due to feed-
back, or a reward-predicting stimulus. More specifically, position
1 weights are updated by the DA response to position 2 stimuli,
position 2 weights are updated by the DA response to position 3
stimuli, and position 3 weights are updated by the DA response
to feedback. Note that this class of models assumes that the traces
activated by stimuli in positions 1 and 2 decay before aggregate
feedback is available, and therefore they are no longer eligible for
synaptic modification. Because the PSP analyses only explored
parameters that could affect learning in positions 1 and 2, this
analysis only explored one parameter, a, which scales the
DA response above baseline to the stimulus that follows the
position 1 and 2 responses.7

3.4. Methods – PSP analysis

For technical details of the PSP analysis, see Appendix A. As
mentioned earlier, we completed two separate PSP analyses that
focused on different behaviors. For PSP Analysis 1, we chose three
outcomes defined by the mean amount of procedural learning in
positions 1 and 2: (1) ‘‘No Learning” (accuracy increases less than
2% during aggregate-feedback training), (2) ‘‘Limited Learning”
(accuracy increases between 2% and 4%), and (3) ‘‘Full Learning”
(accuracy increases by at least 4%). These values were based on
qualitative trends in the data. The average standard error was 2,
therefore less than a 2% accuracy change was considered to be
no learning. The Experiment 1 data showed ‘‘Full Learning”
because the mean accuracy increase in positions 1 and 2 was
5.6% (ranging from 4.7% to 6.4% depending on the condition) dur-
ing aggregate-feedback training. For PSP Analysis 2 we focused
on four different learning profiles for positions 1 and 2 only: (1)
‘‘Early Learning”, which we defined as an accuracy increase of at
least 2% only during aggregate-feedback blocks 2–5 compared to
aggregate-feedback block 1, (2) ‘‘Late Learning”, defined as an
accuracy increase of at least 2% only during aggregate-feedback
blocks 6–11 compared to aggregate-feedback block 5, (3) ‘‘Learning
Throughout”, defined as accuracy increases of at least 2% during
both aggregate-feedback blocks 2–5 and 6–11, and (4) ‘‘No Learn-
ing”, defined as accuracy increases less than 2% during early and
late aggregate-feedback blocks. Our empirical results were
consistent with ‘‘Late Learning”, because the mean accuracy



Fig. 5. Results of PSP Analysis 2. Percentage of parameter space volume for ‘‘None”
(solid gray), ‘‘Late” (solid black), ‘‘Early” (diagonal hatching), and ‘‘Throughout”
(vertical hatching) learning data patterns, using the immediate-update, feedback-
update, and stimulus-feedback-update model versions. The height of each colored
rectangle corresponds to the volume of parameter space of that data pattern.
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increase in positions 1 and 2 was 0.27% (ranging from -1.4% to
2.5%) for early, and 6.7% (ranging from 4.6% to 9.6%) for late
aggregate-feedback blocks.

The results of each PSP analysis were the percentages of the
parameter space volume that allowed the model to produce each
of the 3 qualitative behavioral outcomes from PSP Analysis 1, or
4 qualitative behavioral outcomes from PSP Analysis 2, plus a
specific set of parameter values that could generate each outcome.
We ran each PSP Analysis three times to check for reproducibility,
and averaged the resulting volume percentages, which we report
below. Following each PSP analysis, we also evaluated the robust-
ness of each identified data pattern to ensure that the pattern was
representative of the model’s predictions and not an artifact of the
(200) random configurations that were chosen for the analysis.
During the robustness stage, we further tested each model in 30
simulations of 200 new random stimulus orderings, guesses and
weight initializations using the parameters returned for each
discovered pattern. Below, we summarize the results and indicate
all cases when this subsequent test failed to replicate the data
pattern identified by the PSP.

3.5. Results – PSP analysis

This section describes the results of PSP analyses 1 and 2
together.

