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A B S T R A C T

Categorization is an essential cognitive process useful for transferring knowledge from previous experience to
novel situations. The mechanisms by which trained categorization behavior extends to novel stimuli, especially
in animals, are insufficiently understood. To understand how pigeons learn and transfer category membership,
seven pigeons were trained to classify controlled, bi-dimensional stimuli in a two-alternative forced-choice task.
Following either dimensional, rule-based (RB) or information integration (II) training, tests were conducted
focusing on the “analogical” extension of the learned discrimination to novel regions of the stimulus space
(Casale, Roeder, & Ashby, 2012). The pigeons’ results mirrored those from human and non-human primates
evaluated using the same analogical task structure, training and testing: the pigeons transferred their dis-
criminative behavior to the new extended values following RB training, but not after II training. Further ex-
periments evaluating rule-based models and association-based models suggested the pigeons use dimensions and
associations to learn the task and mediate transfer to stimuli within the novel region of the parametric stimulus
space.

1. Introduction

Understanding human and non-human animals’ categorization
abilities has engaged researchers for decades (Cook & Smith, 2006;
Ghirlanda & Enquist, 2003; Wasserman, Kiedinger, & Bhatt, 1988).
Much research using complex pictorial stimuli has shown that animals
can generalize their categorical knowledge to novel situations
(Herrnstein, 1990; Herrnstein & Loveland, 1964). Many accounts of
categorization have been considered and evaluated using artificial
displays to understand this behavior in both humans and non-human
animals, generating theories about cue validity, exemplar memoriza-
tion and prototypes (Beach, 1964; Medin & Schaffer, 1978; Nosofsky &
Johansen, 2000; Smith, Redford, & Haas, 2008).

More recently, human categorization has been posited to involve
multiple processes (Ashby, Alfonso-Reese, Turken, & Waldron, 1998).
The two most heavily studied are an explicit process thought to be rule-
based, which operates via high-level cognitive rules or propositions,
and an implicit process that uses procedural learning to operate on
stimulus-response associations. Evidence for this dichotomy has been
found in multiple experimental designs (Ashby & Maddox, 2005; Ashby
& Valentin, 2017). The most broadly impactful studies demonstrate
learning rate differences during acquisition of different tasks despite
similar category structures (Smith, Beran, Crossley, Boomer, & Ashby,

2010). In this design, half of the participants are trained with a “rule-
based” (RB) discrimination and the other half are trained with an “in-
formation integration” (II) discrimination. In the RB condition, both
categories completely overlap along one highly variable dimension, and
they are distinct when considering the other less variable dimension (as
in Fig. 1, left). In the II condition, the stimuli are structured identically,
except the entire stimulus set is rotated about the center of the stimulus
space by 45° (as in Fig. 1, right). While this manipulation ensures that
the conditions are equally difficult when considering inter-category and
intra-category similarity, the RB condition reliably yields faster
learning than the II condition (Ashby & Maddox, 2005).

These functional differences in otherwise matched conditions con-
tributed to the development of computational frameworks like COVIS, a
neurobiologically-informed computational framework with multiple
categorization systems (Ashby et al., 1998). The explicit system in
COVIS uses a rule-based learning process, in which rules generate in-
dependent decisions about one or more stimulus components to com-
pute a strategy for response selection. Meanwhile, the implicit system in
COVIS uses procedural learning to associate responses with regions of
stimulus space. This multiple-systems framework and computational
implementation has successfully accounted for numerous empirical
results, including the learning rate difference noted above, and has
successfully predicted many other qualitative differences between
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learning and performance in RB and II categorization tasks (for a re-
view, see Ashby & Valentin, 2017).

One recent experimental design using “analogical transfer” yielded
results that offered further support for this multiple systems categor-
ization theory (Casale et al., 2012). In this design, humans were trained
on the traditional RB and II categorization conditions within a re-
stricted region of the stimulus space (e.g., the “Training” distributions
in Fig. 1). The observers were then tested with novel regions of the
stimulus space during transfer (e.g., the “Transfer” distributions in
Fig. 1; cf. McDaniel, Cahill, Robbins, & Wiener, 2014). Observers in the
RB condition were able to withstand the shift in the stimulus space, and
they showed little if any decrement in performance. This was deemed
analogical transfer because the stimuli in the new region of the stimulus
space look different from the stimuli in the original training region, but
the observers were able to use the learned rule to correctly categorize
stimuli. Observers in the II condition, however, showed no savings or
benefit of the prior learning, and needed to re-learn the discrimination
in the new region of the stimulus space. The authors theorized that the
successful transfer to the novel region occurred in the RB condition
because participants used rules to solve the task, and these rules were
analogically extended to novel portions of the stimulus space. The II
condition, however, required use of the implicit system, and conse-
quently, its procedural learning was limited to the region of training,
resulting in no savings or transfer to novel items.

The evidence for multiple categorization systems in humans raises
questions regarding the evolution of these cognitive mechanisms.
Categorization and discrimination of multidimensional stimuli like
these have been evaluated numerous times, with clear evidence that
pigeons, for example, can simultaneously attend to the conjunction of
multiple features or to each feature (Lea et al., 2018; Lea & Wills, 2008;
Teng, Vyazovska, & Wasserman, 2015). The implicit learning system
that underlies these processes uses basic associative mechanisms that
can be found across the animal kingdom. Although it is unclear whether
rule-based learning uses recurrent networks, top-down control, or ab-
stract “concepts,” rule-based mechanisms seem complex in comparison
to well-understood associative mechanisms. In examining categoriza-
tion by non-human animals, one might expect that those species with
more advanced cognitive abilities (tool use, problem solving, etc.) could
potentially have both systems, while those with less advanced cognitive
abilities might only possess the association-based system.

Smith et al. (2010) tested six macaques in the II and RB conditions,
using the same category distributions and stimuli as humans, and the
macaques showed faster learning in the RB condition. In Smith et al.
(2011), however, two separate sets of pigeons learned the RB and II
conditions at the same rate. These comparative results suggest that
macaques may possess and use two categorization systems, like hu-
mans, while pigeons may possess a single, non-analytic, association-
based learning system. Consistent with this thinking, Smith et al. (2015)
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Fig. 1. Distributions of the stimuli investigated in Experiment 1. The left graph depicts one of the Rule-Based training conditions, and the right graph depicts one of
the Information Integration training conditions. Sample stimuli depict category means with “Dimension 1” corresponding to orientation and “Dimension 2” to spatial
frequency (see Table 1 for exact values). In these examples, the circles denote the training distributions, with the pigeons required to appropriately discriminate
between the red and green distributions. The exes denote transfer test stimuli from Experiment 1, although only 72 of these points were tested for each bird. Correct
category assignments for the transfer stimuli are based on the dashed gray line separating the distributions. Note that individual birds may have had these setups
rotated by 90 degrees (RB) or 180 degrees (RB and II). See the text for more detail. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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recently showed that macaques demonstrated “analogical transfer”
when trained in the restricted RB condition, but not so in the II con-
dition. However, when responses to the novel stimuli were not ex-
plicitly reinforced, macaques did not extend the apparent “rule” to the
novel region (Zakrzewski, Church, & Smith, 2018), suggesting that the
macaques’ categorization mechanisms may not fully accord with
human-like rule-based categorization. In the current investigation, we
evaluate such transfer in the pigeon. After an initial replication fol-
lowed by an extension to novel values, we examine different mathe-
matical models to understand the pigeons’ categorization behavior.

