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Virtually all cognitive theories of category learning (such
as prototype theory1,2,3,4,5 and exemplar theory6,7,8) view this
important skill as a high-level process that uses abstract rep-
resentations of objects in the world. Because these represen-
tations are removed from visual characteristics of the display,
such theories suggest that category learning occurs in higher-
level (e.g., association) areas and therefore should be im-
mune to the visual field dependencies that characterize pro-
cessing of objects mediated by representations in low-level
visual areas. This article challenges that view by describing
a fully controlled demonstration of visual-field dependence
in category learning. Eye-tracking was used to control gaze
while participants either learned rule-based categories known
to recruit prefrontal-based explicit reasoning, or information-
integration categories known to depend on basal-ganglia-
mediated procedural learning9. Results showed that learn-
ing was visual-field dependent with information-integration
categories, but we found no evidence of visual-field depen-
dence with rule-based categories. A theoretical interpreta-
tion of this difference is offered in terms of the underlying
neurobiology. Finally, these results are situated within the
broad perceptual-learning literature in an attempt to motivate
further research on the similarities and differences between
category and perceptual learning.

Categorization is an essential aspect of our daily lives.
We make thousands of categorization judgments each day
and many can lead to devastating consequences when per-
formed incorrectly (e.g., mistaking a poisonous mushroom
as edible). Historically, the categorization literature has over-
whelmingly treated category learning as a high-level cogni-
tive process that is largely independent of sensory systems.
For example, prototype theory assumes that categorization
is a process of activating mental representations of the cat-
egory prototypes, which are abstract representations of the
most typical member in each category1,2,3,4,5. Exemplar the-
ory assumes categorization is a process of accessing memory
representations of the category exemplars, which are mod-
eled as single points in an abstract psychological space6,7,8.
The common theme here is that categorization invokes com-
plex comparison processes and abstract stimulus representa-
tions that are far removed from the sensory systems used to
process the stimuli.

This article reports the results of an experiment that pro-
vides evidence against this view – at least in the case of
categories thought to be learned procedurally. Specifically,

we describe evidence that the learning that occurs in such
cases is retinal specific. After the categories are learned,
categorization accuracy deteriorates much more if the stim-
ulus is moved to a new untrained location on the partici-
pant’s retina than if it is moved to the same relative reti-
nal location in the untrained eye, or with any type of move-
ment when the categories can be learned explicitly (e.g., via a
rule). These results suggest that procedural category learning
is much more dependent on low-level visual representations
than rule-based category learning.

There is now abundant evidence that declarative and
procedural memory both contribute to category learn-
ing9,10,11,12,13. Much of this evidence comes from rule-based
(RB) and information-integration (II) category-learning
tasks. In RB tasks, the categories can be learned via some
explicit reasoning process14. In the most common appli-
cations, only one stimulus dimension is relevant, and the
participant’s task is to discover this relevant dimension and
then to map the different dimensional values to the rele-
vant categories. A variety of evidence suggests that success
in RB tasks depends on declarative memory and especially
on working memory and executive attention14,15,16,17. In II
category-learning tasks, accuracy is maximized only if infor-
mation from two or more incommensurable stimulus compo-
nents is integrated at some predecisional stage18,14. Evidence
suggests that success in II tasks depends on procedural mem-
ory, which forms stimulus-response associations via striatal-
mediated reinforcement learning19,20,21,22.

Figure I shows the II category-learning task used in the
present experiment. Every stimulus was a circular, sine-wave
grating that varied across trials on two stimulus dimensions
– the width and orientation of the dark and light bars. Each
symbol denotes a different stimulus. Note that there are four
categories: A, B, C, and D. The stimuli corresponding to
each category prototype (i.e., category mean) are also shown.
The diagonal lines describe the optimal categorization strat-
egy. Note that these lines divide the 100 × 100 stimulus space
into four regions. Accuracy is maximized if the participant
responds with the category label depicted in each of these re-
gions to any stimulus that falls in that region. Note that this
strategy is difficult (if not impossible) to describe verbally.

To create the RB category-learning task, we simply ro-
tated the II stimulus space 45◦ clockwise (and therefore all
of the stimulus coordinates were also rotated). This rota-
tion converts the diagonal category bounds to vertical and
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Figure 1. Sample stimuli and four II categories. The
dotted lines denote the optimal category decision bounds.
The units were chosen so that changes of the same magni-
tude on each dimension have approximately equal percep-
tual salience. See the Methods section for transformations
that convert units of spatial frequency to cycles per degree,
and units of orientation to degrees counterclockwise rotation
from horizontal.

horizontal while preserving all category-separation statistics.
The rotation also makes the optimal categorization strategy
easy to describe verbally. For example, note that after the
rotation, the optimal strategy for identifying members of cat-
egory A is to “Respond A if the bars are wide and the orien-
tation is steep.”