3.5.1. Feedback-update models
The feedback-update models allow a graded DA response to the

feedback (e.g., as in models that include an eligibility trace), but no
DA response to the stimuli. The PSP results are summarized in
Figs. 4 and 5. Note that the feedback-update models produced ‘‘Full
Learning” over 94.02% of the parameter space, ‘‘Limited Learning”
over 5.22%, and ‘‘No Learning” over 0.77% of the space (Fig. 4).
The profile analysis of PSP Analysis 2 yielded ‘‘Learning Through-
out” over 11.94% of the parameter space, ‘‘Early Learning” over
82.12%, ‘‘Late Learning” over 0.18%, and ‘‘No Learning” over 5.78%
of the space (Fig. 5). The ‘‘No Learning” pattern produced the low-
est a parameters, and was reproduced in 20 out of 30 simulations
with new randomizations (with an average of 1.2% early, and 1.5%
late accuracy increases), and the rest produced the ‘‘Late Learning”
pattern (slightly surpassing 2%). The ‘‘Late Learning” pattern was
reproduced in only 16 out of the 30 simulations with new random-
izations, and the rest produced the ‘‘Learning Throughout” pattern
(with both early-learning and late-learning slightly surpassing 2%).
In addition, the ‘‘Late Learning” pattern of the model showed only
Fig. 4. Results of PSP Analysis 1. Percentage of parameter space volume for ‘‘None”
(solid gray), ‘‘Limited” (diagonal hatching), and ‘‘Full” (solid black) learning data
patterns, using the immediate-update, feedback-update, and stimulus-feedback-
update model versions. Each color corresponds to a unique data pattern discovered
by PSP. The height of each colored rectangle corresponds to the volume of
parameter space of the specified data pattern.
limited learning (2.3% accuracy increase on average, 3.6% at best)
in late aggregate-feedback blocks, unlike the mean empirical data’s
6.7%, and in early aggregate-feedback blocks, model accuracy
increase (1.5% on average, 0.5% at best) was more than the mean
empirical data’s 0.27%. Furthermore, this limited early learning still
does not capture the empirical data’s slight dip in position 1 and 2
accuracy in the second or third aggregate-feedback block (�2.9% to
�3.8% depending on condition). Overall the feedback-only model
nearly always produced ‘‘Full Learning”, and it nearly always began
at the first aggregate-feedback block and finished almost always by
the fifth aggregate feedback block.
3.5.2. Stimulus-feedback-update models
The stimulus-feedback-update models allow graded DA

responses to the stimuli and the feedback. These models produced
‘‘Full Learning” over 51.80% of the parameter space, ‘‘Limited
Learning” over 36.73% of the space, and ‘‘No Learning” over
11.47% of the space (Fig. 4). The profile analysis of PSP Analysis 2
produced ‘‘Early Learning” over 78.13% of the space, and ‘‘No
Learning” over 21.87% of the space (Fig. 5). ‘‘Late Learning” or
‘‘Learning Throughout” profiles were not discovered. Overall, the
additional DA responses to the stimuli resulted in much less learn-
ing than when DA responded only to the feedback. The parameter
combination that produced ‘‘No Learning” had feedback-related a
and b values much smaller than the one that produced ‘‘Early
Learning”, therefore diminishing the contribution of the feedback
to learning. In other words, there was no learning when the avail-
able DA was mainly due to the presentation of an ensuing stimulus.
As with the model in which there is only DA release to the
feedback, when this combined model learns, it almost always
learns gradually from the start of the aggregate-feedback blocks,
unlike the empirical data.
3.5.3. Immediate-update models
The immediate update models allow DA responses to the stim-

uli and the feedback, but these responses only affect learning of the
immediately preceding response. The PSP analysis showed that
100% of the parameter space yielded ‘‘No Learning” in positions 1
and 2 (Fig. 4). Thus, all versions of the model failed to learn. This
conclusion was verified by the profile analysis of PSP Analysis 2,
which showed that 100% of the parameter space produced ‘‘No
Learning” throughout the aggregate-feedback blocks, and no other
learning profiles were found (Fig. 5). Overall, this is powerful evi-
dence that learning cannot occur if the only available DA is due
to the stimulus presentations.
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3.5.4. Best-fitting model
Using the results of the PSP analysis, we identified the single

model that best fit the data from Experiment 1a. This was a
feedback-update model that includes a DA response to the feed-
back but not the stimuli, and allows for a weak eligibility trace.
One set of learning rate parameters provided by the PSP
(feedback-related a and b values of 0.158 and 0.175, respectively)
for the ‘‘Late Learning” data pattern was used. The model’s perfor-
mance was simulated in 200 independent replications of
Experiment 1a, and the results were averaged. This was repeated
30 times (robustness stage) and we selected the model output that
matched the empirical data best, shown in Fig. 6. Note that the
model captures many qualitative properties of the data. First, it
learns at about the same rate as the human participants in the
single-stimulus immediate-feedback training. Second, it correctly
predicts that learning with aggregate feedback is better in
position 3 than in positions 1 or 2. Third, it correctly predicts that
position 3 learning gradually increases throughout aggregate-
feedback blocks, unlike the position 1 and 2 learning, which is
initially impaired, but continues in the last half of the aggregate-
feedback blocks.

Quantitatively, the model successfully accounts for 98.85% of
the variance in the data of Experiment 1a, but much of this good
fit is due to the single-trial data. If we consider only the
aggregate-feedback trials, the model accounts for only 83.94% of
the variance of the data. For example, the model accounts for ‘‘Late
Learning” in positions 1 and 2, but it under predicts the amount of
this learning (3.6% model versus 6.3% data, Fig. 6). The model also
accounts for a relatively impaired early-learning in positions 1 and
2, but even the lowest possible accuracy increase is an over predic-
tion (0.5% model versus �0% data, Fig. 6). It is also important to
note that this model came from a (‘‘Late Learning”) data pattern
associated with only 0.18% of the parameter space. Even miniscule
changes in the learning rate parameters qualitatively change the
model’s predictions. Almost any decrease in the learning rates
abolishes all learning in positions 1 and 2, whereas almost any
increase produces immediate learning in the early blocks of
aggregate feedback.
Fig. 6. Result of 200 simulations of Experiment 1a by the feedback-update procedural l
rates for positions 1 and 2 (weak eligibility trace, perhaps due to the temporal separatio
3.6. Discussion – PSP analysis