2. Experiment 1

First, we evaluate whether pigeons show transfer to stimuli in novel
regions of the stimulus space after RB and II training. We tested for this
analogical transfer in eight pigeons using the same procedural tactics as
Casale et al. (2012). If the pigeons possess and employ two systems, like
humans, then the pigeons in the RB condition should demonstrate
transfer, while the pigeons in the II condition should exhibit no transfer.
If instead the pigeons have a single, non-analytic, association-based
learning system used to learn both types of conditions, as suggested by
the previous Smith et al. (2011) findings, then neither group should
show any analogical transfer.

We trained two groups of pigeons on a two-alternative forced-choice
(2AFC) categorization task to discriminate bi-dimensional sine-wave
gratings. These stimuli have been investigated in multiple species,
especially when convolved with a Gaussian filter to produce Gabor
patches (e.g., Jassik-Gerschenfeld & Hardy, 1979; Tappeiner et al.,
2012). These stimuli were used in previous investigations with humans,
non-human primates, and pigeons (Smith et al., 2011) and featured two
dimensions, grating orientation and grating width. Four pigeons were
trained using RB conditions and four pigeons were trained using II
conditions. During training, the pigeons were only presented stimuli
from a restricted region of the total bi-dimensional stimulus space, so
that the remaining portion of the space could be used during novel
analogical transfer testing in the same manner as previously tested with
humans and macaques.

2.1. Methods

2.1.1. Participants
Eight male pigeons (Columba livia) were tested. The pigeons were

housed and tested at 80–85% of their free-feeding weights, with ad li-
bitum grit and water in their home cage, and they were experimentally
naïve at the time of training. Prior to these experiments, they only re-
ceived training to peck at a circular white signal for food reinforcement.
All animal procedures were reviewed and approved by Tufts
University’s Internal Animal Care and Use Committee.

2.1.2. Apparatus
A touchscreen (EZ-170-WAVE-USB) operant chamber was used to

present video stimuli and record peck responses. Stimuli were displayed
on an LCD computer monitor (NEC LCD 1525X; 1024 × 768, 60 Hz
refresh rate) situated just behind the touchscreen. Mixed grain reward
was delivered via a central food hopper positioned beneath the
touchscreen. A houselight in the ceiling was constantly illuminated,
except during timeouts.

2.1.3. Stimuli
The stimuli in these experiments were sine-wave gratings that

varied in spatial frequency and orientation, designed after those used in
Smith et al. (2011). These stimuli were composed of a solid gray square
with a circular aperture that contained the sine-wave grating (see
Fig. 1, top). Stimuli were generated using ImageMagick (http://www.
imagemagick.org). Each image was a 100 pixel × 100 pixel square.

The category distributions were defined using the dimensions of
spatial frequency and orientation, and they were designed after those
used in Smith et al. (2015). These bivariate normal distributions were
generated using MATLAB (MathWorks) with fixed mean and covariance
parameters as described in Table 1, and the sampling was restricted
such that the Mahalanobis distance for all points was less than 7.5. The
resulting distributions are depicted in Fig. 1. The dimensions mapped
onto spatial frequency with a minimum of 0.3 peaks (i.e., bars) per
image (i.e. normalized 0) up to a maximum of 12.3 peaks per image (i.e.
normalized 100) and orientation with a minimum of 4.4° and a max-
imum of 173.3°, with 0° corresponding to horizontally oriented bars
and positive angles corresponding to counter-clockwise rotation. A
third parameter of these types of functions is phase, which affects the
position of the “bar(s)” within the image; this parameter was rando-
mized across stimuli.

2.1.4. Procedure
Pre-training. The pigeons were trained to peck at a centrally located,

white, 2.5 cm ready signal prior to the start of this experiment. They
were then trained to peck at a sample stimulus when it appeared in
return for food on a fixed-ratio schedule. Each training trial used a
randomly selected stimulus from either training distribution as the
sample. The FR to this sample was slowly increased to accommodate
the final variable-ratio schedule. After they were pecking reliably to the
sample, we began training the choice key response. After completing
the FR on a trial, a single red (RGB 255,0,0) or cyan (RGB 0, 255, 255)
choice alternative positioned 275 pixels to either side of the sample
appeared, and one peck to this alternative resulted in food (the sample
was visible during the choice). Once the pigeons were pecking reliably
in all phases of the trial, discrimination training began.

Training. On every trial, a centrally-located, white, 2.5 cm ready
signal appeared. When the pigeon pecked this signal, the signal was
replaced with a sample stimulus. The sample stimuli were randomly
selected stimuli from the two categories. After pecking at the sample
stimulus on a variable ratio schedule that was uniformly distributed
between 13 and 15 pecks, choice alternatives appeared on both sides of
the sample. The red and cyan choice alternatives corresponded to the
category of the stimulus. A single peck at the red choice alternative
indicated that the pigeon categorized the sample as a “red” category
stimulus, and a single peck at the cyan choice alternative indicated that
the pigeon categorized the sample as a “cyan” stimulus (note, we depict
and refer to this as “green” in the remainder of the manuscript). Each
alternative appeared equally often on either side of the display. Correct
choices resulted in access to mixed grain (i.e. food reward) for 2.5 s (for
one subject, this was increased to 4 s), and incorrect choices resulted in
an 8-s timeout during which the houselight was also turned off. A 3-s
inter-trial interval then followed, and then the ready signal would ap-
pear to allow the next trial to be initiated. A correction procedure was

Table 1
Distribution parameters for training and transfer distributions in Experiment 1.
The values listed here indicate the means, variances, and covariance between
the dimensions in the normalized (0–100) stimulus space. The resulting dis-
tributions are visualized in Fig. 1. Note that training and transfer designations
here are only representative for a subset of the birds; for the remaining subjects,
the data need to be rotated around the point (50, 50) by 90° or 180°.

Distribution μ1 μ2 σ1
2 σ2

2 covxy

RB training A 36.3 22.5 20.9 91.7 0.0
B 63.7 22.5 20.9 91.7 0.0

RB transfer A 36.3 77.5 20.9 91.7 0.0
B 63.7 77.5 20.9 91.7 0.0

II training A 20.9 40.3 56.3 56.3 36.7
B 40.3 20.9 56.3 56.3 36.7

II transfer A 59.7 79.2 56.3 56.3 36.7
B 79.2 59.7 56.3 56.3 36.7
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used such that incorrect responses resulted in the trial being re-pre-
sented until the correct response was given. Only the first trial in this
sequence was considered for accuracy metrics.

Four of the pigeons were trained in the RB condition and four in the
II condition. The distributions used are listed in Table 1. Half of the
birds in each case were trained using the “lower” distributions (i.e., the
left distributions marked “Training” in Fig. 1), where the features of
interest occupy the lower portion of the total values used, and the other
half were trained using the “higher” distributions (i.e., the right dis-
tributions marked “Transfer” in Fig. 1). For the II condition, only the
depicted positively-correlated distributions were used, and the corre-
sponding negatively-correlated distributions (i.e., 90° rotation from
Fig. 1, Right) were not used. For a complete perspective, Supplemental
Fig. S1 provides a bird-specific depiction of all the training conditions
and stimuli used. Each training session contained 80 total trials (40
from each category). Training was considered completed when the pi-
geon achieved an accuracy of at least 80% for five sessions (non-con-
secutively).

Transfer. The pigeons were then given six sessions of testing with
the appropriate transfer distributions (i.e. birds trained on “high” dis-
tributions were given transfer tests from the corresponding “low” dis-
tributions and vice versa). For transfer tests, six stimuli from each
transfer distribution were randomly selected and interspersed within a
regular session (72 total test trials, 36 for each category). All responses
for these test trials resulted in food reward and no time out (i.e. non-
differential reinforcement).

