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Encoding Models in Neuroimaging
Fabián A. Sotoa and F. Gregory Ashbyb

12.1 Introduction

One of the greatest barriers to progress in mathematical psychology is model

mimicry. In almost every domain of cognitive modeling, there are compet-

ing models that assume qualitatively different perceptual and cognitive pro-

cesses, yet are able to mimic the behavioral predictions of each other. One

reason for this is that although competing models may make very detailed

predictions about psychological processes, historically those processes have

been unobservable and, as a result, the models are tested only against crude

dependent measures, such as response accuracy and response time.

Within the past few decades, a wide variety of new neuroimaging technolo-

gies have been developed that allow levels of observability into human brain

function that seemed unimaginable when many currently popular mathe-

matical models in psychology were first proposed. Included in this list are

functional magnetic resonance imaging (fMRI), positron emission tomagra-

phy (PET), magnetoencephalography (MEG), functional near-infrared spec-

troscopy (fNIRS), electrocorticography (ECoG), and high-resolution elec-

troencephalography (EEG). Although these methods all have limitations,

they nevertheless have the potential to allow unprecedented observability

into the perceptual and cognitive processes predicted to underlie compet-

ing mathematical models of perception and cognition. As a result, testing

models against neuroimaging data in addition to the more traditional re-

sponse accuracies and response times offers an exciting possible solution to

the model mimicry problems that plague mathematical psychology.

Despite their promise, neuroimaging data are infrequently used to test

mathematical models of the type that are common in mathematical psy-

a Florida International University, USA
b University of California, Santa Barbara, USA
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chology. There are several reasons for this. First, neuroimaging is still a

relatively new technology and neuroimaging data analysis is still in a pe-

riod of rapid development. Second, all of these neuroimaging technologies

were developed outside of mathematical psychology. Third, most models in

mathematical psychology make few, if any neuroscience predictions. At first

glance, the latter of these reasons seems the most limiting, but in fact, sev-

eral data analysis methods that were developed to analyze fMRI data can be

used to test models that make no neuroscience assumptions. Included in this

list are model-based fMRI and representational similarity analysis (RSA).

All neuroimaging technologies work in a similar way. In all cases, record-

ings are collected at discrete times and locations in the brain while the

subject is engaged in some perceptual or cognitive task. The recordings are

directly (e.g., ECoG, EEG) or indirectly (e.g., fMRI, PET) related to neural

activation. The spatial resolution varies. ECoG can sometimes measure ac-

tion potentials in single neurons, whereas each EEG electrode is influenced

by millions of neurons. Temporal resolution also varies, with ECoG, EEG,

and MEG at one extreme (with resolutions near 1 ms) and PET at the other

(with resolutions of 5 – 10 sec). State-of-the-art functional MRI scanners,

with multi-band slice acquisition, have a temporal resolution of about 500

ms and a spatial resolution of 1 – 2 mm (i.e., which is limited by the point-

spread function of the blood-oxygen-level dependent, or BOLD response;

Fracasso, Dumoulin, and Petridou 2021).

In general, neuroimaging data analysis techniques can be classified as ei-

ther encoding or decoding methods. Encoding methods use knowledge of the

experimental design and stimuli to build a model that predicts the neural

activation that should be generated at each recording site on every trial.

Decoding methods refer to approaches that make inferences in the oppo-

site direction – that is, they use the observed recordings to make predic-

tions about stimuli and other events in the experiment (Haynes & Rees,

2006; Naselaris, Kay, Nishimoto, & Gallant, 2011; Norman, Polyn, Detre,

& Haxby, 2006; Pereira, Mitchell, & Botvinick, 2009). The idea is that if a

brain region of interest (ROI) responds differently to two different stimulus

attributes then that ROI might be processing those attributes differently.

The most widely used decoding method is known as pattern classification

or even more commonly as multi-voxel pattern analysis (MVPA).

Encoding models are similar to traditional models in mathematical psy-

chology. To model behavior in a task, a mathematical psychologist will typ-

ically combine assumptions about the underlying perceptual and cognitive

processes with knowledge of the task to write equations that predict the par-

ticipant’s accuracy and/or response time. To build an encoding model, as-
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sumptions about the underlying neural processes are combined with knowl-

edge of the task and the type of neuroimaging technique being used to write

equations that predict values of the dependent variable that is measured at

each recording site. For example, an encoding model of fMRI data would pre-

dict the observed BOLD response at each voxel in response to each stimulus

presentation. Forward inferences of this type are used for two primary pur-

poses. First, they can be used to identify brain regions that are sensitive to

specific attributes of the stimulus events. For example, when natural scenes

are described by the outputs of many phase-invariant Gabor filters, simple

fMRI encoding models accurately predict the BOLD response in early visual

areas, but not in high-level areas of visual cortex (Kay, Naselaris, Prenger,

& Gallant, 2008; Naselaris, Prenger, Kay, Oliver, & Gallant, 2009). In con-

trast, when the same scenes are described using semantic category labels,

encoding models accurately predict activation in high-level visual areas but

not in early visual cortex (Mitchell et al., 2008; Naselaris et al., 2009). Sec-

ond, encoding models can be used to test theories of cognitive and neural

processing. If a theory accurately describes the cognitive and neural pro-

cessing that occurs during a specific task, then it should be possible to use

that theory to construct an encoding model that accurately predicts the

dependent variables recorded in a set of pre-specified ROIs.

Because these two goals are somewhat different, it is not surprising that a

diverse set of encoding models have been proposed (e.g., Ashby, 2019). The

most widely used fMRI encoding model is the general linear model (GLM),

which is used most commonly to identify brain regions that are sensitive

to the simplest possible attribute of a stimulus event – namely, its pres-

ence or absence. All other encoding models are more ambitious. Arguably

the next most popular fMRI encoding approach is dynamic causal model-

ing (DCM), which identifies a candidate set of brain regions that mediate

event processing, along with all of their functional interconnections (Ashby,

2019; Friston, Harrison, & Penny, 2003). DCM is also more complex than

other encoding models, partly because it uses a nonlinear model relating the

BOLD response to neural activation and partly because it uses a variational

Bayesian approach for model selection.

The vast majority of encoding models were developed to be tested against

fMRI data. Even so, for the most part, the models can all be applied to any

neuroimaging technology. The only significant difference from one technol-

ogy to another is in the interface that converts predicted activation in a

neural population to values of the dependent variable that the technology

measures. For example, in the case of fMRI data, one needs to model the

transformation from neural activation to the BOLD response recorded in
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fMRI experiments. With EEG data, one needs to include a head model that

accounts for electromagnetic properties of the head and of the sensor ar-

ray. But in all cases, the model of each neural population and of how the

population activations are combined is roughly the same. However, because

the models we discuss were developed for application to fMRI data, we will

assume an fMRI application in the rest of this chapter. For most of the

chapter, this just means that we will refer to a recording site as a voxel,

and the time between recordings as the TR (repetition time; the amount of

time it takes the scanner to measure BOLD responses from all voxels in the

brain). Except for this nomenclature, the only part of the chapter unique to

fMRI is discussed in the subsection entitled “Linking neural activation to

the BOLD response,” which considers the interface between the neural acti-

vations predicted by the models and the dependent variable most commonly

measured in fMRI experiments.

12.2 Voxel-Based Encoding Models

Encoding models fall into two general classes: those that were constructed

specifically to analyze fMRI data, and models that were originally designed

for other purposes. The former class are often called voxel-based encoding

models. The latter class can take many forms – from purely cognitive models

of the type that are common in mathematical psychology to models with

considerable biological detail (a branch of modeling called computational

cognitive neuroscience; e.g., Ashby 2018). FMRI data are used along with

a variety of other data types to test and refine these models. The process

of testing such models against fMRI data is known as model-based fMRI.

We consider model-based fMRI later in the chapter. This section describes

voxel-based encoding models.

Voxel-based encoding models encompass a variety of different models, but

they all share enough features to be characterized within a single framework.

As we will see in this section, all current voxel-based encoding models include

an encoding model that predicts how every hypothesized neural population

responds to each stimulus, and a measurement model that first transforms

neural population responses into aggregate neural activity and then into

values of the dependent variable being measured (e.g., the fMRI BOLD

response). While most encoding models include a highly nonlinear transfor-

mation from stimulus to neural response, the measurement model is usually

linear, and such models are often referred to as linearized encoding models.

This means that most voxel-based encoding models can be seen as instances
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of linear regression with basis functions (Hastie, Tibshirani, & Friedman,

2009).

12.2.1 Encoding Model

Encoding models begin with a mathematical description of the relation be-

tween a set of stimuli Si, with i = 1, 2, ...Ns, and the response of a neural

channel rc, with c = 1, 2, ...Nc. Neural channels can represent either a single

neuron or a population of neurons with similar properties, with the latter

option being more common in the computational neuroimaging literature.

Most encoding models assume that the channel response depends on the

identity of the stimulus Si, certain channel tuning parameters, various state

variables, and properties of the neural noise. The tuning parameters, which

are collected in the vector θ, include for example, constants that determine

the channel’s maximum possible response, and its preferred stimulus. The

state variables, collected in the vector x, include other variables that could

affect the channel response, including for example, the responses of other

channels in the population. Given these definitions, the standard approach

is to first define the mean channel response

E [rc|Si] = fc (Si,θc,x) , (12.1)

where E denotes expected value, and fc is the channel tuning function,

which is specified as part of the model. Tuning functions are discussed in

more detail below, but it is important to note that in many applications,

the alternative encoding models that are tested against data are identical,

except for their tuning functions.

Most encoding models assume that channels operate in the presence of

noise, but they differ in how that noise is modeled. One approach is to

assume that the response of channel c to presentation of stimulus Si equals

rc(Si) = fc (Si,θc,x) + εc, (12.2)

where εc is zero-mean noise (e.g., Pouget, Dayan, and Zemel 2000). A com-

mon choice is to assume Gaussian noise with some fixed variance. Note

that this model predicts that the variance of the channel response does not

change as the mean response increases. There is support for this assumption

in channels that include a large population of neurons (Y. Chen, Geisler,

& Seidemann, 2006), but in single neurons, the variance of the spike count

tends to increase in proportion to the mean (e.g., Tolhurst, Movshon, and

Dean 1983). Therefore, the fixed-variance Gaussian model is most appro-

priate when modeling channels of many neurons. A popular approach to
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modeling channels in which the variance of the response increases with the

mean is to assume that rc is Poisson distributed with mean fc (Si,θc,x)

(e.g., Zemel, Dayan, and Pouget 1998). Therefore, this model assumes that

the channel response has probability density function

P [rc|Si] =
fc (Si,θc,x)rc e−fc(Si,θc,x)

rc!
. (12.3)

Because the variance of a Poisson distribution equals its mean, this model

predicts that the variance of the channel response increases with the mean

response. Note that Eqs. 12.2 and 12.3 both assume that the mean channel

response satisfies Eq. 12.1.

Most models include multiple channels, each described by a version of

Eqs. 12.1 and 12.2 or Eqs. 12.1 and 12.3, and which are combined into a

random vector of responses r = [r1, r2, ..., rNc ] that describe the response of

all Nc channels to the presented stimulus. This is known as a population

encoding model (Pouget et al., 2000; Pouget, Dayan, & Zemel, 2003), and

r is usually referred to as a population response. In particular, voxel-based

encoding models assume that every voxel includes a mixture of various popu-

lations of neurons, and that each population is tuned to a different attribute

of the stimulus. The populations are commonly referred to as channels. For

example, the most primitive visual encoding model might assume that each

population or channel is tuned to a Gabor patch of a certain spatial fre-

quency and orientation. But the populations could be tuned to anything.

At the opposite extreme, they might be tuned to semantic category labels,

such as rock, ocean, table, chair, or lamp. Voxel-based encoding models are

most commonly used to identify brain regions that are sensitive to these

attributes, so it is not unusual to build multiple encoding models for the

same data that are each sensitive to a different set of stimulus attributes.

We can make this more concrete with an example of what has been termed

the standard model of dimension encoding (Pouget et al., 2000, 2003). This

model is typically restricted to applications in which the stimuli vary on a

single dimension. Suppose the numerical value of stimulus Si on this dimen-

sion is si. The model assumes Gaussian tuning functions, so in this case it

predicts that

fc (si,θc,x) = rmaxc exp

[
−1

2

(
si − sc
ωc

)2
]
, (12.4)

where rmaxc represents the maximum response for channel c, sc represents the

value of the channel’s preferred stimulus (i.e., the value of the stimulus that

produces the channel’s largest response), and ωc represents the width of the
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Figure 12.1 The standard model of dimension encoding. Panel (a) shows
the tuning curves of the various channels included in the model. The peak
of each tuning curve is centered at the channel’s preferred stimulus value.
Panel (b) shows the population response plot of this model on a hypothet-
ical trial when a stimulus with value 0 is presented. Each solid dot shows
the response of a different channel in the absence of noise, and each open
dot denotes a possible response of the same channels in the presence of
noise.

tuning function. Many applications assume that all tuning functions have

the same width (i.e., ωc = ω, for all c), which is known as the homogeneous

standard model. In all versions of the model, however, the channel tuning

parameters are gathered together in the vector θ>c = [rmaxc , sc, ωc]
>, where

> denotes transpose. Note that in this case, the state vector x is empty.

Also note that this model makes it possible to predict the mean channel

responses as soon as the stimuli are selected, and therefore, before data

collection begins.

Figure 12.1a shows the tuning functions of a large collection of channels

from a typical application of this standard one-dimensional model. Note that

all channels have identical shape (rmaxc = rmax and ωc = ω) and that the

preferred stimuli for the various channels are evenly spaced on the stimulus

dimension (sc = sc−1+k, for some small constant k). The shape of the tuning

functions for all channels is therefore characterized by a single canonical

tuning curve.

Now imagine presenting a specific stimulus Si to the model and recording

the response of all Nc channels in the population response vector r. A con-

venient way to describe these responses is via a population response plot, in

which neural responses are plotted on the ordinate and the numerical values

of each channel’s preferred stimulus are plotted on the abscissa. Figure 12.1b

shows the population response of the model in Figure 12.1a to a stimulus
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with value 0. Each solid dot shows the response of a different channel in the

absence of noise, and each open dot denotes a possible response of the same

channels in the presence of noise.

Note that, because all channels have the same width and are equally

spaced on the stimulus dimension, the expected population response has the

same shape as the canonical tuning function. This property of the standard

encoding model is a continuous source of confusion for both experimental-

ists and modelers, who sometimes confuse population response plots with

tuning functions in their interpretation of encoding models. A population

response function with the same shape as the canonical tuning function is

not a general property of encoding models, but arises specifically from the

homogeneous model (i.e., in which all tuning functions are identical, except

for their preferred stimulus).

