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A B S T R A C T   

The results of two experiments are reported that included a combined total of approximately 633,000 catego-
rization trials. The experiments investigated the nature of what is automatized after lengthy practice with a rule- 
guided behavior. The results of both experiments suggest that an abstract rule, if interpreted as a verbal-based 
strategy, was not automatized during training, but rather the automatization linked a set of stimuli with 
similar values on one visual dimension to a common motor response. The experiments were designed to test and 
refine a recent neurocomputational model of how rule-guided behaviors become automatic (Kovacs, Hélie, Tran, 
& Ashby, 2021). The model assumes that rule-guided behaviors are initially controlled by a distributed neural 
network centered on rule units in prefrontal cortex, and that in addition to initiating behavior, this network also 
trains a faster and more direct network that includes projections from visual cortex directly to the rule-sensitive 
neurons in premotor cortex. The present results support this model and suggest that the projections from visual 
cortex to prefrontal and premotor cortex are restricted to visual representations of the relevant stimulus 
dimension only.   

1. Introduction 

Repeatedly practicing a skill eventually causes it to be executed 
automatically. The study of this process has a long history – dating back 
at least to Charles Sherrington (1906) and William James (1914). During 
much of this time, however, the focus was on behavioral signatures of 
automatic behaviors. This work was important because, once identified, 
these signatures could then be used to test whether a behavior had been 
practiced long enough to become automatic. The classic work on this 
problem was by Shiffrin and Schneider (Schneider & Shiffrin, 1977; 
Shiffrin & Schneider, 1977), who identified many features of automatic 
behaviors that are still used today to identify automaticity. Among other 
examples, they noted that automatic behaviors require few attentional 
resources, and as a result, they can be performed fluidly at the same time 
as other simple behaviors. In other words, automatic behaviors are 
resistant to dual-task interference. As another example, automatic skills 
are behaviorally inflexible, in the sense that changing the response re-
quirements – for example, by switching the locations of the response 
keys – interferes with the execution of automatic skills. 

In contrast, relatively little work has studied exactly what is 
automatized during the long period of practice that is required for 
automaticity. Among the first studies to examine this issue reported 

evidence that the nature of the knowledge that is automatized depends 
on the learning system used to acquire the behavior. In particular, 
Roeder and Ashby (2016) reported evidence that rules are automatized 
with rule-guided behaviors, whereas stimulus-response associations are 
automatized with skills that are acquired via procedural learning. 
Stimulus-response associations seem unambiguous, but a rule could be 
instantiated in many different ways. For example, is the automatized 
rule an abstract set of instructions that can be applied with equal facility 
to any relevant stimulus, or is it highly stimulus specific? And does it 
require selective attention to individual stimulus features or compo-
nents, or can it operate on the stimulus gestalt? 

This article describes the results of two extensive experiments that 
investigated the nature of what is automatized after lengthy practice 
with a rule-guided behavior. The experiments were designed to test 
novel predictions of a recent neurocomputational model of how rule- 
guided behaviors become automatized (Kovacs, Hélie, Tran, & Ashby, 
2021). The results of both experiments support the predictions of the 
model and suggest that an abstract rule, if interpreted as a verbal-based 
strategy, was not automatized during training, but rather the automa-
tization linked a set of stimuli with similar values on one visual 
dimension to a common motor response. 
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1.1. Experiment 1 overview 

Experiment 1 trained 29 naive participants on novel categories of 
unfamiliar visual stimuli long enough so that their responses became 
automatic (i.e., 8400 trials each). Next, each participant completed a 
final transfer session in which they categorized novel stimuli that they 
had never seen before. Our analyses focused on how well their catego-
rization training prepared them to categorize these novel stimuli. All of 
the novel stimuli presented during this transfer session could be cate-
gorized perfectly using the same strategy that was automatized during 
training. As a result, we expected transfer accuracy to be high. Our main 
goal therefore, was to assess whether automaticity transferred to the 
novel stimuli. Specifically, the aim of the experiment was to determine 
whether participants categorized the transfer stimuli automatically or 
whether they appealed back to the more effortful categorization strategy 
they used during the early training sessions. 