The PSP analysis allowed us to explore predictions of a wide
variety of alternative models of how the DA system responds dur-
ing aggregate feedback. This included virtually all models that
assume the DA response to the feedback is an increasing function
of RPE and the DA response to the stimuli is an increasing function
of predicted reward. Our results showed that none of these models
can perfectly account for all major properties of the data.

The majority of the models either predict no learning at all in
positions 1 and 2, or gradual learning that starts in the first block
of aggregate feedback in all positions. In contrast, the data showed
no learning in positions 1 and 2 for the first 5 blocks of aggregate
feedback, but learning during aggregate-feedback blocks 6–11.
But how much should we trust this apparent late learning? First,
note that the data from Experiment 1b (bottom panel of Fig. 2)
show a similar, albeit less dramatic effect – late but not early learn-
ing in positions 1 and 2. The appearance of this effect across both
experiments suggests it might not be a statistical artifact. In fact,
t-tests that compare averaged position 1 and 2 accuracy in
aggregate-feedback blocks 1–5 versus aggregate-feedback blocks
6–11 are significant in both experiments (Experiment 1a: �0% ver-
sus 6.3% – t(42) = 4.03, p < 0.001; Experiment 1b: 0.54% versus 7.1%
– t(34) = 2.68, p = 0.011). Even so, because the effect is somewhat
small, more research is needed before any strong statistical
conclusions can be drawn.

Only the feedback-update model, with highly restricted param-
eter settings, accounted for the position 1 and 2 late learning pro-
file, and only qualitatively, because the model improved in
accuracy during the latter half of aggregate-feedback training only
about half as much as the humans, and during the earlier half the
improvement was more than that of humans. This feedback-
update model assumes no DA release to the stimuli and that a trace
of the striatal activation (or synaptic eligibility) produced by the
position 1 and 2 categorization responses overlaps with the DA
released to the feedback. The assumption that a trace of the striatal
activation produced by the position 1 and 2 categorization
responses overlaps with the DA released to the feedback seems
earning model that includes DA release only to the feedback and very low learning
n from stimuli to feedback).
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highly unlikely given that such traces are thought to persist for
only a few seconds (Maddox, Ashby, & Bohil, 2003; Worthy,
Markman, & Maddox, 2013; Yagishita et al., 2014). Thus, this
assumption seems questionable, especially for position 1. The late
position 1 and 2 learning produced by the model was also
restricted to a tiny range of learning rates. Increasing or decreasing
these rates even by the smallest amount caused the late learning to
disappear. Of course, we cannot rule out that the narrow range of
learning rates required for this result may coincide with some
biological constraint on procedural learning. If this is not true how-
ever, then our results suggest that current models of procedural
learning are incomplete.

So why should DA release to the stimuli impair learning in posi-
tions 1 and 2? Following well-replicated results from the classical
conditioning literature (e.g., Fiorillo et al., 2003; Schultz, 1998) and
standard (e.g., TD) models, we assumed that DA release to the
stimuli, if it occurred at all, was proportional to the predicted
reward probability (see Eq. (5)). Our PSP analysis showed that
virtually any model based on this assumption is of questionable
validity because after any learning at all, predicted reward proba-
bility is necessarily above chance, so all these models predict that
DA levels will always rise above baseline when each new stimulus
is presented. This increase is helpful on trials when positive
feedback is given because it facilitates the strengthening of
synapses that were responsible for the accurate responding. The
problem occurs on error trials. In the full model, DA levels rise
above baseline on error trials when each successive stimulus
appears and then fall below baseline after the error feedback is
given. The DA depression to the feedback helps position 3, but is
Fig. 7. Predictions of procedural-learning models in Experiment 2. (A) Feedback-update
training with low learning rates. (C) Feedback-update model predictions for 321 training
321 training with high learning rates. (Note. In the legends p1, p2, and p3 signify stimu
too far removed in time from the stimuli in positions 1 and 2 to
reduce their weights. Instead, the increased DA released to the
stimuli increases synaptic strengths for the position 1 and 2
responses, despite the error(s). One significant advantage of the
PSP analysis is that these conclusions are robust, in the sense that
they should hold for any model that predicts DA release to cues
that predict reward.

