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Novel representations that support rule-based categorization are
acquired on-the-fly during category learning
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Humans learn categorization rules that are aligned with separable dimensions through a rule-
based learning system, which makes learning faster and easier to generalize than categorization
rules that require integration of information from different dimensions. Recent research sug-
gests that learning to categorize objects along a completely novel dimension changes its per-
ceptual representation, making it more separable and discriminable. Here we asked whether
such newly learned dimensions could support rule-based category learning. One group received
extensive categorization training and a second group did not receive such training. Later, both
groups were trained in a task that made use of the category-relevant dimension, and then tested
in an analogical transfer task (Experiment 1) and a button-switch interference task (Experiment
2). We expected that only the group with extensive pre-training (with well-learned dimensional
representations) would show evidence of rule-based behavior in these tasks. Surprisingly, both
groups performed as expected from rule-based learning. A third experiment tested whether a
single session (less than one hour) of training in a categorization task would facilitate learning
in a task requiring executive function. There was a substantial learning advantage for a group
with brief pre-training with the relevant dimension. We hypothesize that extensive experience
with separable dimensions is not required for rule-based category learning; rather, the rule-
based system may learn representations “on the fly” that allow rule application. We discuss
what kind of neurocomputational model might explain these data best.
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People often face the challenging task of learning new
object categories based on visual properties. Children
must quickly master many such categories, and similar
category learning is required of adults who are learning
a new skill, such as X-ray diagnostics, or a new hobby,
such as bird watching. In most cases, the object cate-
gories that we encounter cannot be recognized on the ba-
sis of a few psychologically differentiated dimensions,
such as object height or color. Rather, categorization
of new objects requires integrating information from a

Preparation of this article was supported by NIH grant
2R01MH063760 and by the US Army Research Office through
the Institute for Collaborative Biotechnologies under Grant
W911NF-07-1-0072. The U.S. government is authorized to
reproduce and distribute reprints for Governmental purposes
not withstanding any copyright annotation thereon. The views
and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the offi-
cial policies or endorsements, either expressed or implied, of
the U.S. Government. Correspondence should be addressed to
Fabian A. Soto, Department of Psychology, Florida Interna-
tional University, 11200 SW 8th St, AHC4 460, Miami, FL
33199; Phone: 305-348-8423; Email: fasoto@fiu.edu.

large number of features that perceptually interact with
one another. Yet, most categorization studies use stim-
uli varying along a handful of dimensions known to be
easily extracted and psychologically differentiated. Im-
portant concepts in the categorization literature, such as
the influence of selective attention (Goldstone, 1994b;
Nosofsky, 1986), task difficulty (Zaki & Kleinschmidt,
2014), category structure (Smith, 2014), and learning
strategy (Ashby et al., 1998; Ashby & Valentin, 2005),
are only meaningful when interpreted in relation to such
pre-existing dimensional representations.

What happens when dimensions are not available to
describe stimuli in a categorization task? One possibil-
ity is that novel stimulus features and dimensions are ac-
quired through perceptual learning (Dosher & Lu, 2017;
Goldstone et al., 2009) accrued during categorization
training. For example, a large body of work suggests that
categorization training modifies the perceptual represen-
tation of the stimuli involved (for reviews, see Gold-
stone et al., 2009; Goldstone & Hendrickson, 2010), in-
cluding the extraction and representation of novel psy-
chologically differentiated stimulus dimensions, or di-
mension differentiation (Folstein et al., 2012; Goldstone
& Steyvers, 2001; Soto & Ashby, 2015). Such di-
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mension differentiation involves increased discriminabil-
ity (Folstein et al., 2012; Goldstone & Steyvers, 2001;
Van Gulick & Gauthier, 2014) and perceptual separabil-
ity (Soto & Ashby, 2015) of the category-relevant dimen-
sion. In addition, recent evidence from the cognitive neu-
roscience literature indicates that this form of learning is
accompanied by changes in visual cortex representations
(Ester et al., 2017; Folstein et al., 2013).

These results highlight the continuous and dynamic
interaction between cognition and perception (for recent
reviews, see Collins & Olson, 2014; Goldstone et al.,
2015). However, while the influence of categorization
on perceptual representation has been widely studied,
there has been far less interest in understanding whether
novel dimensions acquired through dimension differen-
tiation produce the same kind of behavior as traditional
psychologically differentiated dimensions in categoriza-
tion tasks. For example, there is much evidence show-
ing that categorization rules that are aligned to separa-
ble dimensions have a number of properties suggestive of
“rule learning”: compared to categorization rules that are
not aligned to separable dimensions (i.e., “information-
integration” categorization tasks, see Ashby & Gott,
1988), they are learned faster (Smith et al., 2010; Smith
& Ell, 2015), learning does not depend on immediate
feedback (Maddox et al., 2003; Maddox & Ing, 2005)
and does not require any feedback at all under certain
conditions (Ashby et al., 1999), and they produce knowl-
edge that can be easily transferred to new responses (low
response-specificity: Ashby et al., 2003) and stimuli (low
stimulus-specificity: Casale et al., 2012).

If categorization training produces learning of novel
separable dimensions, and these dimensions in turn fa-
cilitate rule-based category learning, then this two-way
interaction significantly increases the brain’s ability to
adapt quickly to environmental challenges (Goldstone
et al., 2015). Rule-based category learning is fast and
flexible in comparison to other learning mechanisms
(e.g., Ashby et al., 2003; Casale et al., 2012; Smith &
Ell, 2015), allowing people to acquire knowledge more
quickly about object categories and their associations
with behaviorally-significant events, and to generalize
more precisely such knowledge to novel category exem-
plars. Accordingly, people attempt to apply rules in unfa-
miliar categorization tasks, even when this is an unadap-
tive strategy (Ashby et al., 1999). However, rule learn-
ing requires stimulus representations that can support the
proposal and testing of dimensional rules (Ashby et al.,
1998; Hélie et al., 2015); that is, it requires a represen-
tation in terms of separable dimensions. If such a rep-
resentation can be learned during a categorization task,
then rule-based category learning can be applied in most
circumstances.

In a series of behavioral experiments, we explored the

question of whether newly-learned dimensions support
the kind of rule-based category learning observed with
traditional separable dimensions. We focused on three
well-known properties of rule learning in categorization:
learning is fast, has low stimulus-specificity, and has low
response-specificity. As in previous research (e.g., Fol-
stein et al., 2012; Goldstone & Steyvers, 2001; Soto &
Ashby, 2015), we created multidimensional stimuli by
morphing unfamiliar faces (see Figure 1 and description
in Methods section of Experiment 1). Specifically, we
first took two parent faces and morphed them to several
degrees, to create a single face dimension. Then, we took
two dimensions created this way and morphed each of
their levels to obtain a two-dimensional space.

A wealth of evidence suggests that dimensions cre-
ated this way are integral (Blunden et al., 2015; Folstein
et al., 2012; Goldstone & Steyvers, 2001; Soto & Ashby,
2015), meaning that before any training they cannot be
extracted from the stimuli and selectively attended. In
particular, the specific morphed face dimensions illus-
trated in Figure 1, and used in the present study, have
been previously shown to be perceptually integral ahead
of training according to a variety of tests (see Soto &
Ashby, 2015). Evidence of the integrality of those spe-
cific dimensions comes from a strong Garner interfer-
ence effect (Garner, 1974), a failure of marginal accu-
racy invariance, a failure of response time invariance,
and a model-based analysis of data using general recog-
nition theory (for reviews of these tests, see Ashby &
Soto, 2015; Soto et al., 2017). That is only the ev-
idence showing integrality in the specific stimuli used
here. In addition, previous research suggests that mor-
phed dimensions in general are integral. Goldstone &
Steyvers (2001) found a Garner interference effect us-
ing their morphed face stimuli, and Blunden et al. (2015)
found that multidimensional scaling modeling of similar-
ity ratings obtained from those stimuli were fitted better
by an euclidean metric (known to be related to integral
dimensions) than by a city-block metric (known to be
related to separable dimensions; see Garner, 1974; Soto
& Wasserman, 2010b). Folstein et al. (2012) found that
orthogonal and diagonal boundaries are learned equally
well with stimuli varying along morphed car dimensions,
which is usually found with integral but not separable di-
mensions. In sum, every study published in the literature
has shown that morphed dimensions like those illustrated
in Figure 1 are integral rather than separable. This body
of converging evidence means that the assumption of in-
tegrality in morphed dimensions in general, and in the
stimuli used here in particular, is strongly supported.

As rule-based category learning is thought to depend
on selective attention to separable dimensions (Ashby
et al., 1998; Hélie et al., 2015), unknown morphed
dimensions cannot support rule-based category learn-
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Figure 1. Schematic representation of the procedure used to create a two-dimensional space of morphed faces.
Reprinted from Cognition, Vol 139, Fabian A. Soto and F. Gregory Ashby, “Categorization training increases the
perceptual separability of novel dimensions”, Pages 105-129, Copyright 2015, with permission from Elsevier.

ing. Instead, morphed faces seem to change in a va-
riety of different shape dimensions at the same time.
Correct categorization of stimuli on the basis of a
morphed face dimension requires integrating all these
sources of information before a categorization decision
is made. Such pre-decisional processing is the landmark
of information-integration categorization tasks (Ashby
& Gott, 1988), which are thought to be solved through
a procedural learning mechanism (Ashby et al., 1998,
2011; Ashby & Valentin, 2005).

For these reasons, we expected that people who are
completely naive to the dimensions would show no evi-
dence of rule-based category learning in a task in which
the categorization rule is aligned to one of the morphed
dimensions. On the other hand, extensive categorization
training with stimuli varying on morphed dimensions
makes them more psychologically privileged (Folstein
et al., 2012; Goldstone & Steyvers, 2001) and increases
their separability (Soto & Ashby, 2015). As dimensional
differentiation and separability increase, so does the abil-
ity to extract the relevant dimensions from the stimuli
and pay selective attention to them. For this reason, we
expected that people who had extensive training in a cat-
egorization task using a particular morphed dimension
would show evidence of rule-based category learning in
a new task in which the categorization rule is aligned to
the known dimension.