Channel noise distributions have been estimated empirically, and there

is evidence that humans use knowledge of this uncertainty during percep-

tual decision making (Van Bergen, Ma, Pratte, & Jehee, 2015). Even so, it

is common in the cognitive neuroscience literature to find applications in

which channel noise is not modeled, with responses being described simply

by Eq. 12.1. Within the general framework presented here, those applications

implicitly assume Eq. 12.2 and Gaussian noise with a variance that is invari-

ant across channels. When channel noise is modeled, a common assumption

is that the noise is independently and identically distributed across multi-

ple channels. In contrast, as mentioned earlier, some approaches model the

channel response as Poisson distributed (i.e., as in Eq. 12.3), which scales

the noise variance up with the mean channel response.

Of course, there are a variety of ways to construct more complex models.

First, the model is easily extended to multidimensional stimuli. For exam-

ple, in vision research it is common to represent images as two-dimensional

matrices of pixel values, with each channel’s tuning function being defined in

that space. Many models represent the operation of primary visual cortex,

or V1, through a large population of channels in which the tuning function

of each channel is a Gabor wavelet tuned to a certain specific spatial loca-

tion, orientation, and spatial frequency (e.g., Kay et al., 2008; Naselaris et

al., 2009). In their structural encoding model, Naselaris et al. (2009; see also

Kay et al., 2008) assumed a total of 10,921 such channels.

The Gabor wavelet model of tuning functions is based on years of re-

search on the response properties of neurons in V1. The tuning properties of

channels in higher visual areas are less well understood. As a result, in appli-

cations that depend on a participant’s perceptual or cognitive impressions of

a set of images, a more generic tuning function might be more appropriate.
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The Gaussian tuning function of Eq. 12.4 is easily generalized to any arbi-

trary multidimensional stimuli. For example, consider a set of stimuli that

vary on multiple dimensions and a channel in which the preferred stimulus

is Sc. Then a multidimensional analog of Eq. 12.4 assumes that the channel

response to stimulus Si equals

fc (Si,θc,x) = rmaxc exp

[
−1

2

(
∆(Si,Sc)

ωc

)2
]
, (12.5)

where ∆(Si, Sc) is the distance in perceptual space between the representa-

tions of stimuli Si and Sc. Equation 12.5, which is an example of a radial

basis function (e.g., Buhmann 2003), is a popular method for modeling the

receptive fields of sensory units in many different modeling approaches (e.g.,

Ashby, Ennis, and Spiering 2007; Kruschke 1992).

A second approach to building a more complex model is to express chan-

nel tuning via a composite function: fc (Si,θc,x) = gc2 [gc1 (Si,θc,x)]. For

example, in the Naselaris et al. (2009) model, the channel response is deter-

mined by applying a compressive nonlinearity to the output of the Gabor

wavelet. If we denote the response of Gabor wavelet c to image Si as gc(Si),

then according to this model the response of channel c is

fc (Si,θc,x) = log[gc(Si) + 1]. (12.6)

The +1 just ensures that the channel response is never negative. Because

log is a negatively accelerating function, this transformation models response

compression at the neural level.

A third common generalization of the standard model is to assume that

the channel response depends on state variables indexed in the vector x. For

example, x might include the responses of other channels in the population.

In this case, a popular approach is to use these other responses to normalize

the response of each channel:

fc (Si,θc,x) =
gc (Si)

ν

κν +
√∑

j αj [gj (Si)]ν
. (12.7)

This is called divisive normalization, and it is an ubiquitous computation

in cortical circuits (Carandini & Heeger, 2012). In this model, the channel

response is normalized by a weighted sum of the response of all channels. The

weights αj represent the level to which other channels suppress the response

of channel c, ν increases competition between channels for activation, and

κ prevents division by zero.
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12.2.2 Measurement Model

The encoding models discussed so far describe activity in each channel. How-

ever, in most applications, the individual channel responses are assumed to

be unobservable. For example, in applications to fMRI, the BOLD response

recorded in each voxel is assumed to be a mixture of many channel responses.

Therefore, to test encoding models against empirical data, a model interface

is required that specifies how the channels combine to determine the value

of the dependent variable of interest (see Van Bergen et al., 2015). This

interface is called the measurement model.

The measurement model must solve two separate problems. First, even

with state-of-the-art high resolution MRI scanners, each voxel includes many

neurons, and therefore presumably, many different neural channels. There-

fore, the first problem is to model how the various hypothesized channels

combine to determine the amplitude of the neural activation that drives the

BOLD response in each voxel.

Second, in the encoding models considered so far, the channel response

rc(Si) is a single value that is presumed to represent the amplitude of neural

activation in channel c when stimulus Si is presented. In contrast, the BOLD

response recorded from each voxel when stimulus Si is presented is a time

series that persists for 30 sec or so and depends in a complicated way on

concentrations of oxygenated and deoxygenated hemoglobin, cerebral blood

flow, and venous blood volume (Buxton, 2013). Neural activation increases

the BOLD response, but the BOLD response is only an indirect measure of

neural activation (Ogawa, Lee, Kay, & Tank, 1990; Ogawa, Lee, Nayak, &

Glynn, 1990). So the second problem in applications of encoding models to

fMRI data is to link the neural activation values predicted by the models to

the observed BOLD time series recorded in fMRI experiments.

This section considers each of these problems in turn.

Aggregating Channel Responses

Each voxel in an fMRI experiment will include several hundred thousand

neurons. As a result, any voxel-based encoding model that includes multiple

channels will assume that every voxel in the ROI could potentially contain

all of the hypothesized channels. This is true no matter how the channels

are defined, although most models assume that the number of channels, and

the number of neurons within each channel are unknown. The most popular

assumption is that the neural activation produced in a task-sensitive voxel

in response to a stimulus presentation is a weighted linear combination of all

the channels represented in that voxel, where the weights are presumed to



12 Encoding Models in Neuroimaging

reflect the number of neurons within the voxel that contribute to each chan-

nel. Models in this class are often referred to as linearized encoding models

because the measurement model assumes that the voxel-level neural activa-

tion is a weighted linear combination of the individual channel responses.

When combined with a linear model of the relationship between neural ac-

tivation and the observed BOLD response, such models can use the GLM

for parameter estimation – that is, to estimate the values of the unknown

weights that allow the model to give the best fits to the observed BOLD

responses collected from that voxel on all TRs.

We can formalize these ideas as follows. Let ak(Si) denote the aggregate

neural activity in voxel k to presentation of stimulus Si, and let wck de-

note the contribution of channel c to this activity. Then the voxel-based (or

linearized) encoding model assumes that

ak(Si) = w1k +

Nc∑
j=2

wjk rj(Si) + εm,k, (12.8)

where w1k is the response of one channel in voxel k that gives the same

constant response to all stimuli (to account for baseline activation that might

occur in a voxel containing none of the hypothesized channels), and εm,k is

the measurement error on channel k. The most common assumption is that

εm,k is normally distributed with mean 0 and variance σ2
m. This is called a

linearized encoding model because it makes the simplifying assumption of

a linear relation between channel responses and voxel activity. Note that

this model predicts that the voxel activity ak(Si) is normally distributed or

approximately normally distributed (in the Poisson case) with mean

E[ak(Si)] = w1k +

Nc∑
j=2

wjkfc(Si,θc,x) (12.9)

and in the case where the channels are independent, with variance

Var[ak(Si)] = σ2
m +

Nc∑
j=2

w2
jkVar[rj(Si)], (12.10)

where Var[rj(Si)] either equals σ2
c in the case of the Eq. 12.2 Gaussian model

or fc(Si,θc,x) in the case of the Eq. 12.3 Poisson model.

Note that this model accounts for the separate contributions of the channel

noise and the measurement noise (εm,k in Eq. 12.8) to the variability in

ak(Si). In almost all cases, however, these will not be separately estimable. In

fact, in linear models, it is well known that they are nonidentifiable. Instead,
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only the sum of these separate variances can be estimated (e.g., Ashby 1992).

As a result, in most applications, a single noise variance will be estimated

and the source of the noise will be impossible to identify. Nevertheless, we

include both noise sources for completeness.

Of course, there is a separate equation like Eq. 12.8 for every stimulus in

the ensemble. In all of these, the weights are identical because the weights are

presumed to reflect the dominance of each channel within the voxel, which

does not depend on what stimulus is presented. In contrast, the channel

responses reflect the dominance of each feature within the stimulus, so these

will change when the stimulus changes, but should be the same in all voxels.

The standard way to keep track of all this is in matrix form. For example,

consider an experiment with Ns different stimuli or events. The first step

is to collect all channel responses – one for every channel – in an Ns × Nc

channel-response matrix R defined as

R =


r(S1)>

r(S2)>

...

r(SNs)
>

 . (12.11)

So row i of R lists the population response to presentation of stimulus Si,

and column c lists the response of channel c to the presentation of each

stimulus. If channel noise is modeled, then R is a random matrix. In most

linearized encoding models, however, channel noise is not included and thus

each channel is characterized by its mean response, computed as in Eq. 12.1.

Encoding models assume that the channels and their tuning functions are

known, so the mean channel response matrix E[R] can be computed as soon

as the stimulus set is selected, and therefore before the experiment begins.

Voxel-based encoding models are therefore not used to estimate channel

responses, because these are assumed to be known beforehand. Applying

a voxel-based encoding model to neuroimaging data instead answers three

different questions. First, it can identify the ROIs where the voxel activ-

ity most closely resembles the responses predicted by the set of presumed

channels. Second, it provides an estimate of the relative frequency of each

channel within every voxel. And third, for any single ROI it can tell whether

the observed voxel activities are more consistent with one set of presumed

channels or with another set.

The channel-response matrix described in Eq. 12.11 accounts for the chan-

nel responses. The full set of model predictions can then be written in matrix
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form as 
ak(S1)

ak(S2)
...

ak(SNs)

 =


r(S1)>

r(S2)>

...

r(SNs)
>



w1k

w2k
...

wNck

+


εm,1
εm,2

...

εm,Ns

 ,
or in shorthand form as

ak = Rwk + εm, (12.12)

where the random vector εm has a multivariate normal distribution with

mean vector 0 and variance-covariance matrix Σm. Most applications as-

sume that Σm = σ2
mI, where I is the identity matrix, and they also ignore

channel noise, in which case R is replaced by E[R]. In these cases, the only

free parameters in the model are the weights w1k, w2k, ..., wNck and σ2
m. Note

that under these conditions, Eq. 12.12 has exactly the same form as the GLM

in statistics, which is usually stated as y = Xβ+ ε. As a result, if we assume

that ak is linearly related to the observed BOLD response, then we can es-

timate the unknown weights in wk by solving the normal equations of the

GLM (more on this shortly).

Equation 12.12 applies the encoding model to activity values from a single

voxel. It is straightforward to extend the model to multiple voxels in an ROI.

Adding more voxels does not change E[R] since all voxels are exposed to the

same stimulus events on every TR. Even so, the model allows two voxels to

respond differently to the same stimulus because the channels might have

different relative frequencies in the two voxels. So for every new voxel that

is added, a new set of weights must be estimated. Mathematically, this is

easily done by replacing the vector of weights w with a matrix W in which

column k contains the weights associated with voxel k. The vector of voxel

activities ak is expanded to a matrix A in which column k contains ak and

we also need to add a new noise vector for each new voxel. These changes

lead to the multivariate encoding model[
a1 a2 · · · aNv

]
= R

[
w1 w2 · · · wNv

]
+
[
εm,1 εm,2 · · · εm,Nv

]
,

or in shorthand form as

A = RW + Em. (12.13)

When channel noise is ignored, this model is identical to the multivariate

GLM. While each column of A represents a different activity profile (i.e.,

the vector of activities of a single voxel across stimulus conditions), each

row of A represents a different activity pattern, or the vector of activities
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across multiple voxels in response to a single stimulus condition (Diedrichsen

& Kriegeskorte, 2017). The distinction between activity profile and activity

pattern at the level of voxels is analogous to the distinction between tuning

function and population response at the level of neural channels.

Linking Neural Activation to the BOLD Response

As mentioned previously, the BOLD response is a time series. Active brain

areas consume more oxygen than inactive areas, so when neural activity

increases in an area, metabolic demands rise, and, as a result, oxygenated

hemoglobin rushes into the area. Neural activity causes an immediate oxygen

debt, and the resulting rush of oxygenated hemoglobin into the area causes

the BOLD signal to rise quickly until it eventually reaches a peak at around

6 seconds after the neural activity that elicited these responses. After this

peak, the BOLD signal gradually decays back to baseline over a period of

20–25 seconds (with the decay typically including a brief dip below baseline).

In contrast, the encoding models considered so far are static, in the sense

that the predicted aggregate neural activity ak(Si) to presentation of stimu-

lus Si is a single value. All static encoding models make the same simplifying

assumption that the amplitude of the BOLD response in a voxel is propor-

tional to the aggregated neural activation that occurs in that voxel. This

enormously simplifies the problem of linking the aggregate activity predicted

by the model to the observed BOLD response recorded in the experiment.

The only remaining problem is to estimate a single amplitude of response

from the BOLD time series. Furthermore, in most experiments, each stim-

ulus will be presented multiple times, so there will be more than one such

time series for stimulus Si. Therefore, to apply a static encoding model, a

single value that represents the amplitude of the BOLD response to stimulus

Si in voxel k must be estimated from these data. This problem is known in

the neuroimaging literature as deconvolution or unmixing, and a solution to

it is also required in decoding methods, such as multivoxel pattern analysis

(MVPA). Not surprisingly, many alternative estimators have been proposed

(e.g., Mumford, Turner, Ashby, & Poldrack, 2012; Pedregosa, Eickenberg,

Ciuciu, Thirion, & Gramfort, 2015; B. O. Turner, Mumford, Poldrack, &

Ashby, 2012).

In rapid event-related designs, which are the norm in modern fMRI re-

search, stimuli are presented within 5 seconds or so of each other, as they

are in most laboratory experiments. Since the BOLD response to neural

activity might persist for 30 seconds, this means that the BOLD signals

elicited by successive stimulus presentations will overlap in time. This over-

lap complicates the unmixing process. Mumford et al. (2012) proposed an
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efficient solution to this problem that they called Least Squares – Separate

(LSS). If there are NE separate stimulus presentations, then LSS reruns the

standard GLM regression analysis NE separate times on the data from each

voxel. In the ith of these NE runs, the GLM includes two parameters – one

regressor for the single trial on which the ith stimulus was presented and a

second nuisance regressor that models the response to all other stimuli. The

regression weight associated with the ith stimulus in this analysis is used

as an estimate of the amplitude of the BOLD response in voxel k to the

presentation of stimulus Si. We will denote the BOLD times series in voxel

k as bk(t) and the amplitude of this time series on trials when stimulus Si
is presented as b̃k(Si). This LSS method was the most effective of a variety

of alternative estimation methods investigated by Mumford et al. (2012).