2.2. Results

Acquisition. Seven of the eight pigeons learned the discrimination to
criterion, with no difference in acquisition rate between the RB and II
training conditions. The three successful pigeons in the RB condition
required 16, 26, and 50 sessions to complete training, and the four
pigeons in the II condition required 24, 25, 26, and 37 sessions to
complete training (for complete learning curves, see Supplemental
Fig. 2). Altogether, the birds in the RB condition averaged 30.7 sessions
to criterion while the birds in the II condition averaged 28 sessions,
which is negligibly different (t(5) = 0.47, p= .782). Despite 100 ad-
ditional sessions of training, one pigeon in the RB condition failed to
reach criterion and its data are not further considered. This result re-
plicates the prior pigeon results that showed no dramatic differences in

learning rates (Smith et al., 2011) and continues to contrast sharply
with studies of nonhuman primates and humans, who learn in the RB
condition more quickly than in the II condition (Ashby & Maddox,
2005; Smith et al., 2010; Smith et al., 2015).

Analogical Transfer. In the subsequent test for analogical transfer,
the pigeons’ novel transfer performance was related systematically to
their training condition. As scored relative to the extension of their
training design, the pigeons in the RB condition showed successful
transfer, while the pigeons in the II condition did not. As shown in
Fig. 2, the three pigeons in the RB condition performed above chance
(63.9%, 63.9%, 80.6%; individual binomial tests, ps < 0.02). This
accuracy is reduced in comparison to baseline performance for two
pigeons (chi square test of independence using accuracy and phase; χ2s
(1) > 66, ps < 0.001), while the third showed no decrement between
baseline and transfer accuracy (χ2(1) = 2.4, p= 0.120). The pigeons in
the II condition did not show transfer. Three pigeons performed not
significantly different from chance (41.7%, 45.8%, 47.2%; individual
binomial tests ps > 0.14), whereas the fourth was significantly below
chance (31.9%, p= 0.001). While the acquisition results fail to support
a multiple categorization systems hypothesis, this differential transfer
to the novel region of testing contradicts our intuitions and expectations
of how a single system would perform.

2.3. Discussion

During analogical transfer testing, the RB pigeons exhibited transfer
similar to humans although to a lesser degree (i.e., humans show es-
sentially perfect transfer). Like humans, the pigeons who learned the RB
task extended their learning beyond the training portion of the stimulus
space. Further, also like humans, the pigeons who were trained with an
II task were unable to extend their learning to the novel region. They
showed no discrimination during analogical transfer. In the initial in-
vestigations with humans and monkeys, this type of differential success
following RB training has been suggested to be an example of rule ex-
tension or analogical transfer. How should this similar transfer in pi-
geons then be interpreted, especially in light of the acquisition results?

Two resolutions are possible. The first resolution is to assert that
birds, similar to humans and non-human primates, use a rule-based
solution in the RB task and a non-analytic solution in the II task. This
would allow linear transfer of the rule to novel regions of stimulus
space in the RB task, but not so for the II task. It does not easily explain
why three independent evaluations find no differences in learning rates
for the RB and II tasks. How could dimensions be meaningful to a rule-
based system during analogical transfer, but not during learning?

A second possible resolution is that RB and II tasks are learned by
pigeons with a single non-analytic association-based system, as sug-
gested by the learning-rate results. This does not account for why the
two groups show different degrees of “analogical” transfer. How does a
single learning system show no dimensional benefit in training, but
then show it in the analogical transfer? One possibility is that this
analogical transfer test is not as diagnostic of rule-based systems as
previously suggested. To better understand these alternatives,
Experiment 2 further evaluated how these pigeons categorized addi-
tional regions of the stimulus space by using strategic, focused eva-
luations of the rest of the stimulus space.

3. Experiment 2

The previous experiment left open a question about how the pigeons
learned the discrimination and then how that training affected their
transfer to the untrained and novel portion of the stimulus space. In
order to better understand the pigeons’ categorization of novel stimuli,
we next examined transfer performance to smaller and more distributed
clusters of novel stimuli than the larger, diffuse areas used in
Experiment 1. We hypothesized this would be helpful in better under-
standing the nature of pigeons’ categorization behavior. These
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Fig. 2. Analogical transfer performance from Experiment 1. Error bars depict
standard error. Individual bird data are depicted slightly offset from the bars
using bird-unique symbols.
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additional testing clusters are illustrated in Fig. 3. The specific cluster
areas were chosen to elucidate the pigeons’ overall response patterns
and to examine different possible rule-based and associative mechan-
isms.

3.1. Methods

3.1.1. Participants and apparatus
The seven successful pigeons from the previous experiment were

tested without an intervening break.

3.1.2. Stimuli and procedures
Stimulus values for the ten new clusters tested are listed in Table 2

and graphically depicted in Fig. 3. The standard deviations were fixed
to 3.0 in both directions with zero covariance for these clusters.

Each test session contained ten randomly inserted probe trials, one
from each of the ten clusters. As before, these test trials were non-dif-
ferentially reinforced. Ten test sessions were conducted so that each
pigeon received a total of 100 test trials, equally divided among the ten
new clusters. For analysis, “correct” category assignments for these

transfer clusters were determined according to the extension of the
linear rule dividing the training categories. Two baseline sessions se-
parated the first test session of this experiment from the last test session
of the previous experiment.

3.2. Results

These data are analyzed in two ways. First, we discuss the pigeons’
overall accuracy. This is a naturally meaningful metric and relates to
our analysis of Experiment 1. Second, we evaluate the patterns of the
pigeons’ categorization as it relates to both the location of the training
clusters and their overall evaluation of stimuli from that cluster.

All pigeons demonstrated above-chance transfer of their trained
discrimination to the new clusters. Fig. 4 depicts categorization accu-
racy for both groups across all the transfer items. Binomial tests con-
firmed that all seven pigeons were significantly above chance on these
transfer stimuli (all accuracies ≥ 61%, ps < 0.02). The above-chance
transfer for the RB group is consistent with the findings of Experiment
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Fig. 3. Distributions of the stimuli investigated in Experiment 2. The left graph depicts one of the Rule-Based conditions, and the right graph depicts one of the
Information Integration conditions. As in Fig. 1, the circles denote training stimuli, and the exes denote the transfer tests. Note that individual birds may have had
these setups rotated by 90 degrees (RB) or 180 degrees (RB and II), and that category assignment for transfer stimuli are based on the dashed gray line separating the
distributions. See the text for more detail.

Table 2
Distribution parameters for the transfer clusters in Experiment 2. The values
listed here indicate the means in the normalized stimulus space. Note that these
are only representative for a subset of the pigeons; for the remaining subjects,
the data need to be rotated around the point (50, 50) by 90° or 180°.

Information integration Rule based

Distribution # μ1 μ2 μ1 μ2

1 59.7 79.2 77.5 63.7
2 79.2 59.7 77.5 36.3
3 45.0 95.0 78.3 85.4
4 95.0 45.0 78.3 14.6
5 35.0 65.0 50.0 71.2
6 65.0 35.0 50.0 28.8
7 25.0 85.0 57.1 92.4
8 85.0 25.0 57.1 7.6
9 10.0 60.0 28.8 85.4
10 60.0 10.0 28.8 14.6
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Fig. 4. Analogical transfer accuracy from Experiment 2. Error bars depict
standard error. Individual bird data are depicted slightly offset from the bars
using the same bird-unique symbols as in Fig. 2.
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1. It is surprising that the II pigeons, who previously did not show
analogical extension, were also able to produce “correct” transfer here.
The pattern of categorized and non-categorized clusters reveals the
source of this disparity: the location of transfer stimuli within the sti-
mulus space controls the pigeons’ performance.

