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Abstract

Many research questions in visual perception involve determining whether stimulus proper-

ties are represented and processed independently. In visual neuroscience, there is great

interest in determining whether important object dimensions are represented independently

in the brain. For example, theories of face recognition have proposed either completely or

partially independent processing of identity and emotional expression. Unfortunately, most

previous research has only vaguely defined what is meant by “independence,” which hin-

ders its precise quantification and testing. This article develops a new quantitative frame-

work that links signal detection theory from psychophysics and encoding models from

computational neuroscience, focusing on a special form of independence defined in the psy-

chophysics literature: perceptual separability. The new theory allowed us, for the first time,

to precisely define separability of neural representations and to theoretically link behavioral

and brain measures of separability. The framework formally specifies the relation between

these different levels of perceptual and brain representation, providing the tools for a truly

integrative research approach. In particular, the theory identifies exactly what valid infer-

ences can be made about independent encoding of stimulus dimensions from the results of

multivariate analyses of neuroimaging data and psychophysical studies. In addition, com-

monly used operational tests of independence are re-interpreted within this new theoretical

framework, providing insights on their correct use and interpretation. Finally, we apply this

new framework to the study of separability of brain representations of face identity and emo-

tional expression (neutral/sad) in a human fMRI study with male and female participants.

Author summary

A common question in vision research is whether certain stimulus properties, like face

identity and expression, are represented and processed independently. We develop a theo-

retical framework that allowed us, for the first time, to link behavioral and brain measures

of independence. Unlike previous approaches, our framework formally specifies the rela-

tion between these different levels of perceptual and brain representation, providing the
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tools for a truly integrative research approach in the study of independence. This allows to

identify what kind of inferences can be made about brain representations from multivari-

ate analyses of neuroimaging data or psychophysical studies. We apply this framework to

the study of independent processing of face identity and expression.

Introduction

A common goal in perceptual science is to determine whether some stimulus dimensions or

components are processed and represented independently from other types of information. In

visual neuroscience, much research has focused on determining whether there is independent

processing of object and spatial visual information [1], of object shape and viewpoint [2], of

different face dimensions [3, 4], etc. A common approach is to use operational definitions of

independence, which are linked to rather vague conceptual definitions. This approach has the

disadvantage that different researchers use different operational definitions for independence,

often leading to contradictory conclusions. For example, in the study of whether face identity

and emotional expression are processed independently, evidence for both independence and

interactivity has been found across a variety of operational tests. Evidence for independence

was found by most lesion studies [5], by lack of correlation between fMRI patterns related to

identity and expression [6], by single neuron invariance [7], by selective fMRI adaptation

release in fusiform face area (FFA) and middle superior temporal sulcus (STS) [8], and by

selective fMRI decoding of identity from anterior FFA and medial temporal gyrus [9, 10], and

of expression from STS [10]. Evidence for a lack of independence has been provided by over-

lapping fMRI activation during filtering tasks [11], by non-selective fMRI adaptation release in

posterior STS [8] and in FFA–when adaptation is calculated based on perception [12]–, and by

non-selective fMRI decoding from right FFA [9].

Because the different operational definitions are not linked to one another through a theo-

retical framework, the interpretation of such contradictory results is very difficult and neces-

sarily post-hoc. Even more difficult is to link the neurobiological results to the psychophysics

literature on independence of face dimensions, which itself is plagued by similar issues (for a

review, see [13]).

General recognition theory (GRT) [14, 15] is a multidimensional extension of signal detec-

tion theory that has solved such problems in psychophysics, by providing a unified theoretical

framework in which notions of independence can be defined and linked to operational tests.

Hundreds of studies have applied GRT to a wide variety of phenomena, including face percep-

tion [16, 17], recognition and source memory [18, 19], source monitoring [20], object recogni-

tion [21, 22], perception/action interactions [23], speech perception [24], haptic perception

[25], the perception of sexual interest [26], and many others.

Here we present an extension of GRT to the study of independence of brain representa-

tions, by relating it to encoding models and decoding methods from computational neurosci-

ence [27, 28]. Past neuroimaging studies have been limited to choosing between decoding

methods, which try to determine what stimulus information is processed in a brain region

while ignoring the form of the underlying representation, and encoding models, which assume

a specific representation and compare its predictions against data. [29]. We propose the con-

cept of encoding separability as a fundamental way in which brain representations of stimulus

properties can be considered independent, and we identify the specific conditions in which a

decoding analysis of neuroimaging data or a psychophysical study allow inferences to be made

about encoding separability. In doing so, we show that decoding methods (and under some

Independent neural representation
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assumptions, psychophysics) can be useful to make valid inferences about encoding. We also

re-interpret previously-proposed tests of independence within our new theoretical framework,

and provide guides on their correct use. Finally, we apply this new framework to the study of

separability of brain representations of face identity and expression.

Results

Extending general recognition theory to the study of brain representations

GRT is a multivariate extension of signal detection theory to cases in which stimuli vary on

more than one dimension [14, 15]. As in signal detection theory, the theory assumes that dif-

ferent presentations of the same stimulus produce slightly different perceptual representations.

For example, as shown in Fig 1, repeated presentations of a face identity produce a variety of

values on the “identity” dimension (orange and red dots), which follow a probability distribu-

tion (red and orange curves). According to GRT, there are many ways in which processing of a

dimension of interest, or target dimension, can be influenced by variations in a second, irrele-

vant dimension. GRT formally defines such dimensional interactions and links them to opera-

tional tests of independence. This allows researchers to determine whether a test can dissociate

between different forms of independence, and to create new tests specifically designed to target

a specific form of independence.

Here we will consider the special case in which stimuli vary along two stimulus dimensions

(or more generally, components or properties), represented by A and B. However, the theory

can easily be extended to a larger number of dimensions. Specific values of dimension A used

in an experiment are indexed by i = 1, 2, . . .LA, and the specific values of dimension B are

indexed by j = 1, 2, . . .LB. A stimulus in the experiment is represented by a combination of

these dimension levels, AiBj. This stimulus produces a random perceptual effect in a two-

dimensional perceptual space [x, y], where x represents the perceptual effect of property A and

y the perceptual effect of property B. The random vector [x, y] can be described through a two-

Fig 1. Stimulus representation and definition of perceptual separability in GRT. The representation of a given

identity changes randomly from trial to trial (dots at the bottom) according to some perceptual distribution (bell-

shaped distributions at the top). Perceptual separability of identity from emotional expression (neutral vs. sad) holds if

the perceptual distribution for identity does not change with emotional expression (left), and it fails if the perceptual

distribution for identity does change with emotional expression (right).

https://doi.org/10.1371/journal.pcbi.1006470.g001

Independent neural representation
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dimensional joint probability density p(x, y|AiBj), with p(x|AiBj) and p(y|AiBj) representing the

marginal densities of the perceptual effects associated with components A and B, respectively

(the distributions shown in Fig 1 are examples of such marginal densities).

Perceptual separability and perceptual independence. A particularly important form of

independence defined in GRT is perceptual separability, which holds when the perception of

the target dimension is not affected by variations in the irrelevant dimension. In Fig 1, an iden-

tity is presented with a neutral expression (in red) or with a sad expression (in orange). When

perceptual separability holds, the orange and red perceptual distributions overlap, and the face

is just as easy to identify in both cases. When perceptual separability fails, the orange and red

perceptual distributions do not overlap, and the face is easier to identify when the expression is

sad (there is more evidence for the identity in this case).

Here we focus on perceptual separability because it is considered a particularly important

form of independence, for two reasons. First, because many questions in perceptual neurosci-

ence can be understood as questions about separability of object dimensions. For example, the

question of whether object representations are invariant across changes in identity-preserving

variables like rotation and translation is equivalent to the question of whether object represen-

tations are perceptually separable from such variables [30]. In face perception, configural or

holistic face perception has been defined as non-separable processing of different face features

[31, 32], and the question of whether or not different face dimensions are processed indepen-

dently is usually investigated using tests of perceptual separability [13, 33–35]. The second rea-

son for the importance of perceptual separability is that higher-level cognitive mechanisms

seem to be applied differently when stimuli differ along separable dimensions rather than

along non-separable dimensions. For example, selective attention is deployed more easily to

separable dimensions than to non-separable dimensions [36, 37], sources of predictive and

causal knowledge may be combined differently if they differ along separable versus non-sepa-

rable dimensions [38, 39], and the performance cost of storing objects in visual working mem-

ory is different depending on whether such objects differ from one another in separable versus

non-separable dimensions [40].

Formally, perceptual separability of dimension A from dimension B occurs when the per-

ceptual effect of stimuli on dimension A does not change with the value of the stimulus on

dimension B [14]–that is, if and only if, for all values of x and i:

pðxjAiB1Þ ¼ pðxjAiB2Þ . . . ¼ pðxjAiBLB
Þ: ð1Þ

Perceptual separability of dimension B from dimension A is defined analogously.

Another form of independence defined within GRT is perceptual independence. Perceptual

independence of components A and B holds in stimulus AiBj if and only if the perceptual

effects of A and B are statistically independent; that is, if and only if:

pðx; yjAiBjÞ ¼ pðxjAiBjÞpðyjAiBjÞ ð2Þ

Unlike perceptual separability, which is a form of independence involving the representa-

tion of multiple stimuli, perceptual independence refers to dimensional interactions in the

representation of a single stimulus.

Neural encoding and encoding separability. Extending GRT to the study of neural repre-

sentation requires linking it to our current understanding on how dimensions are represented

by neuronal populations. In the computational neuroscience literature, an encoding model is a

formal representation of the relation between sensory stimuli and the response of a single neu-

ron or a group of neurons [28, 41, 42]. In the case of stimulus dimensions, an encoding model

represents how changes in a dimension of interest are related to changes in neural responses.

Independent neural representation
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Encoding models have been applied to describe neural responses at a variety of scales, from

single neurons to the average activity of thousands of neurons [28, 29, 41, 43]. To discuss these

models in their more general form, it is convenient to introduce the abstract concept of a chan-
nel, which can be used as a placeholder for a single neuron, a population of neurons with

similar properties, or as an abstract construct to model the behavior of a human observer. A

channel is essentially a detector, sensitive to a particular stimulation pattern. It responds maxi-

mally to that target pattern and progressively less to other patterns as they become different

from the target. In other words, the most important property of a channel is that it has tuning.

The tuning of a channel can be modeled in many ways, but perhaps the simplest is to choose a

physical dimension of interest and model the channel’s response as a function of the value of a

stimulus on that dimension. For example, if we are interested in dimension A (equivalent defi-

nitions can be given for B), then the response rc of the channel c to a stimulus AiBj is deter-

mined by a tuning function:

rcðAiBjÞ ¼ fcðAiBjÞ: ð3Þ

Common choices for fc(AiBj) in the literature are bell-shaped and sigmoidal functions [28].

The channel response on a given trial may also be influenced by stochastic internal noise,

which can be assumed to be additive (independent of the channel’s response) or multiplicative

(scaling with the channel’s response). Common choices for the distribution of this noise in

the literature are Gaussian and Poisson [28, 42]. Because the noise is a random variable, the

response of the channel rc itself becomes a random variable that follows a probability distribu-

tion:

pðrcjAiBj; yÞ � ZðfcðAiBjÞ; yÞ; ð4Þ

where�means “distributed as”, and η() is just a placeholder that stands for any probability

distribution (e.g., Gaussian) that depends on the channel’s tuning function and on a set of

parameters θ describing noise.

Researchers agree that encoding of a stimulus dimension requires a model with multiple

channels, or multichannel model. For example, the “standard model” of dimension encoding

in the computational neuroscience literature is such a multichannel model (implementing a

“population code” [28, 41]), and most applications in the neuroscience and psychophysics lit-

erature use at least two channels to describe encoding of stimulus dimensions [44]. Fig 2

shows encoding of a stimulus dimension with four channels, each with its own tuning model

represented by a curve of different color. The tuning model is a formalization of how the chan-

nel responds to different stimulus values: each channel responds maximally to its preferred

dimensional value and less to other values. The figure shows the response of a multi-channel

model to a stimulus with a value of 3 on the target dimension. A channel’s noise model

describes the stochasticity in the channel’s responses through a probability distribution. In Fig

2, the average response of each channel is perturbed by random additive noise, represented by

the dice. The final channel output is equal to the average response (from the tuning model)

plus noise (randomly drawn from the noise model).

A multichannel model encodes information about dimension A through the combined

response of N channels [28, 41, 44], indexed by c = 1, 2, . . .N. On each trial, the model pro-

duces a (column) random vector of channel responses r = [r1, r2, . . . rN]⊺, where ⊺ denotes

matrix transpose. Note that r depends on the stimulus AiBj according to a set of tuning

Independent neural representation
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functions:

fðAiBjÞ ¼ ½f1ðAiBjÞ; f2ðAiBjÞ; . . . fNðAiBjÞ�
⊺
; ð5Þ

The probability distribution of r also depends on noise parameters θ:

pðrjAiBj; yÞ � Zðf; yÞ: ð6Þ

As indicated earlier, additive Gaussian noise is a common choice for the channel noise

model. In that case, the multichannel encoding model is described by a multivariate Gaussian

distribution:

pðrjAiBjÞ � N ðfðAiBjÞ;ΣðAiBjÞÞ; ð7Þ

where Σ(AiBj) is an N ×N covariance matrix describing channel noise. In most applications,

noise is also assumed to be independently distributed across channels, and all non-diagonal

cells in Σ(AiBj) are zero.