The stimuli were circular sine-wave gratings that varied across trials 
in bar width (spatial frequency) and bar orientation. Fig. 1 illustrates the 
stimuli and categories used during training and transfer in both of our 
experimental conditions. There were two training categories and perfect 
performance could be achieved via the simple one-dimensional rule: 
“respond A if the orientation of the bars is shallow; otherwise respond 
B". Participants were given no instructions about the optimal strategy. 
They were simply told that there were two categories of disks, A and B, 
and their job was to use the trial-by-trial feedback to learn to assign each 
presented disk to its correct category. 

The experiment included 15 sessions of 600 categorization trials 
each. Therefore, each participant completed a total of 9000 categori-
zation trials. The first 14 sessions were identical for all participants. Each 
of these 8400 trials (i.e., 14 × 600) were standard categorization trials. 
The stimuli and categories used during training are denoted in Fig. 1 by 
the open squares. The goal of the training sessions was to train partici-
pants on the categorization task long enough that their responses 
became automatic. Previous research with the same stimuli indicated 
that 8400 trials of training was sufficient for automaticity to develop 
(Hélie, Waldschmidt, & Ashby, 2010). 

The nature of the knowledge that participants acquired during 
training was assessed during the final transfer session (i.e., session 15). 
There were two conditions, with separate participants in each condition. 
In the Relevant-Dimension Transfer (RDT) condition, the stimuli pre-
sented to participants changed values on the relevant dimension (i.e., 
orientation of the bars), but not on the irrelevant dimension (bar width). 
The transfer stimuli in the RDT condition are denoted in Fig. 1 by the 
light gray dots. Note that the separation between the category A and B 
exemplars in the RDT condition is greater during transfer than during 
training, and as a result, the transfer task is objectively easier than the 
training task. In the Irrelevant-Dimension Transfer (IDT) condition, the 
stimuli changed values on the irrelevant dimension (i.e., bar width), but 
not on the relevant dimension. The transfer stimuli in the IDT condition 
are denoted in Fig. 1 by the black dots. Note that the separation between 
the category A and B exemplars in the IDT condition is the same as 
during training, so the IDT transfer task is objectively equal in difficulty 
to the training task. 

Note that the simple one-dimensional rule that perfectly categorizes 
the training stimuli also works perfectly in both transfer conditions. As a 
result, based on previous research, we expected transfer accuracy to be 
high in both conditions (Casale, Roeder, & Ashby, 2012). For this 
reason, our primary goal was to determine whether automaticity 
transferred to the novel stimuli that participants categorized during the 
final session. To answer this question, we used two classic tests for 
assessing automaticity – the performance of automatic behaviors should 
be: 1) unaffected by having to perform a simultaneous dual task, and 2) 
impaired if the location of the response buttons is reversed (Schneider & 
Shiffrin, 1977; Shiffrin & Schneider, 1977). 

To implement these tests, the final session was divided into three 
separate blocks of 200 trials each. These are described in Fig. 2. During 

the first 200 trials (block 1), participants categorized the novel transfer 
stimuli while simultaneously performing a dual task that required 
working memory and executive attention (i.e., a numerical Stroop task). 
During the third block of 200 trials, participants categorized the transfer 
stimuli using the same procedures as during training, except that the 
locations of the response buttons were switched. Participants were 
informed of this switch before the block began and cues were presented 
on the screen on every trial that signaled the new button locations. 
Therefore, no new learning was required. Finally, during the second 
block of 200 trials, participants categorized the transfer stimuli using the 
same procedures as during training. The data from these trials served as 
a baseline or control that was used to assess the effects of the dual task 
and button switch on performance. Therefore, in summary, the final 
session followed a 2 × 3 factorial design, in which 2 conditions (RDT, 
IDT) were crossed with 3 block types (categorization only, dual task, 
button switch). 