The separate RB and II training conditions resulted in different
patterns of transfer. Figs. 5 and 6 show the results of the transfer tests as
they relate to the normalized stimulus space for the birds in the RB and
II groups, respectively. The dashed light gray line is the ideal extended
linear rule that divides the training categories. This is what was used to
determine “correct” category assignments. For these displays, the dif-
ferent conditions have been normalized to facilitate inter-bird com-
parisons, so that all training conditions were placed in the same half of
the stimulus space (i.e., pigeons #D1, #L1, #S1, and #S2 were rotated
by 180° clockwise, and #A1 by 90°) and all category assignments were
made similar (i.e., categories for pigeons #G1 and #L1 were inverted).
These transformation make it possible to view the similarities between
the birds’ categorization behavior without the distraction of counter-
balancing or idiosyncratic behavior. The transfer stimuli clusters are
shown with the number of (normalized) “red” responses (out of 10)

placed at the cluster center. To better emphasize the patterns as they
relate to the overall space, the graphs are annotated to highlight the
regions where the pigeons made reliable categorization judgments
(defined as greater than six or fewer than four red responses).

The data from the birds in the RB condition depicted in Fig. 5 re-
veals two prominent patterns. The most obvious pattern, and one that is
consistent with analogical transfer, is the clear division in responding
across the discriminated dimension. The second pattern concerns how
responses vary according to the distance of each cluster from this rule.
Pigeon #A1 (top left; 86% overall accuracy) was successfully trained on
the spatial-frequency rule, and in this test of analogical transfer, cate-
gorization performance is related to the distance from the dashed gray
line representing the linearly extended rule. Those transfer distributions
distant from the line show the best classification, while those dis-
tributions closer to the line engender more mixed responding. This
pattern is reversed for pigeons #D1 (top right, 65% overall accuracy)
and #T1 (bottom left, 69% overall accuracy). They both had RB dis-
criminations of orientation. While responding is related to the category
line, the strength of their classification appears possibly inversely re-
lated to the distance from the category line, with items closer to the rule
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Fig. 5. Analogical transfer performance for the birds in the Rule-Based condition from Experiment 2. Values are positioned where the clusters of interest are
positioned. Integer digits, color, and surrounding circle size each depict number of times out of 10 that response category “red” was selected for items from that
cluster. Decimal fractions indicate the same but for the proportion of baseline trials that generated a response of category “red”. The dashed gray lines indicate the
space-dividing category line. The dashed red curve is a manually applied annotation of the figure to highlight the “red” category for each bird, and the dashed green
curve is a manually applied annotation to highlight the “green” category for each bird. Note that some of responses and assignment have been rotated and/or flipped
to provide a more understandable, uniform appearance to the task, see text in 3.2 for more detail. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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supporting the best transfer performance. Thus, these two pigeons’
categorization seems more constrained to the training values than #A1.

The II training yielded a different pattern of results. Here the strength
of birds’ categorization performance was seemingly unrelated to the da-
shed linear extension of their trained rule. There are again two patterns of
results. On the left of Fig. 6, pigeons #C1 (68% overall accuracy) and #G1
(61% overall accuracy) both show responding that looks similar to having
learned to respond to the central tendency of just one category. If a transfer
item was sufficiently close to the learned “red” category, there was a fair
amount of red selection. Accordingly, transfer items not in that region of
space were classified as “green.” Pigeons #L1 (64% overall accuracy) and
#S1 (65% overall accuracy) on the right of Fig. 6 show something similar,
but the annotations emphasize the fact that there are isolated clusters that
challenge any simple story. For pigeon #L1 (top right), there is a clear
band of ambiguity where red responding otherwise dominates, and yet at
the top of the graph is a cluster where nine of 10 responses were green,
situated beyond the trained “red” distribution and opposite the core
“green” distribution. This suggests high confidence that the stimuli from
this region were representatives of the “green” category. For pigeon #S1
(bottom right), the rightmost cluster in the annotated region is clearly
more distant from the “red” training distribution than the clusters above

the annotated red region, but the clusters above the region received pri-
marily green responses. Some hints of this same pattern may exist in the
other two II pigeons but are less clear-cut. Overall, the locations of the
transfer stimuli allows for “above-chance” responding, but none of the four
II pigeons respond according to a simple extended linear rule from their
training. The two groups of pigeons seem to approach their problems in
different ways.

3.3. Discussion

The results revealed that all seven pigeons showed systematic be-
havior to the widely-spaced novel transfer stimuli. The birds in the RB
task demonstrated an extension-like behavior from their learned rule,
while the birds in the II task did not. Superficially, this pattern is
consistent with the differences seen in human and non-human primate
tests, which suggests that the pigeons in the two tasks are solving their
discriminations in different ways. Perhaps the birds in the RB task were
using a rule, while the pigeons in the II task were using simpler asso-
ciative mechanisms. This conclusion, however, diverges from two sets
of acquisition results, which did not find differences in acquisition rates.
Such conflicting conclusions require resolution.
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Fig. 6. Analogical transfer performance for the birds in the Information Integration condition from Experiment 2. Values are positioned where the clusters of interest
are positioned. Integer digits, color, and surrounding circle size each depict number of times out of 10 that response category “red” was selected for items from that
cluster. Decimal fractions indicate the same but for the proportion of baseline trials that generated a response of category “red”. The dashed gray lines indicate the
space-dividing category line. The dashed red curve is a manually applied annotation of the figure to highlight the “red” category for each bird, and the dashed green
curve is a manually applied annotation to highlight the “green” category for each bird. Note that some of responses and assignment have been rotated and/or flipped
to provide a more understandable, uniform appearance to the task. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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A hint of consistency comes from a closer examination of the pi-
geons’ results from Experiment 2. Only one pigeon (#A1; in the RB
task) demonstrated transfer in a manner consistent with traditional
notions of rule-based responding. The other two pigeons in the RB
training condition demonstrated better performance for stimuli closer
to the hypothetical rule-boundary than farther away. Thus despite the
stimuli being more discriminable from a rule-based account (i.e., located
further from the rule-boundary), these two pigeons showed poorer
transfer. The four pigeons in the II condition agreed on the categor-
ization of six of the ten transfer clusters. Five of these six agreed-upon
clusters were relatively close to the training distributions, but the sixth
(the topmost cluster in Fig. 6) was on the other side of the stimulus
space from its categorized training distribution. Furthermore, if we
consider the two clusters in this experiment that are most similar to the
transfer distributions from the previous experiment (top right clusters
in Fig. 6), the II birds’ responding is either completely biased towards
one stimulus or fairly non-discriminate with a slight bias towards a
“reversal” of responding (as in Experiment 1). In order to resolve these
numerous oddities, we evaluated the pigeons’ behavior using several
mathematical models with a variety of assumptions to determine if
there was a simple and concise explanation of these patterns of transfer.

4. Model fitting

4.1. Overview

Mathematical models of categorization evaluate the likelihood of
observing the data as determined by different categorization mechan-
isms. We considered both parametric and nonparametric classes of
models. Parametric classifiers make strong assumptions about the form
of the contrasting categories, while nonparametric classifiers make few
to no assumptions about category structure (Ashby & Alfonso-Reese,
1995). Prototype models, for example, are parametric models that as-
sume that a category varies around a singular central or average re-
presentation. Implementations of this model store only a single proto-
type that represents the relevant category information. Exemplar
models on the other hand are non-parametric in nature, and assume
that a memory of every exemplar is stored, and thus, there is no way to
describe a category as involving a condensed representation. Following
brief explanations of each model type, we discuss the model-fitting used
here and then present and discuss the outcomes (more formal treat-
ments of these models are in Appendix A).