This discussion suggests that a new form of separability can be defined for the neural repre-

sentation of a dimension: encoding separability. When a target dimension is encoded in the

exact same way across variations of an irrelevant dimension, we say that the former shows

encoding separability from the latter. For encoding separability to hold, both the tuning and

noise models of all channels must be equivalent across changes in the irrelevant dimension,

which is equivalent to having a single encoding model representing the target dimension, inde-

pendently of the value of the irrelevant dimension.

Formally, encoding separability of dimension A from dimension B holds when encoding of

the value of A does not change with the stimulus’ value on B. That is, if and only if, for all val-

ues of r and i:

pðrjAiB1; yÞ ¼ pðrjAiB2; yÞ . . . ¼ pðrjAiBLB
; yÞ: ð8Þ

Encoding separability of dimension B from dimension A is defined analogously.

Violations of encoding separability can happen for two reasons. The first possibility is that

one or more of the tuning functions in f change with the value of B. Tuning separability of

dimension A from dimension B holds when all tuning functions that encode dimension A

Fig 2. Schematic representation of multiple channels encoding a stimulus with a value of “3” in a target

dimension. If a stimulus with value “3” is presented, each channel gives an average response equivalent to the height of

the tuning function at that stimulus value (i.e., the height at the dotted line). The vector of average responses is

perturbed by random noise, producing the final channel output.

https://doi.org/10.1371/journal.pcbi.1006470.g002

Independent neural representation
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depend only on the value of A–that is, if and only if, for all channels c and stimuli AiBj:

fcðAiBjÞ ¼ fcðAiÞ: ð9Þ

Tuning separability of dimension B from dimension A is defined analogously. Because

p(r|AiBj, θ) depends on f (see Eq 6), violations of tuning separability produce violations of

encoding separability.

The second reason for a violation of encoding separability is that the noise for one or more

channels is distributed differently for different levels of B.

Because the Gaussian encoding model described in Eq 7 is completely characterized by the

mean vector f(AiBj) and the covariance matrix Σ(AiBj), encoding separability of A from B
holds if the following two conditions are true for all stimuli AiBj:

fðAiBjÞ ¼ fðAiÞ

ΣðAiBjÞ ¼ ΣðAiÞ
ð10Þ

Encoding separability is a concept describing the way in which stimulus information is rep-

resented by single neurons or populations of neurons with similar characteristics. Thus, it can

be directly tested only when we have access to direct measurements of r (e.g., firing rates from

single cell recordings or a measure of the activity of a homogeneous neural population), and a

sample size large enough to precisely estimate p(r|AiBj, θ) for all values of i and j. However, in

most cases we do not have access to such direct measurements, but to indirect measures of

neural activity contaminated with measurement error, as is the case in fMRI and EEG experi-

ments. Measures of activity in neuroimaging studies result from an unknown, perhaps non-

linear transformation of r. The encoding distributions p(r|AiBj, θ) cannot be estimated from

such indirect measures, but we will show that there are ways to make valid inferences about

encoding separability from indirect tests. For that, we must first introduce the concepts of

decoding and decoding separability.

Decoding separability. The term neural decoding refers both to a series of methods used

by researchers to extract information about a stimulus from neural data [29, 45] and to the

mechanisms used by readout neurons to extract similar information, which is later used for

decision making and other cognitive processes [28, 46]. If dimension A is encoded by N chan-

nels, according to the scheme summarized in Eq 6 and depicted in Fig 2, then the decoded esti-

mate of a dimensional value Â, will be some function of the channel responses:

Â ¼ gðrÞ; ð11Þ

where g() is a function from RN to R (i.e., from the multidimensional space of the channel

responses to the unidimensional space of the decoded dimension). Because r is a random vec-

tor (see Eq 6), the decoded value Â is a random value that follows a probability distribution

p ÂjAiBj; y
� �

. In many cases, knowledge about the encoding distribution from Eq 6 and the

decoder from Eq 11 allows one to derive an expression for p ÂjAiBj; y
� �

. Note also that Â is a

continuous variable, despite the fact that it is estimated as a response to stimuli with discrete

levels in the stimulus dimension A.

There are many possible decoding schemes, but the most popular among researchers [46,

47], due to their simplicity and neurobiological plausibility, are simple linear decoders

Â ¼ bþ b⊺r; ð12Þ

where β is a scalar and b is a (column) vector of weights.

Independent neural representation
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With a Gaussian encoding model like the one described by Eq 7, the distribution of line-

arly-decoded estimates of values on dimension A is:

p ÂjAiBj

� �
� N ðbþ b⊺fðAiBjÞ; b

⊺ΣðAiBiÞbÞ: ð13Þ

When channel noise is independent, the variance of the decoded variable Â is simply
PN

k¼1
b2
ks

2
k ,

where s2
k represents the N diagonal elements of Σ(AiBj).

We define decoding separability as the situation in which the distribution of decoded values

on the target dimension is invariant across changes in the stimulus on a second, irrelevant

dimension. That is, decoding separability of dimension A from dimension B holds when the

distribution of decoded values of A does not change with the value of B in the stimulus–that is,

if and only if, for all values of Â and i:

p ÂjAiB1; y
� �

¼ p ÂjAiB2; y
� �

. . . ¼ p ÂjAiBLB
; y

� �
: ð14Þ

Decoding separability of dimension B from dimension A is defined analogously.

Relation between encoding separability and decoding separability. Decoding separabil-

ity is easy to check by directly decoding dimensional values from a neuronal population. More-

over, if the same decoding scheme is used for all values of the irrelevant dimension, then the

relations between encoding separability and decoding separability shown in Fig 3 hold, as we

show in this section.

If encoding separability holds, then decoding separability must also hold. This proposi-

tion is represented by the green arrow in Fig 3. When encoding separability holds (see Eq 8),

p(r|AiBj, θ) = p(r|Ai, θ) for all values of r and j. Because we have assumed that decoding

depends only on the value of r (Eq 11), the function g() is also independent of the value of Bj.

Thus, regardless of the shape of p(r|Ai, θ) and g(), the distribution of the decoded variable Â is

independent of the value of Bj, and decoding separability (Eq 14) holds. In other words, for all

Fig 3. Summary of the relation between encoding separability and decoding separability, according to our

extension to GRT. Arrows should be interpreted as conditional statements of the form “if X, then Y”. These relations

mean that a failure of encoding separability is a valid inference from the observation of a failure of decoding

separability. However, the presence of encoding separability cannot be validly inferred from an observation of

decoding separability.

https://doi.org/10.1371/journal.pcbi.1006470.g003

Independent neural representation
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values of Bj the same decoding transformation g() is applied to the same encoding distribution

p(r|Ai, θ), resulting in the same decoding distribution p ÂjAi; y
� �

.

If encoding separability fails, then decoding separability may fail or hold. This is repre-

sented by the red arrows in Fig 3. Our strategy to prove this proposition will be to disprove

two universal statements through counterexamples.

We start by offering a counterexample disproving the following universal statement: if
encoding separability fails, then decoding separability must fail. Suppose that a dimension A is

encoded through the model with Gaussian channel noise described by Eq 7, and that we use a

linear decoder to estimate Â, as described by Eq 12. Also suppose that there are violations of

tuning separability (Eq 9) of A from B in the encoding model. Without loss of generality, sup-

pose that those violations are differences in the tuning functions of A1B1 and A1B2:

fðA1B1Þ 6¼ fðA1B2Þ;

or equivalently

fðA1B1Þ ¼ fðA1B2Þ þ δ;

where δ represents a N × 1 vector of deviations from tuning separability, and δ 6¼ 0.

Under the assumptions listed above, the tuning functions only affect the mean of the

decoded variable (see Eq 13), so we can ignore its variance. Now suppose that in this model

decoding separability holds. In that case, we have that:

bþ b⊺fðA1B1Þ ¼ bþ b⊺fðA1B2Þ

b⊺ðfðA1B2Þ þ δÞ ¼ b⊺fðA1B2Þ

b⊺δ ¼ 0

ð15Þ

For any given δ 6¼ 0, there are an infinite number of b 6¼ 0 that satisfy this equation, yielding

a model in which encoding separability fails and decoding separability holds. The universal

statement if encoding separability fails, then decoding separability must fail is false.

We now offer a counterexample to disprove the alternate universal statement: if encoding
separability fails, then decoding separability must hold. Following the same line of reasoning as

before, we get that if decoding separability fails then:

bþ b⊺fðA1B1Þ ¼ bþ b⊺fðA1B2Þ þ d

b⊺½fðA1B2Þ þ δ� ¼ b⊺fðA1B2Þ þ d

b⊺δ ¼ d;

ð16Þ

where d represents a scalar deviation from decoding separability in the mean of the decoding

distributions. As before, for any given δ 6¼ 0 and d 6¼ 0, there are an infinite number of b 6¼ 0

that satisfy this equation, yielding a model in which encoding separability fails and decoding

separability fails. The universal statement if encoding separability fails, then decoding separabil-
ity must hold is false.

In summary, if encoding separability fails, then decoding separability may hold or fail.

While no universal statements can be made about decoding separability when encoding sepa-

rability fails, a more specific relation may hold for particular combinations of encoding models

and decoding schemes. For example, it might be that for some specific combination of an

encoding model and decoding scheme, a failure of encoding separability necessarily leads to a

failure of decoding separability, eliminating the diagonal arrow in Fig 3. If that was the case, it

would be possible to infer encoding separability from a finding of decoding separability. We
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will not explore these possibilities here and instead will leave them for future work. However,

note that the counterexamples offered here involve normally-distributed channel noise and a

linear decoder, both of which are common choices in the literature on encoding and decoding.

That is, under common assumptions and methods it is not possible to infer encoding separa-

bility from a finding of decoding separability.

One general result that must hold true is the following: if encoding separability fails and

Â ¼ gðrÞ is an injective (one-to-one) mapping, then decoding separability must fail. This is

the case because when encoding separability fails (without loss of generality) p(r|A1B1, θ) 6¼

p(r|A1B2, θ) for at least one r. If g() is injective, then this difference in probability at r will

translate to a difference in probability at the corresponding transformed variable Â. However,

because g() is a transformation from RN to R, it is in most cases not injective. For example, a

linear g() from RN to R cannot be injective.

Inferring encoding separability from tests of decoding separability. From the results of

the previous section, which are summarized in Fig 3, we can conclude that the observation of a

violation of decoding separability in a particular brain region is diagnostic of a corresponding

violation of encoding separability. This is because a violation of decoding separability cannot

be produced when encoding separability holds. On the other hand, when decoding separability

holds nothing can be concluded about encoding separability, as both encoding separability

and failures of encoding separability can lead to decoding separability, depending on features

of the decoder. This allows an indirect test of encoding separability, which is useful for cases

where directly observing encoding separability is difficult (e.g., when indirect measures of neu-

ral activity are used, as in fMRI).

Perceptual separability as a form of decoding separability. The concepts of encoding

and decoding separability can be linked back to GRT by assuming that perception of a dimen-

sional value is a form of decoding. That is, the key is to assume that the perceptual representa-

tion of a stimulus dimension in GRT (the “perceived identity” in Fig 1) is the outcome of

decoding a dimensional value from the activity of many channels distributed across the brain

(like those shown in Fig 2). This assumption is not new and has proven useful in applications

of signal detection theory in the past [44].

More specifically, assume that the perceived value of dimension A, x, is the result of decod-

ing a dimensional value from the activity of many channels distributed across the brain, as in

Eq 11. In other words, the perceived value x is a special case of the decoded variable Â, but esti-

mated by readout neurons with the goal of guiding behavioral responses in a perceptual task.

Denote the decoding function used by these readout neurons to obtain the perceived value x as

gR(), so that

x ¼ gRðrÞ; ð17Þ

this is just a special case of the more general decoding function shown in Eq 11, but limited

only to the decoding schemes that can be implemented by real neurons. We have that

pðxjAiBjÞ ¼ pðgRðrÞjAiBj; yÞ ð18Þ

is the marginal distribution of perceptual effects along x. Under these assumptions, perceptual

separability (Eq 1) is a form of decoding separability (Eq 14). As a consequence, from Fig 3 we

know that any failure of perceptual separability documented in the literature should be reflected
in a failure of encoding separability, in brain areas providing useful information for perceptual
identification of dimensional values. The exact brain regions that provide information to solve a

particular task are usually unknown, but we can assume that they encode such information in

a relatively transparent (easily decodable) way. The set of potential candidates can be reduced
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to areas known to provide useful information for behavioral performance. Novel methods to

identify such areas, which combine information about decoded values in a dimension and

behavioral response times, have been recently developed [48] and seem very promising. For

neuroscientists, this opens the opportunity to link new research on the separability of neural

representations with decades of accumulated psychophysical research on perceptual separabil-

ity [15].

In addition, as we have seen in the previous section, the common assumption of a Gaussian

distribution of perceptual effects [13, 15] is met when the encoding model has additive Gaussian

noise and the decoder is linear (see Eq 13), two assumptions that are common in the literature.