Figure II describes the procedures we used. Each partic-
ipant was first trained on either the RB or II categories with
feedback on every trial (no participants learned both category
structures). Participants in the RB and II conditions were
given identical instructions. They were simply told that their
task was to use the feedback during training to learn to assign
each disk to its correct category. During the training phase
of the experiment, participants wore an eye patch over their
left eye. They were instructed to maintain their fixation at
the center of the screen throughout the entire categorization
trial. The categorization stimulus was always presented 5◦

right of the fixation point. Eye movements were monitored
and any movement after the stimulus appeared aborted the
trial. After the training phase, all participants completed 50
more trials that were identical to training except the trial-by-
trial feedback was withheld. We call this the control phase
because it provides an estimate of the amount of learning that
occurred during training.

After the control phase was completed, participants were

Figure 2. Order of events that occurred in each phase of the
New Eye First condition. The New Location First condition
was identical except the order of the last two phases was re-
versed.

randomly assigned to one of two conditions that were iden-
tical except for the order of the final two phases. In the New
Eye First condition, participants switched the eye patch to
their right eye and then completed 50 more trials with the
stimulus at the same location as during the control phase.
Finally, during the last 50 trials of the experiment, they
switched the eye patch back to their left eye and the stim-
ulus was presented 5◦ left of fixation. So this final phase
tested their categorization accuracy on the trained eye, but at
an untrained retinal location. The New Location First condi-
tion was identical except the order of the last two phases was
reversed.

In summary, each participant was trained on either the II
or RB category structures and then tested with one of two or-
ders of the test conditions, resulting in a 2×2 factorial design
with 2 category structures (RB versus II) crossed with two
training orders (New Eye First versus New Location First).

Experiment 1 included 100 participants – 50 in the RB
conditions and 50 in the II conditions. All participants re-
ceived 500 trials of training (with feedback) followed by
the three test blocks of 50 (unsupervised) trials each, as
described in Figure II. All participants who performed so
poorly during the control testing block that we could not
reject the null hypothesis that their accuracy was at chance
(0.25; i.e., with α = .01) were excluded from further anal-
ysis. This was necessary because asking whether learning
transfers presupposes that there is some learning to transfer.
This exclusion criterion eliminated 16 of the 100 participants
from further analysis (12 from the RB condition and 4 from
the II condition).

The learning curves during the training phase (Phase 1)
for the II and RB categories are shown in the top panel of
Figure III. Note that by the end of training, accuracy in-
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creased to roughly the same level for both category structures
(during the control testing block the accuracy difference be-
tween the two groups was nonsignificant: mean II accuracy
66%; mean RB accuracy 67%; t(83) = .20, p = .84, d =

.04, 95%CI∆PC = [−.07, .05]).

To compare performance when the stimulus moved to the
untrained eye versus a new location on the trained eye, we
first computed two difference scores (∆PC) for each par-
ticipant: 1) New Eye Same Location test block accuracy
minus Control test block accuracy, and 2) Same Eye New
Location test block accuracy minus Control test block ac-
curacy. Next, to compare these difference scores, we per-
formed a three-factor mixed ANOVA that included two lev-
els of category structure (II and RB), two levels of retinal
location (new eye and same eye), and two levels of block
order (2nd and 3rd test blocks; Control was always first),
with repeated measures on the latter two factors. This anal-
ysis showed a main effect of retinal location [F(1, 80) =

8.15, p = .005, η2
p = .093, 90%CIη2

p
= [0.016, .2]], but

not of category structure [F(1, 80) = .03, p = .86, η2
p =

.003, 90%CIη2
p

= [0.0, .02]] or block [F(1, 80) = 1.9, p =

.17, η2
p = .02, 90%CIη2

p
= [0.0, .10]]. However, the ANOVA

reported marginally significant interactions for both category
structure and retinal location [F(1, 80) = 3.35, p = .07, η2

p =

.04, 90%CIη2
p

= [0.0, .13]] and category structure and block
[F(1, 80) = 2.91, p = .09, η2

p = .04, 90%CIη2
p

= [0.0, .12]],
demonstrating the need for further analysis.