We tested rule-based category learning through an
analogical transfer test measuring flexible generaliza-
tion across irrelevant stimulus dimensions (Casale et al.,

2012) in Experiment 1, and through a button-switch in-
terference test measuring response-specificity of cate-
gory learning (Ashby et al., 2003) in Experiment 2. Un-
expectedly, we found that people with or without previ-
ous extensive training could show evidence of rule-based
category learning, showing levels of generalization and
behavioral flexibility that were similar to those supported
by previously known face dimensions like gender or
emotional expression. These levels of generalization and
behavioral flexibility were higher than those observed in
a task requiring integration of information from previ-
ously known dimensions. This suggests that extensive
categorization training is not necessary for rule-based
category learning. Instead, representations that support
the use of rule-based categorization seem to be learned
on-the-fly during categorization training with stimuli that
lack a previous dimensional structure. Because this hy-
pothesis was post-hoc and we only had negative evidence
supporting it, in Experiment 3 we tested whether lim-
ited categorization pre-training would facilitate subse-
quent learning of a complex categorization task thought
to require executive function. The results supported the
hypothesis of fast learning of representations that support
rule-based category learning.

Experiment 1

Casale et al. (2012) reported that, across a variety of
conditions, learning of categorization tasks that require
extracting information from a single separable dimension
leads to strong generalization to novel stimuli, even when
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those new stimuli are relatively dissimilar to the original
training stimuli. On the other hand, learning of catego-
rization tasks that require the integration of information
from two separable dimensions leads to poor transfer to
novel stimuli having about the same dissimilarity relation
to training stimuli. Casale et al. explained their results in
terms of multiple systems of category learning. The uni-
dimensional task is learned by explicitly testing different
dimensional rules, which allows easy transfer of the cho-
sen rule to new circumstances. This “rule-based” gen-
eralization of category learning was termed analogical
transfer. On the other hand, the information-integration
task is learned by associating relatively small regions
of perceptual space with responses (Ashby & Waldron,
1999), which limits transfer of this association only to
stimuli within such small regions, through “similarity-
based” generalization.

In line with this interpretation, a body of evidence
suggests that generalization of learning may depend on
at least two different mechanisms in people (Livesey &
McLaren, 2009; Natal et al., 2013; Perez et al., 2018;
Shanks & Darby, 1998). In similarity-based generaliza-
tion, transfer of learning is limited to stimuli that are per-
ceptually similar to the training stimuli. In rule-based
generalization, transfer of learning depends on whether
or not a known rule can be applied to the new stimulus,
regardless of its perceptual similarity to those stimuli ex-
perienced during learning of the rule. Different partici-
pants may show either similarity-based generalization or
rule-based generalization in the same task and for the
same stimuli (Livesey & McLaren, 2009; Natal et al.,
2013), and the likelihood of observing rule-based gener-
alization can be manipulated through explicit instruction
(Natal et al., 2013).

In the present experiment, we used a version of the
Casale et al. (2012) test to determine whether newly-
learned dimensions can support rule-based generaliza-
tion. Participants were trained in a categorization task
in which stimuli varied along two novel morphed face
dimensions, with only one of these dimensions being
relevant for correct categorization. After training, par-
ticipants were tested with new faces that varied both in
the category-relevant dimension and in a completely new
morphed face dimension. Thus, as in the study by Casale
et al., the testing stimuli were perceptually dissimilar to
the training stimuli, but they could be classified accord-
ing to the learned rule.

Using our morphing procedure (Figure 1), we cre-
ated several two-dimensional face spaces from which we
could obtain stimuli to present to participants in our ex-
periments. Figure 2 shows a schematic representation
of the stimuli and tasks used for each group. For the
two experimental (ID) groups (see Figure 2, top panel),
the two dimensions were completely novel, created from

unfamiliar identities. Group ID-learned received three
sessions of categorization pre-training, followed by one
session of categorization training using the same task
(stimulus coordinates and category boundary) as during
pre-training, but new stimuli and response labels. The
morphed face dimension parallel to the category bound-
ary, and thus irrelevant to the categorization task, was
changed from pre-training to training. The extensive
categorization pre-training to which group ID-learned
was exposed is known to increase separability of the
category-relevant dimension, even when the trained di-
mension is combined with a novel irrelevant dimension
(Soto & Ashby, 2015). On the other hand, group ID-
new received the same categorization training, but with-
out any pre-training sessions, which means that for this
group the dimension relevant for the categorization task
was completely novel. Generalization of category learn-
ing was tested in both groups using stimuli created from
the category-relevant dimension and a completely new
irrelevant dimension. We expected that the availability
of a learned dimension in group ID-learned would facil-
itate rule-based learning during the categorization task,
in turn facilitating generalization of learning to stimuli
during testing. On the other hand, because for group ID-
new the category-relevant dimension is completely new,
we did not expect this group to use rule-based learning
during the categorization task, which should result in a
lower level of generalization than group ID-learned dur-
ing testing.

All other groups were controls included to determine
the level of generalization that could be expected from
categorization tasks using familiar face dimensions (that
is, dimensions that can be extracted from the stimuli
and selectively attended without any pre-training). Thus,
all control groups received a single session of catego-
rization training followed by a generalization test. In
the GEN/ID control group (see Figure 2, middle panel),
one of the parent faces previously used to create the
category-relevant dimension in the ID groups was re-
placed by a female , producing a gender categorization
task. The category-irrelevant dimensions were created
from the same parent faces as in the ID groups, but each
combined with a female face to generate novel gender-
neutral dimensions.

For the three remaining groups, stimuli varied in
two known dimensions: gender and emotional expres-
sion (angry/sad; see Figure 2, bottom panel). In group
GEN/EMO, the category-relevant dimension was gender
and the category-irrelevant dimension was emotion, as
represented by the vertical category boundary in Figure 2
(in red color). In group EMO/GEN, the category-relevant
dimension was emotion and the category-irrelevant di-
mension was gender, as represented by the horizontal
category boundary in Figure 2 (in blue color). In group
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Figure 2. Schematic representation of the stimuli and tasks used in Experiments 1 and 2. The faces shown next to
each dimension represent the parents for that specific dimension. When more than one pair of parents is shown, they
have been labeled according to the phase of the experiment in which they were used to obtain stimuli (Pre-Training,
Training, or Testing). The points inside the coordinate system represent stimuli obtained from a specific combination
of levels for each dimension. The dotted lines separating such points in two classes represent the category boundary
used for training. For more details on the stimuli and tasks used for each particular group, see the main text.
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GENxEMO, learning of the categorization task required
integrating information from both gender and emotion,
as demonstrated by the diagonal category boundary in
Figure 2 (in orange color). For all these groups, the par-
ents used to create training stimuli and testing stimuli dif-
fered in identity, but had the same gender and emotional
expression.

The groups GEN/ID, GEN/EMO and EMO/GEN pro-
vided an estimate of the generalization level that we
should observe in a categorization task aligned to famil-
iar face dimensions, a form of “ceiling” level for analog-
ical transfer. On the other hand, group GENxEMO pro-
vided an estimate of how much generalization of learn-
ing should be observed in a categorization task requiring
integration of information from two familiar face dimen-
sions (see Casale et al., 2012), a form of “floor” level
for analogical transfer. While those four control groups
provided a means to assess different levels of analogical
transfer, the most interesting results would come from
group ID-learned and ID-new. ID-learned indicates how
much analogical transfer is observed when the relevant
category dimension has been learned through intensive
previous categorization training. Such intensive training
is typical of studies on dimension differentiation (e.g.,
Folstein et al., 2012; Goldstone & Steyvers, 2001; Soto
& Ashby, 2015). If dimension learning through catego-
rization training creates novel separable dimensions that
can support rule-based generalization, then the perfor-
mance of this group should be closer to the “ceiling”
than to the “floor” of analogical transfer. Group ID-new
was meant as a control of how much analogical transfer
is observed after training with completely novel face di-
mensions. We expected that the brief experience with the
relevant category dimension in this group would not be
enough to produce a new representation capable of sup-
porting analogical transfer. Contrary to our expectations,
we found that generalization in this group was close to
the estimated “ceiling” of analogical transfer, and indis-
tinguishable from generalization in groups for whom the
relevant dimension was familiar, either because of train-
ing (ID-learned) or because of prior knowledge (GEN-
ID, GEN-EMO, EMO-GEN).

Materials and Methods

Participants. 172 undergraduates at the University
of California Santa Barbara voluntarily participated in
this experiment in exchange for class credit or a mon-
etary compensation. There were 19 participants in group
ID-learned, 36 participants in group ID-new, 35 par-
ticipants in group GEN/ID, 25 participants in group
GEN/EMO, 27 participants in group EMO/GEN, and 30
participants in group GENxEMO. Participants were as-
signed to groups in a semi-random way, with more par-
ticipants assigned to groups that were expected to per-

form more poorly in the main training task (ID-new,
GEN/ID and GENxEMO). We had pre-set performance
criteria to include participants in the main analyses (see
below), so more participants were needed to obtain rela-
tively balanced group sizes despite differences in perfor-
mance.

Stimuli. For all groups, morphs with different pro-
portions of each parent face were generated in MATLAB
using the factorial procedure of Goldstone and Steyvers
(2001). The procedure is illustrated in Figure 1. In
the first step, pairs of faces are chosen to be the parents
for a dimension. The chosen images were converted to
grayscale and their intensity histograms were equalized,
to ensure that stimuli along the resulting morphing di-
mensions varied in shape features, but not in simpler fea-
tures such as skin color and brightness. Different parent
faces were chosen for different groups.