After the values of b̃k(Si) are estimated for all stimuli, these can be used

to populate a vector b̃
>
k = [b̃k(S1), b̃k(S2), ..., b̃k(SNs)]

> that describes the

amplitude of the BOLD response in voxel k to all NS stimuli used in the

experiment. Similarly, after repeating this process for all voxels, we form the

matrix

B̃ = [b̃1, b̃2, ..., b̃Nv
]. (12.14)

The assumption that the BOLD response is proportional to aggregate neural

activity means that there exists some constant λ, such that b̃k = λak and

B̃ = λA, where ak and A are the aggregate activity vector and matrix

from Eqs. 12.12 and 12.13, respectively. Note from those equations that the

voxel-based encoding model therefore predicts that

b̃k = λak = R(λwk) + λεm, (12.15)

and

B̃ = λA = R(λW) + λEm. (12.16)

Therefore, the constant λ can be absorbed into the weights and error vari-

ance. In other words, the weights and error variance include an unidentifiable

constant of proportionality. This causes no problems however, because the

primary interest is not in the absolute value of the weights, but rather in

their relation to each other. For example, note that if one weight in a voxel is

twice as large as another weight, then this 2-to-1 ratio holds for any value of

λ. As a result, without loss of generality, we can ignore λ during parameter

estimation, which means that the multivariate voxel-based encoding model

can be described by

B̃ = RW + Em. (12.17)
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As mentioned previously, most applications either ignore channel noise or

assume zero-mean, additive Gaussian noise. In either case, R = E[R], Em

describes the sum of channel and measurement noise, and the weight matrix

W can be estimated from the normal equations of the multivariate version of

the GLM. In most applications, the stimuli are presented far enough apart in

time that it is safe to assume that the BOLD responses to separate stimuli

are statistically independent. For this reason, and because it is common

to assume homogeneity of variance (i.e., that each εm,k in Eq. 12.13 has a

multivariate normal distribution with variance-covariance matrix Σ = σ2
mI),

the Gauss-Markov Theorem applies, and therefore the uniformly minimum

variance, unbiased estimator of W is

Ŵ = (R>R)−1R>B̃. (12.18)

Note that Eq. 12.18 requires that R>R is nonsingular. This is possible

only if Ns > Nc , where Ns is the number of stimuli or events and Nc is the

number of hypothesized channels. So the encoding model can only be tested

against data in which there are more stimulus events than hypothesized

channels. This makes sense, because in each voxel, there are unknown free

weight parameters. To estimate these parameters uniquely, we need more

data points than parameters. Each stimulus presentation produces one data

point, so unique estimation of the weights requires that Ns > Nc. If this con-

dition is not possible, then an alternative is to introduce extra constraints

into the estimation procedure – a technique known in statistics as regular-

ization (e.g., Bickel & Li, 2006). For example, this is the method used by

Naselaris et al. (2009).

From a Bayesian perspective, regularization is accomplished by placing a

prior on W, so that some weight estimates are favored over others. This point

is important, because regularization biases inference in favor of one Ŵ over

many others that predict the same distribution of observed activity profiles

B̃. Some researchers have argued that, more than a simple technicality, this

is an important theoretical decision and should be considered an important

aspect of the final model (Diedrichsen, 2020; Diedrichsen & Kriegeskorte,

2017).

Mathematically, the combination of an encoding model for r(Si) and a

linear measurement model is equivalent to regression by linear combination

of basis functions (Hastie et al., 2009). More specifically, the model captures

the non-linear relation between stimuli Si and BOLD responses by using a

set of non-linear basis functions fc (Si,θc,x) to transform the stimuli, and

then uses a linear model on the transformed space to predict the amplitude

of the observed BOLD response b̃k.
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Figure 12.2 shows this more clearly with an example using the standard

encoding model discussed earlier. The figure depicts hypothetical data from

one voxel along with theoretical predictions of the standard encoding model

that has been linked to the linear measurement model described in Eq.

12.8. The hypothetical data are from an experiment in which a stimulus is

presented on each trial that is a random sample from some ensemble that

varies on a single physical dimension. Each open circle in the cloud of points

shown in the top half of the figure depicts a hypothetical response recorded in

this voxel on one trial. The value of each data point on the abscissa identifies

the stimulus value on that trial. We call this scatterplot the activity profile of

this voxel (following the nomenclature of Diedrichsen & Kriegeskorte, 2017),

and the dotted line represents the mean of this activity profile (sometimes

called the voxel tuning function). The channel tuning functions from the

standard encoding model are represented at the bottom, each scaled by

its corresponding weight parameter wck. So note that in this hypothetical

voxel, the most under-represented channels are centered at the stimulus

values −35 and +50. The sum of these scaled functions is represented by

the solid line at the top, which accurately approximates the observed mean

activity profile. In practice, the channel weights are estimated by fitting the

solid-line prediction of the model to the observed data – a process known in

statistics as linear regression with radial basis functions.

While more complex stimulus spaces and encoding models make the re-

sulting model more difficult to interpret, the principle is the same: the activ-

ity profile of voxel k is modeled as a linear combination of basis functions.

One issue with encoding modeling is that, in many cases, the set of ba-

sis functions will overfit the data. The reason is that the complexity and

number of basis functions is selected either arbitrarily or based on theoreti-

cal considerations (e.g., the number of populations thought to underlie the

voxel activity). In contrast, mean activity profiles are likely to be smooth

and could probably be approximated by a small number of basis functions.

For example, Figure 12.3 shows examples of mean activity profiles estimated

by Serences, Saproo, Scolari, Ho, and Muftuler (2009). Note that the pro-

files are all unimodal and smooth, and each could probably be approximated

with a single radial basis function. Although the profiles shown in this figure

were averaged across many voxels, it is unlikely that much more structured

variability would be found in single-voxel activity profiles, or at least not

variability that can be distinguished from high levels of measurement noise

common in fMRI.
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Figure 12.2 Hypothetical data from one voxel along with theoretical pre-
dictions of the standard encoding model. Each open circle in the top half
depicts a hypothetical response from this voxel on one trial of an experiment
in which the stimuli vary on a single physical dimension. The scatterplot
of data is called the activity profile of this voxel, and the dotted line is its
mean. The channel tuning functions from the standard encoding model are
shown at the bottom, each scaled by its corresponding weight parameter.
The solid line in the top half is the predicted activity profile of the standard
encoding model, which equals the sum of the weighted tuning functions.

Figure 12.3 Mean activity profiles estimated by Serences et al. (2009).
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Dynamic Encoding Models

All models considered so far are static, in the sense that they only predict

the amplitude of the BOLD response to each stimulus. In contrast, many

other encoding models are dynamic, including for example, dynamic causal

modeling (DCM; Friston et al., 2003). These models predict changes in neu-

ral activity over time – not just because of decay in the BOLD response,

but also because of dynamic changes in neural, perceptual, and cognitive

processing. Dynamic encoding models require a more detailed model, not

only of how neural activity changes with time, but also of how the BOLD

response depends on neural activity. In particular, they require a model that

predicts the entire time-course of the BOLD response, rather than just its

overall amplitude.

To begin, consider the differences between static and dynamic models

in their predictions about channel responses and aggregate neural activ-

ity. Many dynamic encoding models, including DCM, do not assume that

aggregate neural activity is driven by a population of separate channels.

Instead, in these models, aggregate neural activity is the fundamental con-

struct. DCM compensates for this simpler account of activation within any

single voxel, by using different equations to predict neural activity in differ-

ent voxels – especially voxels that are in different brain regions. In contrast,

voxel-based encoding models typically apply the same model (and model

equations) to all voxels. The goal in this case is to identify voxels in which

the observed BOLD response agrees with these predictions.

To test any encoding model against data, we first generate a predicted

activity vector for each voxel in the ROI. Let the NTR× 1 vector aDk denote

the predicted neural activity in voxel k on every TR of the experiment.

The superscript D (for dynamic) is to distinguish this vector from the static

activity vector ak described in Eq. 12.12. The two vectors are similar, in

that they both describe aggregate activity in a voxel, but note that ak has

NS rows, whereas aDk has NTR rows. The number of TRs in an experiment

cannot be less than the number of stimuli that are presented, and in most

experiments NTR will be much greater than NS . Therefore, in almost all

applications aDk will have many more rows than ak. Row i of ak describes

the predicted aggregate activity to stimulus Si in voxel k. In contrast, row

i of aDk describes the predicted aggregate activity in voxel k on TR i. The

static vector ak includes an entry for every unique stimulus that predicts the

same aggregate activity every time that stimulus is presented. The dynamic

vector aDk includes an entry that predicts the aggregate neural activity on

every TR of the experiment. So if stimulus Si is presented 10 times, then ak
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includes one value that predicts the same neural activity on each of these

10 presentations, whereas aDk will predict the effects of these 10 separate

presentations on every TR of the experiment.

To test a dynamic encoding model against data from multiple voxels, we

first generate predicted activity vectors for each of the Nv voxels in the ROI.

The next step is to form the NTR × Nv activity matrix AD that includes

aD,j as column j. Note that this matrix is similar, but not identical to

the matrix A in Eq. 12.13. They both describe aggregate activity in a set

of voxels, but the columns of AD are the dynamic activity vectors aD,j ,

whereas the columns of A are the static activity vectors aj .

If the model postulates an underlying population of channels that drive

the aggregated neural activity, then a similar generalization is used to define

the channel responses. In particular, the model is used to form the NTR×NC

channel response matrix RD that contains the predicted response of channel

c on every TR of the experiment in column c and the predicted response of

all channels on TR i in row i. Note that the relationship between RD and the

static channel response matrix R of Eq. 12.11 is similar to the relationship

between AD and A. Given this dynamic channel response matrix, aggregate

neural activity is predicted using a dynamic version of Eq. 12.12:

aDk = RDwk + εD,m, (12.19)

where theNTR×1 random vector εD,m has a multivariate normal distribution

with mean vector 0 and variance-covariance matrix ΣD,m. Note that the

weight vector wk is identical in the static and dynamic models. In both

cases, it specifies the relative contribution of each channel to the aggregate

activity. The multi-voxel version of Eq. 12.19 is

AD = RDW + ED,m (12.20)

where W is defined exactly as in Eq. 12.13.

The next problem is to model the effects of dynamic changes in aggregate

neural activity on TR-by-TR changes in the BOLD response. This is a prob-

lem that has received enormous attention in the fMRI literature. Almost all

current applications of fMRI assume that the transformation from neural

activation to BOLD response can be modeled as a linear, time-invariant

system. Although a detailed examination clearly shows that the transforma-

tion is, in fact, nonlinear (e.g., Boynton, Engel, Glover, & Heeger, 1996), it

also appears that the departures from linearity are not severe if the stim-

uli are of high contrast and brief exposure durations are avoided (Vazquez

& Noll, 1998). These two conditions are commonly met in fMRI studies of

high-level cognition.
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Any linear, time-invariant system is completely characterized by its im-

pulse response function, h(t), which is the output of the system to an input

that is an idealized impulse. More specifically, let a(t) and b(t) denote the

(continuous-time) input and output of a dynamical system at time t, respec-

tively. Then if the system is linear and time-invariant

b(t) = a(t) ∗ h(t) =

∫ ∞
0

a(τ)h(t− τ)dτ, (12.21)

for any input and for all time t (e.g., C. T. Chen, 1970).

In dynamic encoding models, the input a(t) is aggregate neural activity,

the output b(t) is the BOLD response, and the impulse response function

h(t) is commonly referred to as the hemodynamic response function (hrf).

There are a variety of different methods for selecting a functional form for

the hrf (e.g., Ashby, 2019). Common choices include a gamma function or a

difference of gamma functions. Some researchers have also used boxcar func-

tions with one or more ones around the peak of the hrf and zeros elsewhere

(e.g., Çukur, Nishimoto, Huth, & Gallant, 2013; Huth, Nishimoto, Vu, &

Gallant, 2012; Nishimoto et al., 2011). In all cases, however, parameters are

chosen so that the resulting hrf peaks at around 6 sec and then decays back

to 0 after 30 sec or so.

Dynamic encoding models make dynamic predictions about how neural

activation a(t) changes moment-by-moment. Therefore, in such models, Eq.

12.21 is used to convert model predictions to values of the observed depen-

dent variable – that is, to values of the BOLD response b(t).

Equation 12.21 assumes that the BOLD response is measured in con-

tinuous time. In practice, however, the BOLD response is measured only at

discrete time points separated by a fixed amount of time equal to the TR. So

rather than a continuous-time integral, the Eq. 12.21 convolution is done in

discrete time. This can be accomplished using simple matrix multiplication

by loading values of the hrf into the appropriate Toeplitz matrix.1

The Toeplitz matrix, which has order NTR×NTR, includes a time-lagged

discrete representation of the hrf in each column. To build the matrix, we

begin by discretizing the hrf in a way that is similar to how we discretized the

neural predictions of the model. The only difference is that any reasonable

model of the hrf will include nonzero values only for 30 sec or so, whereas

the functional run is likely to last 5 minutes or longer. Suppose we assume

that the BOLD response to an impulse of neural activation persists for at

most Nh TRs (since the hrf is an impulse response function). Then our

1 A Toeplitz matrix is any matrix in which all descending diagonals are filled with the same
value.
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discretized version of the hrf will be a vector h> = [h1, h2, ...hNh
]>, where

hi = h(t = i×TR). Next, we use h to build the appropriate Toeplitz matrix:

H =



h1 0 0 . . . 0

h2 h1 0 . . . 0

h3 h2 h1 . . . 0
...

...
...

...

hNh
hNh−1 hNh−2 . . . 0

0 hNh
hNh−1 . . . 0

0 0 hNh
. . . 0

...
...

...
...

0 0 0 . . . hNh


. (12.22)

Given this matrix, the discrete-time version of the Eq. 12.21 integral reduces

to the simple matrix multiplication:

b = a (t) ∗ h (t) = HaD. (12.23)

Therefore, note that the dynamic encoding model predicts that the observed

BOLD response in voxel k on each TR equals bk = HaD,k.