To probe these results more closely we ran follow-up two-
factor ANOVAs separately on the II and RB difference scores
[two retinal locations (new location and new eye) × two
blocks (2nd and 3rd), with repeated measures on both fac-
tors]. For the II difference scores, the main effect of retinal
location was significant [F(1, 44) = 15.15, p < .001, η2

p =

.26, 90%CIη2
p

= [0.09, .41]], but the main effect of block
[F(1, 44) = .04, p = .85, η2

p = .001, 90%CIη2
p

= [0.0, .05]]
and the retinal location × block interaction were nonsignif-
icant [F(1, 44) = .05, p = .83, η2

p = .001, 90%CIη2
p

=

[0.0, .05]]. In the case of the RB difference scores, the
main effect of block was marginally significant [F(1, 36) =

3.55, p = .067, η2
p = .09, 90%CIη2

p
= [0.0, .25]], but the

main effect of retinal location was not significant [F(1, 36) =

.22, p = .64, η2
p = .006, 90%CIη2

p
= [0.0, .10]], nor was the

retinal location × block interaction [F(1, 36) = .002, p =

.96, η2
p = 0.0, 90%CIη2

p
= [0.0, .0006]].

Inspired by the perceptual-learning literature23, we calcu-
lated a Transfer Index (TI) score for each condition. The TI
measures the amount of learning that transferred from the
training location to either the new retinal location or the new
eye. We defined the TI as the mean proportion correct above
chance at the new location divided by the mean proportion
correct above chance during control testing. More specif-
ically, let PNE and PC denote the mean proportion correct

Figure 3. Results of Experiment 1. All error bars show stan-
dard error. (a) Learning curves of participants during RB
(n = 38) and II (n = 46) training. Each block included 50
trials. (b & c) Individual participant and mean accuracies
during each Experiment 1 test block for the II condition (b)
and RB condition (c). Open circles denote individual partic-
ipant accuracies and the bars denote group mean accuracy.
Error bars show standard error. "**" signifies significance
after FDR correction (FDR ≤ .05; largest significant p-value
= .036). "*" signifies uncorrected significance at α = .05.
All p-values can be found in the text in the two paragraphs
that follow Equation 1.



4 LUKE A. ROSEDAHL, MIGUEL P. ECKSTEIN, & F. GREGORY ASHBY*

(across participants) during the New Eye phase and the Con-
trol phase, respectively. Then the TI for transfer to the new
eye equals

T INE =
PNE − .25
PC − .25

. (1)

The TI for transfer to a new retinal location (i.e., T INL) was
defined analogously. Note that this measure equals 1 if trans-
fer is perfect and 0 in the absence of any transfer. Note also
that this statistic differs slightly from traditional perceptual-
learning transfer indices. This is because accuracy often be-
gins above chance in most perceptual-learning tasks, whereas
in the category-learning tasks used here, accuracy necessarily
begins at chance.

The accuracy of participants in each test block is shown
in the middle and bottom panels of Figure III. All pairwise
differences were assessed for statistical significance using
post-hoc paired t-tests corrected for multiple comparisons by
holding false discovery rate (FDR) at ≤ .05 (significance af-
ter FDR correction is denoted in Figure III by ** and un-
corrected significance at α = .05 is denoted by *). Note
that in the II conditions, accuracy dropped significantly from
control levels with an average TI of .85 when the stimulus
moved to a new retinal location on the trained eye (New Lo-
cation First condition: t(44) = 3.24, p = .002, d = .64,T I =

.86, 95%CI∆PC = [−.12,−.03]; New Eye First condition:
t(44) = 2.92, p = .006, d = .47,T I = .84, 95%CI∆PC =

[−.10,−.03]), but not when it moved to the untrained eye at
the trained location (New Location First condition: t(44) =

1.05, p = .30, d = .22,T I = .98, 95%CI∆PC = [−.05, 0.0];
New Eye First condition: t(44) = .93, p = .36, d = .16,T I =

.94, 95%CI∆PC = [−.05, 0.0]). Additionally, performance
was lower in the untrained location than the untrained eye,
with an average TI of .89 (New Location First Condition:
t(44) = 2.19, p = .03, d = .48,T I = .88, 95%CI∆PC =

[−.08,−.01]; New Eye First Condition: t(44) = 1.93, p =

.05, d = .31,T I = .90, 95%CI∆PC = [−.07,−.01]), though
this difference is not significant after FDR correction.