4.1.1. Parametric models
There are many parametric models of categorization (Ashby,

1992b), but we will focus on the broad class that derives from general
recognition theory (Ashby & Soto, 2015; Ashby & Townsend, 1986;
Maddox & Ashby, 1993). This class of models assumes that the observer
perceives the stimulus in a dimensionalized perceptual space. They also
assume that every point in that perceptual space has some category
membership value that informs responding. For example, in a two-ca-
tegory task, some points are associated with one category and some
with the contrasting category. The categorization “boundary” is then
the set of points separating these two response regions. Stimuli that fall
on the boundary are thus maximally uncertain since both responses are
equiprobable. This decision boundary can follow a variety of functional
forms (e.g., linear or quadratic). Consequently, a parametric model will
fit best when the boundary that best separates the categories has the
same functional form as the observer’s classification rule.

For our purposes, we will evaluate a flexible type of parametric
classifier, the general quadratic classifier (GQC), which assumes the
category boundaries can be hyperbolic, parabolic, elliptical, or linear.
The GQC also includes the prototype model as a special case because
prototype models predict that the category boundary is the line of
points that are equi-distant from the two category prototypes (Ashby &
Gott, 1988). As a result, this includes all models that assume the un-
derlying categories can be represented as multivariate normal dis-
tributions.

4.1.2. Nonparametric models
Nonparametric models make much weaker assumptions about the

underlying category structure. As a result, the decision boundaries they
predict can take on almost any form (e.g., as in exemplar theory). We
first consider the striatal pattern classifier (SPC; Ashby & Waldron,
1999), which is the procedural-learning component of the COVIS
(Ashby, Paul, & Maddox, 2011) and SPEED (Ashby, Ennis, & Spiering,
2007) models of categorization. The SPC is nonparametric because it
can reproduce any (piece-wise linear) decision boundary through the
use of numerous decision units.

The SPC model uses a grid of neural network units to represent the
perceptual space. When a stimulus is presented, a region of the units in
that part of the perceptual space is activated according to a radial basis
function (see Fig. 7, left, for a visual depiction of this activation). This
grid of units represents a configural activation of features, similar to the
configural representation used in other models of animal cognition
(George & Pearce, 2012; Pearce, 2002). This entire grid of units is

Fig. 7. A depiction of stimulus representation
for the configural activation model and the di-
mensional activation model, using a 20-unit
based grid. Each unit is represented by a circle,
with highly activated units filled with black, less
activated units filled with grey, and inactivated
units filled with white. The configural activation
model uses a radial basis function to compute
the activation of units, while the dimensional
activation model uses a Gaussian decay. Both
representations are depicting the activation from
the same external stimulus. Note that the grid on
the right with the dashed boundary is for com-
parison purposes only – it does not accurately
reflect the stimulus representation. The dimen-
sional activation model is best represented by
the two lines of units to the right and below the
grid on the right.
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connected to a much smaller set of decision units (maybe even just one
unit) whose activity level generates the category response. Over mul-
tiple presentations, as a result of feedback-based learning, the weights
are adjusted so that ultimately the correct response is produced when
the stimuli are presented.

Given the importance of dimensional attention in these experi-
ments, we also examined an alternative version of the SPC that uses a
different type of stimulus representation. Specifically, this alternative
uses a separate set of units for each feature in the stimulus to represent
activation in just a single dimension. Thus, instead of a grid of units, we
end up with two lines of units, with each unit representing different
values along a dimension (see Fig. 7, right). When a stimulus is pre-
sented, it generates activity in each dimension. Learning and categor-
ization then proceed as in the SPC. In particular, the two lines of units
are connected to a much smaller set of decision units (maybe even just
one unit), and through feedback-based learning the weights are ad-
justed to generate the correct response. To disambiguate the two SPC
versions, we will refer to the latter model as the dimensional-activation
model and the former (original SPC) as the configural-activation model
in order to identify their critical difference. One illustration of the
difference between the two models is shown in Fig. 7. Note that while
the units are displayed in the context of the grid of stimuli used in the
configural-activation model, this is only to emphasize the differences in
activation patterns in the model and not to suggest that there are
configural units that become activated in this fashion. If these dimen-
sional units representing the (unbound) activation within each dimen-
sion were later bound together for a different task, how their activation
would pattern is an open question.

4.2. Model fitting methods

In total, we evaluated how well two parametric and two nonpara-
metric models fit the data from transfer sessions in Experiments 1 and 2
(for an evaluation of model fits from the end of acquisition, see
Supplementary Material). The parametric models were the prototype
model and the GQC. The non-parametric models were the configural-
activation SPC model and the dimensional-activation SPC model. For
each model and each bird’s individual results, we found parameter
estimates that minimized the value of the Akaike Information Criterion
(AIC), a common metric used to determine minimally-complex, best-
fitting models (see Appendix B for more detail). The AIC is defined as
AIC = 2 k – 2LL, where k is the number of free parameters and LL is the
log likelihood. So, for example, the GQC has 6 parameters and the

prototype model has 3 parameters, so the GQC must compensate for its
extra parameters by providing a higher value of LL. The k component of
AIC therefore penalizes complexity, while the LL component of AIC
penalizes poor fits to the data. The best model is the one with the lowest
AIC (i.e., closest to negative infinity), with variations that can be dif-
ficult to judge as meaningful. The rule of thumb that has been widely
adopted is that a difference of 2 is considered “meaningful” or “sig-
nificant” (not statistically; see Burnham & Anderson, 2004). We report
AIC for each model and animal.

4.3. Model predictions

A key test of the parametric and nonparametric models is in how
they would classify new stimuli outside the trained region, just like
those tested in these analogical transfer tests conducted above. The
GQC posits that the response to these stimuli would be based on how far
they are from the decision boundary regardless of their distance to the
original training distributions. Stimuli far from the boundary should
elicit clear classification, and stimuli close to the boundary should be
near chance. In contrast, the configural-activation SPC model predicts
that confidence should decrease with the distance (i.e., bound, two-
dimensional distance) from the trained distributions. Transfer stimuli
that fall in regions near the training distributions will mostly activate
trained units, so the model’s response will be systematic and correct.
For stimuli that fall in regions further from the training distributions,
the weights that connect those units to the decision layer were never
trained or modulated to any serious degree, resulting in arbitrary (al-
though potentially not-chance-level) responding. Thus, for the space
between the two category distributions, the GQC and the SPC models
would predict similar results, but in the regions outside the two training
distributions, their predictions clearly diverge.

How the analogical transfer results would vary between the di-
mensional-activation and the configural-activation SPC models is not
self-evident. Examining Fig. 7 supports the intuition that the models
would agree on how to classify stimuli from the region between the
training distributions. Important differences emerge, however, with
increased distance from the training distributions. In the dimensional-
activation model, the within-dimension distances (i.e., unbound, one-
dimensional distances) from the trained values would control re-
sponding. This means that outside of the training region, while using
the same parameter values, responding could be quite different from
that predicted by the configural-activation model. Thus, this dimen-
sional-activation model could readily account for some of the “aber-
rations” found in Experiment 2. The “distant” cluster that was readily
and systematically categorized by the pigeons was only distant from the
training distributions along a single dimension while remaining rela-
tively close in the second dimension. These two models predict different
outcomes as a result: the configural-activation model will likely falter
(i.e., predict chance-level behavior or behavior like the nearest cate-
gory) while the dimensional-activation model predicts more systematic
responding tied to the dimensions.