The dynamic version of the voxel-based encoding model, which assumes

that aggregate activity is driven by a population of channels, is generalized

from Equation 12.20 by noting that the predicted aggregate activity matrix

AD = RDW and therefore the predicted NTR×Nv BOLD response matrix

B = HAD. Combining these produces the multi-voxel, dynamic voxel-based

encoding model:

B = HRDW + ED, (12.24)

where ED is now a combination of noise at the level of neural channels, voxel

activities, and BOLD responses.

The traditional GLM analysis of fMRI data, which is typically imple-

mented in the popular fMRI data analysis software packages SPM and FSL,

can be considered a special case of Eq. 12.24 (van Gerven, 2017), in which

different channels respond to different stimulus events (e.g., each different

type of stimulus, the participant’s response, feedback, etc.), and each chan-

nel response is a boxcar function of zeros and ones, representing the absence

and presence, respectively, of that event on each TR. Therefore, the true con-

tribution of encoding models is not in the linearized measurement model,

which was already available in the standard GLM approach, but rather in

the much more detailed models of the possible computations performed by

each channel.
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The models we have considered so far all assume that the transformation

from neural activity to BOLD response can be modeled as a linear, time-

invariant system. More detailed models attempt to account for nonlinearities

in the BOLD response. The most popular is the balloon model (Buxton,

Wong, & Frank, 1998), which models key biomechanical properties of the

brain’s vasculature. The balloon model accounts for the conflicting effects of

dynamic changes in both blood oxygenation and blood volume and assumes

that the blood flow out of the system depends on a balloon-like pressure

within the vasculature. For example, when the blood flow is high, the walls

of the blood vessels are under greater tension, and as a result they push

the blood out with greater force, which reduces the rate at which oxygen is

extracted from the hemoglobin. DCM, as implemented in the fMRI software

package SPM (i.e., DCM10/SPM8), converts predicted neural activations to

BOLD responses via a generalization of the balloon model. In contrast, most

encoding models settle for a linear systems approach, and therefore instead

convert predicted neural activations to BOLD responses via the convolution

integral of Equation 12.21.

12.2.3 Population Receptive Fields

The population receptive field (pRF) of a voxel is a description of the region

of the visual field where stimulus presentations produce an fMRI response

(Dumoulin & Wandell, 2008; Wandell & Winawer, 2015). For example, panel

(a) in the right column of Figure 12.4 shows the pRF of the traditional

approach, which assumes that the pRFs of all individual neurons in a voxel

can be described by a single population-level pRF.

In its traditional implementation, the presented stimulus is represented by

an indicator function s(x, y) = {0, 1}, where the values 0 and 1 denote the

absence and presence, respectively, of any part of a stimulus at spatial coor-

dinates (x, y). The pRF is modeled by a two-dimensional isotropic Gaussian

in the same space:

g(x, y) = exp

[
(x− x0)2 + (y − y0)2

2ς2

]
, (12.25)

where (x0, y0) is the center (i.e., mean) and ς the spread (i.e., standard

deviation) of the receptive field. The predicted response of a voxel in which

the pRFs of all neurons can be described by this single population-level pRF

is computed by location-by-location multiplication of the stimulus value and
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Figure 12.4 The population receptive field (pRF) method can be seen as an
application of encoding modeling. (a) In the traditional approach, the pRFs
of all individual neurons in a voxel can be described by a single population-
level pRF (Dumoulin & Wandell, 2008). (b) Mixture pRFs assume the voxel
includes channels with different receptive fields (Sprague & Serences, 2013).
(c) pRF topography assumes that the receptive field of each channel in the
voxel is a Kronecker delta function (Lee et al., 2013).

the voxel pRF and then summing all these responses:

r(si) =

∫ xU

xL

∫ yU

yL

si(x, y)g(x, y)dxdy, (12.26)

where xL, xU , yL, and yU represent the lower (L) and upper (U) boundaries

of the visual field along the x and y coordinates. As in most applications,

the model implicitly assumes that r(si) includes additive Gaussian neural

noise. The voxel activity is assumed to be a scaled version of the population

response

ak(si) = w r(si), (12.27)
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and the BOLD response is modeled as described in the previous section.

Estimating the pRF of a voxel is done by finding the values of the parameters

x0, y0, and ς that allow the model to provide the best possible fit to the

observed BOLD response.

The pRF technique is usually considered an alternative to the linearized

encoding modeling that is the focus of this chapter, but it can also be seen

as a special case of the general encoding model framework. As shown in

Figure 12.4a, the problem of estimating a pRF can be recast as an encoding

modeling problem. First, one creates an encoding model with a large number

of channels, each having a receptive field with a slightly different position

and size, as illustrated in the left column of Figure 12.4. Second, to mimic

the traditional pRF approach, one constrains all channel weights to be zero

except for one, in order to accommodate the assumption that the pRFs of

all neurons in the voxel can be modeled by one population-level pRF, and

therefore that the data from each voxel can be modeled by a single channel.

The traditional pRF approach is therefore equivalent to assuming a large

number of channels that densely cover the space of possible size and location

parameters, and then finding the single nonzero weight that provides the best

fit to the data. The single channel with a nonzero weight has the position

and size of the traditional pRF.

Of course, a more traditional encoding model that includes many channels

also could be used to describe the pRF (see Figure 12.4b). This model would

include nonzero weights for multiple channels, with each channel character-

ized by a receptive field of different position and size. Sprague and Serences

(2013) used such a mixture model to study the effects of spatial attention on

neural representations in visual cortex. After the model is fitted to data, the

pRF is equivalent to the predicted mean activity profile (the solid line curve

in the top half of Figure 12.2). The resulting pRF is likely to be similar to

the one obtained by assuming a single channel, but this encoding modeling

approach has the advantage of more transparently reflecting the empirical

observation that the voxel pRF is a mixture of multiple neural receptive

fields of smaller size (Dumoulin & Wandell, 2008).

Other advantages of describing pRFs as applications of encoding mod-

eling are that it encompasses other techniques proposed to obtain pRFs,

it facilitates the understanding of how different techniques relate to one

another, and suggests new techniques that could be useful in research. Be-

cause the linearized encoding model can be understood as linear regression

with basis functions, alternative pRF models are easily obtained simply by

changing the basis functions or the constraints used to estimate weights.

For example, Lee, Papanikolaou, Logothetis, Smirnakis, and Keliris (2013)
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proposed an alternative method for estimating pRFs, illustrated in Figure

12.4c, which uses Kronecker delta functions (i.e., impulses) as the basis set.

In this approach, the pattern of estimated weights directly models the pRF

topography.

Insights obtained from the pRF approach could also benefit encoding mod-

eling more generally. In particular, pRFs are defined in the stimulus space

and their parameters have interpretable units, which allows researchers to

make meaningful comparisons across participants, conditions, and measure-

ment instruments (Wandell & Winawer, 2015). As discussed in the next

section, the parameters of a fitted encoding model can be difficult to in-

terpret. The pRF approach, however, allows researchers instead to focus on

characterizing, for each voxel, the mean activity profile predicted by a fitted

encoding model (solid curve in the top half of Figure 12.2). Most commonly

this means estimating the mode and spread of the mean activity profile,

but other features of the function (support, derivatives, etc.) may also be

informative. Unlike the traditional pRF approach, an encoding modeling

approach could describe selectivity along any stimulus dimension, not only

spatial sensitivity within visual field space.

12.2.4 Feature Spaces and Model Interpretation

The development so far is quite general, in the sense that it encompasses

voxel-based encoding models, the standard GLM approach to constructing

a statistical parametric map, population receptive fields, and model-based

fMRI (developed in more detail below). What is common to these different

approaches is the use of a linear measurement model with Gaussian noise

(i.e., the GLM). They differ mainly in how they define a channel and a

channel response [i.e., rc(Si)]. The space of channel responses is sometimes

called feature space (e.g., Diedrichsen, 2020), and the power and flexibility

of the encoding modeling approach lies in the possibility of choosing among

many different feature spaces.

For example, Naselaris et al. (2009) constructed one voxel-based encoding

model in which each channel was a Gabor wavelet and another in which each

channel responded to a different semantic category of objects – for example,

birds, fish, or vehicles. Whereas the Gabor wavelet encoding model gave

good accounts of BOLD responses in low-level visual cortical areas, the

semantic encoding model gave good accounts in high-level association areas.

So an encoding model approach can be used to identify brain regions that

are sensitive to whatever features are hypothesized to drive the channel
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responses. A model based on features that do not match any set of channels

in the brain should provide a poor account of BOLD responses in all ROIs.

The Gabor wavelet model was motivated by a long line of vision research

on the sensitivity of V1 neurons to spatial frequency and orientation. In the

case of high-level visual areas, however, the decision about how to define the

channels is often more arbitrary. For example, in the case of the semantic-

encoding model, the decision was made to include channels that respond to

the presence of certain categories of natural objects (e.g., birds and fish), but

not others, and the object classes that were chosen had to be hand coded

in every image by human observers (e.g., does this image contain a bird?).

More recently, there have been a number of attempts to identify features,

and therefore to define the underlying channels, by using artificial neural

networks (e.g., Eickenberg, Gramfort, Varoquaux, & Thirion, 2017; Güçlü

& van Gerven, 2015). The general approach is to construct a multilayer

neural network – commonly a deep convolutional neural network – and then

train it to classify a database of natural images. After training, the output

of each layer is interpreted as a different possible set of channel responses,

and these are compared to the BOLD responses from different ROIs within

the visual system.

For example, Güçlü and van Gerven (2015) trained a deep neural network

that included 5 convolutional and 3 fully connected layers to classify images

into 1 of 1000 different object categories. The network was trained on a

database of around 1.2 million natural images using a supervised learning

algorithm. After training was complete, each of the 8 layers of the network

were used to define 8 different possible sets of channels, and therefore 8 dif-

ferent encoding models. Each of these 8 models was then tested against the

fMRI data reported by Naselaris et al. (2009) by using an output model sim-

ilar to Eq. 12.12. Overall, the models gave good accounts of visual responses

across the entire ventral stream. Furthermore, the BOLD responses in early

visual areas were best accounted for by early network layers, whereas in

higher-level (i.e., downstream) visual areas, the BOLD responses were best

fit by higher-level network layers.

The neural network used in this application included some features that

were inspired by neural processing in the human brain (e.g., convolutional

layers). But the model has much closer ties to the machine-learning literature

than to neuroscience. Essentially, it can be viewed as an attempt to build an

optimal model of object classification. The fact that it gives a good account

of BOLD responses in visual cortex as humans view images of natural scenes

suggests that the human visual system may have evolved to optimize object

classification.
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In sum, the feature space can be the response of filters to images, the re-

sponses of units in a deep neural network, variables in an abstract cognitive

model, labels applied by researchers to their stimuli, etc.. This flexibility

allows researchers to propose multiple competing feature spaces to explain

neural activity in a particular brain region, and use model selection tech-

niques (Zucchini, 2000) to choose one that describes the data best without

overfitting. Ideally, the set of competing models would include only feature

spaces that are theoretically relevant, preferably supported by evidence from

past research.

Unfortunately, the flexibility and power of encoding models also leads

to a number of issues of model interpretation. The first problem is that

sometimes it is unclear whether the feature space is a representation of the

stimuli Si or of the neural channel responses rc. Many encoding models pro-

vide a separate notation for stimuli and channel responses, together with

equations indicating how to compute channel responses given the presenta-

tion of a stimulus. On the other hand, some applications have used a set of

hand-coded stimulus labels as the feature set (e.g., Çukur et al., 2013; Huth

et al., 2012), with binary indicator variables used to represent such labels.

In this case, it is unclear whether those variables are assumed to represent

the presence of a stimulus or the response of a channel that is dedicated

to the detection that stimulus. If one assumes that the feature space is a

representation of the stimuli, then the linear measurement model assumes

a linear mapping, not only from channels to measurements, but also from

stimuli to neural responses. Both would be described by the estimated pa-

rameter matrix Ŵ (i.e., from Eq. 12.18). On the other hand, if one assumes

that the labels are a representation of channel responses (i.e., populations of

neurons that are active when the stimulus feature is presented), then there

is an unknown transformation between Si and rc, which is likely nonlinear

and is not explicitly modeled. The way in which most researchers discuss

their results suggests that the latter interpretation is most common. For

example, when Naselaris et al. (2009) compared the Gabor wavelet model

against the semantic model that was constructed by hand-coding labels in

each image, they implicitly assumed that both models were identical except

for the type of features to which the underlying channels were tuned. What

this type of comparison does not take into account is the quality of the

encoding models themselves. For example, only the Gabor wavelet model

provides an explicit mechanistic description of how each channel responds

to any possible stimulus.

The second issue has to do with the interpretation of the weight matrix

Ŵ. It is tempting to interpret estimated weights as providing information
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about the relative importance of different channels in the activity of a given

voxel. This was the interpretation we assigned each weight when building the

model (e.g., see Eq. 12.8). However, those were forward inferences, whereas

interpreting entries in Ŵ after model fitting is a backward inference. And in

the case of encoding models at least, backward inferences are tricky. There

are multiple reasons why the entries in Ŵ might not provide the expected

weight information (Kriegeskorte & Douglas, 2019). For example, in most

cases, channels are not chosen to provide responses that are independent of

each another, so multicollinearity among the channel responses may occur.

Under these circumstances, weights are difficult to interpret because they

do not reflect the effect of each channel independently from all others. In

addition, some models are over-parameterized, in the sense that many dif-

ferent weight matrices describe the data equally well (i.e., so R>R in Eq.

12.18 is singular). In practice, such identifiability problems are solved using

regularization, but this reflects the choice of a particular prior over weights

(Diedrichsen & Kriegeskorte, 2017). A channel with a large weight under

one prior could have no weight under a different prior, so interpretation of

weights should take into account what assumptions about the measurement

model are implemented by the chosen prior.

A third, related issue has to do with interpreting the success of an encoding

model to describe data from a given voxel as evidence that the feature space

of the model is represented in the voxel. This is called the feature fallacy

error because, for any given feature space used to describe voxel activities,

there are an infinite number of other feature spaces that will make the exact

same predictions, given that the matrix of weights Ŵ is modified accordingly

(e.g., by choice of an appropriate prior; Diedrichsen 2020; Diedrichsen and

Kriegeskorte 2017).