3.7. Procedural-learning model predictions for Experiment 2

The failure of the wide class of procedural models considered
here to learn multiple actions with aggregate feedback raises the
question: Under what conditions can procedural learning accom-
plish multistep learning with aggregate feedback without augmen-
tation by other (e.g., explicit) mechanisms? The Experiment 1 task
design jump-starts learning by pre-training individual actions
before aggregate-feedback training on the entire sequence begins.
An alternative training procedure may be to first train up one of the
actions and then introduce another with aggregate feedback to
create a sequence of two actions, and finally add in the third action
with aggregate feedback to create a sequence that includes all
three. There are two obvious ways this might be done. One is to
begin with the first action and then add successive actions to the
end of the sequence. Thus, participants would train on action 1
alone, then on the sequence 12, and finally on the sequence 123.
We denote this as 123 training (reflecting the order in which each
action is introduced). The opposite strategy is to employ 321
training that begins on action 3 alone, then on the sequence 23,
and finally on the sequence 123.
model predictions for 123 training. (B) Feedback-update model predictions for 321
with moderate learning rates. (D) Stimulus-feedback-update model predictions for
lus positions 1, 2, and 3, respectively.)
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The PSP analysis suggested that the procedural-learning models
make a strong a priori prediction that 123 training should be supe-
rior to 321 training. Fig. 7 shows predictions from different
procedural-learning models, averaged over 200 replications of
123 versus 321 training. All model versions learned equally well
in the 123 condition, and while Fig. 7a shows predictions of the
feedback-update model, the predictions were identical for the
other model types with all possible data patterns discovered by
PSP. On the other hand, almost all model versions predict that in
321 training, learning is compromised in positions 1 and 2, but
not 3. The feedback-update model predicts equally perfect learning
in all 3 positions (output not shown) with high learning rates
(a = 2.4, b = 0.7; perfect eligibility trace), but it predicts little learn-
ing in position 1 and 2 (Fig. 7b) with low learning rates (a = 0.158,
b = 0.175; weak eligibility trace). This was the best-fitting model
for Experiment 1, which corresponded to the ‘‘Late Learning” data
pattern associated with only 0.18% of the parameter space. A full
82% of the parameter space predicted ‘‘Early Learning” and
representative parameter values from this volume (intermediate
learning rates of a = 0.307 and b = 0.397) lead to somewhat better
321 learning (Fig. 7c). Fig. 7d shows the compromised learning pre-
diction of the stimulus-feedback-update model, with high learning
rates (a = 2.4, b = 0.7), updating with DA release to stimuli, and
updating with DA release to feedback (perfect eligibility trace).
Finally, with DA release to stimuli in the immediate-update model
(without eligibility trace), there is no learning at all (output not
shown), just as in the PSP result for Experiment 1.

These model predictions reveal that procedural learning is most
optimal if an action is followed by immediate feedback, and there-
fore chaining actions into a sequence works best if immediate
feedback follows the to-be-learned new action, which follows a
mastered action. With 123 training, the untrained action is always
nearest the feedback, whereas with 321 training the untrained
action is always at the beginning of the sequence, and thus, in
the furthest possible position from the feedback. The prediction
that 123 training is better than 321 training will be tested next
in Experiment 2.
Table 1
Design of the 123 and 321 conditions of Experiment 2.

Condition Phase 1st Stimulus 2nd Stimulus 3rd Stimulus

123 1 Position 1 (new) None None
2 Position 1 Position 2 (new) None
3 Position 1 Position 2 Position 3 (new)

321 1 Position 3 (new) None None
2 Position 2 (new) Position 3 None
3 Position 1 (new) Position 2 Position 3
4. Experiment 2

In 123 training, immediate feedback always follows the
to-be-learned stimulus, with sequences of 12, and 123 receiving
aggregate feedback. For example, during position 1 training, imme-
diate feedback always follows the response to the item in position
1. Once the position 1 item is well learned then items in position 2
are added. During this 12 training the novel to-be-learned position
2 items are always followed by immediate feedback. Once the posi-
tion 1 and 2 items are well learned then items in position 3 are
added. During this 123 training the novel to-be-learned position
3 items are always followed by immediate feedback. However, in
321 training, feedback gets farther and farther removed from the
to-be-learned stimulus as more stimuli are added into the
sequence. For example, if the position 3 stimulus is learned per-
fectly, the sequence of 23 will be followed by aggregate feedback,
which, if incorrect, most likely reflects an error in response to the
position 2 stimulus. However, this feedback does not immediately
follow the position 2 stimulus, but instead, the position 3 stimulus
presentation and response occurs before the aggregate feedback.

To our knowledge, within the domain of classical conditioning,
only 321 training has been previously investigated, and the back-
propagation of the DA signal from learned to new stimulus was
demonstrated with electrophysiology and computational analyses
(Schultz et al., 1993; Suri & Schultz, 1998). However, in that work,
the new stimulus perfectly predicted the upcoming learned stimu-
lus (i.e., the cues were dependent), while in the current task, the
learned stimulus followed both correct and incorrect responses
to the new (and previously presented) stimulus (i.e., the cues were
independent), therefore DA release to the learned stimulus cannot
serve as a teaching signal for learning the appropriate response to
the new stimulus.