In the RB conditions, accuracy decreased monotonically
with block. Performance was best in the first test block
(i.e., control) and worst in the third test block regardless of
retinal location, though none of the differences were statis-
tically significant. In the New Eye First condition the TI
from the first to the third block was .86 (t(36) = 2.50, p =

.02, d = .48,T I = .86, 95%CI∆PC = [−.10,−.03]) while
in the New Location First condition it was .84 (t(36) =

2.22, p = .03, d = .35,T I = .84, 95%CI∆PC = [−.10,−.01]).
The second test block was not significantly different from
the control block for either condition with an average TI
of .93 (New Location First: t(36) = 1.36, p = .18, d =

.21,T I = .93, 95%CI∆PC = [−.08, .02]; New Eye First:
t(36) = .99, p = .33, d = .17,T I = .93, 95%CI∆PC =

[−.07, .02]). There was no significant difference between
the untrained eye and untrained location for either condition

(New Location First: t(36) = .86, p = .40, d = .13,T I =

.97, 95%CI∆PC = [−.05, .03]; New Eye First: t(36) =

1.52, p = .14, d = .27,T I = 1.0, 95%CI∆PC = [−.08, 0.0]).
The hypothesis that II learning includes a retinal specific

component predicts that the observed accuracy drop in the II
conditions when the stimulus moved to a new retinal location
should be a general effect that holds for all categories and
responses. To test this prediction, and to rule out category-
or response-specific accounts of the accuracy drop (e.g., that
the drop is caused by some sort of Simon-like effect24), we
fit models derived from General Recognition Theory (GRT)
to the 4 × 4 confusion matrices from each test block. GRT
is a multidimensional generalization of signal detection the-
ory25,26,27. It not only estimates decision bounds, but in addi-
tion it estimates category representations (under the assump-
tion that these have multivariate normal distributions). The
results showed that in the II conditions, all category repre-
sentations became considerably noisier when the stimulus
moved to a new retinal location, but not when it moved to a
new eye, whereas in the RB conditions, the effects were still
general (i.e., not category or response specific), but the in-
crease in noise was similar for both experimental conditions.
Thus, this analysis suggests that the performance changes
that occurred when the stimulus moved locations were gen-
eral, and not category or response specific.

The results showed significant retinal specificity for II cat-
egory learning, but not for RB learning. Instead, the RB par-
ticipants showed a block effect in which accuracy decreased
in each successive test block regardless of retinal location.
This is likely due to unique differences between RB and II
learning. Considerable evidence suggests that in RB tasks,
participants learn abstract category labels (e.g., A, B, C, and
D) and that they use working memory to remember which
response keys are associated with each label. All trials dur-
ing the test blocks were unsupervised, so recovery from any
failure to recall the correct category label-response key as-
sociation was difficult or impossible. In contrast, in II tasks,
participants learn response positions, not category labels, and
therefore there is no need to learn category label-response
key associations28,15,29,30,31,16. In fact, several RB partici-
pants complained about forgetting which response key was
associated with each category during the transition between
testing blocks but no II participants voiced this complaint.

Although we found no evidence of retinal-specific learn-
ing in the RB conditions of Experiment 1, it is possible that
the reduction in accuracy across test blocks masked a small
retinal-specific effect. Experiment 2 provides an alternative
test of this hypothesis. Although Experiment 2 was per-
formed before Experiment 1, we chose to present them in
the reverse order since Experiment 1 has the conceptually
simpler design.

As discussed in the Introduction, RB and II categoriza-
tion tasks were chosen for this research because considerable
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evidence suggests they are learned in qualitatively different
ways – that is, RB learning depends primarily on declar-
ative memory, whereas II learning depends on procedural
memory. The hypothesis that motivated the present research
is that category learning mediated by procedural systems is
more likely to be retinal specific than category learning me-
diated by declarative systems. Therefore, the strongest test
of this prediction requires experimental conditions that min-
imize any possible contribution of procedural learning in the
RB task. For example, recent evidence suggests that proce-
dural learning occurs in the background while participants
are engaging in explicit rule learning32.