4.4. Model results

Table 3 shows the results of the different models. It reveals that the
nonparametric activation-based models were the best fit to the birds’
general results, as the configural-activation and the dimensional-acti-
vation models took the first two spots in 11 of 14 cases (each model’s
average rank 1.86 of 4). The most serious parametric competitor was
the GQC. It was the best model in two cases and the second best in one
case (average rank 2.29 of 4). The prototype model provided the
poorest fit in all birds.

Table 3
Model fitting results for the pigeon data from sessions containing transfer data
in Experiments 1 and 2. The values indicate Akaike Information Criterion (AIC).
Definitions of the models and the source of AIC are in the text. The model
results are displayed and ranked from 1 (best, top) to 4 (worst, bottom). General
Quadratic Classifier (gqc), Dimensional Activation (dim.), Configural Activation
(config.), Prototype (prot.).

Rule-based Information integration

#A1 #D1 #T1 #C1 #G1 #L1 #S1

1st (best) config. config. config. gqc gqc dim. dim.
1095.6 1007.8 1117.3 918.6 979.9 1510.7 1301.0

2nd gqc dim. dim. dim. dim. config. config.
1098.2 1032.9 1128.3 937.0 991.9 1518.4 1307.9

3rd dim. gqc gqc config. config. gqc gqc
1128.0 1123.6 1241.0 964.5 1002.6 1520.4 1314.4

4th prot. prot. prot. prot. prot. prot. prot.
1151.1 1288.9 1331.3 1034.4 1251.5 1594.9 1485.6
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The results from the birds trained in the RB task were best fit with
the configural activation model, as found for all three pigeons, #A1,
#D1, and #T1. The dimensional activation model was second best for
two pigeons #D1 and #T1, while the general quadratic model was
second for pigeon #A1. The pigeons trained with the II task showed less
consistency. Pigeons #C1 and #G1 were best fit by a general quadratic
model, with the dimensional activation model being second best. In
contrast, pigeons #L1 and #S1 were best fit by the dimensional acti-
vation model, and the configural activation model was second best.

4.5. Discussion

The nonparametic dimensional-activation and configural-activation
models provided the best descriptions of the pigeons’ behavior in both
tasks. Between these two models, the dimensional-activation model
generally described the pigeons’ behavior better than the configural-
activation model for the four pigeons in the II task. This model readily
accounts for the differential transfer effects from Experiments 1 and 2,
including the seemingly counterintuitive partial-reversals observed in
the set of widely-spaced transfer tests. The configural-activation model
could fit the results about as well, especially in the case for the three
birds in the rule-based task. Between the experimental results and
model fits, the pigeons appear to be using some form of a dimension-
ally-oriented, associative mechanism to solve the task.

These outcomes tentatively bring the results of Experiments 1 and 2
to a sharper and more coherent resolution. As supported by the rates of
learning during acquisition, both RB and II groups of pigeons seem to
solve this task using the same classification mechanism, one based
around associative processing. The differential analogical transfer re-
sults for these two groups initially created a problem for this unified
account. The inclusion of dimensional activation to an associative ap-
proach helped to reveal a resolution for this tension. This generalization
mechanism extended learning well beyond the trained region of space.
The unusual reversal observed during the II transfer in the widely-
spaced test regions offers revealing and confirmatory evidence of this
type of dimensional activation and allows it to explain the pigeons’
results so far.

If the dimensional activation model truly has the most merit, then
the current results raise an apparent anomaly. If the pigeons’ re-
presentation of these stimuli is fundamentally dimensional in nature,
with potentially few configural units to permit joint representation,
then why does the pigeons’ learning of the two tasks proceed at roughly
equivalent rates? Would not dimensional representations yield an ad-
vantage when learning the RB task in comparison to the II task?
Simulations of the dimensional activation model learning suggest that
the difference is so minute as to be nearly undetectable. In one analysis,
training 10,000 simulated networks on each of the RB and II tasks to
criterion as in Experiment 1 produced an average of 60.6 (SD= 18.4)
“sessions” for the RB task and 61.5 (SD= 19.0) “sessions” for the II
task. A Wilcoxon signed rank test was able to detect this difference
(z= −4.1, p < 0.001), though the effect size is minute (d= 0.05).
Thus, assuming a dimensional representation instead of the extant
configural representation model comes at little explanatory cost. The
model succinctly captures the results in these experiments and does not
contradict this or previous low-power acquisition results (cf. Smith
et al., 2011).

Given the explanatory power and success of the dimensional
activation model, the apparent success of the configural activation
model is unexpected. If the activation were restrained to a region
around the stimulus percept, how does the model allow for transfer to
novel regions of the stimulus space? An examination of the best-fitting
parameters for the configural activation models reveals the key: the
variance (i.e., spread of the radial basis function) in one dimension is
two-to-eight times larger than the variance in the other dimension.

Thus, by tweaking the definition of “around the stimulus,” this version
of the configural activation model can create the partial transfer ob-
served in Experiment 1 and the tripartite response pattern in
Experiment 2. This is not to say that the variances are much more
aligned in the dimensional activation model (in fact, there is no clear
relationship in the variance ratios for the two model fits), although
whether a less relevant or ignored dimension should have broadly or
narrowly tuned variances is somewhat unclear. However, training
simulations with this imbalance contradict the acquisition results. In
simulations with the dimensional variances at a 2.5 ratio, if the skew is
greater in the irrelevant dimension, the discrimination is learned
much more quickly in the RB condition than the II condition
(z= 15, p < 0.001), and if the skew is in the relevant dimension, the
neural network struggles to learn even once in the RB condition.
Therefore, the apparent success of the configural activation model
should perhaps be taken with a modicum of caution.

These experimental results and the subsequent models should also
be considered in light of the stimuli employed. For example, the or-
ientation dimension of the sine-wave stimulus is periodic, meaning that
the most extreme values (i.e., 4° and 173°) are not as extremely dif-
ferent as the stimulus space implies. Perhaps, then, the more robust
discrimination generalization in Experiments 1 and 2 are the result of
the periodic nature of the stimulus. While this fact can possibly explain
some of the dramatic effects seen in the information integration con-
dition, it is not a perfect explanation. The successful transfer effects
seen in Experiment 1, for example, were more robust when orientation
was the relevant discrimination dimension. In Experiment 2, the peri-
odicity only explains the transfer patterns in one dimension, not both.
Future attempts to fit the configural and dimensional activation models
may need to account for this non-linearity or use dimensions that avoid
this periodicity.

Another important factor is that sine-wave grating stimuli are
known to be “separable” dimensions, in which attention to a particular
dimension is unaffected by the other available dimension(s). In con-
trast, “integral” dimensions seem to be bound together in their pro-
cessing, such that, for example, the hue of a color patch cannot be
processed without also processing its intensity (Garner & Felfoldy,
1970). In models of categorization, the use of a Euclidean distance
metric, like that used in the configural activation model here, would
imply that the stimuli are integral and not separable, and in that vein,
perhaps the distance method known as “city-block” would be more
appropriate for separable stimuli. Given how the networks function,
however, the relative fit of the dimensional versus configural activation
models may better address the separability versus integrality as com-
pared to the particular distance metric used. Nevertheless, determining
how different distance metrics alter the configural activation model’s fit
merits further investigation.