Gardner and Liu (2019) recently showed why this is the case for the stan-

dard linearized encoding model described by Eq. 12.13. For example, con-

sider a model, call it Model 1, in which the predicted activity matrix A

equals

A = R1W1, (12.28)

where R1 is the expected value of the channel response matrix. Now consider

a second model, Model 2, that postulates a different set of expected channel

responses R2 that are linearly related to the Model 1 responses via

R2 = R1P, (12.29)

where P is some Nc ×Nc nonsingular matrix. Therefore, note that the pre-
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dicted aggregated activity matrix for Model 2 equals

A2 = R2W2 = R1PW2. (12.30)

Now if W2 = P−1W1, it follows that

A2 = R1PP−1W1 = R1W1 = A1, (12.31)

and therefore, both models predict exactly the same aggregated activity

matrix, even though they postulate different channel responses and differ-

ent weights. Diedrichsen and Kriegeskorte (2017) argued that similar model

identifiability problems arise even when weights are estimated using regu-

larization rather than by solving the normal equations (as in Eq. 12.18).

The identifiability and model mimicry problems that are endemic to en-

coding models are likely not restricted to models that span the exact same

linear subspace. This becomes clear if we refer back to the Figure 12.2 ex-

ample, which we used to illustrate that encoding models are a form of linear

regression with radial basis functions. The radial basis functions illustrated

in the bottom part of Figure 12.2 are not the only ones that could pro-

vide a good fit to the activity profile shown in the top part of the figure.

Given enough channels, a model in which the basis functions are polynomi-

als, splines, or even simple step functions could provide an arbitrarily good

fit (see Hastie et al., 2009).

What all this means is that one must be extremely careful when inter-

preting the success of an encoding model in terms of its basis functions or

features. Sometimes a particular set of features is theoretically important,

neurobiologically motivated, or simply easier to interpret. All of these are

good reasons to prefer one basis set over others. At the same time, however,

it is essential to acknowledge that the fit and predictive performance of a

model do not guarantee, by themselves, that an ROI encodes stimuli using

that specific basis set.

12.3 Model Inversion

Although encoding models provide the best opportunity to make causal in-

ferences from fMRI data (Weichwald et al., 2015), decoding methods offer

their own distinct advantages (e.g., Naselaris et al. 2011). One is that they

allow decoding accuracy to be compared directly to human behavioral per-

formance in each ROI. For example, D. B. Walther, Caddigan, Fei-Fei, and

Beck (2009) compared the confusions that human observers made when cat-

egorizing natural scenes with the confusions made by an MVPA classifier

in a variety of different visual ROIs. Although the human observers made
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fewer errors, the pattern of confusions made by the MVPA classifier in the

parahippocampal place area was similar to the pattern of confusions made by

the humans, whereas the pattern of confusions made by the classifier in V1

was not correlated (at least, not significantly) with the pattern made by the

humans. Thus, this result supports a model in which the parahippocampal

place area plays a key role in scene classification behavior.

Carlson and colleagues extended this approach by assuming that the ob-

server’s response time on each trial is related to the distance of the activ-

ity pattern to the best-fitting linear bound of an MVPA classifier (Carlson,

Ritchie, Kriegeskorte, Durvasula, & Ma, 2013; Grootswagers, Cichy, & Carl-

son, 2018; Ritchie & Carlson, 2016; Ritchie, Tovar, & Carlson, 2015). The

assumption that response time is inversely related to the distance between

the percept and a decision bound has a long history in mathematical psy-

chology (e.g., Ashby & Maddox, 1994; Murdock, 1985). Thus, if a particular

brain region stores information that is extracted for behavioral performance,

then it is likely that distances-to-bound obtained from a classifier trained

on data from that region will correlate with response times and similar be-

havioral measures. Using this approach, the Carlson group has shown that

brain regions that provide information that is read out for behavior are only

a subset of the brain regions that contain decodable information.

Decoding methods are also popular because they provide the basis of the

popular claims that fMRI can be used for mind reading (Haynes & Rees,

2006). In these applications, the BOLD responses are decoded to predict

the stimulus event that occurred. Many exciting possibilities have been pro-

posed – from communicating with patients who were diagnosed to be in

a vegetative state, to lie detection, to enabling people to control external

devices via thought (DeCharms, 2008).

Researchers who develop and test encoding models can exploit many of the

advantages of decoding approaches via model inversion, which is the process

of constructing a decoding scheme by inverting an encoding model. Perhaps

the most immediate benefit of this process is that it allows unique tests

of the encoding model that would otherwise be impossible. For example,

a valid encoding model that accurately predicts how the BOLD response

differs when different stimuli are presented should also be able to predict

which stimulus was presented simply by examining the BOLD response on

each trial. In mathematical psychology, the validity of a model is typically

assessed by examining its ability to predict what response was made (and

perhaps also the response time), given knowledge of the stimulus. An in-

verted encoding model allows tests in the opposite direction – that is, it
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allows a test of the model’s ability to predict what stimulus was presented,

given knowledge of the response.

An encoding model predicts the aggregate activity in a voxel given knowl-

edge of the stimulus (e.g., see Eq. 12.8). More specifically, a complete en-

coding model should predict the probability density function of aggregate

activity in voxel k on trials when stimulus Si is presented – that is, P (ak|Si).
In this approach, Bayes’ rule is used to to invert the model:

P (Si|ak) ∝ P (ak|Si)P (Si), (12.32)

where P (Si) is the prior probability that stimulus Si is presented. When

stimuli are modeled in a physical stimulus space, such as the pixel space used

to construct each stimulus, model inversion allows for full reconstruction

of the presented stimulus. Of course, decoding is possible without the use

of an explicit encoding model, as in MVPA, by training machine-learning

algorithms to extract information about stimuli from activity patterns (see

Pereira et al., 2009).

The Eq. 12.32 decoding scheme operates directly on the model’s predicted

aggregate activities. As we saw earlier however, many models predict that

aggregate activity is determined by the responses of a population of un-

derlying channels (e.g., as in Eq. 12.8). These hypothesized channels have

important consequences for model inversion. In particular, in addition to

using the observed BOLD response to make inferences about what stimu-

lus was presented (i.e., stimulus decoding), model inversion often makes it

possible to use the observed BOLD response to make inferences about the

channel responses, which typically are unobservable. Estimating the channel

responses from a decoding scheme is a form of population response recon-

struction.

Of course, if the channel responses are observable, then they could also be

used for stimulus decoding. In other words, one could predict the presented

stimulus either from the aggregated activity (i.e., the BOLD response) or

from the channel responses. It is very important, however, to keep the dis-

tinction between these two forms of stimulus decoding in mind when in-

terpreting the results of encoding and decoding studies. For example, the

act of perception is a form of stimulus decoding because the brain must

use neural activity to make inferences about the presented stimulus. But

this decoding process must use channel responses. In fMRI experiments, the

aggregate activity is the total neural activity in tens of thousands of neu-

rons located in an arbitrarily defined cube of the brain. The neurons in this

cube likely project to a variety of different targets, and therefore the down-

stream neurons are driven by the channels, not by the aggregated activity.
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Conversely, note that the fMRI experimenter has indirect access to the ag-

gregated activity (i.e., via the BOLD response), but typically has no access

to the responses of individual channels. Therefore, whereas the brain can

only decode the stimulus from the channel responses, the experimenter can

only decode the stimulus from the aggregated activity. Despite this impor-

tant difference, it is common to find conflation of r (the channel response to

stimulus Si) and ai (the aggregate activity in response to stimulus Si; e.g.,

Bobadilla-Suarez, Ahlheim, Mehrotra, Panos, & Love, 2020; Diedrichsen &

Kriegeskorte, 2017), which may lead to incorrect theoretical conclusions.

During model inversion, researchers usually distinguish between training

and testing data. The standard approach is to first use a set of training data

from some ROI to fit the encoding model (i.e., estimate all free parameters).

Next, the encoding model is inverted to create a decoding scheme. Finally,

the decoding method is tested against new validation data from the same

ROI.

To begin, let B̃train and B̃test denote the data matrices collected in the ROI

during training and testing, respectively. Both matrices have order Ns×Nv

and, as described by Eq. 12.14, they contain the amplitude of the BOLD

response to all NS stimuli in all Nv voxels. Row i summarizes the BOLD re-

sponse to stimulus Si in every voxel, and column k summarizes the response

in voxel k to every stimulus. Now consider encoding models in which aggre-

gate activity is assumed to depend on responses from an underlying popu-

lation of channels. In these models, the channel-response matrix R depends

on exactly which stimuli are presented and on their order of presentation.

The training and testing data might come from trials that present the same

stimuli, but even in this case the order of stimulus presentation will typically

differ. Therefore the channel-response matrices for training and testing will

differ. Denote these two matrices by Rtrain and Rtest, respectively. Although

encoding models assume the expected values of these two matrices will differ,

they assume that the matrix of channel weights W will be the same during

training and testing. This is because W depends on the relative frequencies

of the different channels in the voxels within the search set, but not on the

stimuli that are presented (i.e., see Eq. 12.13).

12.3.1 Population Response Reconstruction

Given that the population responses of the hypothesized channels are not

directly observable with fMRI, an interesting application of model inversion

is to estimate these responses (Brouwer & Heeger, 2009). In fact, this one

application is what researchers in the literature usually refer to as “inverted
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encoding modeling” or IEM (e.g., Gardner & Liu, 2019; Liu, Cable, & Gard-

ner, 2018; Sprague et al., 2018; Sprague, Boynton, & Serences, 2019).

According to the multivariate encoding model described in Eq. 12.17,

the predicted (i.e., mean) BOLD amplitude during training equals ̂̃Btrain =

E[Rtrain]Ŵ. Note that ̂̃Btrain and B̃train are different. The former is the

predicted BOLD response according to the model, whereas the latter is the

observed BOLD response. Now to fit the encoding model to the training

data, we first compute E[Rtrain] from the model, and then use B̃train to

compute Ŵ (from Eq. 12.18). Our goal is now to use the Ŵ matrix we

estimated from the training data and the observed voxel activities during

testing (i.e., B̃test) to estimate the matrix of expected population responses

E[Rtest], which we abbreviate as R̂test. If we know these channel responses

then we can infer which stimulus was presented simply by comparing the es-

timated channel responses (i.e., the rows of R̂test) to each row of the original

expected channel-response matrix E[Rtrain] (see Eq. 12.14) – assuming that

the stimuli presented during testing were all presented one or more times

during training.

At testing, the encoding model predicts that the BOLD responses should

equal ̂̃Btest = R̂testŴ. (12.33)

Our goal is to solve for R̂test. Unfortunately however, since at this stage of

the analysis R̂test is unknown, so is ̂̃Btest. If we did know ̂̃Btest, then we could

just solve for R̂test. Ester, Sprague, and Serences (2015) proposed estimatinĝ̃Btest with the observed data B̃test, and then solving the resulting equation

for R̂test. This process produces the following estimator: 2

R̂test = ̂̃BtestŴ
>
(
ŴŴ>

)−1
. (12.37)

Note that Ŵ has order Nc × Nv, so
(
ŴŴ>

)−1
exists only if Nv ≥ Nc

2 If we estimate the predicted matrix ̂̃Btest with the observed data matrix B̃test, then Eq.
12.33 becomes

B̃test = R̂testŴ. (12.34)

Multiplying both sides by Ŵ>(ŴŴ>)−1 produces

B̃test[Ŵ
>(ŴŴ>)−1] = R̂testŴ[Ŵ>(ŴŴ>)−1], (12.35)

which implies

R̂test(ŴŴ>)(ŴŴ>)−1 = B̃testŴ
>(ŴŴ>)−1, (12.36)

from which Eq. 12.37 easily follows.
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– that is, only if there are at least as many voxels in the ROI or searchlight

as there are channels. Adding more voxels to the ROI adds more data (i.e.,

each new voxel adds a column to B), but the size of the search volume does

not affect the size of R (since R has order Ns × Nc). So the more voxels

there are in the search volume, the more data we have to estimate the rows

of E[Rtest].

As an example of how Eq. 12.37 is applied, Ester et al. (2015) used this ap-

proach to study visual representations during the delay period of a working-

memory task in which subjects had to remember the orientation of a briefly

presented Gabor pattern. The encoding model assumed 9 different orien-

tation channels. They used a leave-one-run-out cross-validation procedure

(e.g., see Ashby, 2019) in which they fit the encoding model to the data

from all but one functional run by estimating the weight matrix W from

these data using Eq. 12.18. Next, they used the data from the single withheld

functional run to invert the encoding model – that is, to estimate E[Rtest]

from Eq. 12.37, which provided an estimate of the channel responses during

the delay period of each trial of the withheld run. In brain regions that main-

tain a visual representation of the stimulus during the delay period, the esti-

mated channel responses should peak at the to-be-remembered orientation,

whereas in any other region, the channel responses should all be roughly

the same. Using this approach Ester et al. (2015) were able to identify a

broad network of frontal, parietal, and occipital regions that maintained a

high-fidelity visual representation during the delay period.

This method has also been used to study how psychological factors such as

attention (Garcia, Srinivasan, & Serences, 2013; Sprague & Serences, 2013),

working memory (Ester, Anderson, Serences, & Awh, 2013), or learning

(Byers & Serences, 2014; Ester, Sprague, & Serences, 2020) influence pop-

ulation responses. In these studies Ŵ is estimated from training data, and

then separate population responses are estimated from data collected in two

or more test conditions (using Eq. 12.37), each run under different levels

of the psychological factor (e.g., with and without attention). Finally, these

separate estimates are all compared.

Recall that row i of R lists the response of each channel in the population

to presentation of stimulus Si. If the tuning functions all have the same

shape during both training and testing (i.e., the model is homogeneous),

then each row of R should peak at the channel most sensitive to Si and then

decay as predicted by the channel tuning function fc(Si,θc,x) (i.e., see Eq.

12.1). To estimate this function, it is common to shift the rows in R̂test so

that the peak of the response is in the same place across all channels (this is

usually facilitated by the use of circular dimensions, such as orientation or
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color), followed by averaging of responses across rows. However, this method

will fail if tuning is not homogeneous, which could happen for instance, if

the test condition influences some channels more than others (Hays & Soto,

2020).

There has been much recent controversy regarding the correct interpre-

tation of population responses that are estimated by inverting an encoding

model (e.g., Gardner & Liu, 2019; Liu et al., 2018; Sprague et al., 2018,

2019). What does it mean to find, for example, that attention narrows the

estimated population responses, or that it increases their amplitude? When

the standard encoding model is assumed, a change in the channel tuning

function fc(Si,θc,x) produces a corresponding change in the population re-

sponses. However, the converse is not necessarily true: if Eq. 12.37 is used to

estimate the population responses, then a change in those estimates across

conditions does not imply a corresponding change in the channel tuning

functions.