Our PSP analysis showed that a huge class of popular
procedural-learning models fails to account for the results of the
aggregate-feedback training used in Experiment 1. However, that
analysis also suggested that the models would successfully learn
with aggregate feedback if the training followed a 123 format.
Experiment 2 tested this prediction.

4.1. Methods – Experiment 2

4.1.1. Participants, stimuli, and stimulus generation
Twenty-seven participants completed the 123 task and 22

participants completed the 321 task. All aspects of participants
and stimuli and stimulus generation were identical to those from
Experiment 1a.

4.1.2. Procedure
Participants were informed that there were two equally likely

categories and that they should be accurate and not to worry about
speed of responding. The experiment consisted of 12 12-trial
blocks divided into 3 phases of 4 blocks each. The design is
described in Table 1. The 123 task had three training components:
single position 1 stimuli, then pairs of position 1 and 2 stimuli,
then triplets of position 1, 2, and 3 stimuli. In the first phase, only
the position 1 stimuli were shown followed by trial-by-trial full
feedback. On each trial, a position 1 stimulus appeared until the
participant generated an ‘‘A” (‘‘z” key) or ‘‘B” (‘‘/” key) response,
followed by the word ‘‘correct” or ‘‘incorrect” for 1000 ms, a
500 ms blank screen ITI, and then the next trial. During
phase 2 (blocks 5–8), each trial consisted of the presentation of a
position 1 and 2 stimulus followed by aggregate feedback. Specif-
ically, the first stimulus appeared until the participant generated
an ‘‘A” or ‘‘B” response, followed by a 500 ms blank screen ITI,
and then presentation of the second stimulus. The second stimulus
appeared until the participant generated an ‘‘A” or ‘‘B” response,
followed by the words ‘‘All responses were correct” or ‘‘At least
one response was incorrect” for 1000 ms, then a 500 ms blank
screen ITI, and then the next stimulus-pair trial. During phase 3
(blocks 9–12), each trial consisted of the presentation of a position
1, 2, and 3 stimulus followed by aggregate feedback. The specific
timing of the trial events was the same as previous blocks, except
that the second stimulus’ response was followed by a 500 ms blank
screen ITI, and then presentation of the third stimulus. The third
stimulus appeared until the participant generated an ‘‘A” or ‘‘B”
response, followed by the words ‘‘All responses were correct” or
‘‘At least one response was incorrect” for 1000 ms, a 500 ms blank
screen ITI, and then the next triple-stimulus trial. Note that in the
123 task, new learning was always to the stimulus closest to the
feedback. The 321 task mirrored the 123 task in all aspects of the
procedure, except the order of the three training components: dur-
ing phase 1, single position 3 stimuli, then pairs of position 2 and 3
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stimuli during phase 2, and finally triplets of positions 1, 2, and 3
stimuli during phase 3. This way, in the 321 task, new learning
was always to the stimulus farthest away in time from the
feedback.
4.2. Results – Experiment 2

To ensure that both conditions (123 and 321) began with equal
amounts of learning in the first 4 single-stimulus full-feedback
blocks, we included only participants who reached 100% correct
by the fourth block of the task. This criterion excluded 5 partici-
pants from the 123 condition (22 remaining), and 2 from the 321
condition (20 remaining). The average accuracies across the 12
blocks for each stimulus position are displayed in Fig. 8a for the
123 condition, and in Fig. 8b for the 321 condition. Fig. 8 panels,
c, d, and e show direct comparisons of each position from the
two different conditions.

Repeated-measures ANOVAs on the accuracy rates across
blocks suggest learning in each position of both tasks. In the
123-task, the main effects of block for position 1 [F(11,231) =
6.884, p < 0.001, g2 = 0.247], position 2 [F(7,147) = 14.291,
p < 0.001, g2 = 0.405], and position 3 [F(3,63) = 22.094, p < 0.001,
g2 = 0.513] were all significant, with performance at 90% in block
12 for all positions. In the 321-task, the main effects of block for
position 3 [F(11,209) = 5.098, p < 0.001, g2 = 0.212], position 2
[F(7,133) = 5.504, p < 0.001, g2 = 0.225], and position 1 [F(3,57) =
3.001, p = 0.038, g2 = 0.136] were all significant, but block
12 performance was best in position 3 (80%), worse in position 2
(70%), and worst in position 1 (65%).
Fig. 8. Proportion correct (averaged across participants) from Experiment 2 across block
during 123 training (position 1) and during 321 training (position 3), (D) accuracy to sec
(E) accuracy to third stimulus presented during 123 training (position 3) and during 32
We conducted a 3 position � 4 block mixed ANOVA on the
accuracy rates over blocks 9–12. In the 123-task the main effects
of block [F(3,63) = 6.448, p < 0.001, g2 = 0.235] and position were
significant [F(2,42) = 10.338, p < 0.001, g2 = 0.330], as well as
the position � block interaction [F(6,126) = 14.169, p < 0.001,
g2 = 0.403]. To decompose the interaction, we compared the posi-
tions in each block. The main effect of position in block 9 [F
(2,42) = 27.834, p < 0.001, g2 = 0.570], and block 10 [F(2,42) =
4.023, p = 0.025, g2 = 0.161] were significant, but not in block 11
[F(2,42) = 0.241, p = 0.787, g2 = 0.011], or block 12 [F(2,42) =
0.385, p = 0.683, g2 = 0.018], therefore by blocks 11 and 12,
position 1 accuracy caught up with position 2 and 3 accuracy.
In the 321-task the main effect of position was significant
[F(2,38) = 17.664, p < 0.001, g2 = 0.482], but not the main effect of
block [F(3,57) = 2.031, p = 0.120, g2 = 0.097], or the position �
block interaction [F(6,114) = 1.949, p = 0.079, g2 = 0.093].