The stimuli shown to the ID-learned and ID-new
groups were created from 8 parent images chosen from
a database of 300 computer-generated caucasian faces
described by Oosterhof and Todorov (2008), created us-
ing the Facegen Modeller program (http://facegen.com),
Version 3.1. From the original database, 30 male faces
were chosen that had similar eyebrow color and similar
levels of facial fat. Four pairs of faces were chosen as
parents from those 30 candidates, according to two cri-
teria. These criteria were chosen to ensure that the fi-
nal stimuli shown to groups ID-learned and ID-new did
not have a clear dimensional structure; rather, the dimen-
sional structure of these stimuli had to be learned through
categorization training. The first, more formal criterion
was that all pairs of faces should have relatively equiv-
alent mean similarity, to ensure that the dimensions cre-
ated from them had relatively similar salience. Follow-
ing the original study by Goldstone and Steyvers (2001),
dissimilarity ratings were obtained for the 30 faces in a
pilot study with twelve participants. The study used the
efficient method described by Goldstone (1994a) to mea-
sure dissimilarities, and individual ratings were normal-
ized by dividing each of them by the largest rating from
the participant. Thus, final dissimilarity values ranged
from zero to one for all participants. Four pairs of faces
with mean dissimilarities within 15% of each other were
chosen as parents. The second, less formal criterion was
that the parent pairs should not be discriminable along
any easily verbalizable dimension, as judged by the ex-
perimenters. That is, we made sure that the pair of faces
could not be discriminated on the basis of common face
categories (e.g., sex, race, age, etc.) or non-facial fea-
tures (e.g., head width, head size, facial fat, ear shape,
etc.). The reader can corroborate that this is correct by
looking at the parent faces displayed in the top panel of
Figure 2.

The stimuli shown to the GEN/ID group were cre-
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ated from some of the same parents as groups ID-learned
and ID-new, but morphed with 5 different female faces
taken from the Oosterhof and Todorov (2008) database.
As shown in the middle panel of Figure 2, one of these
females replaced one parent in the category-relevant di-
mension, and the other four females were randomly as-
signed to be morphed with each of the parents of the
category-irrelevant dimensions. The resulting category-
relevant dimension varied along gender, whereas the
category-irrelevant dimensions varied in identity while
being gender-neutral.

The stimuli shown to groups EMO/GEN, GEN/EMO
and GENxEMO were morphed from parent faces har-
vested from the internet, which were originally cre-
ated using FACSGen (Roesch et al., 2011), a tool that
generates FACS-correct expressions (i.e., using the Fa-
cial Action Coding System, see Ekman et al., 1978)
in face models using the Facegen Modeller program
(http://facegen.com). This ensured that all synthetic par-
ent faces were created using the same software.

In the second step of the procedure illustrated in Fig-
ure 1, each dimension is created by generating morphs
with different proportions from each pair of parents.
Here, dimensions were created using a continuous se-
quence of 19 morphs for each pair of parents, with per-
centages of parent 2 equal to 0%, 6%, 14%, 20%, 24%,
30%, 32%, 38%, 42%, 50%, 58%, 62%, 68%, 70%,
76%, 80%, 86%, 94%, and 100%. The third and final
step was to generate a two-dimensional space by fac-
torially combining each of the faces in each dimension
with each of the faces in the other dimension. As shown
in the Figure 1, these two-dimensional morphs include
50% from each of the one-dimensional morphs. The spe-
cific stimuli from the two-dimensional space presented
to participants are represented by the points in Figure
2. This circular configuration of points has been used
in the past to show learning of new dimensions (Folstein
et al., 2012) and has the advantage that the circular ar-
rangement de-emphasizes the dimensional structure of
the stimuli (Goldstone & Steyvers, 2001). That is, with-
out the presence of a particular category bound, the stim-
ulus configuration is the same even if one rotates the x-
and y-axes by any multiple of 45-degrees. Imagine tak-
ing the space at the bottom of Figure 2 (the panel enti-
tled “Gender / Emotion Controls”), and rotating the axes
45-degrees clockwise. Now, the orange bound would be
vertical, and it would have the same spatial relation with
exemplars from the two categories at each side as the red
bound had before rotation. What this means is that the
actual coordinate system used to describe the stimuli is
relatively arbitrary, and the category bound (i.e., the feed-
back received during categorization training) is the only
information that participants receive about important di-
rections in the space. Indeed, dimension differentiation

is observed after training with bounds in any direction
of a morphed space (Folstein et al., 2013; Goldstone &
Steyvers, 2001).

Procedure. The categorization task presented to
participants was the same across groups and experimen-
tal phases, with slight variations. At the beginning of
each session, instructions were displayed on the screen
indicating that the participant’s task was to categorize
faces as accurately as possible into two different cate-
gories (clubs) based purely on physical appearance. The
instructions also explained the structure of each trial and
how to report a categorization response. Participants
were warned that they would need to guess the correct
answer early in training, but they would get more accu-
rate as the experiment progressed. Sessions were divided
in blocks of 72 trials each. Each stimulus (36 per cate-
gory) was presented once in a block, with the order ran-
domized within the block. There were voluntary breaks
of 1 min between blocks, which the participant could
finish by clicking on a button labeled "continue." Each
trial started with the presentation of a white cross in the
middle of a black screen for 500 ms. Immediately after-
wards a face stimulus was presented in the middle of the
black screen until the participant pressed one of the two
response buttons in the keyboard or a time deadline of
2 s was reached, whichever happened first. During pre-
training sessions, participants could press the keys B or
Y in their keyboard, which were re-labeled “X” and “Y”,
respectively. During training sessions, participants could
press the keys D or K in their keyboard, which were re-
labeled “A” and “B”, respectively. After a key press,
the participant received feedback about the correct re-
sponse. For correct responses, the word CORRECT was
presented for 500 ms, in green font color in the middle of
the screen, accompanied by a pleasant chime presented
through the headphones. For incorrect responses or if
the time deadline was reached, the word INCORRECT
was presented for 500 ms, in red font color in the middle
of the screen, accompanied by an unpleasant buzzer pre-
sented through the headphones. This was followed by
a 1 s inter-trial interval, during which the monitor was
completely black.

Participants in group ID-learned were exposed to 3
sessions of pre-training in the categorization task shown
in the top panel of Figure 2. The sessions were run
within a span of three days and no more than two ses-
sions were run on the same day. Consecutive sessions
were separated by at least 1 hour and at most 25 hours,
with the exception of a single pair of sessions that was
separated by 10 minutes. Each pre-training session con-
sisted of 9 blocks of 72 trials each, for a total of 648 tri-
als. Group ID-learned was the only one exposed to these
pre-training sessions.

Participants in all groups were exposed to a single ses-
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sion of categorization training, in the tasks illustrated in
Figure 2. All participants, regardless of group, were in-
structed to categorize faces as accurately as possible into
two categories (clubs) based purely on physical appear-
ance, and had to learn the categories through feedback
as indicated above. The session consisted of 8 blocks
of 72 trials each, for a total of 576 trials. Immediately
after this training, participants were exposed to an ana-
logical transfer test (as in Casale et al., 2012). They
received new instructions indicating that they would be
shown new faces, and that their task would be to cor-
rectly guess whether those faces belonged to Club A or
Club B. They were also informed that they would not re-
ceive feedback about the correctness of their responses.
Participants were then exposed to a single block of 72 tri-
als with new stimuli that resulted from the combination
of the trained category-relevant dimension and a com-
pletely new category-irrelevant dimension (see Figure 2).
The trial structure was the same as for pre-training and
training sessions, but no feedback was provided.

Participants in groups ID-learned and ID-new com-
pleted one session of a Garner filtering task and one of
an identification task, in addition to the pre-training and
training sessions. Results from those extra sessions are
reported elsewhere (Soto & Ashby, 2015).

Data Analysis. All analyses were performed using
R v. 3.2.1 (R Core R Core Team, 2015) extended with the
packages reshape2 v. 1.4.1, plyr v. 1.8.3, and ggplot2 v.
2.1.0, running in RStudio v. 0.99.486 (R Studio Team,
2015). A rejection criterion of α = 0.05 was used in all
statistical tests.

Participants were excluded from all analyses if they
did not reach a performance level of 70% correct dur-
ing categorization training. This criterion was set before
performing the main analyses.

Backward learning curves (Smith & Ell, 2015) were
created by finding the first block in which each partici-
pant achieved a proportion of correct responses equal or
greater than 70%, setting that block’s number to zero and
numbering all earlier blocks from that participant’s data
accordingly (i.e., -1, -2, -3... for earlier blocks, and 1, 2, 3
for later blocks). This means that the learning curve for
each individual participant remains the same, reflecting
proportion of correct responses in a given training block,
with the only difference being a change in the numbering
of blocks. The individual curves are then aligned taking
block zero (i.e., the first block in which all participants
reached criterion) as a reference, and the group average
and standard errors are computed by block. These learn-
ing curves are sometimes useful to elucidate whether
learning during a categorization task is gradual, which
has been associated with procedural category learning, or
step-like, which has been associated with rule-based cat-
egory learning (Smith & Ell, 2015). Because of they way

backward learning curves are built, most of the time they
show a sudden increase in performance around block
zero (Smith & Ell, 2015), even if a gradual learning pro-
cess underlies behavior. Thus, the most informative fea-
tures of the curve are whether it is flat or gradual before
and after that point.

A generalization decrement was computed by sub-
tracting the proportion of correct responses during the
test from the proportion of correct responses during the
last categorization training block. Independent t-tests
were performed to determine whether the mean gener-
alization decrement was significantly higher than zero in
each group. The reported p-values from these tests were
corrected for multiple comparisons using the Bonferroni
procedure.

To determine whether generalization decrements var-
ied across groups, we performed a one-way ANOVA
with group as factor and generalization decrement as
dependent variable, followed by pre-planned pairwise
comparisons between each of the experimental groups
(ID-learned and ID-new) and each of the control groups
(GEN/ID, EMO/GEN, GEN/EMO, GENxEMO), as well
as between the two experimental groups, for a total of
9 comparisons. These comparisons were carried out
using Fisher’s LSD test and the Bonferroni correction
for multiple comparisons. Any non-planned (i.e., post-
hoc) comparisons reported here were performed using
the Newman-Keuls procedure for multiple comparisons,
which considers all possible 15 comparisons between
pairs of means.

Results and Discussion

The number of participants excluded from the final
analysis due to poor performance (<70%) in the cate-
gorization task were: 1 from group ID-learned (18 in-
cluded), 10 from group ID-new (26 included), 14 from
group GEN/ID (21 included), 4 from group GEN/EMO
(26 included), 2 from group GENxEMO (23 included),
and 2 from group EMO/GEN (25 included).