Encoding and decoding independence. Here we have focused mostly on the concept of

separability. As explained earlier, this concept is particularly important because it captures fea-

tures of representations, such as invariance and configurality, that are widely studied in vision

science. Still, our extended GRT framework allows to define dimensional interactions that are

analogous to the concept of perceptual independence from the traditional GRT, but at the

level of encoding model and decoded variables. Here we define these forms of independence

and very briefly discuss their relation under special assumptions about decoding. We leave a

more complete treatment for future work.

Suppose that there are two different sets of channels, with responses rA and rB, encoding

stimulus components A and B, respectively. The distribution of neural responses rA to stimulus

AiBj is represented by p(rA|AiBj, θ), and the distribution of responses rB to stimulus AiBj is rep-

resented by p(rB|AiBj, θ). Given this, encoding independence of components A and B holds in

stimulus AiBj if and only if the two encoding distributions are statistically independent; that is,

if and only if:

pðrA; rBjAiBj; yÞ ¼ pðrAjAiBj; yÞpðrBjAiBj; yÞ ð19Þ

Now suppose that there are also two separate decoders, gA() to obtain estimate Â and gB()

to obtain estimate B̂. Each of these decoded values is a random variable that follows a probabil-

ity distribution, represented by p ÂjAiBj; y
� �

and p B̂jAiBj; y
� �

. Given this, decoding indepen-

dence of estimates Â and B̂ holds in stimulus AiBj if and only if the two decoding distributions

are statistically independent; that is, if and only if:

p Â; B̂jAiBj; y
� �

¼ p ÂjAiBj; y
� �

p B̂jAiBj; y
� �

ð20Þ

What is the relation between encoding and decoding independence? We can start by

answering this question for the simple case in which the two decoding functions gA and gB,

from which Â and B̂ are estimated, have completely separated domains, meaning that the

domain of gA does not include any of the channels in rB and the domain of gB does not include

any of the channels in rA. Under this assumption, if encoding independence holds, then decoding
independence must hold. If rA and rB are independent random vectors and the decoding func-

tions gA and gB used to obtain Â and B̂ are borel-measurable functions, then Â and B̂ must be

independent. On the other hand, if encoding independence fails, then decoding independence
may hold or fail. We prove this statement by giving two rather trivial counterexamples to uni-

versal statements. Suppose that encoding independence fails due to a failure of pairwise inde-

pendence, in which variables rA1 and rB1 are statistically dependent. Then one can choose

linear gA and gB so that all or most of the variability in Â is due to rA1 and all or most of the var-

iability in B̂ is due to rB1 (e.g., through strong weights for the target channels and small weights

for all other channels). Under such circumstances, Â and B̂ will also be dependent and we
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have a counterexample to the universal statement if encoding independence fails, then decoding
independence must hold. One can also choose linear gA and gB so that rA1 and rB1 are assigned a

weight of zero and have no influence on the decoded variables Â and B̂. Because in this exam-

ple all channels in rA are independent from all channels in rB except for rA1 and rB1, getting rid

of the influence of those two channels over the decoded variables Â and B̂ makes them inde-

pendent (for the same reason that encoding independence implies decoding independence).

Note also that the same assumptions that allowed us to propose that perceptual separability

is a form of decoding separability, allow us to conclude that perceptual independence is a form

of decoding independence.

Direct and indirect tests of decoding separability

Direct tests of decoding separability and perceptual separability. Assume that r is a

vector of neural responses encoding dimension A in the brain. If we had access to direct mea-

surements of r (e.g., firing rates from single cell recordings or a measure of the activity of a

homogeneous neural population), we could use an experimenter-defined decoding function

Â ¼ gEðrÞ to estimate dimensional values. Obtaining a large number of decoded values Â for

each stimulus AiBj allows one to obtain a kernel density estimate (KDE) of p ÂjAiBj; y
� �

, rep-

resented by p̂ ÂjAiBj; y
� �

. Comparison of such KDEs constitutes a direct test of decoding sepa-

rability (Eq 14).

Because perceptual separability is a form of decoding separability (Eq 18), the same proce-

dure can be used to obtain the first available direct test of perceptual separability, when a num-

ber of conditions are met. First, the vector r should include all neural responses encoding

dimension A in the brain. Second, for all values of r, gE(r) = gR(r), so that gE(r) = x (each exper-

imentally-decoded value is equal to the perceptual effect). As the vector r cannot be identified

and measured using currently available methods and gR(r) is unknown, both assumptions

appear very difficult to meet.

Indirect tests of decoding separability from neuroimaging data. The relations between

encoding separability and decoding separability summarized in Fig 3 hold for any decoder,

but it can be shown that using a linear decoder allows for a valid test of decoding separability

even when indirect measures of neural activity contaminated with measurement error are

used, as is the case with fMRI data.

We have assumed that the channel output rc represents neural activity in a single neuron or

a group of neurons with similar properties (e.g., same tuning). Often we do not have access to

such direct recordings; rather, we obtain indirect measures of neural activity, which are some

function of the activity of several different neural channels. Let am represent an indirect mea-

sure of neural activity, where m = 1, 2, . . .M indexes different instances of the same type of

measure (e.g., different voxels in an fMRI experiment or electrodes in an EEG experiment).

The measures can be represented by a vector a = [a1, a2, . . .aM], which is a function of the

activity of all channels in the encoding model:

a ¼ φðrÞ þ e; ð21Þ

where e is a random vector representing measurement error:

e � �ðyeÞ; ð22Þ

� denotes the probability distribution of measurement error, which depends on a set of param-

eters θe. Together, Eqs 21 and 22 describe the measurement model for a.
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In a typical multivariate analysis of neuroimaging data, we decode an estimate of a dimen-

sional value Â directly from a. We can choose to use a linear decoder for this task, so that

Â ¼ bþ b⊺a

Â ¼ bþ b⊺ðφðrÞ þ eÞ

Â ¼ bþ b⊺φðrÞ þ b⊺e

ð23Þ

We can think of the estimate Â as the sum of two independent random variables:

Âr ¼ bþ b⊺φðrÞ, which depends exclusively on the distribution of r, and Âe ¼ b⊺e, which

depends exclusively on the error distribution from Eq 22. The variable Âr depends on

r through a composite function. We can think of this composite function as a decoder:

g(r) = β + b⊺ φ(r) and use p ÂrjAiBj; y
� �

to test for decoding separability. Unfortunately, our

measurements are contaminated by the variable Âe with distribution pðÂejyeÞ. Because Â is

the sum of two independent random variables, the distribution of Â is a convolution of the

distribution of each of its components:

p ÂjAiBj; y; ye

� �
¼ p ÂrjAiBj; y
� �

� p Âejye

� �
; ð24Þ

where � denotes the convolution integral.

Thus, KDEs obtained from Â decoded from neuroimaging data reflect the target decoding

distribution convolved with an error distribution. This means that obtaining direct estimates

of GRT perceptual distributions from neuroimaging data may not be possible. Still, it is possi-

ble to obtain a valid measure of violations of decoding separability.

Without loss of generality, suppose that we want to measure differences between the distri-

butions p ÂrjA1B1; y
� �

and p ÂrjA1B2; y
� �

. A number of measures of the distance between two

probability densities (such as the L1, L2 and L1 distances, see [49]) start by computing a dif-

ference function:

d Âr

� �
¼ p ÂrjA1B1; y
� �

� p ÂrjA1B2; y
� �

: ð25Þ

From neuroimaging data, we obtain estimates of the distributions p ÂrjA1B1; y
� �

� p Âejye

� �

and p ÂrjA1B2; y
� �

� p Âejye

� �
, where we have assumed that the measurement error model does

not change with the value of the stimulus in dimension B. The difference function between

these two distributions is:

d Â
� �

¼ p ÂrjA1B1; y
� �

� p Âejye

� �

� p ÂrjA1B2; y
� �

� p Âejye

� �

¼ p ÂrjA1B1; y
� �

� p ÂrjA1B2; y
� �� �

� p Âejye

� �

¼ d Âr

� �
� p Âejye

� �
:

ð26Þ

Thus, the difference between noisy KDEs d̂ Â
� �
� d Â
� �

is an estimate of the target differ-

ence function d Âr

� �
convolved with the error kernel p Âejye

� �
. Note first that if decoding sepa-

rability holds, then d Âr

� �
¼ 0 and we expect d̂ Â

� �
to approximate zero for all values of Â as

sample size increases. Any deviations from a constant zero function indicate violations of

decoding separability. If decoding separability does not hold and d Âr

� �
6¼ 0 for some Âr, then

the shape of the error kernel determines how it affects d Âr

� �
. Under the common assumption
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that measurement error e is Gaussian with zero mean and covariance matrix Σe, p Âejye

� �
will

also be Gaussian with zero mean and variance b⊺Σeb. In this case, the convolution attenuates

high-frequency fluctuations in the difference function d Âr

� �
. In general, the difference d̂ Â

� �

will capture some deviations from decoding separability, but not necessarily all of them.

In sum, as the number of data points used to obtain KDEs increases, a distance measure

based on the function d̂ Â
� �

will be approximately zero when there are no violations of decod-

ing separability, and any non-zero value will be the consequence of a violation of decoding sep-

arability. This makes such a measure a valid indicator of violations of decoding separability.

One measure based on d̂ Â
� �

is the L1 norm:

L1 ¼

Z

jd̂ Â
� �
j; ð27Þ

which is the basis for the statistic that we use in our test to measure deviations from decoding

separability (DDS statistic; see Materials and methods section).

Note that the property described by Eq 26 holds for distance measures based on the simple

difference function d̂ Â
� �

. Other commonly-used measures of the distance between two distri-

butions, such as the Kullback-Leibler divergence, are not influenced by measurement error in

this straightforward manner, and thus their interpretation is more difficult.

Linear decoders, which are necessary to obtain a valid indirect test of decoding separability,

are also the most widely used in the MVPA literature [47]. This allows us to link our frame-

work to this line of research in neuroimaging.

Relation to previous operational definitions of neural independence

Orthogonality of neural representations. Suppose that there are two vectors in the space

of encoding channels, ρA and ρB, representing important summary statistics of how A and B
are encoded, respectively. We can interpret ρA as an estimate of the direction along which

dimension A is encoded, and ρB as an estimate of the direction along which dimension B is

encoded. We can define encoding vector orthogonality as the situation in which these two vec-

tors are orthogonal from each other:

ρA ? ρB ð28Þ

Each choice of statistic ρA and ρB produces a different form of encoding vector orthogonal-

ity. For example, one might be interested in two mean vectors summarizing the encoding dis-

tributions for stimuli along the dimensions A and B. In that case, a simple possibility would be

to use stimuli without any value in dimension A, represented by A0, and stimuli without any

value in dimension B, represented by B0. Thus, AiB0 would represent a stimulus with a value

in dimension A only, and A0Bj would represent a stimulus with a value in dimension B only.

We might be interested on the mean response of encoding channels to such stimuli, so that

ρA = f(AiB0) and ρB = f(A0Bj), or perhaps on the average responses when any level of the

dimensions is presented, so that ρA ¼
1

LA

PLA
i¼1

f AiB0ð Þ and ρB ¼
1

LB

PLB
j¼1

f A0Bj

� �
. Of course,

other possibilities exist (e.g., computing expectations on marginal distributions), and in each

case Eq 28 offers a different definition of encoding vector orthogonality.

Linear decoders (Eq 12) also provide estimates of directions in space along which dimen-

sions vary. We might obtain one of such decoders for each dimension, each with its own weight

vector b, so that ρA = bA and ρB = bB. Again, different decoders provide different definitions of

encoding vector orthogonality. Note that this is a form of encoding vector orthogonality, as the
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weights are defined in the space of the encoding channels (i.e., RN) rather than the decoded

variables Â and B̂. Decoding vector orthogonality cannot be defined, as the decoded variables

are scalars.

Neuroscientists have shown great interest in measuring different forms of measurement

vector orthogonality, although in many cases they use indirect tests. That is, experimenters

usually test the orthogonality of two vectors, hA and hB (summarizing information about

dimensions A and B, respectively), defined in a measurement space that is a transformation of

the original neural encoding space. We represent this transformation with φh(), to highlight its

relation to the measurement model defined in Eq 21. The transformation φh() may be known.

For example, Kayaert et al. [50] submitted patterns of neural firing rates to multidimensional

scaling, and tested the orthogonality of two vectors in the solution space, each representing

changes in a dimension of interest. In many cases, however, φh() is unknown. This is the

case when the test is carried out in a space of indirect activity measures from neuroimaging, as

represented by Eq 21. For example, Hadj-Bouziane et al. [6] tested the orthogonality of two

vectors of unidimensional fMRI contrasts (one for faces > objects and one for expressive

face> neutral face). Another possibility would be to obtain weight vectors representing direc-

tions that separate classes best in such measurement space (see below). Although vectors of

unidimensional contrasts (like those used by Hadj Bouziane et al. [6]) and weight vectors do

not have the same interpretation [51] (in most cases, they will be completely different vectors),

they are both defined within the same measurement space of fMRI voxels or EEG channels. In

other cases, the test is carried out in the physical space of the measurements. For example, Bau-

mann et al. [52] estimated hA and hB as directions in the physical space of a brain region (the

inferior colliculus) along which two dimensions of sound were encoded. In this case, although

φh() is unknown, the measurement space itself might be interesting and studying it could result

in a better understanding of brain function.