5. General discussion

The current experiments generated two critical empirical results. First,
we documented differential transfer to novel regions of the stimulus space
conditional on the pigeons’ RB or II training. The pigeons in the RB task
demonstrated transfer in Experiment 1 similar to previous human results,
inconsistent with the prior associative account and suggestive of a rule-
based categorization mechanism. This apparent contradiction required
resolution. This yielded our second critical result, a partially “reversed”
transfer to widely-spaced stimuli from pigeons in the II condition. Our
modeling suggests systematic, dimensional, associative generalization ac-
counts for both transfer patterns. Furthermore, the associative dimensional
model we developed is potentially well-matched by a configural model
that utilizes dimensionally-unequal generalization. We altogether con-
clude that these dimensions are salient, independent, and meaningful in
the pigeons’ categorization.
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The use of differential analogical transfer as evidence of separate
categorization mechanisms consequently needs to be revised. Casale
et al. (2012) first demonstrated this operation in humans in several
contexts, the most dramatic of which is comparable to the method used
here. Non-reinforced testing of the novel region in their Experiment 3
demonstrated that the humans showed almost no decrement with the
novel stimuli, while II performance crashed. In contrast, Smith et al.
(2015) used differential reinforcement during transfer, and demon-
strated similarity between human and macaque performance. While
perhaps the degree of transfer during non-reinforced tests indicates the
operation of multiple categorization systems, the apparent differential
transfer with properly reinforced testing could have masked the gen-
eralization of an associative mechanism. Subsequent tests with maca-
ques using this method of non-reinforced transfer yielded contradictory
results from the first investigation, suggesting that the macaques’ po-
tential rule-use was not as generalizable as the humans’ (Zakrzewski
et al., 2018). Specifically, the authors note that there was a decrement
during transfer, although they make no comment on the monkeys’
above-chance performance. It remains an open question if these asso-
ciative mechanisms can account for those results, but that data has si-
milarities to our pigeons’ outcomes. Thus, differential analogical
transfer in this paradigm may be indicative of rule use only when the
testing is conducted under uninformative (i.e., nondifferential) re-
inforcement conditions.

In order to account for the current data, any successful model of
categorization needs the capacity to divide the stimulus space into three
distinct areas after being trained on only the two areas of the basic
categorical task. Most models can divide and associate these two areas
effectively. The third clearly associated area, however, is in an un-
trained region of the stimulus space, and critically, the categorization
systems of pigeons (and according to limited preliminary testing, some
humans) associate it with the more distant training distribution. The
hyperbolic version of the general quadratic classifier was able to ac-
count for these results by employing the under-utilized second branch
of the hyperbola to effectively create three regions in the stimulus
space. Traditional configuration-based associative models may suffice,
if the perceptual variance of the dimensions are highly unequal; how-
ever, this does not provide a parsimonious account of the pigeons’ ac-
quisition results. We found that an associative model that used in-
dependent dimensions intuitively and accurately accounts for the whole
of the pigeons’ behavior.

The success of the dimensional activation model raises questions
about the representation underlying perception and categorization.
Numerous comparative studies have used multidimensional stimuli,
many of which suggest that animals can “analytically” access the un-
derlying dimensional features (Blough, 1972). A series of experiments
on attentional tradeoffs in multidimensional displays shows not only
attention to the features but attenuation in that attention over time
(Teng et al., 2015; Vyazovska, Teng, & Wasserman, 2014). Burgering,
ten Cate, and Vroomen (2018) report how zebra finch categorize novel
auditory stimuli in a partially analytic manner, which could be con-
sistent with a dimensional representation. Similarly, Wills et al. (2009)
report experiments with pigeons and squirrels that suggest they attend
to a single diagnostic feature when multiple features are available.
Numerous reports, however, contrastingly suggest that animal behavior
is guided by the complete stimulus configuration (Lea et al., 2018;
Smith et al., 2011). In line with this, one of the more influential models
of animal perception successfully posits configural representations,
which is consistent with the configural activation model (Pearce, 2002).
The current results provide evidence that suggests the pigeons’ cate-
gorization behavior operates on a dimensional basis, belying the con-
figural representation and suggesting that the dimensions or features
are represented separately. In a dimensionalized representation, feature
integration in the II task could derive from the processing of these

separate representations (Ashby & Townsend, 1986). Higher-level
processes may still utilize configural features, but models without di-
mensional access or control would be incomplete. If further testing with
humans reveals parallel function and behavior with the pigeons, it
would suggest that the pigeons’ singular categorization system and
humans’ procedural learning system operate similarly.

The potential discovery of a dimensional association system raises
interesting questions about the analytic, rule-based system.
Dimensional access was previously a distinctive feature of the latter
system, achieved by decomposing a configuration into its parts (Smith
et al., 2012). However, the current research shows that birds’ proce-
dural system could use dimensional representations that are not in-
herently configural or bound (see also Burgering et al., 2018). Conse-
quently, additional distinctions should be considered between the two
systems. Perhaps the rule-based system can process “rules” more ef-
fectively in a hypothesis- or model-testing fashion. In this case, the
system may be able to consider and evaluate outcomes with respect to
multiple hypotheses simultaneously, resulting in faster and more robust
learning. This is consistent with the recurrent processing style of models
that implement rule-based discrimination (Ashby et al., 2011). Alter-
natively, the rule-based system may have access to different, more ex-
pansive dimensional representations than the association-based system.
Perhaps, the activation of a value of 60° may simultaneously activate
the representations “less than 75°,” “less than 80°,” etc., and “more than
45°,” “more than 40°,” etc. Utilizing such comparison relations could
potentially allow for the sort of robust rule learning that underlies the
analogical transfer in this task. Yet again, perhaps the rule-based system
has the ability to use attention to change the salience of irrelevant di-
mensions to zero. By applying this sort of attentional hyper-modulation,
rule-based discriminations would be acquired more quickly and in-
formation-integration discriminations would not. These possibilities
need to be considered in the scope of larger datasets and models.

Finally, the differences found between the strategies employed
during RB and II tasks could be attentional in nature. Attentional
strategies during perceptual categorization would require an organism
to possess neural structures with the ability to modulate incoming
sensory signals or bottom up processes in order to alter behavior. In
primates, COVIS assumes that the rule-learning system has access to a
form of attention mediated by the prefrontal cortex (Ashby et al., 1998,
2007; Nomura et al., 2007), though Posner and Petersen (1990) attri-
bute these effects to an anterior cingulate-based attentional system. In
the pigeon, modulatory attentional structures have been difficult to
identify, but there is some recent evidence that nidopallium caudola-
terale processing relates to human prefrontal cortex processing
(Lengersdorf, Pusch, Güntürkün, & Stüttgen, 2014). Pigeons may
therefore have the capacity for similar two-system categorization pro-
cessing of these stimuli, but these procedures may not tap into those
cognitive abilities. Alternatively, the strength of modulation by the
nidopallium may not rival the strength of modulation in the primate
structures. Some research suggests that configural perceptual mechan-
isms effectively prohibit this type of visual attentional modulation in
pigeons (Pearce, Esber, George, & Haselgrove, 2008). Further knowl-
edge of the neural structures and behavioral abilities involved, in pi-
geons especially, may help identify the critical difference between the
procedural learning system that is common to both pigeons and humans
and the rule-based system that appears to be absent in these birds.
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Appendix A. Mathematical formalizations