Figure 3 shows the main results of Experiment 1. The
forward learning curves depicting mean percent correct
during each block of the categorization task are shown
in panel a, whereas the backward learning curves are
shown in panel b. Note first that groups GEN/EMO and
EMO/GEN, trained in a unidimensional categorization
rule, reached a high and asymptotic level of performance
very quickly, by block 3. The backward learning curves
reveal a sudden increase in performance at block zero
(the block in which participants reached a criterion of
70% correct), without further increases in performance
after this point. In contrast, group GENxEMO, trained
in a diagonal (i.e., information-integration) categoriza-
tion rule, shows more gradual increases in performance
that never reach comparably high values. The backward
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Figure 3. Results of Experiment 1. (a) Forward learning curves depicting mean percent correct during each block of
the categorization task; (b) backward learning curves (see text for description) depicting mean percent correct during
each block of the categorization task, where block numbers have been individually shifted so that zero represents the
first block in which a participant reaches 70% correct; (c) mean generalization decrement observed as a result of a
change in the category-irrelevant dimension during the analogical transfer test, with a lower value representing better
generalization.

learning curve for this group reveals a slow increase in
performance both before and after block zero, with a
much smaller jump in performance at block zero. This
pattern of results mirrors previous findings with simpler
separable dimensions (e.g., Smith et al., 2010; Smith &
Ell, 2015). Group GEN/ID showed results similar to
those from the other groups trained with a unidimen-
sional categorization rule, but with a much lower asymp-
totic performance.

The learning curves of group ID-learned show a pat-
tern similar to those from the control groups with unidi-
mensional categorization rules: asymptotic performance
starting from block one. On the other hand, group ID-
new shows the slowest learning and lowest performance
level among all groups (Figure 3a) and a backward-
learning curve without a clear pattern (Figure 3b): a flat
curve before block zero is followed by a considerable
jump in performance, which is a signature of rule-based
learning, but a gradual improvement in performance is
seen after that point, which is a signature of procedural
learning.

The most important results from this experiment are
shown in Figure 3c, which displays the mean gener-
alization decrement observed in the analogical transfer
test. Here a lower value represents better generaliza-
tion of category learning to the testing stimuli. The
generalization decrement observed for both experimen-
tal groups (ID-learned and ID-new) looks low and sim-
ilar to that observed in control groups dealing with uni-
dimensional categorization rules (GEN/ID, GEN/EMO
and EMO/GEN). On the other hand, they seem much
smaller than the generalization decrement observed in

the control group dealing with a diagonal categoriza-
tion rule (GENxEMO). In line with these observations,
one-sample t-tests revealed a generalization decrement
significantly different from zero in group GENxEMO,
t(22) =6.45, p<.001, and in group EMO/GEN, t(24)
=3.08, p<.05, but not in other groups. The ANOVA
revealed a significant effect of group on the generaliza-
tion decrement, F(5, 128) =2.37, p<0.05. Pairwise com-
parisons revealed that the generalization decrement of
group GENxEMO was significantly different from that
observed in the experimental groups (ID-learned and ID-
new), but no other comparisons were significant.

Note also that the control groups GENxEMO,
GEN/EMO and EMO/GEN, which are identical in all
aspects except for the categorization task that they had
to perform (unidimensional vs. diagonal), show the gen-
eralization results that would be expected from previous
research, with high performance decrements during test-
ing for group GENxEMO, but low performance decre-
ments in the other two groups. Post-hoc comparisons
using the Newman-Keuls correction for multiple com-
parisons revealed a significant difference between groups
GENxEMO and EMO/GEN. Although the comparison
between GENxEMO and GEN/EMO was not significant
(p=0.059, corrected), it seems likely that this was due
to low statistical power in the post-hoc comparison. This
replicates the results that Casale et al. (2012) found using
gratings varying in spatial frequency and orientation, but
with face stimuli varying in the dimensions of gender and
emotional expression. In both cases, analogical transfer
is stronger for groups trained in a unidimensional catego-
rization task than for a group trained in an information-
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integration categorization task.
In sum, both group ID-learned and ID-new showed

excellent transfer, close to that found for groups that
had to discriminate gender (GEN/ID and GEN/EMO)
or emotional expression (EMO/GEN), but different from
that observed for the group that had to integrate informa-
tion from both gender and emotional expression during
training (GENxEMO). This suggests that extensive train-
ing in group ID-learned was not necessary for learning of
new dimensions.

Experiment 2

Another known property of rule-based learning is re-
sponse flexibility: category learning can be easily trans-
ferred to a novel mapping between stimuli and responses.
In contrast, procedural learning is characterized by re-
sponse specificity, and does not easily transfer to a map-
ping between stimuli and motor responses that is differ-
ent from that observed during training. For example,
Ashby, Ell and Waldron (2003) trained participants in
two types of categorization task. Unidimensional cat-
egorization tasks required extracting information from a
single separable dimension, as in the task used for groups
GEN/ID, GEN/EMO and EMO/GEN during Experiment
1. In contrast, an information-integration task required
the integration of information from two separable dimen-
sions, as in the task used for group GENxEMO during
Experiment 1. After training, participants were asked to
switch the response buttons used to report each category.
Participants trained in the information-integration task
showed a drop in performance during the button-switch
test, which was termed a button-switch interference ef-
fect. Participants in the unidimensional task did not show
the same button-switch interference effect. Ashby et
al. interpreted their results as evidence that information-
integration tasks, but not unidimensional tasks, are ac-
quired via procedural learning processes.

A button-switch interference effect can be found in
unidimensional tasks under specific testing conditions
(Maddox et al., 2010; 2007;Nosofsky et al. 2005), pos-
sibly reflecting the fact that all tasks have a proce-
dural component, but response costs are smaller than
in information-integration tasks (Maddox et al., 2010;
Nosofsky et al., 2005) and experimental manipulations
can dissociate between the interference effects found in
unidimensional and information-integration tasks (e.g.,
Maddox et al. 2004b, 2010, 2007), suggesting that they
are due to different underlying mechanisms.

The present experiment used the same groups and de-
sign as Experiment 1, but participants were exposed to
a button-switch test similar to that used by Ashby et al.
(2003) to determine whether newly-learned dimensions
can support flexible re-assignment of categories to re-
sponses.

Materials and Methods

Participants. 149 undergraduates at the University
of California Santa Barbara voluntarily participated in
this experiment in exchange for class credit or a mon-
etary compensation. There were 22 participants in group
ID-learned, 36 participants in group ID-new, 23 par-
ticipants in group GEN/ID, 21 participants in group
GEN/EMO, 21 participants in group EMO/GEN, and 26
participants in group GENxEMO.

Stimuli. Stimuli were the same as those used in Ex-
periment 1.

Procedure. All procedures were exactly the same as
those used for Experiment 1, with the exception of the
test session at the end of the experiment. Here, partici-
pants were presented with a button-switch test instead of
an analogical transfer test. They received new instruc-
tions indicating that the names of the two clubs (A and
B) would be switched during the rest of the experiment,
so that for every face to which they responded with “A”
they should now respond to “B”, and vice-versa. Partic-
ipants were exposed to a single block of 72 trials that
was exactly the same as previous categorization train-
ing blocks, but with the assignment of responses to cat-
egories reversed. As in previous studies demonstrating
a difference in the button-switch interference effect be-
tween unidimensional and information-integration tasks
(e.g., Ashby et al., 2003; Maddox et al., 2007,1), partic-
ipants were given a long response time deadline of 2 s,
as short response time deadlines induce an interference
effect even in unidimensional tasks (see Nosofsky et al.,
2005).

Data Analysis. All data analyses were performed
exactly as described for Experiment 1.

Results and Discussion

The number of participants excluded from the final
analysis due to poor performance (<70%) in the cate-
gorization task were: 3 from group ID-learned (19 in-
cluded), 11 from group ID-new (25 included), 5 from
group GEN/ID (18 included), 0 from group GEN/EMO
(21 included) 5 from group GENxEMO (21 included),
and 0 from group EMO/GEN (21 included).

Figure 4 shows the main results of Experiment 2. The
forward learning curves depicting mean percent correct
during each block of the categorization task are shown in
panel a, whereas the backward learning curves are shown
in panel b. Note first that the pattern of results for the
control groups GEN/EMO, EMO/GEN and EMOxGEN
is almost identical to that found in Experiment 1, which
again replicates previously-observed differences in learn-
ing curves for groups trained in unidimensional versus
information-integration categorization tasks (e.g., Smith
et al., 2010; Smith & Ell, 2015). Group GEN/ID showed
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Figure 4. Results of Experiment 2. (a) Forward learning curves depicting mean percent correct during each block of
the categorization task; (b) backward learning curves (see text for description) depicting mean percent correct during
each block of the categorization task, where block numbers have been individually shifted so that zero represents the
first block in which a participant reaches 70% correct; (c) mean generalization decrement observed as a result of a
change in the mapping of categories to response keys during the button-switch interference test, with a lower value
representing better generalization.

a more gradual increase in performance in the forward
learning curve, but a step-wise backward learning curve.
The pattern of results observed for groups ID-learned and
ID-new are also very similar to that observed in Exper-
iment 1, except that here it took until block 2 for group
ID-learned to reach asymptotic performance in the for-
ward learning curve.

The most important results from this experiment are
shown in Figure 4c, which displays the mean generaliza-
tion decrement observed in the button switch test. Here
a higher value represents more interference produced by
the change in the assignment of response buttons to cate-
gories during test; that is, a lower value represents better
performance in the test. All groups showed some level of
generalization decrement during test (i.e., a drop in per-
formance due to button switch). However, for the control
groups trained in a uni-dimensional categorization rule
(GEN/ID, GEN/EMO and EMO/GEN), this decrement
was relatively small. The experimental group without
any categorization pre-training (ID-new) shows a sim-
ilarly low decrement that, if anything, seems smaller
than that observed in the unidimensional control groups.
On the other hand, both the control group with a di-
agonal categorization rule (GENxEMO) and the experi-
mental group exposed to categorization pre-training (ID-
learned) show a higher generalization decrement dur-
ing test. In line with these observations, one-sample
t-tests revealed a generalization decrement significantly
different from zero in groups GENxEMO, t(20) =3.87,
p<.01, ID-learned, t(18) =5.24, p<.001, and EMO/GEN,
t(20) =3.24, p<.05, but the generalization decrement
found in all other groups was not significant after cor-

rection for multiple comparisons. The ANOVA revealed
a significant effect of group on the generalization decre-
ment, F(5, 119) =2.42, p<0.05. Surprisingly, pairwise
comparisons revealed that the only significant difference
was between the two experimental groups. Group ID-
learned did not differ significantly from any of the con-
trol groups, although it is likely that the comparison with
group GENxEMO, with p=0.081, did not reach signifi-
cance simply due to the conservativeness of the Bonfer-
roni correction.