More generally, we can define measurement vector orthogonality as the case in which the

following relation holds:

hA ? hB: ð29Þ

Note that Eq 29 holds if hA and hB are mean-centered and their Pearson correlation is zero,

as the Pearson correlation of two mean-centered vectors equals the cosine of their angle. Previ-

ous researchers have used both the angle between vectors [50, 52] and their correlation [6] as

measures of orthogonality.

Many researchers seem to make the implicit assumption that the measurement space (e.g.,

the estimated activity patterns in an fMRI study) can be directly interpreted as the encoding

space. In that case, different choices for hA and hB have widely different interpretations (e.g.,

contrast vectors versus classifier weights; see [51]). However, we believe that this assumption

is untenable in general, and particularly difficult to justify in the case of neuroimaging, where

the transformation φh() is known to involve a series of complicated physical and biological

processes.

We suspect that neuroscientists apply the different tests in the hope of learning something

about the underlying neural representations at the level of encoding. To understand whether

and how that goal can be achieved, the important issue is not so much what version of the test

is used or what form of encoding vector orthogonality one is interested in. Rather, the impor-

tant question is what can be inferred about encoding vector orthogonality in general from the

results of any indirect test. That is, given a choice of ρA and ρB as encoding vectors of interest,

a choice of hA and hB as measurement vectors of interest, and a particular transformation φh()

from the encoding space to the measurement space: What does observing measurement vector
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orthogonality (Eq 29) tell us about encoding vector orthogonality (Eq 28). The answer is: in

most cases, nothing, even when one makes the simplifying assumption that hA = φh(ρA) and

hB = φh(ρB).

The reason is that encoding vector orthogonality is defined as a 90-degree angle between ρA
and ρB (Eq 28), and only rigid transformations (i.e., not even all linear transformations) can

preserve this angle. Thus, when φh() is unknown and involves more than rigid transformations

(the most common case), a 90-degree angle between hA and hB could be accompanied by any

angle value between ρA and ρB, depending on the specifics of the unknown φh(). The test

might be uninformative even in the rare case in which φh() is known and linear, as computing

the angle between ρA and ρB from hA and hB would require for φh() to have an inverse. In all

the examples from the literature discussed earlier, an observation of measurement vector

orthogonality does not provide any information about encoding vector orthogonality. How-

ever, as indicated above, the test might provide useful information about other aspects of brain

representation different from encoding, as is the case when the measurement space of hA and

hB is itself interesting (e.g., physical space in studies of functional brain topography, see [52]).

It is possible to link a specific form of encoding vector orthogonality to the concept of per-

ceptual independence (Eq 2) from GRT. When stimulus AiBj is presented, it is represented as a

new vector r in the same encoding space that contains ρA and ρB. If we assume that (i) the pro-

jection of this vector onto ρA and ρB corresponds to the perceived values of dimensions A and

B, then measurement vector orthogonality is equivalent to dimensional orthogonality [53, 54].

One case in which this assumption is met is when the readout functions from Eq 17 (i.e., the

functions used by readout neurons to decode perceptual effects from neural activities) are lin-

ear. In that case, the weight vectors of the linear decoders correspond to ρA and ρB and their

orthogonality is equivalent to orthogonality of the perceptual dimensions within the encoding

space. Ashby and Townsend [14] showed that if, in addition, (ii) the trial-by-trial perceptual

effects have a multivariate Gaussian distribution, p x; yjAiBj

� �
� N μ;Σð Þ, and (iii) Σ does not

depend on the stimulus (i.e., all perceptual distributions have identical variance-covariance

matrices), then dimensional orthogonality and perceptual independence (as defined in Eq 2)

are equivalent.

Assumptions (i)-(iii) also allow one to link measurement vector orthogonality and percep-

tual independence. However, in this case the assumptions seem extremely strong and hard to

meet. Although assumptions (ii) and (iii) are common in the psychophysics literature and they

may be justifiable, assumption (i) is very problematic, as there seems to be no way to guarantee

that the estimates hA and hB must correspond to perceived stimulus dimensions. In addition,

note that dimensional orthogonality must be defined in a particular space of interest. Deter-

mining whether the two perceptual dimensions are orthogonal within the original encoding

space seems like an interesting question worth pursuing. On the other hand, determining

whether the two perceptual dimensions are orthogonal within some arbitrary measurement

space does not carry the same weight.

Finally, the problems with the measurement vector orthogonality test are not restricted to

their difficult interpretation. In addition, there are practical issues with the way in which the

tests are applied. In particular, orthogonality tests are best suited to provide evidence of viola-

tions of orthogonality, but they are usually applied to provide evidence of its presence. More

specifically, if hA and hB were random vectors, then one would expect their correlation to be

close to zero (i.e., orthogonal vectors), especially for high-dimensional vectors such as those

studied by Hadj-Bouziane et al. [6]. Under such circumstances, a finding of orthogonality is

expected even from completely random data. In addition, orthogonality corresponds to a sin-

gle value (zero correlation or 90-degree angle) and therefore evidence of orthogonality requires

Independent neural representation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006470 October 1, 2018 16 / 42

https://doi.org/10.1371/journal.pcbi.1006470


special statistical tests that can provide evidence for that specific value (e.g., evidence for the

null in a Bayes factor test, or a small confidence interval containing the target value). Such

tests have not been used in previous tests of orthogonality. Here, we will explore whether it is

possible to find violations of orthogonality in our data, rather than trying to find evidence for
orthogonality as in previous studies.

In sum, measurement vector orthogonality is an operational test of independence of neural

representations, and several researchers have used some version of it in past studies. In general,

the results of this test cannot be related to a corresponding property of stimulus encoding,

which we named encoding vector orthogonality. If some strong assumptions are met, the

test can be related to the concept of perceptual independence from GRT, which is conceptually

distinct from the several forms of separability on which we have focused here. In particular,

perceptual independence is a property of a single stimulus. It holds if different stimulus com-

ponents are processed independently of each other. In contrast, separability is a property of an

ensemble of stimuli. It holds if processing of one component is unaffected by changes in other

components. In practical terms, we would expect that violations of measurement representa-

tion orthogonality would be unrelated to violations of decoding and encoding separability, as

they measure completely different concepts.

Classification accuracy invariance and generalization. A second operational test of

independence of neural representations, more closely related to the separability measures

investigated in this article, has been recently used in research on invariance of face representa-

tion. In this test, activity patterns in a given brain region are classified according to some target

dimension. For example, activity patterns in visual cortex could be classified according to the

identity of faces presented during an experiment. Then the classifier is tested with new pat-

terns, produced during presentations of the same identities but with changes in some irrele-

vant face dimension, such as viewpoint or expression [55–57]. If the classifier’s accuracy is

significantly above chance, it is concluded that the representations of the target dimension

(face identity) are invariant to changes in the irrelevant dimension. A simpler version of the

test simply checks for significant classification accuracy using all data [9], but this is much less

informative than a test based on generalization after changes in the irrelevant dimension [55].

Formally, let ℓi represent a label returned by the classifier indicating that it has estimated

that level i of dimension A has been presented, and suppose the experiment includes a total of

LA different levels of dimension A. Then classification accuracy generalization is defined in the

following way:

if P ‘ijAiB1ð Þ >
1

LA

then P ‘ijAiBj

� �
>

1

LA
;

ð30Þ

for all i and j. That is, if the probability of correct classification of the level of A is higher than

chance ( 1

LA
) at level 1 of dimension B, then it must be higher than chance at all levels of B for

classification accuracy generalization to hold.

It is possible to indirectly relate classification accuracy generalization to encoding separabil-

ity, through its clear relation to decoding separability. We do this first for the case in which

there is access to direct measures of neural activity that are used to estimate Â, as in Eq 11.

Because Â is a noisy estimate that can assume any value inR, a classifier partitions this space

into LA regions, one for each of the values of dimension A included in the experiment. Let Ri

represent the region associated with label ℓi, so that the classifier assigns this label to a neural

pattern when Â 2 Ri. Each Ri may be a single continuous interval in R or composed of
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several such intervals, and the union of all Ri completely covers the real line R. When the

decoding distribution is known, classification accuracy for level i of dimension A is:

P ‘ijAiBj

� �
¼

Z

Ri

p ÂjAiBj; y
� �

dÂ: ð31Þ

Eq 31 relates classification accuracy to the distribution of decoded values on the target

dimension A. From this we know that if decoding separability holds, then classification accuracy
generalization must hold. This is true because when decoding separability holds, the distribu-

tion p ÂjAiBj; y
� �

inside the integral in Eq 31 is the same for all values of j, P(ℓi|AiBj) is there-

fore the same for all values of j and the relation in Eq 30 holds. On the other hand, if decoding
separability fails, then classification generalization may hold or fail. Without loss of generality,

assume that decoding separability fails because p ÂjAiB1; y
� �

6¼ p ÂjAiB2; y
� �

. Regardless of

the shape of p ÂjAiB1; y
� �

and the region covered by Ri, there are an infinite number of other

shapes for p ÂjAiB2; y
� �

that will preserve the area under the curve inside region Ri constant,

making the value of P(ℓi|AiBj) constant across changes in j, which ensures that the relation in

Eq 30 holds. Alternatively, regardless of the shape of p ÂjAiB1; y
� �

and the region covered by

Ri, there are also an infinite number of other shapes for p ÂjAiB2; y
� �

that will change the

area under the curve inside region Ri, making the value of P(ℓi|AiBj) change across changes

in j. Under such circumstances, the relation in Eq 30 may or may not hold, depending on

whether or not the shape of p ÂjAiB2; y
� �

produces an area under the curve inside Ri that is

larger than 1

LA
.

These considerations point toward an intermediate kind of invariance between decoding

separability and classification accuracy generalization, which we call classification accuracy
invariance, defined as the case in which classification accuracy for levels of dimension A is

invariant across changes in the stimulus on a second, irrelevant dimension. That is, classifica-

tion accuracy invariance of dimension A with respect to dimension B holds if and only if, for

all values of i and j:

P ‘ijAiB1ð Þ ¼ P ‘ijAiB2ð Þ . . . ¼ Pð‘ijAiBLB
Þ: ð32Þ

Decoding separability (Eq 14), classification accuracy invariance (Eq 32), and classification

accuracy generalization (Eq 30) are related to one another as described in Fig 4. The proofs

offered earlier relating decoding separability and classification accuracy generalization already

Fig 4. Summary of the relation between decoding separability, classification accuracy invariance and

classification accuracy generalization, according to our extension to GRT. Arrows should be interpreted as

conditional statements of the form “if X, then Y”.

https://doi.org/10.1371/journal.pcbi.1006470.g004
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include classification accuracy invariance as an intermediate form of invariance for which the

relations in Fig 4 hold.

What happens when classification accuracy invariance and generalization are evaluated

through indirect measures of neural activity, such as those obtained from neuroimaging? This

is the way in which such tests have been most commonly applied [9, 55–57]. Remember that

in this case, the addition of measurement and noise models (Eqs 21 and 22) considerably

changes the distribution of Â estimates obtained from a linear decoder, which is the result of

convolving a distribution of decoded values and the distribution of measurement error. This is

likely to change the specific classification accuracies P(ℓi|AiBj) but it should not change their

relations as defined in Eqs 30 and 32, under the assumption that the measurement error model

does not change with the value of the stimulus on dimension B.

The theoretical results summarized in Fig 4 reveal two issues with the classification accuracy

generalization test as it is currently applied in the neuroimaging literature. The first and most

important issue is that finding that classification accuracy generalization holds does not provide

any information about encoding separability. On the contrary, what provides information

about violations of encoding separability is finding a violation of classification accuracy general-

ization. Thus, while this test seems to be valid and useful, it is currently applied and interpreted

in the wrong way [9, 55–57]. It is possible that finding classification accuracy generalization

may provide information about other properties of encoding, but such properties are yet to be

identified within a formal framework like the one presented here. Another possibility is that

classification accuracy generalization could provide information about encoding separability in

special circumstances (i.e., for a specific choice of encoding, decoding, measurement and error

models), but again such possibilities are yet to be shown. The second issue with the classifica-

tion accuracy generalization test is that, given the relations shown in Figs 3 and 4, it provides

less information about encoding separability than the decoding separability test proposed in

the previous section. In Fig 4, each logical step away from decoding separability implies that a

number of violations of encoding separability might go undetected, due to the up-diagonal

arrow at each step. Thus, the classification accuracy generalization test is likely to be less sensi-

tive to violations of encoding separability than a decoding separability test. If the goal of a study

is to learn about encoding separability, then the wiser decision is to focus on a test of decoding

separability, rather than on tests of classification accuracy. An aspect of the lack of sensitivity of

the classification accuracy generalization test is the fact that it requires accuracies significantly

above chance to be applied and thus should always be applied using an optimal classifier. On

the other hand, the decoding separability test offers a sensitive measure of deviations from

encoding separability regardless of what decoder is used, including situations in which the

decoder is not optimal and/or does not achieve significant classification accuracy.