For example, Liu et al. (2018) reported evidence that the Eq. 12.37 es-

timates of the population responses can be biased by noise. They ran an

experiment in which gratings were presented at one of two different con-

trasts. Single-unit electrophysiology shows that orientation tuning is con-

trast invariant, so the width of the orientation channels should be the same

for the two contrasts. Therefore, the population responses estimated via Eq.

12.37 should be contrast invariant. In violation of this prediction, Liu et al.

(2018) found that the estimated population response widths were greater

for the low-contrast gratings and they reported results of simulations sup-

porting the hypothesis that this apparent bias was the result of decrements

in signal-to-noise ratio that occur when contrast is reduced.

Sprague et al. (2018) defended the inverted encoding model approach of

Eq. 12.37 by correctly pointing out that its goal is to make inferences about

population responses r, not about individual tuning functions fc(Si,θc,x).

However, there seems to be lack of clarity regarding the correct interpre-

tation of an estimated population response. In terms of brain processing,

channel responses are important because they are the input for downstream

neurons that are part of the decoding network that makes perception possi-

ble (and more generally, any behavior). Any narrowing of the tuning func-

tion that might be caused, for example, by attention, therefore provides

more precise downstream information for decoding. For this reason, Liu et

al. (2018) are also correct when they point out that the information available

for stimulus decoding is better characterized by the posterior distribution

over stimuli P (Si|ak) (i.e., see Eq. 12.32) than by any reference to population

responses (Van Bergen et al., 2015).
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A focus on P (Si|ak) would also avoid a common issue in the literature,

which is that many researchers interpret estimated population responses

by reference and comparison to tuning functions from single-cell record-

ings, rather than by focusing on what population responses would mean for

downstream processing. This is likely the result of how foreign the concept

of a population response is to an experimental neuroscientist. Electrophys-

iologists rarely measure the response of multiple neurons or populations to

a single stimulus. Instead, they typically measure the response of a single

neuron or small number of neurons to many stimuli. For this reason, when

Sprague et al. (2018) discuss population responses, a casual reader could

misinterpret their use of “population-level channel response functions” as

something like the channel tuning functions fc(Si,θc,x), rather than to their

intended meaning as a pattern of distributed activity across channels (i.e.,

r).

On the other hand, a focus on P (Si|ak) does not solve all the issues with

model inversion highlighted by the Liu et al. (2018) results. In particular,

inversion of an encoding model that does not capture some of the data-

generating mechanisms will often lead to the wrong conclusions. In the Liu

et al. (2018) study, the mechanism left out of the model was the influence

of contrast on signal-to-noise ratio. Unfortunately, whether one inverts the

model to obtain estimates of r or P (Si|ak), such estimates will be biased

when the encoding model is grossly incorrect.

Although Eq. 12.37 provides biased estimates of channel tuning functions,

it nevertheless is widely used because an important goal of experimental

neuroscience is to make inferences about channel tuning functions from neu-

roimaging data. The obvious way to do this would be to estimate the parame-

ters of the tuning functions via model fitting to the data (e.g., using adaptive

basis functions), and then make these the target of inference rather than the

population responses. A problem with this solution is that encoding mod-

els are already complex, so adding free parameters is likely to increase the

identifiability problems that already exist. Sadil, Huber, and Cowell (2021)

recently addressed this issue by constraining the one-dimensional encoding

model (see Eq. 12.4) in multiple ways. First, they assumed that tuning func-

tions for all channels are identical except for their preferred stimulus (i.e.,

homogeneous population code). Second, they avoided the many free weight

parameters that characterize standard encoding models (as in the Eq. 12.13

model) by assuming that the weights in each voxel follow a Gaussian-like

curve centered at the stimulus value (e.g., orientation) that is preferred

by the dominant channel in that voxel. Third, they limited the number of

ways that the model predictions could be modified by some psychological
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or experimental factor (e.g., reducing stimulus contrast). In addition, they

adopted a Bayesian framework that allowed them to introduce inferential

biases through their chosen prior.

Inverted encoding modeling also falls victim to the feature fallacy error

(Diedrichsen, 2020; Diedrichsen & Kriegeskorte, 2017). As explained ear-

lier, an infinite number of channel response matrices can be chosen that

produce exactly the same fit to the data (Gardner & Liu, 2019). Although

these different channel responses all predict the same aggregate activity (see

Eqs. 12.28 – 12.31), their population response profiles can have dramati-

cally different shapes. This highlights the fact that inverted encoding is only

useful when the obtained estimates of the population responses are inter-

preted with specific reference to the tuning functions and other features of

the model that was inverted (Sprague et al., 2019).

12.3.2 Stimulus Decoding and Reconstruction

The most common application of model inversion is not to estimate popu-

lation responses, but either to decode stimulus values or to provide a full

reconstruction of the presented stimulus. For example, the Eq. 12.37 de-

coding scheme is easily extended to stimulus decoding – that is, from the

problem of estimating the expected population response matrix E[R] to the

problem of testing the ability of the model to identify the stimuli that were

presented during the test phase. The rows of the R̂test matrix that results

from applying Eq. 12.37 will not exactly equal any of the rows of the ex-

pected channel-response matrix E[Rtrain] that we constructed when building

the Eq. 12.13 encoding model (e.g., because of noise). So to use Eq. 12.37

to complete the loop back to the stimulus, we need a classification scheme

that will assign a single stimulus to each row of R̂test. Under the assumption

that the noise vector εm in Eq. 12.12 has a multivariate normal distribution

in every voxel with mean vector 0 and variance-covariance matrix Σ = σ2I,

it turns out that for each row in R̂test, the optimal classification strategy is

to compute the correlation with every row in E[Rtrain] and then associate

that row in R̂test with the row in E[Rtrain] where the correlation is highest

(assuming that the prior probabilities P (Si) are equal for all stimuli; e.g.,

Fukunaga, 2013). Row i of E[Rtrain] contains the expected response of each

channel to the presentation of stimulus Si. Therefore, we can denote this

row by rtrain(Si)
> (i.e., see Eq. 12.12). Row m of R̂test was generated by the

mth event, but of course, we do not know which stimulus caused this event.

So denote row m of R̂test by r̂test(Em)>. Then the optimal decoding scheme

uses the following classification rule:
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Classify the mth event of the testing data as a stimulus Si event if

corr [r̂test(Em), rtrain(Si)] = max
j=1,Ns

corr [r̂test(Em), rtrain(Sj)] . (12.38)

As indicated earlier, an encoding model is not necessary to perform stim-

ulus decoding from fMRI data. This can also be achieved by training a

machine-learning algorithm to extract information about stimuli from ac-

tivity patterns. This type of non-parametric decoding appears in the litera-

ture more frequently than decoding by inverting an encoding model, but it

has been argued that machine-learning approaches provide more limited op-

portunities to make inferences about underlying computational mechanisms

(Kriegeskorte & Douglas, 2019; Naselaris et al., 2011). In other words, a

common assumption in the field is that although nonparametric decoding

analyses can reveal what information is encoded in a given brain region,

they cannot reveal information about how that information is encoded. On

the other hand, experimental and modeling work reveals this to be at least

partially incorrect.

For example, an important question in sensory neuroscience is whether

a neural population encodes a stimulus property in a way that is invari-

ant to some irrelevant stimulus change; that is, with encoding being the

same across changes in an irrelevant feature. The opposite of such invari-

ant encoding would be context-specific or configural encoding, in which the

way a stimulus property is encoded by a population depends on the value

of a second property. Both invariant and configural representations are im-

portant for discussions of how the brain represents objects and generalizes

knowledge about them. Cognitive neuroscientists have used a variation of

decoding analyses, called cross-decoding (or cross-classification, see Allefeld

& Haynes, 2014; Anzellotti & Caramazza, 2014; Kaplan, Man, & Greening,

2015), to attempt to make inferences about invariant encoding in particu-

lar brain regions. The first step in cross-decoding is to train a classifier to

decode a particular stimulus feature, such as the shape of an object, from

patterns of fMRI activity observed across voxels. The second step is to test

the trained classifier with new patterns of fMRI activity, this time obtained

from presentation of the same stimuli, but changed in an irrelevant property,

such as rotation in depth.

Theoretical and modeling work has shown that cross-decoding can indeed

be used to make valid inferences about how stimuli are encoded in a partic-

ular area from neuroimaging data, without making any assumptions about

specific aspects of the encoding model (Soto, Vucovich, & Ashby, 2018).

However, cross-decoding provides evidence against the null hypothesis of
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context-specific encoding (i.e., generalization of decoding performance shows

that encoding is not completely context-specific), and not evidence for the

alternative of invariance. In addition, the test is prone to false positives be-

cause the measurement model can increase invariance in the transformation

from neural to voxel space. Testing the null hypothesis of invariance in addi-

tion to cross-decoding allows one to reach more precise and valid conclusions

about the underlying representations. These theoretical insights have been

verified through experimental and simulation work (Soto & Narasiwodeyar,

2021). It is likely that other general features of encoding can be inferred

using non-parametric decoding, but more research is needed in this area.

In addition to simple decoding of the identity of a stimulus, model inver-

sion can also be used for full stimulus reconstruction, thereby providing a

method to visualize what has been encoded in the brain on a given trial.

For example, Naselaris et al. (2009) used the structural model illustrated

in Figure 12.1 and a Bayesian framework to reconstruct an image with the

maximum posterior probability of having produced the measured BOLD ac-

tivity. Their Bayesian framework allowed them to compare reconstruction

under a variety of prior distributions over the images (P (Si) in Eq. 12.32).

They found that reconstruction with a flat prior, which uses only information

from voxel activities captured in the encoding model, was insufficient to re-

veal the identity of objects in the reconstructed images. A more informative

prior that included some well-known statistical information about natural

images (a 1/f amplitude spectrum and sparsity in the Gabor-wavelet do-

main) produced more natural-looking images, but still was unable to provide

information about object identity. Finally, they attempted to better capture

the prior distribution over natural images by sampling from it: they used a

database of six million images as a prior, so that each image in the set had a

prior probability of
(
6× 106

)−1
, and any image outside this set had a prior

probability of zero. This prior enabled them to reconstruct both the spatial

structure and semantic content of the original images. A similar approach

was used to reconstruct videos presented to participants from fMRI data

(Nishimoto et al., 2011).

More recent research in this area leverages the power of deep learning for

image reconstruction, achieving reconstructions that could be recognized by

humans without the need to sample explicitly from some pool of natural

images (e.g., Ren et al., 2021; Seeliger, Güçlü, Ambrogioni, Güçlütürk, &

van Gerven, 2018; Shen, Horikawa, Majima, & Kamitani, 2019).
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12.4 Representational Similarity Analysis

Representational similarity analysis (RSA) is a multivariate method that

extracts similarity structures from BOLD activity (Kriegeskorte, Mur, &

Bandettini, 2008). It identifies activation patterns that are similar and others

that are dissimilar. A fundamental assumption is that two data sets that

exhibit a comparable similarity structure must share a deeper homology in

how the systems that generated those data represent and process events in

the world. Perhaps the greatest strength of RSA is that a common approach

can be used to extract similarity structures from many different modalities,

allowing links to be drawn between vastly different levels of analysis. For

example, consider a mathematical model of some perceptual or cognitive

task that makes no neuroscience predictions per se, but instead assumes

that performance depends on some hypothetical intervening variable, such as

working memory load, attention, or reward prediction error. Next, suppose

that for each pair of possible trial types, we use the model to compute a

predicted similarity by comparing its predicted values on the intervening

variable on the two types of trials. We can then compare these predicted

similarities to the similarity structure that RSA extracts from the BOLD

data. If the similarities predicted by the model and the similarity structure

derived from the BOLD responses in some ROI are qualitatively similar,

then RSA concludes that this ROI may play a key role in computing the

value of the hypothesized intervening variable.

RSA is conceptually simple. The first step is to compute a representa-

tional dissimilarity matrix (RDM), which includes a row and column for

every event, condition, ROI, or task, depending on what type of similarity

structure we want to construct. For the present purposes, there are three ob-

vious possibilities. One is that the RDM will include dissimilarities between

all possible pairs of activity patterns estimated from a voxel-based encoding

model (i.e., rows of Â). Another possibility is that the RDM is estimated di-

rectly from the BOLD data in some ROI for the same events that were used

to create the activity patterns. Finally, a third possibility is that the RDM

is constructed from some other type of mathematical model – for example,

a traditional model of perceptual or cognitive processing from the mathe-

matical psychology literature. However the RDM is created, it is assumed to

include numerical data that define the similarity structure describing how

the various events are related.

The RDM is sometimes used to build a similarity structure using some

form of multidimensional scaling. But in most applications, two RDMs of

the same task are directly compared. For example, RSA is often used to test
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the validity of an encoding model by testing statistically whether the RDM

predicted by the model is consistent with an empirical RDM estimated in

some ROI from our fMRI data.

12.4.1 Estimating an RDM

An RDM is estimated by computing the dissimilarity in the model predic-

tions or data for all possible pairs of stimulus types (or more generally, event

types). If there are NS different stimuli, then these dissimilarities are col-

lected in an RDM of order NS ×NS . The entry in row i and column j is the

observed (in the case of BOLD data) or predicted (in the case of a model)

dissimilarity between the response to stimulus types i and j. Denote this

dissimilarity by d(Si,Sj).

In the case of BOLD data, d(Si, Sj) is computed by comparing rows of the

BOLD activity matrix B̃. Recall that B̃ is an NS ×Nv matrix in which row

i and column k contains the estimated amplitude of the BOLD response to

stimulus Si in voxel k of the ROI. Therefore, row i is a vector describing

the response of the ROI to stimulus Si. In the case of voxel-based encoding

models, the predicted aggregate activity vector A replaces B̃. In the case of

more traditional mathematical psychology models, the RDM is computed

by comparing predictions of the model – usually on the intervening variable

of interest – on all possible pairs of stimulus trials.

Let a>i denote the ith row of the aggregate activity matrix A predicted

by some voxel-based encoding model. Then d(Si,Sj) is an estimate of the

dissimilarity of ai and aj . The concept of similarity is fundamentally im-

portant in almost every scientific field. And across these different fields,

similarity and dissimilarity are defined in many different ways. In RSA, the

choice of the best dissimilarity measure is still an area of active research

(Bobadilla-Suarez et al., 2020). Most applications however, have used one of

three different measures – one minus the Pearson correlation, a Euclidean

measure, or a Mahalanobis-distance measure.

As the name suggests, one minus the Pearson correlation equals

dP(Si,Sj) = 1− r(ai,aj), (12.39)

where r(ai,aj) is the Pearson correlation between the entries in ai and aj .