Some of the results from this experiment are in line
with those from the previous experiment, in that a group
without any experience with the category-relevant di-
mension showed levels of transfer during test that were
similar to those shown by groups trained in a uni-
dimensional rule involving a familiar face dimension.
This again suggests that extensive training in group ID-
learned was either not necessary for learning of new di-
mensions, or that learning of new dimensions is not nec-
essary for performing a button switch during categoriza-
tion.

On the other hand, the results from group ID-learned
are quite surprising, in that this group showed what
seemed to be the strongest button-switch interference ef-
fect among all groups in the experiment. That is, a group
exposed to training known to produce learning of novel
separable dimensions, which in turn are thought to sup-
port rule-based category learning, showed an effect that
is usually linked to procedural learning (Ashby et al.,
2003).

One explanation for this counter-intuitive pattern of
results is that some subjects in the ID-learned group may
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have developed automatic responding due to their ex-
tensive categorization training. Response keys during
pre-training and training phases had different labels (red-
colored “X” and “Y” labels during pre-training; yellow-
colored “A” and “B” labels during training) and spatial
positions (keys B and Y during pre-training; keys D and
K during training). The spatial positions were chosen to
ensure a top-down arrangement during pre-training and
a left-right arrangement during training. However, note
that in a standard keyboard the key B is slightly to the left
of key Y. This could mean that participants transferred
not only their knowledge about the categories from pre-
training to training, but also their knowledge of the as-
signment of categories to left and right response keys.
Under such circumstances, they essentially received four
sessions of training in which one category was assigned
to the left response buttons and the other category was
assigned to the right response buttons. Such extensive
training would produce automatic responding, regardless
of whether participants learned the task through a proce-
dural or rule-based strategy, leading to a strong button-
switch interference effect (see Helie et al., 2010).

In line with this idea, the random assignment of re-
sponse keys to categories resulted in a majority of the
participants included in the analysis (16 out of 19) hav-
ing one category consistently assigned to “left” response
buttons (i.e., B in pre-training and D in training) and
the other category consistently assigned to “right” re-
sponse buttons (i.e., Y in pre-training and K in train-
ing). In Experiment 2b, we confirmed that pre-training
group ID-learned in a categorization task that avoids the
development of automatic responding leads to a small
button-switch interference, comparable to that observed
in group ID-new.

Experiment 2b

In the previous experiment, we found that exten-
sive pre-training with a categorization task in group ID-
learned produced a button-switch interference effect that
was significantly higher than that observed without such
pre-training in group ID-new. One explanation of this
counter-intuitive result is that consistent assignment of
“left” response buttons to one category and “right” re-
sponse buttons to another produced the development of
automatic responding. Here, we repeated a smaller ver-
sion of the previous experiment, including only groups
ID-learned, ID-new and GEN/ID. The main goal was to
show that, if group ID-learned is exposed to a task that
avoids the development of automatic responding during
the pre-training phase, then the difference in interference
effect observed with group ID-new should disappear. We
also included group GEN/ID to provide a benchmark for
rule-based performance.

To avoid development of automatic responding, group
ID-learned was pre-trained in a task that involved an in-
consistent assignment of responses to categories. In each
trial, participants were shown a stimulus and then asked
“Is this an X?” or “Is this a Y?”. Participants then had
to respond “yes” or “no” by pressing a labeled response
key. Thus, while participants had to learn an association
of stimuli to category labels, each category was not asso-
ciated with any specific motor response (Maddox et al.,
2004b). The session involving categorization training
and button-switch testing followed the exact same proce-
dures as in the previous experiment for all three groups.

Materials and Methods

Participants. 71 undergraduates at the University
of California Santa Barbara voluntarily participated in
this experiment in exchange for class credit or a mon-
etary compensation. There were 28 participants in group
ID-learned, 20 participants in group ID-new, and 23 par-
ticipants in group GEN/ID.

Stimuli. Stimuli were the same as those used in Ex-
periment 1.

Procedure. All procedures were exactly the same as
those used for Experiment 2, except for the task pre-
sented to participants in group ID-learned during pre-
training. The only difference between this task and that
described in the Procedure section of Experiment 1 is
that the face stimulus was presented together with one
of two possible questions: “Does this person belong to
the GREEN club?” or “Does this person belong to the
YELLOW club?”. The question was displayed above
the face image, with all words in white text except for
“GREEN club”, which were displayed in green color,
and “YELLOW club”, where were displayed in yellow
color. The question displayed was randomly chosen for
each trial. The keys “Y” and “B” in the keyboard were
re-labeled “Y” and “N”, respectively. Participants were
instructed to use those keys to respond “Yes” or “No” to
the question displayed in each trial. After a key press, the
participant received feedback about the correct response,
as described in the procedures for Experiment 1.

Data Analysis. All data analyses were performed
exactly as described for Experiment 1.

Results and Discussion

The number of participants excluded from the final
analysis due to poor performance (<70%) in the cate-
gorization task were: 3 from group ID-learned (25 in-
cluded), 6 from group ID-new (14 included), and 2 from
group GEN/ID (21 included).

Figure 5 shows the main results of Experiment 2b.
The forward learning curves depicting mean percent cor-
rect during each block of the categorization task are
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Figure 5. Results of Experiment 2b. (a) Forward learning curves depicting mean percent correct during each block of
the categorization task; (b) backward learning curves (see text for description) depicting mean percent correct during
each block of the categorization task, where block numbers have been individually shifted so that zero represents the
first block in which a participant reaches 70% correct; (c) mean generalization decrement observed as a result of a
change in the mapping of categories to response keys during the button-switch interference test, with a lower value
representing better generalization.

shown in panel a, whereas the backward learning curves
are shown in panel b. Results follow the same pattern as
in previous experiments.

Figure 5c shows the mean generalization decrement
observed in the button-switch test, with a higher value
representing more interference resulting from the change
in assignment of response buttons to categories during
test. It can be seen that all groups show similarly low
levels of button switch interference. In line with this
observation, one-sample t-tests revealed non-significant
generalization decrement in all groups (ID-learned: t(24)
=2.55, p>.05; ID-new: t(13) =2.00, p>.1; GEN/ID:
t(20) =.45, p>.1) and the ANOVA revealed no signifi-
cant differences between groups, F(2, 57) =1.28, p>0.1.
These results are in line with our hypothesis that partic-
ipants in group ID-learned from Experiment 2 showed
a large button-switch interference effect only due to ex-
tensive training (4 sessions) with a consistent mapping
of categories to motor response location (left vs. right).
Here, the use of a pre-training categorization task that
does not consistently map between categories and mo-
tor responses produced a small generalization decrement
in group ID-learned, which was comparable to that ob-
served in group ID-new (unlike in the previous experi-
ment).

To summarize the results of Experiments 2 and 2b:
behavior in a button-switch interference test was similar
to that observed in the analogical transfer test, in that
a group without extensive pre-training in a categoriza-
tion task (group ID-new) showed excellent generaliza-
tion performance during both tests, close to that found
for groups that had to discriminate gender (GEN/ID and

GEN/EMO) or emotional expression (EMO/GEN), but
different from that observed for the group that had to in-
tegrate information from both gender and emotional ex-
pression during training (GENxEMO). This suggests that
extensive training in group ID-learned was not necessary
for learning of new dimensions. In fact, the results from
Experiment 2a suggested that extensive training in group
ID-learned impaired performance in the test compared
to a group without extensive training. However, Experi-
ment 2b suggested that this impairment is only observed
when such extensive training involves a consistent map-
ping of categories to motor responses, producing auto-
matic responding. In terms of learning of representa-
tions that foster rule learning, extensive experience with
the categories does not seem to improve transfer perfor-
mance beyond that observed after brief experience.

Experiment 3

Morphed face stimuli lack the separable-dimension
structure required for learning of unidimensional rules
and are instead better described as integral dimensions
(Blunden et al., 2015; Goldstone & Steyvers, 2001; Soto
& Ashby, 2015), each comprising a variety of shape
changes that must be integrated at a pre-decisional stage
during categorization (Ashby & Gott, 1988). That is,
although participants in the ID-new condition from our
previous experiments had to learn a “unidimensional”
rule (see Figure 2), the category-relevant and category-
irrelevant dimensions are not initially perceived as sepa-
rate dimensions that can be selectively attended. Rather,
information from a variety of face features must be in-
tegrated in order to master the task. Because this is
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technically an information-integration task, we expected
that participants without experience with morphed face
dimensions would approach a novel categorization task
using a procedural learning strategy1. On the other
hand, previous research suggests that extensive catego-
rization training produces a separable-dimension struc-
ture in morphed face stimuli (Blunden et al., 2015; Gold-
stone & Steyvers, 2001; Soto & Ashby, 2015). For this
reason, we expected that participants exposed to such ex-
tensive categorization training would show performance
in transfer tests indicative of rule learning. Surprisingly,
participants with or without extensive categorization pre-
training showed performance indicative of rule learning
in the previous experiments. These results suggest that
learning of representations that foster the use of rule-
based learning happens "on the fly," when people are first
exposed to a categorization task involving novel mor-
phed dimensions.