Pattern difference invariance. The work of Allefeld and Haynes [58] suggests another

way to indirectly test encoding separability in neuroimaging. These authors have proposed

the multivariate general linear model (MGLM) as an alternative to decoding for the analysis of

the multivariate activity patterns typically measured with neuroimaging. One feature of the

MGLM is that it allows researchers to test both main effects and interactions in an experimen-

tal design. For example, if we are studying the effect of variations in the level of dimensions A
and B on observed multivariate patterns, a main effect might answer the question of how mul-

tivariate patterns change with variations in the level of A. On the other hand, an interaction

effect answers the question of how the pattern difference between different levels of A changes

with variations in the level of B.

Thus, we can define pattern difference invariance of dimension A with respect to dimension

B as the case in which the pattern difference produced by changes in the level of A does not
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change with the level of dimension B. Within the MGLM framework, failures of pattern differ-

ence invariance can be tested through the interaction between factors A and B. This test has

not been applied or proposed for the study of independence of neural representations in the

past, but it seems like a straightforward application of the more general MGLM framework

advanced by Allefeld and Haynes [58].

It is important to note here that the MGLM approach has been proposed as a way to analyze

neuroimaging data, and therefore the pattern difference invariance test would be applied to

data that is only indirectly related to the underlying neural activity patterns r, and that is con-

taminated with measurement error. Thus, we must determine whether this is a valid test of

properties of encoding such as encoding separability. To simplify our discussion, assume that

the parameter vectors estimated by the MGLM represent estimates of the activity patterns a

defined within our framework (see measurement model in Eq 21). Under the assumption that

the measurement model is the same across changes in the level of the irrelevant dimension, we

know that if encoding separability holds, then pattern difference invariance must hold, as identi-

cal encoding distributions should produce identical distributions of measured activity patterns

a. On the other hand, if encoding separability fails, then pattern difference invariance may hold
or fail. This is easy to prove by counterexamples, as we did previously when linking encoding

separability and decoding separability. As before, we assume that dimension A is encoded

through the model with Gaussian channel noise (Eq 7). We also assume a linear measurement

model (Eq 21), which is very common in the neuroimaging literature:

a ¼ Brþ e: ð33Þ

Finally, as before, we suppose that encoding separability fails due to a difference in the tun-

ing functions of A1B1 and A1B2, whereas the tuning functions of A2B1 and A2B2 are identical:

f A1B1ð Þ ¼ f A1B2ð Þ þ δ

f A2B1ð Þ ¼ f A2B2ð Þ

Under the assumptions listed above, the tuning functions only affect the mean of the mea-

sured activity patterns. The variance of each measure of neural activity is a linear combination

of channel noise variances plus the measurement error variance. Those variances can be

ignored, as they are not affected by differences in the tuning functions and, in addition, they

are assumed to be identical across stimuli in the MGLM framework. When pattern difference

invariance holds, we have that:

Bf A1B1ð Þ � Bf A2B1ð Þ ¼ Bf A1B2ð Þ � Bf A2B2ð Þ

Bδ ¼ 0;
ð34Þ

whereas when pattern difference invariance fails, we can show that:

Bf A1B1ð Þ � Bf A2B1ð Þ ¼ Bf A1B2ð Þ � Bf A2B2ð Þ � d

Bδ ¼ d;
ð35Þ

where d represents a difference vector. For any given δ, Eqs 34 and 35 both can be satisfied by

an infinite number of matrices B, yielding a model in which encoding separability fails and

pattern difference invariance either holds (Eq 34) or fails (Eq 35).

Thus, the pattern difference invariance test has the same logical relation to encoding

separability as decoding separability (Fig 3). Unfortunately, pattern difference invariance

is not directly related to decoding separability, as was the case for classification accuracy gener-

alization. Without considerable more work, it is difficult to determine which of the two tests
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will prove to be more useful in different situations. However, we believe that the decoding sep-

arability test proposed earlier is a better choice in most cases, for two reasons. The first reason

is that the decoding separability test does not make any assumptions about the multivariate

distribution of the data, besides assuming that measurement error is additive. Using a linear

decoder ensures that the test is valid (we have used Eq 23 as the starting point to showing that

this is the case), but such a decoder can be obtained using methods that do not make strong

assumptions about the data distribution, such as support vector machines. On the other hand,

a test based on the MGLM makes the strong assumption that the data is multivariate normal

with equal variance-covariance matrix across conditions (i.e., stimuli). The second reason

is that a test based on the MGLM is based on a comparison between parameter differences,

and thus is insensitive to differences between distributions in higher-order moments. When

enough data are collected, the decoding separability test is also sensitive to differences in

higher-order moments of the decoding distributions (i.e., variance, kurtosis, etc.). Still, the two

tests are based on different approaches (one compares activity pattern distributions, the other

compares decoding distributions), so only future work will determine their relative usefulness.

An additional theoretical relation between the MGLM framework and GRT can be estab-

lished. Allefeld and Haynes [58] define pattern distinctness as a measure that quantifies the dif-

ference between two multivariate activity distributions. When there are only two distributions

being compared, the pattern distinctness is related to the Mahalanobis distance between the

two activity distributions (e.g., A1B1 and A2B1). Thomas [59, 60] has shown that in some cases

the Mahalanobis distance between two distributions can be related to a generalized d0 measure

that quantifies sensitivity for multivariate distributions, which provides a theoretical link

between the way in which discriminability is measured in the MGLM and multidimensional

signal detection theory.

Summary of theoretical results

Here we summarize the previous theoretical results, with an emphasis on how they can be

applied to the empirical study of perceptual independence by psychologists and neuroscien-

tists. A summary of all the theoretical relations described in previous sections can be seen in

Fig 5.

First, because perceptual separability can be considered a form of decoding separability,

and due to the relations summarized in Fig 3, any failure of perceptual separability should be

reflected in a failure of encoding separability somewhere in the brain. This means that any psy-

chophysical study reporting a failure of perceptual separability provides a hypothesis to be

tested by a neuroscientific study: that a corresponding failure of encoding separability should

be found, probably in sensory areas thought to encode the target dimension. Second, such neu-

roscientific studies can be performed using direct measures of neural activity, such as those

provided by single-cell recordings or local field potentials, or indirect measures of neural activ-

ity contaminated by measurement error, such as those provided by EEG and fMRI. Using

traditional linear decoding strategies on indirect measures of neural activity, the decoded

dimensional values still offer a basis for a valid test of decoding separability, and any violation

of decoding separability found within a given brain region reflects a violation of encoding sep-

arability by the neural population in that region. It must be stressed that a failure of encoding

separability is a valid inference that can be made from decoding of neuroimaging data, but

such data do not provide a basis to make any strong inferences about the presence of encoding

separability. A weak inference can be made, based on the lack of evidence for a violation,

but this is analogous to accepting the null in a traditional statistical test. A relatively stronger

inference of encoding separability could be made on the basis of assumptions about the
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neuroimaging measurement model, but researchers should clearly identify such assumptions.

Our recommendation to researchers is to be cautious about concluding that separability (or

“invariance”) holds at the neural level from neuroimaging data, or even from decoding of

direct measures of neural activity (e.g. [61]; a related point was made in [62, 63]).

Finally, we have shown that operational tests of independence available in the literature can

be formally defined and re-interpreted within the framework presented here. We showed that,

when some strong assumptions are met, the measurement vector orthogonality test [6, 50, 52]

is related to the concept of perceptual independence from the traditional GRT, but it is

unlikely to be related to a corresponding property of stimulus encoding. On the other hand,

the classification accuracy generalization test promoted by Anzellotti and Caramazza [55–57]

can lead to valid inferences about encoding separability. However, the way in which the test

has been applied might lead to conclusions of invariance or separability that are in general

unjustified, unless one is interested in decoding separability only, and not in the separability of

underlying brain representations. In addition, the classification accuracy generalization test is

Fig 5. Summary of the theoretical relations found here. Yellow rectangles represent tests that can be applied to

neuroimaging data. Red rectangles represent properties of neural encoding. Green rectangles represent properties of

perceptual representations. Solid directional arrows indicate that if the concept where the arrow starts is true, then the

concept where the arrow ends must be true as well. Dotted directional arrows indicate that if the concept where the

arrow starts is false, then the concept where the arrow ends must be false as well. Bidirectional arrows indicate that the

two concepts are equivalent. Asterisks are displayed on relations or tests that depend on relatively strong assumptions

(see main text for details).

https://doi.org/10.1371/journal.pcbi.1006470.g005
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likely to provide less information than our decoding separability test. The MGLM approach

proposed by Allefeld and Haynes [58] suggests an alternative way to indirectly test encoding

separability in neuroimaging. The resulting pattern difference invariance test seems like a valid

test of violations of encoding separability, but it is based on strong assumptions about the dis-

tribution of the neuroimaging data that are not necessary when the decoding separability test

is applied.

An application to the study of encoding separability of face identity and

expression

Here we present an application of our framework to the study of encoding separability of face

identity and expression. This application serves as a way to illustrate the kind of question that

this framework can help answer and the concrete steps that researchers should take to apply

the framework in their research.

Information about a number of properties can be extracted from a single face, including

identity and emotional expression. The influential model of Bruce and Young [3] proposed

that these two face dimensions are processed independently, motivating a large number of psy-

chophysical studies aimed at testing this hypothesis [13, 33–35, 64–72]. Neurobiological theo-

ries of visual face processing [4, 73] also propose relatively independent processing of face

emotion and identity, through anatomically and functionally differentiated pathways. A ven-

tral pathway projecting from the occipital face area (OFA) to the fusiform face area (FFA)

would mediate the processing of invariant aspects of faces, such as identity. A dorsal pathway

projecting from the OFA to the posterior superior temporal sulcus (pSTS) would mediate the

processing of changeable aspects of faces, such as emotional expression. Recent reviews [74,

75] conclude that the two pathways are indeed relatively separated and functionally differenti-

ated, with the ventral pathway being involved in the representation of face form information–

including invariant aspects of face shape such as identity–, and the dorsal pathway involved in

the representation of face motion information–including rapidly changeable aspects of faces

such as expression. According to this revised framework, both identity and expression infor-

mation may be encoded in either pathway, but exactly what information about each dimension

is encoded would differ between pathways.

The psychophysical and neurobiological lines of research in this area have remained rela-

tively independent across the years, with no attempt to integrate results across levels of analysis

despite the similarity of the central questions guiding their research. In addition, both lines

have relied largely on operational definitions of independence that, while having face validity,

are usually not linked to any theoretical definition. As indicated in the introduction, this

approach makes it difficult to interpret contradictory results.

Thus, the study of independence of face identity and expression is a particularly good exam-

ple of an area in which our extended GRT framework can provide helpful research tools. Our

theory can provide a much-needed theoretical integration across levels of analysis and tests, as

well as more rigorous definitions of independence and ways to measure it. We have recently

performed a GRT analysis of psychophysical data to study the perceptual separability of iden-

tity and expression [13]. The results suggested that, for the stimuli used in that study and after

accounting for decisional factors, emotional expression was perceptually separable from iden-

tity, but identity was not perceptually separable from emotional expression. From these results,

our current framework (see Fig 3) predicts that encoding separability of identity from expres-

sion must fail somewhere in the areas representing face information, and that we should be

able to find evidence of failures of decoding separability in those areas. The predictions regard-

ing encoding separability of emotional expression are less straightforward: as there are no
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violations of perceptual separability in the behavioral data, violations of encoding separability

seem unlikely, but are still possible.

Here, we acquired fMRI data from participants while they looked at the same stimuli and

completed the same task as in our previous psychophysical study (see Materials and methods).

The stimuli were images of four faces, which resulted from two different male identities show-

ing two different emotional expressions (neutral and sad). Participants performed a simple

stimulus identification task. In each trial, a single stimulus was flashed in the screen and the

participant had to identify the specific combination of identity and emotional expression that

had been shown. This required participants to pay attention to both identity and expression to

attain good performance. The participants received feedback about the correctness of their

responses. The task was given to participants in runs that lasted around 10 minutes, during

which each image was repeated 25 times. Participants completed three of such runs, and in

addition they completed a standard functional localizer run [76] that allowed to obtain the

approximate location of face-related regions.

Performance in the task during the scanning session was high, with a mean of 81.67%

(SE = 5.18%). Single-trial estimates of stimulus-related activity were used as input to the

decoding separability test described earlier. Because we did not have specific hypotheses about

the location of areas showing failures of encoding separability, we performed a whole-brain

searchlight analysis [77], to determine which small circular regions (radius of 3 voxels) showed

violations of decoding separability, and therefore violations of encoding separability. To spa-

tially localize violations of encoding separability relative to areas in the face network, we found

such areas with the help of a standard functional localizer.

The results from this analysis did not reveal any significant violations of decoding separabil-

ity, either for identity or emotion. Further exploration revealed that our standardized DDS

index was consistently negative in the full-brain maps, suggesting that our method of stan-

dardization might have produced an index that was too conservative. That is, the DDS was

standardized to represent a percentile value (ranging from 0 to 100) re-centered around the

middle of the distribution (i.e., ranging from -50 to 50). Under the null hypothesis of decoding

separability, the distribution of this DDS would be driven only by noise in the data, and we

would expect the standardized measure to hover around zero, with similar areas of the brain

maps being positive and negative. On the other hand, we would not expect values consistently

lower than zero, as this would mean that the estimated decoding distributions are consistently

more similar to one another than expected under decoding separability. As the expectation

under decoding separability is that the distributions are identical, this seemed like a problem.