For these reasons, Experiment 2 had a modified experi-
mental paradigm that was selected to minimize the contribu-
tion of procedural learning. In particular, in the RB condi-
tions of Experiment 2, feedback was delayed by 2.5 sec on
every trial during training, and a noise mask filled the de-
lay interval to disrupt visual imagery. Previous research has
shown that these manipulations abolish almost all procedu-
ral learning but have no effect on RB learning33. This is be-
cause II learning is thought to depend on dopamine-mediated
synaptic plasticity within the striatum, and the evidence is
good that for this type of plasticity to succeed, the dopamine
must arrive at the critical synapses within a few seconds of
synaptic activity34. The mask is necessary to prevent par-
ticipants from maintaining synaptic activity during the delay
period via mental imagery.32,35,36. In addition, because pro-
cedural learning develops slowly, Experiment 2 included 200
fewer RB trials (for a total of 300 training trials for RB vs.
500 training trials for II). All other Experiment 2 procedures
were identical to those used in Experiment 1.

As in Experiment 1, we excluded from further analysis all
participants who performed so poorly that we could not reject
the null hypothesis that their control test block accuracy was
at chance (0.25; i.e., with α = .01). This eliminated 21 of the
100 participants (12 from the RB condition and 9 from the II
condition).

The learning curves during the training phase (Phase 1)
for the II and RB categories are shown in the top panel of
Figure IV. As in Experiment 1, note that training accuracy in-
creased to roughly the same level for both category structures
(RB and II accuracies during the control testing block were
not significantly different: mean II accuracy 69%; mean RB
accuracy 71%; t(78) = .70, p = .49, d = .16, 95%CI∆PC =

[−.08, .04]).
As in Experiment 1, we again compared performance

when the stimulus moved to the untrained eye versus a new
location on the trained eye via a three-factor mixed ANOVA
on the difference scores (i..e, test block 2 or 3 accuracy
minus control block accuracy). The ANOVA included two
levels of category structure (II and RB), two levels of reti-
nal location (New Eye and Same Eye), and two levels of
block number (2nd and 3rd test blocks), with repeated mea-

sures on the latter two factors. The results showed a signif-
icant main effect of retinal location [F(1, 75) = 17.8, p <
.001, η2

p = .19, 90%CIη2
p

= [.07, .31]] but no significant ef-
fect of category structure [F(1, 75) = .44, p = .51, η2

p =

.006, 90%CIη2
p

= [0.0, .06]] or block [F(1, 75) = 1.7, p =

.20, η2
p = .02, 90%CIη2

p
= [0.0, .10]]. The only significant in-

teraction was between category structure and retinal location
[F(1, 75) = 14.7, p < .001, η2

p = .16, 90%CIη2
p

= [.05, .29]].
To probe these results more closely we again ran follow-

up two-factor ANOVAs separately on the II and RB dif-
ference scores [retinal location (new eye and same eye) ×
block (2nd and 3rd) with repeated measures on both fac-
tors]. In the II conditions, there was a significant main ef-
fect of retinal location [F(1, 39) = 32.5, p < .001, η2

p =

.45, 90%CIη2
p

= [.25, .57]], but the main effect of block
[F(1, 39) = 1.0, p = .32, η2

p = .03, 90%CIη2
p

= [0.0, .15]] and
the retinal location × block interaction [F(1, 39) = .03, p =

.87, η2
p = .001, 90%CIη2

p
= [0.0, .02]] were both nonsignif-

icant. In the RB conditions there was no significant effect
of block [F(1, 36) = .61, p = .44, η2

p = .02, 90%CIη2
p

=

[0.0, .13]], retinal location [F(1, 36) = .03, p = .88, η2
p =

.001, 90%CIη2
p

= [0.0, .05]], or retinal location × block in-
teraction [F(1, 36) = .25, p = .62, η2

p = .01, 90%CIη2
p

=

[0.0, .10]].
The mean and individual participant accuracies in each

test block are shown in the bottom two panels of Figure IV.
As in Experiment 1, all pairwise differences were assessed
for significance using two-sample paired t-tests. FDR cor-
rected significance (at FDR ≤ .05) is denoted by ** and un-
corrected significance (at α = .05) is denoted by *.

As in Experiment 1, accuracy dropped significantly in
the II condition when the stimulus moved to the untrained
location, with an average TI of .72 (New Location First:
t(39) = 4.48, p = .00006, d = .99,T I = .69, 95%CI∆PC =

[−.18,−.07]; New Eye First: t(39) = 3.79, p = .0005, d =

.96,T I = .73, 95%CI∆PC = [−.16,−.07]), but not when
the stimulus was shown in the same location on the un-
trained eye (New Location First: t(39) = .70, p = .49, d =

.20,T I = 1.0, 95%CI∆PC = [−.07, .03]; New Eye First:
t(39) = 1.34, p = .19, d = .45,T I = .94, 95%CI∆PC =

[−.09, .01]). Performance was also lower in the untrained
location than the untrained eye, with an average TI of .78
(New Location First Condition: t(39) = 3.78, p = .0005, d =

.96,T I = .73, 95%CI∆PC = [−.15,−.06]; New Eye First Con-
dition: t(39) = 2.45, p = .02, d = .75,T I = .82, 95%CI∆PC =

[−.12,−.03]), though after FDR correction, the performance
difference was only significant in the New Location First
Condition.