This hypothesis is post-hoc, and we only have neg-
ative evidence supporting it, in the form of no signifi-
cant differences between groups ID-learned and ID-new
in Experiments 1 and 2b. In the present experiment,
we sought to obtain positive evidence for this hypothe-
sis. One way to do this would be to give limited pre-
training in a categorization task to one group of partic-
ipants (group Pretrain) and then have this group, and a
Control group without any prior experience, learn a cate-
gorization task thought to require the executive functions
that implement rule-based category learning. If a single
pre-training session is enough to produce representations
that support rule-based learning, then the second com-
plex categorization task should be solved much faster by
group Pretrain than by the Control group.

In previous experiments, a single one-hour session
seemed to be enough experience for group ID-new to
show performance indicative of rule learning, so this is
the experience that group Pretrain received here. Both
groups were tested using a delayed-response yes-no task
(DRYN), in which stimuli were briefly presented and fol-
lowed by a 5-second retention interval; after this, par-
ticipants were asked whether the face belonged to one
of two possible clubs, and were prompted to respond
“Yes” or “No”. There are several reasons to believe that
such a task would require a rule learning system rather
than a procedural learning system. First, the procedu-
ral learning system is thought to operate by learning of
simple associations between stimuli and response loca-
tions (Ashby et al., 2003) or labels (verbal or visual; see
Spiering & Ashby, 2008). In the yes-no task, a consis-
tent mapping between stimuli and responses is lost, and
therefore such tasks are poorly learned by the procedu-
ral system (Maddox et al., 2004b). While the mapping
between stimuli and category labels is still consistent,
the task requires evaluating the stimulus’ category la-

bel and match it against the label included in the yes-
no question, a process that arguably requires executive
function (Spiering & Ashby, 2008). Second, prompting
a categorization response from participants only after a
retention interval added a working memory requirement
to the task. Working memory is thought to be an im-
portant mechanism behind rule-based category learning,
but it seems to play a relatively minor role in procedu-
ral category learning. Experimental studies manipulating
working memory though secondary tasks (either concur-
rent: Miles & Minda, 2011; Waldron & Ashby, 2001;
Zeithamova & Maddox, 2006; or sequential: Maddox
et al., 2004a; Zeithamova & Maddox, 2007) have con-
sistently shown that learning of rule-based categoriza-
tion tasks is more strongly impaired by working mem-
ory load than learning of information-integration cate-
gorization tasks. 2. While concurrent working memory
tasks can impair learning of information-integration cat-
egorization tasks (Miles & Minda, 2011; Zeithamova &
Maddox, 2006), this effect is weaker and less apparent
than that observed in rule-based tasks (Maddox et al.
2004a; Miles & Minda 2011; Waldron & Ashby 2001;
Zeithamova & Maddox 2006, 2007) and sometimes sim-
ply absent (Miles & Minda, 2011; Zeithamova & Mad-
dox, 2007). In sum, our DRYN task has the double qual-
ity of being difficult to solve via procedural learning and
requiring some of the executive processes that are a key
part of rule-based learning, and for this reason we as-
sumed that it would be solved through rule-based cate-
gory learning. If representations that foster rule learn-
ing are learned quickly (within a single session), then
such representations would be available to group Pretrain
and not to the Control group, facilitating fast rule-based
learning in the former but not in the latter.

Materials and Methods

Participants. 51 undergraduates at the University
of California Santa Barbara voluntarily participated in
this experiment in exchange for class credit or a mon-

1Technically, both the ID-new group and the GENxEMO
group were exposed to information-integration tasks. However,
the GENxEMO task involves integration of information from a
pair of clearly differentiated dimensions (i.e., that can be selec-
tively attended). On the other hand, the ID-new task involves
integration of information from a variety of unknown dimen-
sions, which may or may not be separable. Thus, the demands
from the two tasks are different, but neither can be solved by an
explicit rule based on selective attention to a known dimension.
That is, both require a procedural strategy to be learned.

2Note, however, that correlational studies that have mea-
sured individual differences in working memory capacity in
general do not support an association between such differ-
ences and performance in a specific task (Kalish et al., 2017;
Lewandowsky et al., 2012).
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etary compensation. There were 24 participants in group
Pretrain and 27 participants in group Control.

Stimuli. The stimuli used during categorization pre-
training were the same as those used for group ID-
learned in Experiment 1 (see Figure 2). The stimuli used
during the main DRYN categorization task were created
just as described for the experimental groups of Exper-
iment 1. However, the number of stimuli and their co-
ordinates were modified to make the task easier to learn.
The coordinates of the stimuli used are shown in Figure
6. As can be seen from the figure, the number of stimuli
was reduced from 36 per category to 16 per category, and
only stimuli far from the main category boundary were
shown.

Procedure. Two groups of participants were in-
cluded in this experiment: group Pretrain and group Con-
trol. Participants in group Pretrain were exposed to a sin-
gle session of categorization training, about 40-50 min-
utes long, using the exact same stimuli and task as those
described for categorization pre-training of group ID-
learned in Experiment 1 (see Figure 2). Participants in
group Control did not receive such categorization expe-
rience.

Both groups were tested using the DRYN task. In each
trial, a stimulus was presented for 2s and followed by a 5s
delay, after which participants were presented with one
of two possible questions: “Does this person belong to
the GREEN club?” or “Does this person belong to the
YELLOW club?”. The question was displayed by itself,
centered in the screen, with all words in white text except
for “GREEN club”, which were displayed in green color,
and “YELLOW club”, where were displayed in yellow
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Figure 6. Schematic representation of the stimuli used
during categorization training in Experiment 3. The
faces shown next to each dimension represent the parents
for that specific dimension. The points inside the coor-
dinate system represent stimuli obtained from a specific
combination of levels for each dimension. The dotted
line represents the category boundary used for training.
For more details on the stimuli and task used, see the
main text.

color. The question displayed was randomly chosen for
each trial. The keys “Y” and “B” in the keyboard were
re-labeled “Y” and “N”, respectively. Participants were
instructed to use those keys to respond “Yes” or “No” to
the question displayed in each trial. After a key press, the
participant received feedback about the correct response.
We expected this task to be considerably more difficult
to learn than the categorization tasks used in previous
experiments, so the task was made easier by including
a smaller number of stimuli (16 per category, instead of
36) far from the category boundary (see Figure 6).

Data Analysis. All analyses were performed using
R v. 3.2.1 (R Core R Core Team, 2015) extended with the
packages reshape2 v. 1.4.1, plyr v. 1.8.3, and ggplot2 v.
2.1.0, running in RStudio v. 0.99.486 (R Studio Team,
2015). A rejection criterion of α = 0.05 was used in all
statistical tests.

Participants were excluded from all analyses if they
did not reach a performance level of 60% correct by the
last block of categorization training. This criterion was
set before performing the main analyses.

The main analysis was performed on forward learning
curves. Proportion of correct responses was calculated
for each participant in each training block, and these val-
ues were entered to a 2 (Group: Control or Pretrain)
×7 (Block number) mixed-design ANOVA. No follow-
up tests were planned, as the main effects and interaction
from the ANOVA would provide all the information nec-
essary to test our main hypothesis.

Backward learning curves were created as described
in Experiment 1.

Results and Discussion

The number of participants excluded from the final
analysis due to poor performance (<60%) in the catego-
rization task were: 5 from group Pretrain (19 included)
and 8 from group Control (19 included).

Figure 7 shows the main results of Experiment 3, with
forward learning curves shown in panel a and backward
learning curves shown in panel b. From 7a we see that
a single session of categorization pre-training in group
Pretrain improved performance in the task considerably
when compared to that of group Control. Group Pretrain
shows extremely fast learning, with high performance
around 80% correct from the first block that reaches
an asymptotic level close to 90% correct in the sec-
ond block. In comparison, group Control learned more
slowly, reaching asymptotic performance around block
four and never quite reaching performance levels as high
as those observed in group Pretrain. In line with these ob-
servations, the ANOVA revealed both a significant main
effect of Group, F(1, 36) =5.75, p<0.05, and a significant
interaction between Group and Block, F(6, 216) =4.19,
p<0.001. The main effect of Block was also significant,
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Figure 7. Results of Experiment 3. (a) Forward learning
curves depicting mean percent correct during each block
of the categorization task; (b) backward learning curves
(see text for description) depicting mean percent correct
during each block of the categorization task, where block
numbers have been individually shifted so that zero rep-
resents the first block in which a participant reaches 70%
correct.

F(6, 216) =14.8, p<0.001, reflecting the fact that perfor-
mance improved across blocks in both groups.

In sum, the results from the present experiment show
that a single pre-training session is enough to speed-up
learning and improve performance in a categorization
task thought to require executive function. These results
are in line with our hypothesis that learning of represen-
tations that foster the use of rule-based learning mecha-
nisms happens relatively quickly (“on the fly”), upon first
exposure to a categorization task involving morphed face
dimensions.

The results with backward learning curves, shown
in Figure 7b, suggest step-like learning in both groups.
Both groups showed a large jump in performance at
block zero, followed by performance that remained sta-
ble at asymptotic levels afterwards. Such step-like back-
ward learning curves are suggestive of rule learning
through hypothesis testing (Smith & Ell, 2015). This
confirms that people apparently use rules to learn cate-
gorization tasks involving stimuli that vary along integral
dimensions, at least for the kind of morphing dimension
used here.

General Discussion

Here we explored the question of whether newly-
learned dimensions support the kind of rule-based cat-
egory learning commonly observed with traditional sep-
arable dimensions. Previous research shows that novel
morphed dimensions are integral (Blunden et al., 2015;
Goldstone & Steyvers, 2001; Soto & Ashby, 2015), but
extensive categorization training with stimuli varying
in such dimensions makes them more psychologically
privileged (Folstein et al., 2012; Goldstone & Steyvers,

2001) and increases their separability (Soto & Ashby,
2015). For these reasons, we expected that people who
are completely naive to the dimensions would show no
evidence of rule-based category learning, but people who
had extensive pre-training in a categorization task would
show evidence of rule-based category learning in a new
categorization task using the same relevant dimension.
Against our expectations, the overall pattern of results
from our experiments suggests that people without any
experience with a set of morphed dimensions learn new
categorization tasks involving such dimensions using a
rule-based learning strategy. People with and without
categorization pre-training showed similar levels of ana-
logical transfer (Experiment 1) and button-switch inter-
ference (Experiments 2 and 2b) after training in a new
categorization task. The behavior of both groups was
similar to that observed from control groups trained in
a uni-dimensional task aligned to familiar face dimen-
sions (who are thought to use a rule-based category learn-
ing strategy) and dissimilar to that observed from control
groups trained with an integration-information task (who
are thought to use a procedural category learning strat-
egy). In addition, people with and without categorization
pre-training showed step-like learning of a complex task
requiring executive function, suggesting rule learning.