We reasoned that one solution would be to use the difference in DDS index between the iden-

tity and emotion analyses as the main test statistic, to allow one map to serve as control for the

other. We must underscore that this is an exploratory analysis, and its results should be con-

firmed by future research. Increasing power with a larger sample (either a larger number of

participants or a larger number of trials) would be helpful to obtain reliable results with a con-

servative test. Fig 6 shows the main results of this analysis, displayed over a flat cortical map.

Face-selective areas found through the functional localizer are outlined in the figure. Outlined

in green are face-selective areas showing higher activity during the presentation of faces than

during the presentation of other objects. Outlined in red are areas showing higher activity dur-

ing the presentation of emotional faces than during the presentation of neutral faces. The fig-

ure also shows clusters of significant violations of decoding separability, depicted in red-yellow

for the identity > emotion contrast. A single large cluster (483 2mm voxels) was found to be

significant, covering parts of the left STS and superior temporal gyrus (peak location in MNI

coordinates: -60, -14, 2). This cluster only slightly overlapped with an area of the face network
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in the pSTS (green contour). No significant violations were found for the emotion > identity

contrast.

The results shown in Fig 6 are in line with the previous psychophysical results [13] and the

relations depicted in Fig 3, as they provide evidence of stronger violations of decoding separa-

bility for identity than for emotional expression, but not the other way around. This asymme-

try in the separability of neural representations is analogous to the asymmetry in perceptual

separability found in our previous psychophysical study, and thus makes intuitive sense.

Although this asymmetry was not a strong prediction from the theory (which simply predicts

violations of decoding separability for identity, but is ambiguous about violations of decoding

separability for emotional expression), it suggests that there is at least an empirical correspon-

dence between asymmetries of separability in perceptual and brain representations.

Comparison with measurement vector orthogonality. We implemented a version of the

measurement vector orthogonality test [50, 52] discussed earlier. At each searchlight, we mea-

sured representation orthogonality by correlating the weights from the classifier used in the

previous analyses of identity and emotion. A correlation of zero is equivalent to orthogonality

of the two weight vectors, and therefore any deviation from a zero correlation is indicative of a

violation of measurement vector orthogonality. As mentioned earlier, finding such violations

of orthogonality is more informative than finding evidence for orthogonality. The resulting

individual orthogonality maps were submitted to the same permutation test previously used

for separability maps. No violations of measurement vector orthogonality were found in this

analysis.

Note that this finding of measurement vector orthogonality has been taken by other

researchers to mean that information about face identity and emotional expression is repre-

sented independently in the visual system [6]. Our theoretical results allow us to draw a differ-

ent conclusion: measurement vector orthogonality cannot be easily linked to a corresponding

property of stimulus encoding, as even a linear transformation from the space of the encoding

model to the space of indirect measures of neural activity does not necessarily preserve angles.

From the point of view of GRT, decoding separability and measurement vector orthogonal-

ity seem to measure unrelated properties of perception and neural encoding. From the point

of view of perception, decoding separability is related to the GRT concept of perceptual

Fig 6. Results of the searchlight decoding separability test. Yellow-red clusters represent regions in which violations of decoding

separability of identity were stronger than violations of decoding separability of emotional expression. There were no regions in

which violations of decoding separability of emotional expression were stronger than violations of decoding separability of identity.

Green and red lines delimit face areas from the functional localizer. “L” and “R” represent left and right hemispheres, respectively.

https://doi.org/10.1371/journal.pcbi.1006470.g006
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separability, whereas measurement vector orthogonality is related to the GRT concept of per-

ceptual independence. In both cases, however, the tests are related to the corresponding GRT

concepts through a number of strong assumptions. From the point of view of encoding,

decoding separability is related to the concept of encoding separability, whereas measurement

vector orthogonality seems difficult to relate to any property of encoding. For these reasons,

we expected the magnitude of violations of orthogonality and violations of separability to be

unrelated. To test this hypothesis, we took the group statistical maps obtained from the permu-

tation test in the analysis of decoding separability and computed their Pearson correlation

with the corresponding maps from the current analysis of representation orthogonality. There

was a small but significant correlation between the orthogonality map and both the map of

deviations of separability for identity, r = -0.1162 (p<0.0001), and the map of deviations of

separability for emotion, r = 0.0666 (p<0.0001). These correlations are significant due to the

large number of voxels used to calculate them, but their magnitudes are very small. With these

correlations, only 1.35% of the variability in the separability map for identity and 0.44% of the

variability in the separability map for expression can be explained by variability in the orthogo-

nality map. Still, the fact that the correlations are significant in real data is important, and

some unknown relation between measurement vector orthogonality and decoding separability

may underlie these results. Future theoretical work will be necessary to clarify these points.

ROI-based decoding separability test. An additional ROI-based analysis was performed,

with three goals in mind. First, we wanted to determine whether directly testing face-selective

regions would result in some evidence of violations of decoding separability, as the only cluster

showing such deviations in the searchlight analysis overlapped very little with face-selective

regions from the localizer (see Fig 6). Second, we wanted to more clearly determine whether

there are meaningful variations in the amount of separability between different regions.

Finally, we wanted to explore the behavior of our decoding separability analysis in control

regions. The included ROIs are face-selective areas (OFA, FFA, STS) and two control regions:

V1, which is known to be sensitive to low-level visual features and thus might show deviations

of decoding separability (any change in the faces would produce changes in low-level features),

and the lateral ventricles, which give us information about the behavior of our statistic when

there is very little underlying signal. Some information may be available at the ventricle ROIs

that is leaked from adjacent regions, but we would expect that here our statistic should show

decoding separability, as the decoding distributions should be almost completely determined

by measurement noise.

Results are shown in Fig 7. Fig 7 shows mean standardized DDS values across all ROIs

included in the analysis, with error bars representing standard errors of the mean. The scale of

the statistic displayed in Fig 7 is different from that of the full-brain maps, as proportions

rather than percentiles are used and the median has not been subtracted. We tested whether

any of these means was significantly higher than the value of 0.5 expected under decoding sep-

arability through t-tests (directional, uncorrected). The only ROIs showing significant viola-

tions of decoding separability were the left V1 in the analysis of identity, t(15) = 2.04, p<.05,

and the right STS in the analysis of emotion, t(20) = 2.05, p<.05. Due to the large number of

tests and the fact that our experiment was not originally designed with ROI-based analyses in

mind, none of the tests is significant after the application of a correction for multiple compari-

sons. For this reason, the results shown in Fig 7 should be taken as only suggestive and explor-

atory. Still, the evidence is encouraging as it suggests that: (1) deviations from decoding

separability are not significant in the control areas assumed to include mostly measurement

noise (left and right ventricles), (2) deviations from decoding separability are significant in one

of the control areas thought to involve such deviations (left V1), and (3) deviations from sepa-

rability were very low across face-selective areas, with the exception of the right STS, which
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showed a significant deviation from decoding separability of emotion from identity. Also

note that, for most face-selective regions, the mean DDS is consistently below the value of 0.5

which, as mentioned earlier, suggests that the DDS is a conservative measure of failures of

decoding separability, at least in areas thought to encode the dimensions under study.

Discussion

Here we have linked multidimensional signal detection theory from psychophysics and encod-

ing models from computational neuroscience within a single theoretical framework. This

allowed us, for the first time, to link the results from psychophysical and neurobiological stud-

ies aimed at determining independent processing of stimulus properties. Unlike previous

approaches, our framework formally specifies the relation between behavioral and neural tests

of separability, providing the tools for a truly integrative research approach in the study of

independence.

In the past, neuroimaging studies have been limited to a choice between decoding and

encoding approaches to data analysis [29]. Decoding approaches focus on answering questions

about what is encoded in a given brain region, while making no assumptions about how
exactly that information is encoded; this lack of commitment to an encoding model is both

their strength, as they provide useful results regardless of how information is encoded, and

their weakness, as they are limited regarding what kind of question they can answer. In con-

trast, encoding approaches focus on answering questions about how a specific stimulus

Fig 7. Results of the ROI-based decoding separability test. The y-axis reports the standardized deviations from decoding

separability (DDS) statistic. The points represent mean values and the error bars represent standard error of the mean. When

decoding separability holds, this index should have a value around 0.5, which is represented with a horizontal dotted line. Mean

statistics that were found to be significant (t-test, uncorrected) are marked with an asterisk.

https://doi.org/10.1371/journal.pcbi.1006470.g007
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property is encoded in a brain region, but they do this by assuming the encoding model and

determining whether it can help to accurately predict data. Their weakness is that there are a

very large number of models that could be tested, and no way of knowing a priori whether the

best model is included in the analysis. The theory presented here allowed us to identify some

properties of encoding models (i.e., encoding separability) that can be inferred from the results

of a decoding study. We hope that future theoretical research in this line will allow researchers

to link other properties of encoding models to the results of decoding tests, and more generally

to the results of any analysis involving measures that are some transformation of the underly-

ing neural activity, as is the case in fMRI and psychophysics.

Although we focused on developing a decoding separability test, the GRT framework pre-

sented here is useful to understand the results of other tests of independence as well [4–12, 57].

Here, we re-interpreted two operational tests of independence previously applied in the litera-

ture within our extended GRT framework. We showed that, when some strong assumptions

are met, the measurement vector orthogonality test [6, 50, 52] is related to the concept of

perceptual independence from the traditional GRT, but it is unlikely to be related to a corre-

sponding property of stimulus encoding. On the other hand, a test based on generalization

of classification accuracy [55–57] can provide information about encoding separability. How-

ever, the test is likely to provide less information than a decoding separability test and it has

been applied incorrectly, yielding conclusions of separability (invariance) that are in general

unjustified. Application of our framework to additional operational tests may require the

development of models linking neural activity to the specific measurements made in each test.

The framework and test proposed here are applicable not only to fMRI data, but also to the

analysis of single-cell recordings, LFPs, EEG and MEG. This breadth of scope across opera-

tional definitions and levels of analysis (single neurons, neural populations at many scales, per-

ception, and behavior), which is rarely seen in neuroscience, is a very important contribution

of the present work.

We applied our new framework to the study of independent representation of face identity

and emotional expression. Previous research found that, for the set of stimuli studied here,

identity is not perceptually separable from emotional expression, whereas emotional expres-

sion is perceptually separable from identity [13]. Our results revealed that such lack of percep-

tual separability is reflected in stronger violations of decoding separability for identity than

for emotion in the left temporal cortex, but no stronger violations of decoding separability for

emotion than for identity in any brain region.

Several previous fMRI studies have explored the question of whether emotional expression

and identity are represented independently in the brain, and an important question is what

value is added by a study based on our extended GRT. We believe that our framework provides

at least two advantages. The first advantage is the provision of clear links between the results

of neuroimaging and behavioral studies using the same stimuli. No previous study could

directly link behavior to neural representation in a meaningful way, as in our application of

the extended GRT framework. We started our study with clear hypotheses about how fMRI

results should reflect the behavioral results, which is preferable to the approach of linking neu-

ral and behavioral results through post-hoc theorizing. The second advantage offered by our

framework is that it improves our ability to interpret new results in the light of previous results.

For example, our data suggest violations of decoding separability of identity from emotion.

This does not contradict previous reports of orthogonality of neural representations [6], as we

know that decoding separability and measurement vector orthogonality measure different

concepts. Researchers have also found that emotion can be decoded from areas linked to pro-

cessing of identity [9, 78], and identity can be decoded from areas linked to processing of emo-

tion [79]. The issue of whether or not a particular kind of information can be decoded from a
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brain region is orthogonal to the issue of whether or not it shows encoding separability. Accu-

rate decoding from a particular area indicates that information about a dimension is present

in that area but, as indicated earlier, decoding methods are agnostic as to how that information

is encoded. The same is true about inaccurate decoding from a particular area. On the other

hand, an example of a test that is related to encoding separability is the classification accuracy

generalization test of Anzellotti and Caramazza [55, 57, 79]. However, this test has not been

applied to the study of independence of identity and emotional expression, but rather to the

study of identity across changes in viewpoint and modality.

Non-linear decoders and measurement models

We have shown that a decoding separability test operating on indirect measures of neural

activity can validly detect violations of encoding separability, but one of the conditions in our

treatment of this issue was using a linear decoder. When a linear decoder is used, the relation

between the target difference between decoding distributions d Âr

� �
and the measured differ-

ence d̂ Â
� �

is straightforward (see Eq 26), which allows us to know exactly what violations of

decoding separability the test can and cannot detect. We believe that the use of a linear decoder

is a reasonable requirement for the test, as they are easier to use and interpret than non-linear

decoders, and decoding studies in neuroimaging have almost exclusively used linear decoders.