Next we examined the data grouped by order of presentation.
The first, second, and third presented stimuli were compared with
a 2 task � n block mixed ANOVA (where n = 12 for first, n = 8 for
second, and n = 4 for third presented stimuli). For the first
presented stimuli (position 1 for 123-task, and position 3 for
321-task), the effect of block was significant [F(11,440) = 10.974,
p < 0.001, g2 = 0.215], and the effect of task was marginally
significant [F(1,40) = 3.445, p = 0.071, g2 = 0.079], but not the
task � block interaction [F(11,440) = 0.776, p = 0.664, g2 = 0.019].
For the second presented stimuli (position 2 in both tasks), the
effect of task [F(1,40) = 9.183, p = 0.004, g2 = 0.187], and the effect
of block [F(7,280) = 17.282, p < 0.001, g2 = 0.302] were both signif-
icant, but not the task � block interaction [F(7,280) = 1.133,
p = 0.342, g2 = 0.028]. For the third presented stimuli (position 3
s for (A) 123 training and (B) 321 training, (C) accuracy to first stimulus presented
ond stimulus presented during 123 and 321 training (position 2 in both cases), and
1 training (position 1). Standard error bars included.
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for 123-task, and position 1 for 321-task), the effect of task
[F(1,40) = 23.241, p = 0.000, g2 = 0.367], and block [F(3,120) =
16.742, p < 0.001, g2 = 0.295] were significant, but not the task �
block interaction [F(3,120) = 1.395, p = 0.248, g2 = 0.034].
4.3. Discussion – Experiment 2

The results of Experiment 2 showed that learning can occur in
each position, regardless of whether training is via the 123 or
321 order; however, learning was near complete and equal in mag-
nitude for all positions in the 123-task, but compromised in the
321-task, especially in positions 1 and 2. We observed significantly
better learning for the second and third presented items in the
123-task than in the 321-task. Overall, learning was better with
123 than with 321 training. Thus, Experiment 2 suggests that
procedural learning is better when the feedback follows immedi-
ately after the untrained action.

The 123 training results from Experiment 2 (Fig. 7a) were con-
sistent with almost all versions of the procedural-learning model
(Fig. 7a). The compromised position 1 and 2 learning in 321 train-
ing was predicted by 3 different versions of the model (Fig. 7b–d).
Perhaps the best prediction was from the stimulus-feedback
update model (Fig. 7d), which shows how DA release to stimuli
compromises learning, even with the full benefit of the distant
feedback (perfect eligibility trace). Note that all versions of the
model that predicted some, but not full learning in positions 1
and 2 assumed an eligibility trace. Furthermore, note that the
procedural-learning models we considered all failed to account
for the pronounced dip in accuracy of the first presented stimulus
that occurred when the second stimulus was first introduced
(block 5), and that was seen in both conditions.
5. General discussion

We developed a novel aggregate-feedback category-learning
task to study the learning of a sequence of independent actions
under aggregate-feedback conditions. The results of Experiment
1a and 1b confirmed that the stimulus nearest to the feedback
was learned best, whereas the stimuli further removed from the
feedback showed much poorer learning, especially during early
aggregate-feedback training. Our modeling analysis showed that
currently popular actor-critic conceptions of procedural category
learning account for many qualitative properties of the data, most
importantly that learning was compromised for stimuli early in the
sequence. Even so, no version of currently popular actor-critic
procedural-learning models can account for all properties of the
data. The models either predict continual learning in positions 1
and 2 or no learning in either of these positions. A restricted set
of models showed poor learning in positions 1 and 2 during the
first 5 blocks, and limited learning thereafter. In contrast, the data
of both Experiment 1a and 1b showed no learning in positions 1
and 2 initially, and good delayed learning.

The modeling analysis also indicated that any DA released to
the stimuli necessarily impairs category learning, at least if the
DA response is in accord with current reward-learning models,
which predict that, if there is a DA response to stimulus presenta-
tion, it should be an increasing function of predicted reward. When
accuracy is above chance, predicted reward probability is necessar-
ily high, so DA release in all of these models is high on every trial.
This is problematic on error trials because the high DA levels
strengthen synapses that led to the error.