A.1. Parametric models

The prototype model and the GQC both state that a stimulus (S) can
be represented in a (veridical) stimulus space and an internal percep-
tual space. We assume two categories, A and B, which would corre-
spond to the red-correct and green-correct stimuli from Experiments 1
and 2. Specific stimulus i has a two-dimensional stimulus representation
and will be designated Si = (x1i, x2i). Its representation in perceptual
space is a fair approximation of the veridical stimulus, plus some noise
(ε) from sensors: P(Si) = Pi = (p1,p2) = (x1i+ ε1i, x2i+ ε2i). Given
research on generalization as well as examining neural decay functions,
we will assume that the noise is Gaussian distributed with zero mean
and uncertain variance (Ghirlanda & Enquist, 2003). Points within the
perceptual space can be considered a distance apart, designated as D
(P1, P2), where D functions appropriately for the dimensions involved
(i.e., city-block distance or Euclidean distance). In the perceptual space,
there is a function that partitions the space into distinct “A” and “B”
regions, which we will designate F(P). Prototype theory also posits
prototypes EA and/or EB, which are points in perceptual space that
represent the categories, and the function F(P) is defined as F(P) = D
(P,EA)/D(P,EB) − 1. If F(P) evaluates to a negative value, response A is
produced, and if F(P) evaluates to a positive value, response B is pro-
duced. The decision boundary is the set of points for which F(P) = 0. In
the prototype model, this is a line with the property that every point on
the line is equidistant from the two prototypes (i.e., the line that bisects
and is orthogonal to the line that passes through the two prototypes).

The GQC postulates that F(P) = β5 p1
2 + β4 p1 p2 + β3 p2

2 + β2

p1 + β1 p2 + β0 > 0. The categorization decisions function the same
way, responding A if F(P) > 0 and B if F(P) < 0. For more details on
parametric models, see Ashby (1992a).

A.2. Nonparametric models

In some regards, the nonparametric models do not need a further for-
malization due to their development by neural network generation.
However, simulations show that the configural-activation and dimensional-
activation models can result in learning of the basic task and that they result
in very different patterns of generalization to other parts of the space, even
with only one unit in the hidden layer. Because only one unit is needed in
the hidden layer, if we wanted to describe the final neural network, we
would not need to define the connection weight between each input node
and the hidden layer explicitly. Instead, we only need to consider the
parameters that define the input surface. We start again with stimulus Si,
but now its representation in perceptual space is no longer provided by a
simple formula. Instead, the perceptual representation of a stimulus is the
activation it generates in the neural network units of the model. If we as-
sume Euclidean distance for the distance metric and Gaussian decay for all
units’ sensitivity, the activity levels for each of these activated units can be
described using Gaussian distributions. In the configural activation model,
each configural unit Wab has optimal responding to dimension 1 value a and
dimension 2 value b. Its activation in response to Si would be computed by
Aab(Si) = φ(D(Si, [a,b]), 0, σAB

2), where φ(X, μ, σ2) is a Gaussian function
with mean μ and variance σ2 evaluated at X. Contrastingly, in the dimen-
sional activation model, each dimension unit Ua or Ub is sensitive only to the
values within their dimension. Their activations for Si= (x1, x2) are given
by Aa(Si) = φ(D(x1, a), 0, σA

2) and Ab(Si) = φ(D(x2, b), 0, σB
2); if we wanted

to continue representing this in the grid space of the COVIS model (i.e., as in
Fig. 7), one combination method would provide us with Aab(Si) = φ(D(x1,
a), 0, σA

2) + φ (D(x2, b), 0, σB
2). The output of the activations from all units

would map onto a category unit that converts the unbounded activations
into a limited response representation. This unit will be activated according
to a cumulative distribution function of the standard normal Gaussian (Φ),
and the evaluation of this will correspond to the likelihood of emitting (e.g.)
a “red” response.

Critically for the purposes of this article, because of the assumptions
of our model and the functional simplicity of our distributions, we can
model the neural network outcome without having to instantiate the
hundreds of connections posited by the networks. With a single unit in
the hidden layer, which is as functionally useful as no hidden layer at
all, what the neural networks reduce to are simple association net-
works. Output activations in simple association networks should be
proportional to the relative predicatability of the input units. For the
networks provided here, the predictability of a given unit depends on
the relative activation by stimuli from one category versus the stimuli
from the other category. We assume that stimuli from both categories
activate units using a Gaussian decay function. The categories and sti-
muli are distributed according to a normal (i.e., Gaussian) distribution.
Given stimuli distributed normally and Gaussian decay functions, the
overall activation by all the stimuli of a single category will also be
Gaussian. The mean of the activation distribution will be the perceived
mean of the stimuli (assuming an unbiased perception, equal to the true
mean of the distribution). The variance of the activation distribution
will be composed of the true variance in the stimulus category as well as
any added variance from the perceptual or decisional processes; how-
ever, without further careful experimentation it will not be possible to
separate the processing variance perfectly from the distributional var-
iance. Nevertheless, computationally identifying data generated by this
model can be accomplished by determining these six values (four
means, two variances) underlying the activation distributions (com-
bining the variance from perceptual and decisional processes). Finally,
we included a scaling parameter for the final decision process so that
the absolute activation levels could be attenuated. The result for a
single stimulus in the dimensional activation model was given by the
following equation Φ(s * [φ(D(x1, µ1A), 0, σ1

2) – φ(D(x1, µ1B), 0,
σ1

2) + φ(D(x2, µ2A), 0, σ2
2) – s1 φ(D(x2, µ2B), 0, σ2

2)]), where Φ is the
cumulative density function of the standard normal, φ(X, μ, σ2) is a
Gaussian function with mean μ and variance σ2 evaluated at X, D is the
distance function, s is the scaling parameter, (x1, x2) is the stimulus
values in dimensions 1 and 2, µ1A and µ1B are the means of the A and B
distributions in the first dimension, µ2A and µ2B are the means of the A
and B distributions in the second dimension, and σ1 and σ2 are the
variances of the activation distributions for the first and second di-
mensions. Note that for the configural activation model, the function
only changes by the joining (“binding”) of the dimensional activations
by using a multi-variate radial basis function instead of a univariate
Gaussian function.

Appendix B

The prototype model and the general quadratic classifier have been
dealt with fairly thoroughly in the literature (Ashby, 1992a) as well as
in Appendix A1, and the association models and their parameters for
fitting have been described in Appendix A2. Consequently, we will not
expend too much time here to reiterate their differences. Both classifiers
use a distance function to evaluate a given stimulus. For our models, in
both cases, this function value was subtracted from a threshold and
divided by a scaling factor and the resulting value was mapped to the
likelihood of the two responses using the inverse standard normal
function. This yielded a tractable probabilistic version of these analytic
models, allowing us to compare their efficacy against the association
based models using log likelihood, which we used as a step of evalu-
ating model fit. Thus, for each response the pigeon made, we evaluated
the likelihood of seeing that response for each model.

All model fitting was conducted in MATLAB. Each categorization
method was implemented as a separate function that generated a
probability of seeing a given response value. These probabilities were
compared against the pigeons’ response data to compute the log like-
lihood. In order to determine the optimal set of coefficient values for
each of these models, we replicated this process at least 10,000,000
times for each problem using a grid that encompassed all likely values.
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We then searched for the parameter sets that minimized the negative
log likelihood, using the best parameter sets from the previous step as
the starting point for the GlobalSearch solver from the MATLAB opti-
mization toolbox. The final log likelihood was used in the AIC com-
putation.

Appendix C. Supplementary material

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.cognition.2018.11.011. The raw data that underlies the
graphs and analyses reported in this manuscript has been deposited in
FigShare at https://figshare.com/articles/Data_for_Testing_Analogical_Rule_
Transfer_in_Pigeons_Columba_livia_/7361417.
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