However, one open question is to what extent using a different decoder might change the test’s

ability to detect specific violations of encoding separability. That is, perhaps a specific type of

violation of encoding separability is hidden by a linear decoder, but shown by a non-linear

decoder, or vice-versa. This question requires considerable additional theoretical and simula-

tion work. However, we do know that, regardless of what type of decoder is used, if encoding

separability holds, then decoding separability must necessarily hold. Thus, finding a violation

of decoding separability with any decoder reflects either a violation of encoding separability or

a statistical error. Thus, one strategy that might prove useful in the future is performing several

decoding separability tests, each using a different decoder. However, such a test should fulfill

two requirements: (1) the decoders should be chosen based on previous work showing that

they can detect different violations of encoding separability, and (2) a correction for multiple

tests should be applied, to control for the family-wise type I error.

Similarly, we linked encoding separability violations to a pattern difference invariance test

by assuming a linear measurement model. This was helpful to prove that in general a violation

of encoding separability may or may not lead to a violation of pattern difference invariance,

but it is not clear whether some specific measurement models yield a different result. Impor-

tantly, it is unlikely that the true measurement model linking neural activity and neuroimaging

measurements is simply linear. Thus, more work is necessary to reach a better understanding

of exactly what violations of encoding separability can and cannot be detected using the pat-

tern difference invariance test.

What about encoding modeling?

Faced with the problem of operationalism in the study of neural independence, here our

approach has been to propose a very general theoretical framework in which most operational

tests can be interpreted and related to properties of encoding such as separability. A different

approach would involve building, fitting and selecting among competing encoding models

[27]. More specifically, this approach requires building several different encoding models,

choosing in each case features such as the number of channels, the shape of the tuning func-

tions, the distribution of neural noise, etc. Encoding separability would hold for some of these
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models and it would fail for others. The output of each model in terms of neural activities

must be linked to neuroimaging data (e.g., estimates of activity from fMRI or EEG) through a

formal measurement model. This formal link would allow to derive or numerically approxi-

mate a probability distribution of the data given a particular model and parameter set. Once

data are obtained, this probability distribution can be used to estimate the parameters of the

encoding model and the measurement model that provide the best fit to the data, through

maximum likelihood estimation (or Bayesian inference, if priors are added). After estimation,

standard model selection procedures (e.g., by AIC, BIC or predictive accuracy in a cross-vali-

dation scheme) would allow to determine what model provides the best explanation for the

data. The properties of the chosen encoding model, including its status regarding encoding

separability, provide the best explanation for the data.

This approach allows to explicitly test specific features of encoding, and some researchers

argue that encoding modeling is the best way to reach valid conclusions about representation

in a given brain region from neuroimaging studies [80, 81]. Here we have shown that valid

inferences about representation can be made from decoding studies, but we do believe that

answering specific questions about representation may be easier through encoding modeling.

However, there are three important challenges faced by anybody wanting to apply encoding

models in this way. The first challenge is that this approach will pick the best model among

those tested. Thus, a poor selection of competing models will lead to the wrong inferences.

Building and fitting encoding models in this way requires an important level of knowledge

about what stimulus properties are encoded and how they are encoded [80]. Relatedly, fitting

specific models may allow to draw more precise inferences regarding encoding separability,

but such inferences cannot be generalized to situations outside those included in the tested

models. In contrast, a failure of decoding separability signals a failure of encoding separability

regardless of the unknown specific details of the encoding and measurement models. The sec-

ond challenge is that the process of fitting the models itself may require considerable technical

expertise and computational resources. Likelihood functions must be derived or numerically

approximated for each model, problems of model mimicry and identifiability must be assessed

and solved, simplifying assumptions and constraints must sometimes be placed on the models.

The consequences of decisions regarding each of these issues–and the way in which they affect

inferences–might not be clear for researchers that are not experienced with modeling. The

third challenge has to do with inference and interpretation. It is not always very clear what can

and cannot be concluded from the fit of encoding models to data, and recent work suggests

that common interpretations of the results of encoding modeling are incorrect [82, 83]. This is

complicated further by the fact that many researchers using encoding models are not explicit

about their modeling assumptions. For example, many applications involve using multiple lin-

ear regression with least squares estimation of weight parameters, where the independent vari-

ables are stimulus features assumed to be encoded and the dependent variable is the measured

activity in an fMRI voxel or EEG channel. Although never explicitly stated, the assumption

behind these models is that there is no neural noise (independent variables in linear regression

are not random), the measurement model is linear, and measurement noise is Gaussian and

additive. Any conclusion reached using these popular models must be qualified by this set of

assumptions.

Overall, we believe that encoding modeling is an excellent way to study the properties of

neural encoding using neuroimaging. However, for the reasons outlined before, it seems

unlikely to be adopted by experimentalists without a computational background. Indeed,

researchers without such a background are probably wise to keep away from it. On the other

hand, we have shown here that decoding approaches can lead to valid inferences about the

independence of neural representations without being difficult to apply and interpret. We
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believe that using a decoding separability test offers an improvement over the operational tests

of independence commonly used in the literature, without requiring a high level of expertise

from researchers.

Limitations and future work

Our application to face perception research is useful to highlight the kinds of questions that

can be answered with the new framework and the type of analysis that should be performed

to answer such questions. However, there are limitations of the present study that should be

noted. First, results were obtained using a small set of naturalistic stimuli, so they should not

be over-generalized. There is no guarantee that the same results will hold for other stimulus

sets, and more research is needed before reaching any general conclusion about the separabil-

ity of identity and emotional expression. Second, our experiment and analyses were performed

at the group level. This was done to obtain a statistically-powerful test that is sensitive to viola-

tions of separability that are consistent across participants. However, the results may not be

representative of individual subjects. We expect that the study of encoding separability at the

individual level will require obtaining more data from each participant than what was acquired

in the present study.

Our theoretical work might also require further refinement. In particular, the decoding sep-

arability test can detect when encoding separability is violated, but it cannot detect when

encoding separability holds (see Fig 3).

Decoding separability itself is difficult to prove, as the decoding separability test is a null

hypothesis test. Other approaches are necessary to prove the null of decoding separability,

such as an arbitrarily small confidence interval around no effect. Such confidence intervals

could be computed using resampling methods, such as bootstrapping. Providing evidence

favoring the null in this way is usually difficult, as obtaining small confidence intervals requires

a large amount of data. Furthermore, there is not much to gain from proving the null of decod-

ing separability, because concluding that decoding separability holds does not lead to conclu-

sions about encoding separability (see Fig 3). Thus, when using the decoding separability test

(or any of the other operational tests that we have discussed here), researchers should focus

only on obtaining evidence of its failure.

For many researchers, concluding that a dimension is encoded in a separable manner in a

given brain region might be considered more interesting; still, an important contribution of

our work is showing that this is in general not possible through indirect measures of neural

activity or psychophysics. Perhaps specific assumptions about the measurement model pro-

ducing the data will make it possible to establish a more direct link between decoding and

encoding separability, but such assumptions need to be clearly spelled out by researchers, and

data should be provided to back them up. One way in which it is possible to directly compare

the evidence in favor of encoding separability versus the evidence against encoding separability

is within the encoding modeling framework described earlier. As indicated earlier, this frame-

work allows to compare two encoding models that are identical in all respects except their

assumption of encoding separability. Unlike in null hypothesis testing, there is no problem

with selecting the simpler model in which encoding separability holds, as long as it provides a

better explanation for the data.

Although our framework provides a link between neural and perceptual forms of separabil-

ity, some researchers might consider this link rather weak, as we have only shown that a

violation of perceptual separability should be reflected in a failure of encoding separability.

Although simply indicating that encoding separability must fail is not very informative about

exactly how and where it fails, it is important to understand that here precision has been
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traded-off for generality. That is, perceptual separability allows to conclude that encoding sep-

arability fails, regardless of how the dimension is encoded by the brain or how it is decoded for
performance in a task. There is a long tradition in vision of linking neural encoding and psy-

chophysics, and more precise conclusions can be reached by making stronger assumptions

about encoding and decoding. For example, a common assumption in this literature is optimal

decoding through maximum likelihood estimation [84–86]. The addition of an encoding

model that is constrained by results from neurophysiology allows one to make inferences

about how many neurons contribute to perception from psychophysical thresholds [84], or

about changes in neural tuning functions from changes in threshold-versus-noise functions

[86]. Similarly, future research could strengthen the link between neural and perceptual forms

of independence for specific dimensions, by including known features of the underlying neu-

robiology in the encoding models and stronger assumptions about decoding (e.g., optimal

decoding), an approach that has not been explored yet in the study of independence.

We must also note that the approach of trading-off precision for generality is entirely within

the tradition of how GRT has been developed in the past. That is, most initial work in GRT

had the goal of establishing general links between operational tests and different definitions of

independence [14, 87–89]. We believe that this groundwork is necessary before developing

more powerful applications to specific problems in vision science.

Conclusion

The notion of independent processing is central to many theories in perceptual and cognitive

neuroscience, but its study has lacked the rigor and integration offered by a formal framework,

like the one presented here. This framework allows development of theoretically-driven tests

of independence of neural representations, which are more clear and rigorous than the opera-

tional tests used thus far. The availability of more rigorous definitions and tests to study sepa-

rability is likely to advance knowledge in a number of areas in visual neuroscience interested

in the notions of independence of processing and representation.

Materials and methods

Ethics statement

This study was approved by the Human Subjects Committee at the University of California,

Santa Barbara, and written informed consent was obtained from all participants.

Participants

Twenty-one male and female right-handed students at the University of California Santa Bar-

bara were recruited to participate in this study. Each participant received a monetary compen-

sation at a rate of US$20/hour.

Experimental task

The stimuli and task were identical to those used in a previous behavioral study of separability

of face identity and expression [13]. Stimuli were four grayscale images of male faces, part of

the California Facial Expression database (http://cseweb.ucsd.edu/�gary/CAFE/). Each face

showed one of two identities with either a neutral or sad emotional expression. The faces were

shown through an elliptical aperture in a homogeneous gray screen; this presentation revealed

only inner facial features and hid non-facial information, such as hairstyle and color.

Participants performed an identification task both outside and inside the MRI scanner.

Each stimulus was assigned to a specific response key and the participant’s task was to identify
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the image presented in each trial. Each trial started with the presentation of a white crosshair

in the middle of the screen for 200 ms, followed by stimulus presentation for a single frame

(i.e., 16.667 ms at a 60 Hz refreshing rate). Stimulus presentation was short to make it identical

to that used in our previous behavioral study. After stimulus presentation, participants pressed

a response key; 500 ms later, feedback about the correctness of their response was displayed on

the screen for 500 ms (“Correct” in green font color or “Incorrect” in red font color). If the

participant took longer than 5 s to respond, the words “Too Slow” were presented on the

screen and the trial stopped. Feedback was followed by a variable inter-trial interval, obtained

by randomly sampling a value from a geometric distribution with parameter 0.5 and truncated

at 5, and multiplying that value by 1,530 ms (the TR value, see below). To obtain estimates of

stimulus-related activity with other events in the trial (crosshair and response) unmixed, we

used a partial trials design in which 25% of the trials included the presentation of the white

crosshair not followed by a stimulus. Participants were instructed to randomly choose a

response on these partial trials.

Stimulus presentation, feedback and response recording were controlled using MATLAB

augmented with the Psychophysics Toolbox (psychtoolbox.org), running on Mackintosh com-

puters. Participants practiced the identification task on personal Mackintosh computers out-

side the MRI scanner for about 20 mins. During this training, participants responded on a

keyboard. During scanning, participants responded using the Lumina Response Pad System

(model LU400-Pair), with the same finger-stimulus mapping as during pre-training.

Functional imaging

Images were obtained using a 3T Siemens TIM TRIO MRI scanner with a 12-channel head

coil at the University of California, Santa Barbara Brain Imaging Center. Cushions were placed

around the head to minimize head motion. A T1-weighted high-resolution anatomical scan

was acquired using an MPRAGE sequence (TR: 2,300 ms; TE: 2.98 ms; FA: 9˚; 160 sagittal

slices; 1 × 1 × 1 mm voxel size; FOV: 256 mm). Additional scans included a localizer and a

GRE field map, neither of which were used in the analyses presented here.

Functional scans used a T2�-weighted single shot gradient echo, echo-planar sequence sen-

sitive to BOLD contrast (TR: 1,530 ms; TE: 28 ms; FA: 61˚; FOV: 192 mm) with generalized

auto-calibrating partially parallel acquisitions (GRAPPA). Each volume consisted of 28 slices

(interleaved acquisition, 2.5 mm thick with a 0.5 mm gap; 2.5 × 2.5 mm in-plane resolution)

acquired at a near-axial orientation, manually adjusted to cover the ventral visual stream and

lateral prefrontal cortex. There were a total of four functional runs per participant (with the

exception of five participants who completed three functional runs).

The first run was a standard functional localizer for face regions [76]. Neutral faces, emo-

tional faces and non-face objects were each presented in different stimulus blocks, separated

by fixation blocks. Sixteen images of the same type were presented within a stimulus block,

each with a duration of 500 ms and a 250 ms inter-stimulus-interval. Fixation blocks consisted

of the presentation of a black screen with a white fixation cross in the middle. The sequence

started with a fixation block, followed by 6 blocks of each image category (18 total), each fol-

lowed by a fixation block, for a total of 37 blocks. Blocks lasted for 12 seconds, and the whole

scan lasted about 7.5 mins. The order of image types (e.g., neutral-emotional-object) was coun-

terbalanced across blocks. To ensure attention to the stimuli, participants were asked to push a

button whenever an image was repeated in the sequence. Four of the 15 stimuli in a block were

repetitions, randomly positioned in the stimulus sequence.