Note that the deleterious effects of DA release to the stimuli are
limited to early stimuli in the sequence and to error trials. Thus, DA
release to stimuli should cause no detrimental effects if early
stimuli require no response, or if there are no errors. The
aggregate-feedback category-learning task requires a response to
each stimulus and errors are unavoidable. This is in sharp contrast
to second-order conditioning, in which each cue in a sequence is
perfectly predictive of the next cue and there is either no response
to learn (e.g., as in classical conditioning) or only one response is
required (e.g., in instrumental conditioning). So in second-order
conditioning, one would not expect DA release to the cues to cause
any learning problems.

The detrimental effects of DA release to early stimuli in
independent, multi-action tasks may be overcome by altering the
learning regime. Introducing the to-be-learned components one-
by-one in order to link together a chain of actions of a skill is com-
mon in the real world. Procedural-learning models make a strong
prediction about what the order of introducing the actions must
be for procedural learning to proceed under aggregate feedback.
Training the first action first, and then adding the second and then
the third, one-by-one, allows for the unlearned action to always be
followed by feedback (123 training). The reverse order, in which
the final action is trained first, and then new actions are succes-
sively added to the beginning of the sequence (321 training) places
unlearned actions as far from the feedback as possible, and there-
fore is not ideal for procedural learning. Results from Experiment 2
confirmed this prediction.

If DA release to the stimulus impairs aggregate-feedback
learning, then what is its adaptive value? The backpropagation of
the DA response seems to facilitate second-order conditioning, so
evolution may have favored this benefit over the problems that
backpropagation causes in aggregate-feedback tasks. But it is also
important to note that DA has two different effects. We have
focused on the slow-acting effects of DA on synaptic plasticity.
But DA also has well documented fast effects on the post-
synaptic response. More specifically, DA acts to increase the
signal-to-noise ratio in neurons that are targets of glutamate neu-
rons. In particular, increasing DA levels potentiate the response of
strong glutamate signals and dampen the response of weak gluta-
mate signals (Ashby & Casale, 2003; Cohen & Servan-Schreiber,
1992). Visual cortex sends prominent projections to the striatum
and to many areas of frontal cortex, all of which are targets of
DA neurons. Thus, even in aggregate-feedback tasks, a DA response
to the stimuli should have the function of making frontal cortex
and the striatum more responsive to the visual cortical activation
initiated by stimulus presentation. This benefit may outweigh the
detrimental effects on cortical-striatal synaptic plasticity. As a very
speculative example, the increasing DA release to stimuli may
reach a critical threshold that in turn enhances the eligibility trace,
and allows for the late learning in our task. Simultaneously
modeling DA’s parallel effects in functionally different networks
may prove to be an especially fruitful approach (e.g., Collins &
Frank, 2014).

The assumption of an eligibility trace better predicted the
results of all Experiments (1a, 1b, and 2). The biological mechanism
underlying the procedural-learning models we considered is DA-
mediated synaptic plasticity (e.g., dendritic spine enlargement),
which has been shown to occur only if DA arrives within a few sec-
onds after stimulus presentation (Yagishita et al., 2014). In the
aggregate-feedback task, this time window is too short to allow
for learning in positions 1 or 2. A biological mechanism that might
mediate an eligibility trace of longer than 2 s has not been identi-
fied. Even so, some recent evidence suggests a possible prefrontal-
based explicit mechanism. In particular, recurrent neural networks
in visual and prefrontal cortices have been discovered that support
synaptic eligibility traces that persist between 5 and 10 s (He et al.,
2015). These cortical transient traces are thought to develop via
Hebbian learning and can remain active until feedback arrives.
Note that this mechanism does not require DA. These data then
suggest a model in which DA mediates the synaptic plasticity that
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occurs immediately after the feedback and prefrontal (explicit)
mechanisms mediate the eligibility traces that allow learning with
feedback delays longer than a few seconds.8

However, at least one feature of the Experiment 1 results argues
against explicit memory as the primary driver of performance,
namely the absence of a primacy effect. In particular, position 1
accuracy was the same as position 2, and less than position 3
accuracy. Previous research indicates strong primacy effects in
sequential learning tasks that depend on explicit memory (e.g.,
Drewnowski & Murdock, 1980; Fu & Anderson, 2008; Ward,
1937), suggesting that our task design did not evoke explicit mem-
orization. In addition, an explicit-memory explanation would pre-
dict no difference between learning in the 123 and 321 tasks of
Experiment 2, which is the opposite of the procedural-learning
model predictions and the behavioral results. This is based on pre-
vious findings that working-memory based category learning is
unaffected by 5 s feedback delays that include an intervening irrel-
evant stimulus, while procedural-learning based category learning
is compromised (Maddox & Ing, 2005; Maddox et al., 2003). The
fact that learning is compromised in the 321 task (in which feed-
back is delayed and there is an intervening stimulus), suggests that
learning is procedural in this task. On the other hand, the procedu-
ral models examined here were not equipped to account for some
qualitative features of the data in both experiments, such as the
accuracy dips with the introduction of multi-stimulus aggregate
feedback. One possibility is that explicit strategies aid or interfere
with procedural learning, which makes sense in a brain where
memory systems do not act in isolation.