In contrast to Experiment 1, performance in the the RB
condition did not decrease significantly across blocks. The
accuracy decrease when the stimulus moved to the untrained
eye was significant before FDR correction in the New Eye
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Figure 4. Results of Experiment 2. All error bars show stan-
dard error. (a) Learning curves of participants during RB
(n = 38) and II (n = 41) training. Each block included 50
trials. (b & c) Individual participant and mean accuracies
during each Experiment 2 test block for the II condition (b)
and RB condition (c). Open circles denote individual partic-
ipant accuracies and the bars denote group mean accuracy.
Error bars show standard error. "**" signifies significance
after FDR correction (FDR ≤ .05; largest significant p-value
= .002). "*" signifies uncorrected significance at α = .05.
All p-values can be found in the text following this figure.

First condition (t(36) = 2.24, p = .03, d = .50,T I =

.85, 95%CI∆PC = [−.12,−.04]), but not in the New Loca-
tion First condition )(t(36) = 1.44, p = .16, d = .28,T I =

.88, 95%CI∆PC = [−.09, 0.0]). When the stimulus moved
to the untrained location, the accuracy decrease was non-
significant in both conditions (New Location First: t(36) =

1.91, p = .06, d = .39,T I = .89, 95%CI∆PC = [−.12, 0.0];
New Eye First: t(36) = 1.91, p = .06, d = .46,T I =

.91, 95%CI∆PC = [−.13, .03]). In addition, there was no sig-
nificant difference between performance for the untrained lo-
cation and the untrained eye (New Location First: t(36) =

.47, p = .64, d = .09,T I = 1.10, 95%CI∆PC = [−.05, .02];
New Eye First: t(36) = .33, p = .74, d = .08,T I =

1.0, 95%CI∆PC = [−.08, .06]).
As in Experiment 1, we fit GRT models to the category-

response confusion matrices from all test blocks. The re-
sults were qualitatively identical to Experiment 1 – that is, all
changes in accuracy that occurred when the stimulus moved
were general effects and not category or response specific.

The absence of a consistent block effect in the Experiment
2 RB conditions suggests that the RB block effect that oc-
curred in Experiment 1 probably did not mask any signifi-
cant retinal-specific learning. Furthermore, the similarity of
the Experiment 1 and 2 RB results suggests that procedural
learning probably had little or no effect on performance in
the RB conditions. The most important conclusion of Exper-
iment 2, however, is that it showed the same major results as
Experiment 1.

The results of the two experiments together provide strong
support for the hypothesis that categorization is retinal spe-
cific when the learning is procedural, but not when the learn-
ing is explicit. This is important because it runs counter to
prevailing historical views of category learning as a high-
level cognitive process (e.g., as in prototype5 and exemplar
theories8) that depends only on abstract mental representa-
tions that are far removed from the basic-level visual pro-
cessing needed to perceive the stimulus. Additionally, our
finding that II but not RB learning includes a retinal-specific
component adds to the list of 25+ empirical dissociations be-
tween RB and II categorization that have been previously re-
ported37.

Why should II category learning be retinal specific, but
not RB learning? One possible account of this difference
is rooted in the COVIS theory of category learning14,37,38.
COVIS proposes that success in RB tasks is mediated by the
learning of explicit rules, which depends principally on pre-
frontal cortex (PFC; and to a lesser extent on other regions
including anterior cingulate, the head of the caudate nucleus,
and the hippocampus). PFC receives visual input from in-
ferotemporal cortex and other high-level visual areas that
contain neurons with large receptive fields covering both vi-
sual hemispheres, so COVIS predicts that when the stimulus
moves to an untrained retinal location, the same high-level
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visual neurons are excited and RB categorization accuracy
remains high.