In all other functional runs, which lasted about 10 mins each, participants performed the

identification task described earlier, without feedback. Each of the four images was repeated 25
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times, for a total of 100 trials per run. Stimuli were viewed through a mirror mounted on the

head coil and a back projection screen.

Statistical analyses

Anatomical scans. Processing of structural scans was done using FSL (www.fmrib.ox.ac.

uk/fsl), and included brain extraction using BET and nonlinear registration to MNI 2mm stan-

dard space using FNIRT nonlinear registration. The inverse transformation was obtained to

transform volumes from standard space back to subject space. For visualization purposes,

some statistical maps were converted from MNI standard space to the PALS-B12 surface-

based atlas using CARET v.5.65 (www.nitrc.org/projects/caret/) and selecting the options aver-
age of the mapping to all multi-fiducial cases and enclosing voxel algorithm.

Preprocessing of functional scans. Preprocessing of the functional scans was conducted

using FEAT (fMRI Expert Analysis Tool) version 6.00, part of FSL (www.fmrib.ox.ac.uk/fsl).

Volumes from all three runs of the main identification task were concatenated into a single

series using fslmerge. Preprocessing included motion correction using MCFLIRT, slice timing

correction (via Fourier time-series phase-shifting), BET brain extraction, grand-mean inten-

sity normalization of the entire 4D dataset by a single multiplicative factor, and a high-pass

temporal filtering (Gaussian-weighted least-squares straight line fitting, with sigma = 50.0s).

The data from the functional localizer were spatially smoothed with a Gaussian kernel of

FWHM 4.0mm. The data used in the main separability analysis were not spatially smoothed

during preprocessing. Each functional scan was registered to the corresponding structural

scan using boundary-based registration (BBR) in FLIRT with default parameters.

Neural activity estimates. After preprocessing of the functional scans, estimates of sin-

gle-trial stimulus-related activity were obtained for the faces in the main identification task.

We used the iterative FBR (finite BOLD response) method described by Turner et al. [90] to

deconvolve the BOLD activity related to each stimulus presentation. This method avoids

assumptions about the hemodynamic response function that are inherent to parametric esti-

mation methods and it is more successful than the latter in unmixing the responses to tem-

porally adjacent events in event-related designs [90]. Instead of assuming a particular shape

of the hemodynamic response function, the full shape of the BOLD response to a stimulus is

estimated through a set of 12 FBR regressors that are ordered in sequence. In the regression

matrix, each event is represented by a set of 12 ones, starting at the beginning of the event.

The method is called “iterative” because it iterates through each trial to estimate the BOLD

activity related to the stimulus presentation in that trial only. To do this, a group of 12 regres-

sors is created for the target stimulus, and separate groups of 12 regressors are created for the

four stimulus classes in the experiment (the target trial was excluded from the regressor of its

class), and for the conjunction of crosshair presentation and response. This results in the

estimation of 12 regression coefficients for the target stimulus, which are kept while all other

regressors are discarded (they are included only to unmix their influence from the target

estimates of the BOLD response). As indicated above, the process is iterated for each trial,

resulting in a set of spatiotemporal maps (one for each stimulus presentation), representing

estimates of the BOLD activity in each voxel and each of 12 TRs starting at the time of stimu-

lus presentation. The algorithm was implemented in MATLAB (The MathWorks, Natick,

MA, USA).

Decoding separability test. Here we describe the procedures used to implement a decod-

ing separability test. Theoretical results linking this test to the notions of decoding separability,

encoding separability and perceptual separability, as well as a justification for the application

of this test to neuroimaging data, can be found in the Results section.
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Fig 8 is a schematic representation of the decoding separability test. In this simplified exam-

ple, we consider only two voxels. The estimates of activity are thus represented in a two-

dimensional voxel space. Each point represents activity on a different trial, with each color

representing a different stimulus that has been repeatedly presented during the experiment.

Decoding facial expression from these two voxels using a linear classifier involves finding a

hyperplane in the activity space that best separates trials in which a neutral face was shown

from trials in which a sad face was shown (the dotted line in Fig 8). The line orthogonal to

the classification bound (sometimes called the classifier’s “decision variable”) represents the

Fig 8. A schematic representation of a test of decoding separability for neuroimaging data, implemented as an

extension to traditional linear decoding procedures. The simplified example considers the representation of four

stimuli in two voxels. Each point represents activity on a different trial, and each color represents a different stimulus

that has been repeatedly presented during the experiment. The dotted line represents a classification bound that

separates trials according to emotional expression. The line orthogonal to this bound represents the direction in voxel

space that best discriminates one expression from the other. Decoding separability holds if the distributions along this

dimension for a given value of the target dimension (emotional expression) are equivalent across changes in the

irrelevant dimension (identity). Adapted from: http://figshare.com/articles/Test-of-separabilityof-neural-

representations/1385406.

https://doi.org/10.1371/journal.pcbi.1006470.g008
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direction in voxel space that best discriminates one expression from the other. Thus, it is rea-

sonable to assume that this is the direction in this specific voxel space along which expression

is encoded. Using that specific direction in voxel space is not a requirement of the decoding

separability test to be valid (the only requirement is that a linear decoding scheme is used; see

Results section), but it allows us to link the present work to more traditional MVPA tech-

niques. If we take all the observed data points and project them onto this “expression”dimen-

sion, we can use these projected points to estimate a distribution of decoded values. Decoding
separability holds if this distribution of decoded values is invariant across changes in the stimu-

lus on a second, irrelevant dimension. To test for decoding separability, the two distributions

of points for a given expression (e.g., the orange and green distributions for “sad”), each corre-

sponding to a different identity, can be compared to one another.

In the Results section, we link this decoding separability test to our main theory, and show

that it is a valid test of violations of separability in neural representations, even when it is

applied to indirect and noisy measures of brain activity, like those obtained from fMRI.

In two separate analyses, we tested the separability of emotion from identity and the separa-

bility of identity from emotion; because both analyses are identical, we will describe the analy-

sis in terms of decoding separability of a “target” dimension from an “irrelevant” dimension.

Each of the regression coefficients obtained in the previous step were standardized by column.

We used a searchlight procedure [77] with a spherical mask that had a radius of three voxels.

In each step of the analysis, the searchlight was centered on a different brain voxel and the

selected data were used to train a linear support vector machine (SVM, using the Linear-
NuSVMC classifier included in pyMVPA) to decode the target dimension using all the avail-

able data. Then the data were projected to the normal line to the classification hyperplane to

obtain a number of decoded values on the target dimension. Using Python augmented with

the SciPy ecosystem, the group of decoded values for each stimulus was used to obtain kernel

density estimates (KDEs) of their underlying probability distribution. A gaussian kernel and

automatic bandwidth determination were used as implemented in the SciPy function gaus-
sian_kde. Let p̂ij Â

� �
represent the KDE for a stimulus with value i on the target dimension and

value j on the irrelevant dimension, evaluated at point Â. The index i can take one of two val-

ues representing, for example, “sad” and “neutral” when the target dimension is emotional

expression, as in the example given in Fig 8. Similarly, the index j can take one of two values

representing “identity 1” and “identity 2”, as in this example identity is the irrelevant dimen-

sion. Then an index of deviations from decoding separability (DDS) was computed from all

four KDEs obtained from the target dimension (in this example, emotional expression),

according to the following equation:

DDS ¼
X2

i¼1

X1;000

k¼1

�
�
�p̂i1 Âk

� �
� p̂i2 Âk

� ���
� ð36Þ

Each KDE was evaluated at 1,000 evenly-spaced points Âk, indexed by k = 1, 2. . .1, 000,

starting at the minimum data point minus half the data range, and finishing at the maximum

data point plus half the data range. Note that the value p̂i1 Âk

� �
� p̂i2 Âk

� �
represents the differ-

ence between two distributions of decoded values, both related to stimuli with the same value

in the target dimension (e.g., “sad”, represented by the index i) but different values in the irrel-

evant dimension (e.g., “identity 1” and “identity 2”, represented by the indexes 1 and 2 in the

equation). The index uses the absolute value of the difference between a pair of distributions,

which by definition is the L1 distance between the two (discretized) distributions (see Eq 27

below). If separability holds, then the distance between distributions should be zero. However,
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this is only true if we had access to the true distributions. Any error in the KDEs should pro-

duce differences between distributions that are added to the DDS. This makes it difficult to sta-

tistically test for deviations of separability, as the data from multiple participants cannot be

combined (differences in the estimation error of the KDEs produces differences in scale of the

statistic) and the expected value of the statistic under the null hypothesis is unknown. Under

the assumption of decoding separability, two distributions that share the same level of the tar-

get dimension but different levels of the irrelevant dimension are identical. That is, data points

from those distributions are exchangeable. Taking this into account, we standardized the sta-

tistic in the following way: (1) we shuffled the level of the irrelevant dimension for each data

point 200 times (separately for each level of the target dimension); (2) each time we computed

the DDS, yielding an empirical distribution function (EDF) of the statistic under the assump-

tion of decoding separability; (3) the final standardized value was the percentile of the observed

DDS in the EDF minus 50, representing percentile deviation from the median of the EDF.

Repeating this process for all searchlights resulted in a DDS map for each participant, which

were converted to the participant’s anatomical space using FSL’s FLIRT linear registration and

then to MNI 2mm standard space using FSL’s FNIRT nonlinear registration. The resulting

DDS maps in standard space were submitted to a nonparametric permutation test using FSL’s

randomise program [91], with the option clusterm for correction for multiple comparisons

(which uses the distribution of the maximum cluster mass in the permutation test), a cluster

threshold of 2.53 (corresponding to p = 0.01, uncorrected), variance smoothing with a sigma

of 5 mm, and 5,000 permutations.

For visualization purposes, the volumes with significant statistics obtained from the permu-

tation test were converted to the PALS-B12 surface-based atlas using CARET v.5.65 (www.

nitrc.org/projects/caret/), and displayed together with the borders of face-selective areas from

the localizer scan.

Face-selective regions. Face-selective regions were defined using the data from the func-

tional localizer. Low-level analyses were performed separately on the data from each partici-

pant. Three explanatory variables (EVs) were defined: Neutral Faces, Emotional Faces and

Objects, each corresponding to a boxcar function covering the corresponding blocks in the

functional scan (see Functional Localizer description above). These boxcar functions were

convolved with the default Gamma hemodynamic response function in FSL, which has a

mean lag of 6s and a standard deviation of 3s. A temporal derivative and temporal filtering

were added to the design matrix. Two contrasts were formed: Faces (Neutral Faces + Emotional

Faces)> Objects, to define regions selective to face information in general, and Emotional

Faces> Neutral Faces, to define regions selective to face emotional expression more specifi-

cally. Each of these contrasts resulted on a separate map of z statistics for each participant. The

individual z statistical maps were used as input to a high-level analysis, using a mixed-effects

model (the option FLAME 1+2 in FSL), to generate a group map for each contrast. Clusters

were first identified by thresholding the maps at z = 2.3; the experiment-wise false positive rate

(α = 0.05) was controlled by using a threshold on cluster size derived from Gaussian random

field theory.

The volumes with significant clusters obtained from the two contrasts were converted to

the PALS-B12 surface-based atlas and their borders were manually drawn using CARET v.5.65

(http://www.nitrc.org/projects/caret/). These region borders were used as rough landmarks

for the interpretation of the main results of the decoding separability analysis.

The Faces> Objects contrast was additionally used to define face-selective functional

regions of interest (ROIs) using the Group-Constrained Subject-Specific (GSS) described by

[92]. First, individual maps were thresholded at p< 0.05, uncorrected, and the resulting thre-

sholded images were binarized. It was necessary to use a much more liberal threshold than
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that used by Julian et al. (p< 0.0001) to obtain ROI masks in most participants (even at this

low threshold, we did not obtain an ROI for the OFA in one participant), because our study

was designed to carry out analyses at the group level (see below) and therefore the contrast had

less power than that of Julian et al. at the level of individual participants. Second, we took the

group-level “parcels” provided by Julian et al. in MNI 2mm standard space (available at http://

web.mit.edu/bcs/nklab/GSS.shtml), and transformed them to the participant’s functional

space using FNIRT. Third, we intersected the individual binary maps and the group-level par-

cels to define ROIs corresponding to the fusiform face area (FFA), occipital face area (OFA)

and superior temporal sulcus face area (STS) in each individual participant.

Additional anatomical ROIs were obtained, to serve as controls and explore the behavior of

our decoding separability test in different conditions. We obtained an ROI corresponding to

primary visual cortex (PVC) from the Juelich Histological Atlas, and an ROI corresponding

to the lateral ventricles from the Harvard-Oxfor Subcortical Structural Atlas; both atlas are

included with FSL. The obtained ROIs were thresholded at a value of 20 using fslmaths and

binarized. These final ROI masks, which were in MNI 2mm standard space, were transformed

to each participant’s functional space using FNIRT.

All ROIs were obtained for both the left and right hemispheres.
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