The Euclidean measure is defined as the squared Euclidean distance between

ai and aj :

dE(Si, Sj) = (ai − aj)
>(ai − aj). (12.40)

Mahalanobis dissimilarity is based on the assumption that the underlying
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data are samples from a multivariate normal distribution. The Mahalanobis

dissimilarity between activity vectors ai and aj , which is defined as the

squared Mahalanobis distance between the vectors, equals

dM(Si, Sj) = (ai − aj)
> Σ̂−1 (ai − aj), (12.41)

where Σ̂−1 is an estimate of the (spatial) variance-covariance matrix of the

activity vectors.

One weakness of all these measures is that if two activity vectors are

identical at the population level, and therefore their distance apart is zero,

then noise can only increase the distance between them. Therefore, under the

null hypothesis that two event types elicit identical activity patterns, all of

these distance measures will produce biased estimates of the true difference.

One solution to this problem is to use cross-validated Mahalanobis distance,

or crossnobis distance (Allefeld & Haynes, 2014). The crossnobis distance

is computed by dividing the data into Q independent partitions, and using

a leave-one-partition-out scheme. Let ai(q) denote the ith activity pattern

computed from the data in partition q, and ai(¬q) denote the same activity

computed from the data in all partitions other than q. Then the cross-

validated Mahalanobis distance – that is, the crossnobis distance – between

the activity vectors associated with stimuli Si and Si equals

dCN(Si, Sj) =
1

Q

Q∑
q=1

[ai(q)− aj(q)]
> Σ̂−1 [ai(¬q)− aj(¬q)]. (12.42)

Note that because [ai(k) − aj(k)] and [ai(¬k) − aj(¬k)] are computed

from different data partitions, the crossnobis distance dCN(Si,Sj) could be

either positive or negative. In contrast, of course, regular Euclidean and

Mahalanobis distance must both always be non-negative. The advantage of

crossnobis distance is that it eliminates bias. More specifically, under the null

hypothesis that two events elicit the same pattern of activation, the mean

crossnobis distance between the resulting activity vectors is zero, whereas

with regular Euclidean or Mahalanobis distance, this mean is greater than

zero (Allefeld & Haynes, 2014). Furthermore, A. Walther et al. (2016) com-

pared all of these measures on simulated and real fMRI data. The most reli-

able method was crossnobis distance. Even so, the choice of the best dissim-

ilarity measure is still an area of active research. While crossnobis distance

has the appealing property of being unbiased and has been shown to be more

reliable than other measures, some researchers have recently argued that

the one-minus-Pearson-correlation measure is preferable (Bobadilla-Suarez

et al., 2020).
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12.5 Testing Encoding Models Against Behavioral Data

The introduction to this chapter claimed that many of the identifiability

problems that plague computational models of behavior could be alleviated

by extending tests of the models to fMRI data. However, we also saw that en-

coding models have their own identifiability problems that complicate their

interpretation. Even so, it now seems clear that an integrative approach, in

which behavioral and neuroimaging data are both addressed within the same

modeling framework, would be beneficial in both mathematical psychology

and computational neuroimaging (Soto, 2019).

There are at least three ways in which encoding models can be tested

against behavioral data. First, we can use encoding models that are grounded

in neuroscience to predict behavioral data. Second, we can fit a cognitive

model to behavioral data, build an encoding model in which the encoding

channels compute the intervening variables hypothesized by the cognitive

model, and then test the resulting encoding model against fMRI data. This

approach is known as model-based fMRI (O’Doherty, Hampton, & Kim,

2007). Third, we can jointly model fMRI and behavioral data in a truly

integrative approach that constrains inferences about a single model with

both types of data. We now briefly describe each of these approaches.

12.5.1 Encoding/Decoding Observer Models

One way to build an encoding model that makes simultaneous neural and be-

havioral predictions is to generalize any of the voxel-based encoding models

described earlier in a way that allows them to make behavioral predictions.

In all of those models, the population neural response vector r is assumed to

be available to downstream neurons to decode useful behavioral information

about the stimulus. So to make behavioral predictions, two additional prob-

lems must be solved. First, a choice must be made about which of a variety

of possible decoding schemes is incorporated into the model (e.g., Lehky,

Sereno, & Sereno, 2013; Pouget, Zhang, Deneve, & Latham, 1998; Salinas &

Abbott, 1994; Seung & Sompolinsky, 1993). Second, assumptions must be

made about how the model uses the decoded stimulus information to select

a response. We refer to encoding models that add a decoding scheme and

response selection assumptions as encoding/decoding observer models.

As an illustration of this approach, consider a simple identification task

in which the stimuli vary on a single physical dimension (e.g., as in Eq.

12.4). For example, the stimuli might all be Gabor patterns that vary only

on orientation or spatial frequency. The question of which decoding scheme
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to use is complicated somewhat by the fact that some schemes lead to an

inherent ambiguity in whether an observed behavioral change is due to en-

coding versus decoding changes (Gold & Ding, 2013). Confronted with this

dilemma, many modelers have assumed optimal decoding via maximum like-

lihood estimation (e.g., Dakin, Mareschal, & Bex, 2005; Deneve, Latham,

& Pouget, 1999; Hays & Soto, 2020; Ling, Liu, & Carrasco, 2009; May &

Solomon, 2015; Paradiso, 1988; Series, Stocker, & Simoncelli, 2009; Soto,

Stewart, Hosseini, Hays, & Beevers, 2021). This assumption leads to the

decoding scheme in which observation of the neural response vector r causes

the model to infer that the value of the presented stimulus was ŝ, where:

ŝ = arg maxsP̂ (s|r, θ), (12.43)

and as usual, θ is a vector of channel tuning parameters.

If neural noise is independent across channels, then

P (s|r, θ) =

Nc∏
c=1

P (s|rc, θ), (12.44)

and therefore, the log-likelihood is maximized when:

ŝ = arg maxs

Nc∑
c=1

ln P̂ (s|rc, θ). (12.45)

There is usually a single optimal solution for a well-posed statistical problem

such as this, which therefore avoids the ambiguities mentioned above about

whether behavioral changes are caused by encoding or decoding mechanisms.

An additional advantage is that the asymptotic properties of maximum like-

lihood estimates are well known. In particular, maximum likelihood estima-

tors are asymptotically normal, and if noise is independent and identically

distributed across channels, then the maximum likelihood estimator ŝ of the

true stimulus value s0 has an asymptotic normal distribution with mean s0

and variance

σ2
ŝ = [n I(s0)]−1,

where I(s0) is the Fisher information, and n is the number of channels (e.g.,

Van der Vaart 2000).

Note that this variance can be directly computed if an analytical form for

the Fisher information is known, which is the case for the standard encoding

model with Gaussian tuning functions that all have identical width ω (i.e.,

see Eq. 12.4). When, in addition, neural noise is Poisson and independent,

the Fisher information is given by (Dayan & Abbott, 2001; Pouget et al.,
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1998; Seung & Sompolinsky, 1993):

I (s) =
N∑
c=1

[f ′c (s)]2

fc (s)

=
N∑
c=1

rmax (s− sc)2

ω4
exp

[
−1

2

(
s− sc
ω

)2
]
, (12.46)

where fc(s) is the Gaussian tuning function of Eq. 12.4 and f ′c(s) is its

derivative with respect to s. For Gaussian neural noise with fixed variance

σ2
r , the Fisher information is given by (Pouget et al., 1998):

I (s) =
1

σ2
r

N∑
c=1

f ′c (s)2

=
1

σ2
r

N∑
c=1

rmax (s− sc)2

ω4
exp

[
−
(
s− sc
ω

)2
]
. (12.47)

When I (s) is unknown, which is likely to be the case for many encoding

models, σ2
ŝ can be directly estimated through Monte Carlo simulation (e.g.,

Dakin et al., 2005; Hays & Soto, 2020; Ling et al., 2009).

Another advantage of assuming that decoding is optimal is that it allows

encoding/decoding observer models to be linked to psychophysical measures

in a straightforward manner. For example, the distribution of ŝ could be in-

terpreted as the the distribution of perceptual evidence assumed by Gaussian

signal detection theory (Ashby & Wenger, Chapter 7, this volume; Green

and Swets 1966; Macmillan and Creelman 2005), which links the encod-

ing/decoding observer model to popular measures such as d′ and sensory

thresholds. For example, consider a two-stimulus identification task with

stimuli that have values s1 and s2. Suppose we use these asymptotic results

to compute the mean µŝ and variance σ2
ŝ of the distribution of estimates for

each stimulus, either through analytical expressions or Monte Carlo simula-

tion. From these values, it is easy to compute the model’s predicted d′ for

the identification task (Soto et al., 2021):

d′ =
µŝ1 − µŝ2√
.5
(
σ2
ŝ1

+ σ2
ŝ2

) .
Note that I (s) is a function of the stimulus value, so the variance of de-

coded values might change when different stimuli are presented. However,

most researchers assume that it remains the same across values of the de-

coded variable, in line with the equal-variance signal detection model.
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The methods used to create encoding/decoding observer models allow be-

havioral predictions to be generated from almost any encoding model that

has either been fitted to neural data or constrained by it. For example,

Goris, Putzeys, Wagemans, and Wichmann (2013) showed that an encod-

ing/decoding observer model constrained by what is known about encoding

of spatial frequency in primary visual cortex does an excellent job at pre-

dicting pattern detection behavior. In principle, any well-defined encoding

model can serve as a model of behavior with relatively minor adjustments.

Equations 12.28 – 12.31 showed that many different sets of encoding chan-

nels make identical predictions. This can make it difficult to draw strong

inferences about why some change occurred in a population response. One

way to resolve these ambiguities is to explore various alternatives by for-

mulating them as hypotheses that make distinct behavioral predictions in

some psychophysical task. Simulation work has shown that when combined

with inverted encoding modeling, only a couple of psychophysical experi-

ments are sufficient to arbitrate between major hypotheses about changes

in neural encoding (Hays & Soto, 2020).

Signal detection theory has been an invaluable model, not only in per-

ceptual tasks, but also in cognitive tasks such as recognition memory (e.g.,

Wixted, 2007), causal and contingency learning (e.g., Siegel, Allan, Hannah,

& Crump, 2009), generalization (e.g. Blough, 1967), and metacognition (e.g.,

Maniscalco & Lau, 2012, 2014). For this reason, the methods that have been

successfully used to link encoding models to psychophysics in the vision lit-

erature might prove useful in other research areas as well.

12.5.2 Model-Based FMRI

All of the encoding models considered so far were designed specifically with

the goal of modeling fMRI data. But fMRI data can also be used to provide

unique tests of cognitive-based mathematical models that are more tradi-

tional within mathematical psychology. The methods that have been devel-

oped to test the validity of purely behavioral computational models against

fMRI data are known as model-based fMRI (O’Doherty et al., 2007).

Purely behavioral models are those that make no neuroscience predic-

tions. Instead, they typically make predictions about how a participant will

respond to a stimulus by appealing to some hypothetical constructs or latent

(intervening) variables, such as, for example, memory, attention, or similar-

ity. The models are tested against behavioral data by examining their ability

to account for dependent variables such as response accuracy and response

time. A good fit provides only indirect support for the model and its hy-
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pothesized latent variables – in part, because of the identifiability problems

described earlier. Model-based fMRI provides an opportunity to improve

model identifiability by offering a method to examine the latent variables

more directly. The basic idea is to estimate the free parameters of the model

by fitting it to the available behavioral data – in exactly the same way that

the model is typically applied. Next, the parameter estimates that result are

used to derive predictions from the model about one or more latent variables,

and finally these predictions are compared to the observed BOLD responses

from various brain regions (e.g., by using the GLM). For example, con-

sider an exemplar model that predicts trial-by-trial categorization responses

are determined by certain specific similarity computations. In model-based

fMRI, the critical similarity value predicted by the model is computed on

every trial and then correlated with trial-by-trial observed BOLD responses,

either across the whole brain or in specific brain regions. Finding a region

where the correlation is high accomplishes two goals. First, it provides em-

pirical support for the model that is impossible with purely behavioral data

because it suggests that changes in neural activity in some brain region are

consistent with changes in a latent variable that the model predicts is criti-

cal to the task under study. Second, a good fit identifies brain regions that

might possibly mediate the processes hypothesized by the model. Since the

models are perceptual or cognitive, this allows an important first step in

extending them to the neural level.

In the ideal application, the constructs that are tested against fMRI data

change significantly from trial to trial. For example, consider a model that

assumes participants compare the presented stimulus to some internally con-

structed decision criterion and give one response if the criterion is exceeded

and a different response if it is not (e.g., as in signal detection theory). A

model that predicts the numerical value of this criterion on every trial could

be tested against fMRI data by correlating the predicted criterion value

against the BOLD response observed in different brain regions. However, if

the experimental design is such that the model predicts only slow changes

in the criterion during the scanning session, then these correlations will not

provide strong tests of the model because the predicted BOLD responses

in criterion-setting regions will be similar to the BOLD responses in task-

inactive brain regions.

After some model-predicted hypothetical constructs are selected that vary

significantly from trial to trial, a typical model-based fMRI analysis would

include the following steps. First, the model is fit to the behavioral data

collected during the functional run separately for each participant. The pri-

mary purpose of this step is to estimate the free parameters in the model.
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Since the model being tested is purely behavioral, it makes no predictions

about neural activations or BOLD responses, and as a result, its parameters

should only be estimated by fitting to behavioral data.

The second step is to use the parameter estimates from step one to com-

pute numerical values of the intervening variables from the model that were

identified earlier to test against the fMRI data. The goal here is to iden-

tify brain regions in which changes in the BOLD responses are predicted by

changes in the variables. In the case of the exemplar model, obvious candi-

dates include the predicted summed similarity of the presented stimulus to

each of the contrasting categories.

Step three is to construct a model of the BOLD response from each of the

selected model variables. The standard approach is to first construct a box-

car function of square waves for each variable. The height of this function

is set to zero when the variable is predicted to be inactive and to the value

of the variable when it is active. For example, in the case of the exemplar

model’s predcited summed similarity to some category A, the boxcar func-

tion would equal zero between trials and its height would equal the predicted

summed similarity to exemplars from category A during the time beginning

with each stimulus onset and ending with the participant’s response. After

this boxcar function is built, predicted BOLD responses are computed by

convolving the boxcar function with some model of the hrf (as in Eq. 12.21).

Step four is to correlate each of these predicted BOLD responses with

the observed BOLD response in every voxel via the GLM. Voxels where the

correlation is high are identified as being sensitive to that variable (for a

more thorough description of all these steps see, e.g., Ashby 2019).