In contrast, COVIS assumes that success in II tasks de-
pends on procedural learning that is primarily mediated by
synaptic plasticity at cortical-striatal synapses within the dor-
sal striatum. The dorsal striatum receives direct visual in-
put from all areas of visual cortex except V139. Previous
work40 has reported that V2 was the only visual cortical area
showing significant task-related activity in an fMRI study
of II category learning that used the same sine-wave grat-
ings that were used here. V2 neurons are characterized by
small receptive fields that do not cross the fovea41. There-
fore, according to this account, moving the stimulus to an
untrained location on the retina excites different V2 neurons
that project onto medium spiny neurons in the dorsal striatum
via untrained synapses, causing impaired categorization per-
formance. Moving the stimulus to the untrained eye, on the
other hand, still excites the same V2 neurons because most
V2 neurons are binocular42, so the learning transfers to the
untrained eye.

In other words, COVIS predicts that, although the RB and
II tasks include the same stimuli, the category (or motor)
learning that occurs in those two tasks depends primarily
on input from different visual areas – more specifically, that
learning in RB tasks uses visual representations from higher-
level visual areas than learning in II tasks.

The COVIS account of the differences between the II and
RB results raises the interesting question of whether the reti-
nal specificity we found is a general property of II learning
or whether it is restricted to II tasks that use simple, primi-
tive stimuli like the sine-wave gratings used here. For exam-
ple, what would happen in an II task that used human faces
as stimuli? Presumably, categorization responses would be
based on perceptual representations from the fusiform face
area of inferotemporal cortex (which projects to the body of
the caudate nucleus). If so, then COVIS predicts that II learn-
ing should be retinal invariant since inferotemporal cortical
neurons exhibit large receptive fields.

Traditional findings of retinal-specificity have been lim-
ited to perceptual learning. Perceptual learning is often stud-
ied by examining the ability to differentiate between stim-
ulus attributes such as contrast43, orientation44, and stim-
ulus offset45, or to recognize a target in a target-distractor
paradigm46. Unlike categorization tasks where observers
classify many different stimuli into categories, perceptual
learning tasks typically include only two or few stimuli that
need to be classified or identified. Learning in such stud-
ies is often found to be retinal specific46,47, sometimes even
eye specific48, and can occur with or without feedback48,49.
These findings overlap partially with ours. We found that II
learning was retinal specific, but not eye specific, and many
previous studies have reported that II learning requires im-
mediate feedback35,36. In contrast, our results suggest that

RB learning is neither retinal nor eye specific, and previous
studies have found that at least some RB learning is possible
in the absence of any feedback50.

The overlapping but distinct profiles of category and per-
ceptual learning suggest that there might be some common
underlying mechanisms at work, especially in the case of II
category learning. This hypothesis suggests many interesting
new avenues of research. For example, several perceptual-
learning studies have reported that retinal specificity during
orientation discrimination can be eliminated via simultane-
ous training on an irrelevant task in the non-trained periph-
eral location51,52. An important future study is to see whether
this manipulation is equally effective in II category learning.
Similarly, the perceptual-learning literature has recently been
exploring the hypothesis that perceptual learning can be ac-
counted for by reinforcement-learning or rule-based mech-
anisms that are similar to those thought to mediate II and
RB category learning53,54,52. This work suggests that an ex-
citing theoretical challenge might be to account for retinal-
specific II learning and traditional perceptual-learning phe-
nomena with a similar underlying mechanistic model.

Overall, our findings demonstrate the importance of con-
sidering visual field location during categorization training
and highlight another experimental factor to consider when
designing virtual reality training paradigms for search and
categorization tasks. Additional work on the role of catego-
rization during visual search will likely cast further light onto
this subject and potentially suggest new training methods to
remove or minimize the impact of visual field dependence on
the important category judgments we make each day. Finally,
these findings close the gap between category learning and
perceptual learning – demonstrating several similarities and
differences that can be leveraged to better explore the neural
basis of both phenomena and providing motivation for both
fields to learn from each another.

Methods

Participants

Two-hundred students (100 for Experiment 1 and 100 for
Experiment 2) at the University of California, Santa Barbara
participated in a one-hour experiment in exchange for course
credit. Experiment 2 was performed before Experiment 1,
but is presented second in the manuscript for better read-
ability. All participants had normal (20/20) or corrected-to-
normal vision using contact lenses. Fifty participants per-
formed the II task and 50 performed the RB task in each
experiment. All relevant ethical regulations were followed
and the study protocol was approved by the Human Subjects
Committee at UCSB. Informed consent was obtained from
all participants, and every participant was allowed to quit the
experiment at any time for any reason and still receive credit.
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Stimuli and Categories