These results suggest that the prior existence of psy-
chologically privileged and separable dimensions at the
outset of categorization training is not a requirement for
rule-based learning. Instead, it seems as if people have
a predisposition to learn categorization tasks using rule-
based strategies, even when stimuli are not represented
in a way that would facilitate such learning. The best
current explanation for the overall pattern of results is
that the appropriate representations for rule application
are learned on-the-fly during categorization tasks. That
is, our results do not necessarily indicate that rules can be
learned without the need for dimensional structure in the
stimuli. Instead, they suggest that representations that
support rule-based category learning, which are likely
to be new differentiated dimensions, are quickly learned
and immediately used for performance of a categoriza-
tion task involving novel morph dimensions.

There is some evidence in the previous literature that
is in line with fast learning of new dimensions. Al-
though most previous studies in this area involved train-
ing that was substantially longer than that given here to
group ID-new (e.g., 25 repetitions in Experiment 1 of
Goldstone & Steyvers, 2001; 27 repetitions in Soto &
Ashby, 2015; 22-24 repetitions in Folstein et al., 2012;
28-56 repetitions in Van Gulick & Gauthier, 2014; 18-
75 repetitions in Op de Beeck et al., 2003), Goldstone
& Steyvers (2001, Experiments 2a and 3) showed ev-
idence of dimensional differentiation after short train-
ing, similar to that received by group ID-new (around
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eight stimulus repetitions). However, the Goldstone and
Steyvers’ experiments tested only dimension differentia-
tion using speed of learning of a new task. In contrast,
our Experiments 1 and 2 tested immediate rule transfer
in the absence of any new feedback learning. That is, our
experiments suggest that the original category learning
is rule-based, meaning that participants in our ID-new
group learned not only to differentiate dimensions after
only eight repetitions of each training stimulus, but also
used the newly differentiated dimensions for rule-based
categorization performance. This is why we emphasize
here that representations that support rule-learning seem
to be learned “on-the-fly.”

In addition, this is the first reported evidence
that the dissociations between unidimensional and
information-integration categorization tasks, previously
well-documented with stimuli varying along simple di-
mensions–such as spatial frequency and orientation of
gratings, or rectangle size and density of dots inside
them–can be also found with naturalistic stimuli vary-
ing along complex dimensions, such as face gender and
emotional expression.

The results from the present study also shed light on
the correct interpretation of the various dissociations that
have been previously found between categorization tasks
that align and do not align with separable dimensions
(i.e., “rule-based” and “information-integration” tasks).
The overall pattern of results observed in Experiments
1 and 2 (see Figures 3, 4 and 5) suggests that psycho-
logically privileged dimensions (perhaps also separable,
although empirical evidence is lacking for face gender
and expression) do not facilitate learning of rules, but
rather prevent such learning when the categorization task
is not aligned with them. Compared to other groups,
the group exposed to an information-integration task in-
volving familiar dimensions (GENxEMO) showed both
weaker analogical transfer (see Figure 3c) and a stronger
button-switch interference (see Figure 4c) than other
groups. Procedural learning of information-integration
tasks might be deployed as a way to use a currently-
available set of dimensions to represent stimuli in a cat-
egorization task, rather than extracting a completely new
dimension for that specific task. This way, procedu-
ral learning might work as a way to protect stimulus
representations that have proven useful in the past, by
avoiding interference between them and new category
knowledge. As procedural learning does not involve
any change in stimulus representation (only stimulus-
response associations), it is an adequate strategy to avoid
such interference.

The present results, together with a number of previ-
ous results, suggest that people have a strong predispo-
sition towards learning new categories through the dis-
covery and application of rules. Participants tend to use

a rule-based strategy early in learning even in a task in
which such a strategy is incorrect (e.g., Markman et al.,
2006). In unsupervised categorization experiments with
separable dimensions, people use mostly unidimensional
rules (Ashby et al., 1999; Handel & Imai, 1972; Handel
et al., 1980; Medin et al., 1987). Here we have found
that not only is this predisposition very strong during cat-
egorization of stimuli varying along known dimensions,
but is also applied when stimuli are completely novel, in
the sense that no previous dimensions exist allowing the
explicit proposal of rules.

What use are separable dimensions?

Rational theories of generalization suggest that sepa-
rable dimensions are directions in stimulus space along
which natural categories (i.e., “consequential regions”)
vary (Shepard 1987; Soto et al. 2014, 2015). In line
with this idea, people use them preferentially and spon-
taneously for categorization (Ashby et al., 1999; Han-
del & Imai, 1972; Handel et al., 1980; Markman et al.,
2006; Medin et al., 1987) and learn to extract them dur-
ing categorization training with novel stimuli (Soto &
Ashby, 2015). However, here we found that performance
in tests of generalization (analogical transfer and button-
switch interference) is similar when people are trained
using stimuli with or without a dimensional structure.
This opens the questions: What are separable dimensions
good for? Why does the human brain learn to extract
them in categorization tasks, and why are previously-
available separable dimensions privileged during catego-
rization tasks?

Our results suggest that known separable dimensions
do not facilitate generalization compared to completely
novel dimensions. On the other hand, they do seem to
facilitate learning. In all our experiments, we found ev-
idence that previous experience in a categorization task
speeds new learning and leads to stronger performance.
In most cases, asymptotic performance in a new catego-
rization task was achieved within a single block (i.e., a
single presentation of each unique stimulus) by partic-
ipants who had exposure to categorization pre-training.
They showed faster learning and higher performance
than participants without such exposure.

Not all integral dimensions are created equal

It is important to note that the results presented here
should not be expected to hold with all integral dimen-
sions. In particular, they are likely to not hold with some
traditional integral dimensions, such as brightness and
saturation.

As highlighted by Soto et al. (2015), there is only one
way in which two dimensions can be separable–when
they are preferred directions in stimulus space that can
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be selectively attended–but there are at least two ways in
which two dimensions can be integral. According to the
correlation hypothesis (Shepard, 1987; 1991), integral
dimensions are those with values that correlate in natural
classes. For example, the length and width of animals
are correlated; longer mammals tend to also be wider.
This requires integral dimensions to be privileged direc-
tions in stimulus space, with integrality arising from the
way in which natural categories vary along such dimen-
sions. According to the direction hypothesis (Austerweil
& Griffiths, 2010; Soto et al., 2015), two dimensions are
integral when natural classes are equally likely to extend
in any direction in space, and therefore there are no priv-
ileged directions in stimulus space.

Although Soto et al. (2015) found evidence in line
with the direction hypothesis, Kemler-Nelson (1993; see
also Jones & Goldstone, 2013) concluded from a litera-
ture review that traditional integral dimensions are real
psychological dimensions, despite usually being pro-
cessed in a holistic way. To integrate both sets of find-
ings, Soto et al. (2015) proposed a rational bayesian
model allowing intermediate modes of processing be-
tween purely separable dimensions, in which attention
can be only aligned to the dimensional axes, and purely
integral dimensions, in which attention can be deployed
along any arbitrary dimension in space. In this model,
different directions in space are treated as hypotheses that
can be weighted more or less during categorization and
generalization tasks, thus representing degrees to which
such directions are privileged.

Morphing dimensions seem to lie at the extreme of
integrality, where all directions are weighted equally and
therefore none is privileged. These dimensions not only
interact during processing (Goldstone & Steyvers, 2001;
Soto & Ashby, 2015), but also they are not privileged
directions in stimulus space (Folstein et al., 2012; Gold-
stone & Steyvers, 2001). In addition, the fact that no
direction is privileged explains why any direction can
acquire such status through categorization training (Fol-
stein et al., 2012; Goldstone & Steyvers, 2001). We ex-
pect that the effects of categorization training usually
found with morphing dimensions, such as those pre-
sented here, are likely to hold with any other dimensions
that show such extreme integrality.

On the other hand, traditional integral dimensions
like brightness and saturation seem to lie somewhere
between the two extremes of integrality and separabil-
ity. One possibility is that the two integral dimensions
are slightly more privileged than other directions (i.e.,
weighted more heavily), but all directions are weighted
to some extent. This is in line with the hypothesis put for-
ward by Smith & Kemler (1978) that integral dimensions
are perceived holistically but also sustain a less preferred
mode of processing in terms of component parts. This

explains why integral dimensions seem to interact with
one another during processing, but also show evidence
of being privileged directions in stimulus space (Foard
& Kemler-Nelson, 1984; Grau & Kemler-Nelson, 1988;
Jones & Goldstone, 2013; Kemler-Nelson, 1993; Melara
et al., 1993).

Another possibility is that dimensions might appear
integral because privileged directions in stimulus space
do exist, but they do not align with the dimensional axes
(i.e., other directions are weighted most heavily) or they
align with only one of them (i.e., only one of the axes
is weighted most heavily, as in the “dominance met-
ric”, see Soto & Wasserman, 2010b). For example, Ell
et al. (2012) studied unsupervised categorization with
the integral dimensions of brightness and saturation, and
they found that some participants categorized stimuli as
if they could pay selective attention only to brightness,
but not to saturation, and others behaved as if they were
extracting a diagonal “grayness” dimension, going from
dim and saturated stimuli to bright and desaturated stim-
uli. In line with the idea of a heavily-weighted diagonal
dimension, categorization training using brightness and
saturation fails to produce evidence of dimension differ-
entiation (Goldstone, 1994b).

All these and more possibilities can be accommodated
by the rational bayesian model of Soto et al. (2015;
see also Soto et al., 2014), implemented as different pat-
terns of pre-existent preferences for directions in stimu-
lus space. More research will be necessary to fully char-
acterize how different types of integral dimensions differ
from one another and how this might affect learning and
generalization in categorization tasks.

What kind of mechanism can account for these re-
sults?