In summary, a model-based fMRI analysis of this type: 1) tests the model

against a new dependent variable (i.e., the BOLD response); 2) potentially

makes the model’s latent variables observable; 3) identifies brain regions

sensitive to the model’s latent variables; and 4) provides valuable data that

could be used to develop a neurocomputational version of the model.

12.5.3 Joint Neural and Behavioral Modeling

Encoding/decoding observer models are neural models in which some as-

sumptions are added that allow tests against behavioral data. In contrast,

model-based fMRI is an approach in which assumptions are added to purely

behavioral models that allow tests against fMRI data. A third way in which

encoding models can be tested against behavioral data is to build models

that directly account for both neuroscience and behavioral data. There are

two general approaches to joint modeling of this kind – one based in neuro-
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science and one based in statistics. Their main advantage is that they use

variation in both behavioral and neural data to jointly and equally constrain

inferences about encoding models.

The neuroscience approach comes from the emerging field of computa-

tional cognitive neuroscience (CCN), which is a new field that lies at the

intersection of computational neuroscience, machine learning, and neural

network theory (i.e., connectionism)(Ashby, 2018; O’Reilly & Munakata,

2000). The goal here is to build biologically detailed neural network mod-

els in which the simulated regions and their interconnections are faithful to

known neuroanatomy. The units that define the network are either simulated

spiking neurons or populations of similar neurons (e.g., a cortical column),

in which case the primary dependent variables are the firing rates of each

population. Theoretically at least, CCN models can account for all levels

of a behavioral phenomenon from single-neuron spiking up to behavior. In

particular, a good CCN model should predict how neural activity changes

in a variety of different brain regions as the subject performs the task under

study, and at the same time make predictions about the most widely studied

behavioral dependent variables, including response accuracy and response

time. In general, testing CCN models against fMRI data follows the same

basic steps as in model-based fMRI. For a description of the special issues

that arise due to the extra neuroscience details of CCN models, see Ashby

(2019).

The statistical approach to joint modeling uses a hierarchical Bayesian

inferential framework to model the statistical relations between neural and

behavioral measures directly within a single model (Palestro et al., 2018;

B. M. Turner, 2015; B. M. Turner et al., 2013). To keep the presentation

concrete, consider an identification experiment in which participants are

presented with one of two stimuli on each trial, S1 and S2, and their task

is to report which of the two stimuli was presented. Model performance in

this task will depend on the specific stimuli that are presented and their

base rates, which can be collected in the set S = {S1, S2, P (S1), P (S2)}. The

neural dependent variables are the amplitudes of the BOLD responses to the

two stimuli, collected in the 2 × 1 vector b̃, and the behavioral dependent

variables are the proportion of correct responses on S1 trials and on S2 trials,

which can be collected in a 2×1 vector o. Finally, we assume that the BOLD

responses are related to the channel responses according to the linearized

encoding model of Eq. 12.15.

To build a joint model, we begin by computing the likelihood of the fMRI

data, P (b̃|R, β,S), where β represents a vector of parameters from the neu-
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ral measurement model. For example, in the linearized encoding model, β

would include the weight parameters in w as well as the variance-covariance

matrix of measurement noise Σm. Second, we compute the likelihood of the

behavioral data, P
(
o|R, γ,S

)
, where γ is a vector of parameters from the

behavioral measurement model. Both of these likelihoods depend directly

on the random population response R, which has a distribution P (R|θ,S)

specified either by Eq. 12.2 or 12.3, and that depends on the encoding model

parameters and the stimulus set S (we omit state variables for simplicity).

Finally, the model should formalize prior distributions over all the param-

eters included in θ, β, and γ, which would depend on hyperparameters Ω.

With this, the model is fully specified and the joint posterior distribution of

the model parameters can be expressed as:

P
(
θ, β, γ | b̃,o

)
∝ P

(
b̃ |R, β,S

)
P
(
o |R, γ,S

)
P (R | S, θ)P

(
θ, β, γ |Ω

)
.

(12.48)

In general, this distribution can be approximated using any of a wide range of

available sampling algorithms (see Gilks, Gilks, Richardson, & Spiegelhalter,

1996).

Under the assumption that the BOLD responses are related to the chan-

nel responses according to the linearized encoding model of Eq. 12.15, then

the likelihood of the BOLD amplitude P
(
b̃t|R, β,S

)
is multivariate Gaus-

sian with mean E[R] w (i.e., see Eq. 12.15) and variance-covariance matrix

Σm. The priors over w and Σm can be chosen to match the regularization

algorithms used in past applications of encoding modeling (Diedrichsen &

Kriegeskorte, 2017), or to be conjugate for the likelihood function, which fa-

cilitates inference. The likelihood of the behavioral data P
(
o |R, γ,S

)
can

be obtained by linking the encoding model to signal detection theory in the

way described earlier in this section. In this approach, an optimal decoder

is used to obtain estimates of the noise in the decoded stimuli. With the

addition of a threshold parameter, one can obtain the likelihood of each

possible response on a given trial from the cumulative normal distribution.

As before, priors can be chosen following previous applications of signal de-

tection theory that have used a Bayesian framework, or to be conjugate

to the likelihood function. Finally, the distribution of population responses

P (R | S, θ) will depend on our choice of tuning functions and neural noise,

and priors can be chosen to be conjugate to that distribution, or based on

previous applications (Sadil et al., 2021; Van Bergen et al., 2015).
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12.6 Conclusions

Mathematical psychologists build and test mathematical models of percep-

tual, cognitive, and motor behaviors. A common goal is to develop models

that describe the underlying processes that are presumed to mediate the

behavior under study. When tested in the traditional way – that is, against

behavioral measures such as response accuracy and response time – these

processes are almost always unobservable. One common barrier that limits

progress in this field is that models postulating very different psychological

processes can often provide a similarly good quantitative fit to the behav-

ioral data. For example, because of such nonidentifiabilities, many subfields

are still debating the validity of competing models that were proposed 40

and 50 years ago.

Testing these models against fMRI BOLD data offers the hope of greatly

improving model identifiability. And, because of model-based fMRI, this is

true even for models that include no neuroscience detail. Any model that

makes predictions about psychological processes that are unobservable with

behavioral data could benefit from testing via model-based fMRI, at least

so long as those predictions change significantly trial-by-trial. For example,

if two competing models account for behavioral data about equally well,

then we should favor the model that makes predictions about trial-by-trial

changes in some psychological process that track changes in the BOLD re-

sponse of some brain region, over the model that makes process predictions

that are not mirrored by BOLD data.

As another example that does not depend on model-based fMRI, suppose

some cognitive theory predicts that the same perceptual and cognitive pro-

cesses mediate performance in two different tasks. Then this theory should

predict similar patterns of activation in an fMRI study of the two tasks,

even if the theory makes no predictions about what those activation pat-

terns should look like. If an RSA concludes that the activation patterns in

the two tasks are qualitatively different, then the theory probably needs

some significant revision.

Although the number likely decreases every year, there are still many

cognitive scientists who are deeply skeptical of fMRI – some even character-

izing it as a new form of phrenology (Dobbs, 2005; Uttal, 2001). Even so,

recent methodological advancements, such as model-based fMRI and RSA,

show that fMRI can provide useful and powerful new tests of models – even

purely cognitive models – that would have been considered a fantasy just a

few decades ago.
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12.7 Related Literature

For a thorough description of virtually all statistical methods for analyz-

ing fMRI BOLD data – including traditional GLM approaches, as well as

encoding and decoding methods, RSA, and DCM – see Ashby (2019).

An introduction to encoding and decoding from a computational neuro-

science perspective can be found in Pouget et al. (2003) and Dayan and

Abbott (2001). For an introduction to applications of encoding models to

neuroimaging, see van Gerven (2017).

Decoding analyses of neuroimaging data using machine-learning algo-

rithms (e.g., MVPA) rather than explicit encoding modeling are covered by

Pereira et al. (2009). Kriegeskorte and Diedrichsen (2019) summarize recent

work on RSA and its relation to encoding modeling (see also Diedrichsen and

Kriegeskorte 2017). May and Solomon (2015) describe encoding/decoding

observer modeling in detail, and O’Doherty et al. (2007) does the same for

model-based fMRI. Palestro et al. (2018) give a tutorial introduction to

joint modeling of neural and behavioral data using a hierarchical Bayesian

framework.
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M. A. J. (2018). Generative adversarial networks for reconstructing



60 References

natural images from brain activity. NeuroImage, 181 , 775–785. doi:
10.1016/j.neuroimage.2018.07.043

Serences, J. T., Saproo, S., Scolari, M., Ho, T., & Muftuler, L. T. (2009). Esti-
mating the influence of attention on population codes in human visual cor-
tex using voxel-based tuning functions. NeuroImage, 44 (1), 223–231. doi:
10.1016/j.neuroimage.2008.07.043

Series, P., Stocker, A. A., & Simoncelli, E. P. (2009). Is the homunculus “aware”
of sensory adaptation? Neural Computation, 21 (12), 3271–3304.

Seung, H. S., & Sompolinsky, H. (1993). Simple models for reading neuronal
population codes. Proceedings of the National Academy of Sciences, 90 (22),
10749–10753.

Shen, G., Horikawa, T., Majima, K., & Kamitani, Y. (2019). Deep image recon-
struction from human brain activity. PLoS Computational Biology , 15 (1),
e1006633. doi: 10.1371/journal.pcbi.1006633

Siegel, S., Allan, L. G., Hannah, S. D., & Crump, M. J. C. (2009). Applying
signal detection theory to contingency assessment. Comparative Cognition &
Behavior Reviews, 4 , 116–134.

Soto, F. A. (2019). Beyond the “Conceptual Nervous System”: Can computational
cognitive neuroscience transform learning theory? Behavioural Processes, 167 ,
103908. doi: 10.1016/j.beproc.2019.103908

Soto, F. A., & Narasiwodeyar, S. (2021). Improving the validity of neuroimag-
ing decoding tests of invariant and configural neural representation. bioRxiv ,
2020.02.27.967505. doi: 10.1101/2020.02.27.967505

Soto, F. A., Stewart, R. A., Hosseini, S., Hays, J. S., & Beevers, C. G. (2021). A
computational account of the mechanisms underlying face perception biases
in depression. Journal of Abnormal Psychology .

Soto, F. A., Vucovich, L. E., & Ashby, F. G. (2018). Linking signal detection
theory and encoding models to reveal independent neural representations from
neuroimaging data. PLoS Computational Biology , 14 (10), e1006470.

Sprague, T. C., Adam, K. C. S., Foster, J. J., Rahmati, M., Sutterer, D. W., &
Vo, V. A. (2018). Inverted encoding models assay population-level stimulus
representations, not single-unit neural tuning. eNeuro, 5 (3), ENEURO.0098–
18.2018. doi: 10.1523/ENEURO.0098-18.2018

Sprague, T. C., Boynton, G. M., & Serences, J. T. (2019). The importance of consid-
ering model choices when interpreting results in computational neuroimaging.
eNeuro, 6 (6), e0196–19.2019. doi: 10.1523/ENEURO.0196-19.2019

Sprague, T. C., & Serences, J. T. (2013). Attention modulates spatial priority maps
in the human occipital, parietal and frontal cortices. Nature Neuroscience,
16 (12), 1879–1887. doi: 10.1038/nn.3574

Tolhurst, D. J., Movshon, J. A., & Dean, A. F. (1983). The statistical reliability
of signals in single neurons in cat and monkey visual cortex. Vision Research,
23 (8), 775–785.

Turner, B. M. (2015). Constraining cognitive abstractions through Bayesian mod-
eling. In B. U. Forstmann & E. J. Wagenmakers (Eds.), An introduction to
model-based cognitive neuroscience (pp. 199–220). NY: Springer.

Turner, B. M., Forstmann, B. U., Wagenmakers, E. J., Brown, S. D., Seder-
berg, P. B., & Steyvers, M. (2013). A Bayesian framework for simultane-
ously modeling neural and behavioral data. NeuroImage, 72 , 193–206. doi:
10.1016/j.neuroimage.2013.01.048

Turner, B. O., Mumford, J. A., Poldrack, R. A., & Ashby, F. G. (2012).



References 61

Spatiotemporal activity estimation for multivoxel pattern analysis with
rapid event-related designs. NeuroImage, 62 (3), 1429–1438. doi:
10.1016/j.neuroimage.2012.05.057

Uttal, W. R. (2001). The new phrenology: The limits of localizing cognitive processes
in the brain. Cambridge, MA: The MIT press.

Van Bergen, R. S., Ma, W. J., Pratte, M. S., & Jehee, J. F. M. (2015). Sensory un-
certainty decoded from visual cortex predicts behavior. Nature Neuroscience,
18 (12), 1728–1730.

Van der Vaart, A. W. (2000). Asymptotic statistics (Vol. 3). New York: Cambridge
University Press.

van Gerven, M. A. J. (2017). A primer on encoding models in sensory neuroscience.
Journal of Mathematical Psychology , 76 , 172–183.

Vazquez, A. L., & Noll, D. C. (1998). Nonlinear aspects of the BOLD response in
functional MRI. NeuroImage, 7 (2), 108–118.

Walther, A., Nili, H., Ejaz, N., Alink, A., Kriegeskorte, N., & Diedrichsen, J. (2016).
Reliability of dissimilarity measures for multi-voxel pattern analysis. NeuroIm-
age, 137 , 188–200. doi: 10.1016/j.neuroimage.2015.12.012

Walther, D. B., Caddigan, E., Fei-Fei, L., & Beck, D. M. (2009). Natural scene
categories revealed in distributed patterns of activity in the human brain.
Journal of Neuroscience, 29 (34), 10573–10581.

Wandell, B. A., & Winawer, J. (2015). Computational neuroimaging and population
receptive fields. Trends in Cognitive Sciences, 19 (6), 349–357. (Publisher:
Elsevier)

Weichwald, S., Meyer, T., Özdenizci, O., Schölkopf, B., Ball, T., & Grosse-Wentrup,
M. (2015). Causal interpretation rules for encoding and decoding models in
neuroimaging. NeuroImage, 110 , 48–59.

Wixted, J. T. (2007). Dual-process theory and signal-detection theory of recognition
memory. Psychological Review , 114 (1), 152–176.

Zemel, R. S., Dayan, P., & Pouget, A. (1998). Probabilistic interpretation of
population codes. Neural Computation, 10 (2), 403–430.

Zucchini, W. (2000, March). An introduction to model selection. Jour-
nal of Mathematical Psychology , 44 (1), 41–61. Retrieved 2016-08-14, from
http://www.sciencedirect.com/science/article/pii/S0022249699912762
doi: 10.1006/jmps.1999.1276