The stimuli and categories were the same for both exper-
iments. The stimuli were circular sine-wave gratings pre-
sented on 21-inch monitors (1280 × 1024 resolution). All
stimuli had the same size, shape and contrast, and differed
only in bar width (as measured by cycles per degree of visual
angle or cpd) and bar orientation (measured in degrees coun-
terclockwise rotation from horizontal). The stimuli from the
II conditions were generated first. Each category was defined
by a bivariate normal distribution with means for Bar Width
and Orientation as follows: Category A (30, 50), B (50, 30),
C (50, 70), and D (70, 50). The variance on both stimulus
dimensions was set to 50 in all four distributions and all co-
variances were set to 0. Thus, the distributions differed only
in their means.

The stimuli defining the A, B, C, and D categories were
generated as follows: 1) 300 random samples were drawn
from each of the bivariate normal distributions that defined
the categories; 2) the samples were linearly transformed so
that the sample statistics (means, variances, covariances) ex-
actly matched the population parameters that defined the dis-
tributions; 3) each resulting sample value, denoted by the
ordered pair (x1, x2), was used to generate a stimulus with
bar width equal to x∗1 = x1

30 + 0.25 cpd and bar orientation
equal to x∗2 = π

200 x2 + π
9 degrees counterclockwise rotation

from horizontal.
The RB categories were created by rotating the II stimuli

45 degrees clockwise about the point (50,50).

Eye Tracking

Eye tracking (at 250 HZ ) was performed using an Eyelink
I eye tracker by SR Research Ltd. Participants used a chin
rest to minimize movement error, and at the beginning of
each session 9-point calibration was performed. Additional
recalibration was performed before each test block and dur-
ing the training as needed (i.e. when participants were re-
ported as breaking fixation but reported that they were fixat-
ing).

Procedures

At the start of the experiment, all participants were told
that they would be shown disk-like images, each of which
belonged to one of four categories (A, B, C, or D), and that
their task was to use the feedback during training to learn to
assign each disk to its correct category. The instructions were
identical for RB and II participants. All conditions included
four phases, which are described in Figure II in the case of
the New Eye First conditions. The New Location First con-
ditions were identical except the ordering of the final two
phases was reversed. In Phase 1, participants wore an eye
patch over their left eye and were trained with trial-by-trial
feedback. Training was split into blocks of 50 trials with a

brief (less than 20 seconds) rest period after each block where
participants could rest without removing their head from the
chin-rest. Each rest period ended after the participant pressed
a key or waited 20 seconds.

For Experiment 1, all participants received 500 training
trials (10 training blocks) followed by 150 testing trials (3
testing blocks). For Experiment 2, participants in the II con-
dition received 500 training trials while participants in the
RB condition received 300 training trials.

On every trial the stimulus was presented for 150ms at a
location 5◦ right of fixation. If the participant’s eyes moved
more than 1◦ away from the center fixation cross or a sac-
cade was detected (using saccade velocity thresholds of 35
deg/sec and 9000 deg/s2 for velocity and acceleration respec-
tively) immediately before or during stimulus presentation,
the trial was aborted. This resulted in on average fewer than
50 aborted trials per participant.

After the participant responded, feedback was provided in
the form of a green correct or red incorrect label displayed in
the center of the screen for 1 second. In Experiment 1, the
next stimulus was shown automatically after the feedback
disappeared and as soon as the participant re-fixated their
gaze at the center of the screen. In Experiment 2, the par-
ticipant initiated stimulus presentation by pressing the space
bar anytime they wanted after the feedback disappears, so
long as they were fixating the center of the screen.

Phases 2 – 4 each included 50 trials of categorization with
no trial-by-trial feedback. Phase 2 was a control that was
identical to training except for the omission of feedback. In
the New Eye First conditions, the stimulus conditions during
Phase 3 were identical to Phases 1 and 2. However, prior to
the first Phase 3 trial, the participant moved the eye patch to
cover the right eye. So Phase 3 tested whether the catego-
rization knowledge acquired during training was specific to
the right eye. Prior to the start of Phase 4, the participant
moved the eye patch back to the left eye. This phase was
identical to the Control (Phase 2) except the stimulus was
presented 5◦ left of fixation. So this phase tested whether cat-
egory knowledge transferred to an untrained retinal location
in the trained eye. The New Location First conditions were
identical except the ordering of Phases 3 and 4 was reversed.

Code Availability
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sponding author upon request.

Data Availability

All data from this study are available from the correspond-
ing author upon request.
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