When building the models investigated in this article, the most
significant limitation was that almost no data existed on how DA
neurons might respond in the aggregate-feedback task. Instead,
when building this portion of the model, we relied on standard
models of reward learning (e.g., TD) and empirical results from
first- and second-order conditioning tasks (e.g., Schultz, 1998).
On the other hand, the category-learning component of the models
we considered is much less speculative, since some version of this
model has been used successfully in many previous applications
(e.g., Ashby & Crossley, 2011; Ashby et al., 1998; Ashby et al.,
2007; Hélie, Paul, & Ashby, 2012a, 2012b). Investigating various
reward-learning models within the context of a reasonably well-
understood task makes for stronger inferences and more rigorous
tests. For example, this combination allowed us to conclude that
DA release to later stimuli is likely to interfere with the learning
of responses to earlier stimuli. At the same time, however, our
results also identified a number of new questions that will require
further research to answer. Perhaps the most important of these
are: What is the function of DA released to the stimuli during
aggregate feedback training? And what other mechanisms aug-
ment procedural learning in the type of skills studied in this
article?
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Appendix A

A.1. The Procedural-Learning Model

The input layer includes 12 units, one for each of the visually
distinct fractals. The input activation in visual cortical unit K,
denoted by IK, is a constant set to 1 when stimulus K is present
and 0 when stimulus K is absent. The output layer is assumed to
represent the striatum and all downstream structures (e.g., GPi,
thalamus, premotor cortex). The model includes two output units
for the two alternative responses (A and B). Activation of striatal
unit J in the output layer on trial n, SJ(n), equals:

SJðnÞ ¼ wK;JðnÞIK
where wK,J(n) is the strength of the synapse between cortical unit K
and striatal unit J on trial n. On trial 1, the initial value of each of the
24 weights is set to a value randomly drawn from a uniform distri-
bution over the range [0.011,0.035]. The decision rule is: respond A
on trial n if SA(n) � SB(n) > 0.02, and respond B if SB(n) � SA(n) > 0.02,
otherwise the model randomly selects between A and B. The rela-
tive activity between striatal units changes as the model learns,
and learning is accomplished by adjusting the synaptic weights,
wK,J(n), up and down as specified by Eq. (1).

For simplification, a strong form of lateral inhibition at the level
of the striatumwas assumed (activity in the striatal unit associated
with the unselected response is forced to zero). Computationally,
this amounts to updating only the weights associated with the
striatal unit matching the response suggested by the procedural
system. For example, if the procedural system suggests an ‘‘A”
response, only the weights associated with the ‘‘A” striatal unit
are modified. This simplification effectively serves a dual-
purpose: it accelerates learning because only the weights relevant
to that trial are updated and improves computational efficiency.

A.2. PSP analysis

The PSP analysis was conducted using MATLAB code obtained
from Myung’s website (http://faculty.psy.ohio-state.edu/myung/
personal/psp.html). Any PSP analysis requires the model to
produce deterministic output for each set of parameters. To accom-
plish this, all randomized features of the model must be fixed. All
models used here omitted the noise terms typically included in
models of this type. The only remaining probabilistic features are
the initial random weights at each cortical-striatal synapse, the
random guesses that are made on trials when both output units
are nearly equally activated, and the random stimulus presentation
order.

As mentioned earlier, our analysis focused on the DA gains, a
and b of Eq. (1), for positions 1 and 2, and all other parameters
were set to values that allowed the model to provide good fits to
the single-trial control data and the position 3 data (i.e., IK = 1;
a = 2.4 and b = 0.7 of Eq. (1)). The search range for the manipulated
parameters was between 0 and the value of the original learning
parameter values (a = 2.4 and b = 0.7). This is because the search
was for parameter values that could produce accuracies in the
range of 0 to optimal (position 3). Every other parameter was fixed
to the optimal value (note, position 3 was always updated with the
original a and b). During the PSP search, the updating parameters

http://faculty.psy.ohio-state.edu/myung/personal/psp.html
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for positions 1 and 2 were set to be equal, because the empirical
data did not reveal any significant differences in learning rates.
The PSP evaluated each step in the parameter space on all 200
random initializations of weights, stimulus orderings, and guesses.
The performance of the model was averaged over all 200 initializa-
tions to determine the final data pattern for each step in the
parameter space. The PSP algorithm proceeded for six search cycles
to obtain a reliable partitioning of the parameter space. The
complete PSP search returned the volume of parameter space that
was associated with each of the 3 or 4 data patterns, and a specific
set of parameter values that could generate each discovered
pattern.
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