Any mechanistic explanation of the results presented
here must have the following features: (1) it must involve
a mechanism to quickly learn to extract category-relevant
information and ignore category-irrelevant information;
(2) it must involve a way to quickly re-map responses (to
reduce button-switch interference) and labels (to foster
fast learning of YN task) to the representation of each
category; (3) it must involve a way to facilitate encoding
and/or maintenance of category representation in visual
working memory. Several computational mechanisms in
the literature have those features. Here we focus on neu-
rocomputational mechanisms, which include both algo-
rithmic and implementational details and thus generate
more predictions to differentiate them in future research
(Ashby & Helie, 2011).

One possibility involves the learning of novel category
representations, which would be intermediate between
visual representations and motor choices. If such repre-
sentations are accessible to executive processes–allowing
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retention in working memory, selective attention, and
fast mapping to responses and labels–then all the results
observed here can be explained. Importantly, behavioral
evidence suggests that learning of intermediate repre-
sentations is possible in both procedural and rule-based
systems (Maddox et al., 2010), and neurocomputational
models exist that implement both mechanisms.

Regarding learning in the procedural system,
Cantwell et al. (2015) proposed a two-stage model
of procedural categorization capable of learning inter-
mediate category representations in the striatum through
error-driven learning mechanisms. In this model, initial
category learning is implemented in the visual cortico-
striatal loop, which learns unified representations for
similar groups of stimuli that have been assigned to the
same category. These unified category representations
are passed to the pre-SMA, which then feeds them to
the motor cortico-striatal loop that learns to associate
them with responses. The results from the analogical
transfer test cannot be explained by this model in its
original form, because learning in the caudate involves
associations between specific stimuli (i.e., individual
faces) and group membership. Presentation of new
stimuli during the generalization test would not activate
the learned intermediate representations. However, a
small modification of the model would allow better
generalization. If one assumes that visual cortical
neurons represent each stimulus as a distributed pattern,
with some neurons being activated by many stimuli in
the same category (e.g., a neuron representing a facial
feature shared by many members of the category),
then an error-driven learning rule like that used by
Cantwell et al. (2015) would selectively link such
relatively category-specific neurons to intermediate
representations (Soto et al., 2012; Soto & Wasserman,
2010a,1). Because new stimuli would also activate such
category-specific visual neurons, they would in turn
activate the learned intermediate representations. The
specific settings used by Cantwell et al. (2015) in their
simulations also seem unable to account for the results of
Experiment 2, as their two-stage model showed a strong
button-switch interference effect. Although the newly
learned representations in this model can be quickly
associated with new motor responses, it still takes some
time for the model to learn the reversed assignment of
categories to responses. However, it is possible that
parameter settings different from those used by Cantwell
et al. (2015) can reproduce the results of Experiment
2. Similarly, the results of Experiment 3 are also
difficult to explain with this model, unless one assumes
that the newly-learned representations transferred to
pre-SMA can be flexibly applied to novel tasks and
kept in working memory through the persistent activity
typical of neurons in the PFC (for a review, see Riley &

Constantinidis, 2016). In summary, the Cantwell et al.
(2015) model is a candidate for learning of intermediate
representations, but explaining the results found here
would require additional assumptions.

Regarding learning of intermediate representations in
the rule-based system, at least two possibilities exist.
One possibility is that novel category representations are
kept and updated in the hippocampus, under the influ-
ence of task demands and goals implemented in the pre-
frontal cortex, as proposed by Love and colleagues in
their SUSTAIN model (Love & Gureckis, 2007; Love
et al., 2004; Mack et al., 2016). In this model, the hip-
pocampus keeps representations of stimulus clusters, and
updates such representations as the result of surprising
events (Love & Gureckis, 2007) and task demands (Mack
et al., 2016). If a task requires more attention to a par-
ticular stimulus dimension, the PFC directs attention to
that dimension and the hippocampal cluster representa-
tions are updated accordingly (Mack et al., 2016). One
feature of this theory is that it assumes that updating can
be done relatively quickly, given the known role of the
hippocampus in fast learning. SUSTAIN seems able to
explain all the results reported here. The theory can ex-
plain the results of Experiment 1 as the result of allocat-
ing attention to properties of stimuli that are relevant to
the categorization task. Fast learning of clusters during
categorization training can explain the lack of a button-
switch interference effect in the groups with limited (ID-
new) or extensive (ID-learned) categorization experience
during Experiment 2, and the advantage of pre-training
on learning of a rule-based categorization task in Exper-
iment 3.

A second possibility is that novel category represen-
tations are kept and updated in lateral PFC, as suggested
by a wealth of results from monkey electrophysiology
experiments (e.g., Cromer et al. 2010; Freedman et al.
2003; Roy et al. 2010, 2014). Unfortunately, the neu-
rocomputational mechanisms that guide learning of cat-
egory representations in the lateral PFC are not well
understood. To the best of our knowledge, no work-
ing computational model for this process has been pro-
posed yet. In monkeys, categorical representations are
observed only after extensive training, and it is believed
that they form with the help from slow reward-driven
learning processes that take place in the basal ganglia
(Buschman & Miller, 2014). Such slow learning does
not seem compatible with the fast learning observed in
our experiments.

Engel et al. (2015) proposed a model in which in-
termediate representations are not learned de novo, but
previously-available intermediate representations, in the
form of neurons that are sensitive both to certain stimu-
lus features and response choices, are selected and sharp-
ened through learning driven by reward prediction er-
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rors. In this model, previous neural selectivity serves as
a “scaffold” for learning of categorical representations.
Reward learning influences cortical representations di-
rectly through assumed dopaminergic neuromodulation
of visual cortical neurons, which serves to modify the
tuning of individual neurons in a way that facilitates the
discrimination of categories. Thus, this model is some-
where between learning of de novo intermediate cate-
gory representations, and enhancement of already exist-
ing representations.

Finally, it is possible that no intermediate represen-
tations are learned at all. For example, we could assume
that an attentional mechanism is able to bias visual repre-
sentations themselves, so that only category-relevant in-
formation is preferentially processed. A variety of mech-
anisms could achieve this. For example, attention could
be biased towards visual features that predict positive
feedback or reward (Anderson, 2016). Neurophysiolog-
ical (Yamamoto et al., 2013) and neuroimaging (Ander-
son et al., 2014) data suggest that the tail of the caudate
could be the site where learning of such reward-driven
attentional biases is implemented. A recently-proposed
neurocomputational model (Hays & Soto, 2017) sug-
gests that learning of associations between visual rep-
resentations and rewards in the caudate may influence
those same visual representations via closed loops in-
volving visual cortex and the basal ganglia. An important
difference between this model and that of Engel et al.
(2015) is the way in which reward-driven learning in-
fluences cortical representations. In the Hays and Soto
model, reward learning influences cortical representa-
tions only indirectly through the output of cortico-striatal
loops, which serves only to enhance already-existing vi-
sual representations.

Because this learning mechanism involves only en-
hanced processing of already-existing representations, it
does not require slow training. The resulting attentional
biases would allow selective processing of only visual
representations that are informative for the categorization
task (Soto & Wasserman, 2010a), which explains good
analogical transfer. Attentional enhancement could also
speed up the learning processes involved in reassignment
of responses during the button switch interference test,
and fast learning of the yes-no conditional discrimina-
tion task. However, it is not clear whether attentional
mechanisms could explain the fact that in both of these
tasks performance is essentially at ceiling within the first
block. As with the Cantwell et al. (2015) model, an ex-
planation based only on attentional learning might re-
quire the additional assumption that attention facilitates
the use of other executive functions (e.g., encoding into
visual working memory).

The data available related to these different hypothe-
ses is limited, and it does not strongly favor one of them

over the other. For example, an fMRI study on the neural
correlates of dimension differentiation during categoriza-
tion found changes in the representation of the category-
relevant dimension in early visual cortex, in several PFC
areas and in hippocampus (Folstein et al., 2013). Only
further behavioral and neurobiological research can dis-
tinguish among these possibilities. Still, at this time
SUSTAIN (Love & Gureckis, 2007; Love et al., 2004;
Mack et al., 2016) seems better equipped than alterna-
tives to explain the overall pattern of results observed
here without substantial additions or modifications.

Limitations of this study

Morphed face dimensions can be shown to be inte-
gral by a variety of tests (Blunden et al., 2015; Gold-
stone & Steyvers, 2001; Soto & Ashby, 2015), and ex-
tensive training increases dimensional separability (Soto
& Ashby, 2015). Because our current study did not in-
clude tests of dimensional separability, it is not clear
whether the fast learning found here for groups with-
out such extensive pre-training is accompanied by sep-
arability learning. It is possible that the representations
learned in the present experiments to support rule-based
categorization are not separable. It is thus unclear for
now whether dimensional separability is a condition for
rule-based learning.

The present experiments used faces as stimuli, which
are particularly important objects for humans. Perhaps
the adaptive importance of faces “prepares” people and
other primates for fast learning of category representa-
tions that can support rule learning. Testing the general-
ity of our results will require replicating them using mor-
phed objects other than faces (e.g., cars or novel shapes:
Folstein et al. 2012; Op de Beeck et al. 2003).

Finally, as explained in the previous section, there are
many possible mechanistic explanations for the results
obtained here, and our data do not allow us to discrim-
inate among them. This task cannot be accomplished
without substantial additional behavioral and neurosci-
entific research.

Conclusion

Here we show evidence that newly-learned dimen-
sions support the kind of rule-based category learning
commonly observed with traditional separable dimen-
sions. In addition, we found that the prior existence of
psychologically privileged and separable dimensions at
the outset of categorization training is not a requirement
for rule-based learning. Rule-based categorization per-
formance was not only found with stimuli having a prior
dimensional structure (i.e., face gender and emotion) or
that acquired such structure through extensive catego-
rization training. Rather, representations that support the
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use of rule-based categorization seemed to be learned on-
the-fly during brief categorization training with stimuli
that lacked any previous dimensional structure. This con-
firms that people have a strong predisposition towards
learning new categories through the discovery and ap-
plication of rules, and that rule-based category learning
is a powerful adaptive system that is not limited by the
availability of separable dimensions for its application.
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