1.2. A neurocomputational model of automatic rule-guided behaviors 

Kovacs et al. (2021) recently proposed the first neurocomputational 
model of how rule-guided behaviors become automatic. Fig. 3 shows the 
model as it would look at the end of the 14 training sessions of Experi-
ment 1. The model builds on the many reports that there are rule- 
sensitive neurons in both prefrontal cortex (PFC) and premotor cortex 
(PMC; e.g., Muhammad, Wallis, & Miller, 2006; Wallis & Miller, 2003; 
Vallentin, Bongard, & Nieder, 2012). The model assumes that rule- 
guided behaviors are initially controlled by a distributed neural 
network centered on the PFC rule units, and that in addition to initiating 
behavior, this network also trains a faster and more direct network that 
includes projections from visual cortex directly to the rule-sensitive 
neurons in PMC. 

Each rule unit includes two simulated neurons. In the case of the 
Experiment 1 training rule, one neuron signals if the stimulus has a small 
orientation (the S unit), and one signals if the orientation is large (the L 
unit). The idea is that orientation-sensitive units in visual cortex that 
respond to shallow orientations project to the PFC-S neuron, whereas 
visual cortical units that respond to steep orientations project to the PFC- 
L neuron. In this way, the S neuron responds to any shallow orientation 
and the L neuron responds to any steep orientation. The model assumes 
that these PFC rule units develop as a result of life-long practice with a 
rule. During early training sessions, the stimulus activates the appro-
priate PFC rule unit (i.e., S or L), which then activates the analogous 
PMC rule unit, which then activates the appropriate unit in motor cortex 
that causes the model to respond A on trials when the orientation is 
shallow and B when the orientation is steep. The same visual cortical 
units that project to the S and L PFC rule units also project to the S and L 
PMC rule units. Initially, however, these visual cortex-to-PMC synapses 
are not strong enough to activate the appropriate unit in motor cortex. 
Instead, PFC activation is also required.1 

The model also assumes that Hebbian learning will strengthen all 
active synapses in the Fig. 3 network. The most critical of these for 
behavioral predictions are highlighted in the figure by the thicker pro-
jections. First consider the synapses between visual cortex and PMC. In 
Hebbian learning, synaptic strengthening is proportional to the product 
of the pre- and post-synaptic activations. During early training, much of 
the post-synaptic activation (i.e., the activation within the PMC units) is 
driven by input from PFC. As the visual cortex-to-PMC synaptic strength 
increases, it eventually becomes strong enough so that visual input alone 
is enough to cause the PMC unit to activate the appropriate target in 
motor cortex. The pathway through PFC is still active, but because it is 
longer, it no longer controls behavior. At this point, the behavior has 

1 This is because the experimental participants all presumably have a life 
history of making judgments about orientation, but not about pressing an A or B 
button to signal the outcomes of these judgments. 
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become automatic. 
Second, consider the synapses between PMC and primary motor 

cortex. Initially these are weak because participants have no prior as-
sociation between shallow or steep orientations and A or B button 
presses. But after thousands of practice trials, Hebbian learning will 
strengthen these associations. The model therefore predicts that both 
transfer conditions will be susceptible to a button-switch interference. 
This is because the transfer conditions introduce novel stimuli, but the 
categorization rule and motor responses remain the same as during 
training. 

The model successfully accounts for single-unit recordings and 
human behavioral data that are problematic for other models of auto-
maticity. For example, it accounts for resistance to dual-task interfer-
ence because the working memory circuits centered in PFC are not 
needed to initiate automatic behaviors, and it accounts for an 

interference when the response button locations are switched because 
Hebbian learning between PMC and primary motor cortex strengthens 
the motor associations during training so much that top-down executive 
attention is unable to reverse them completely after the switch occurs. 

This model predicts that automatic rule-guided behaviors are stim-
ulus specific, but initial rule-guided behaviors are not. In particular, the 
model predicts that early rule-guided behaviors are mediated by ab-
stract rules that are represented in PFC, whereas automatic rule-guided 
behaviors are mediated by direct projections from visual cortex to PMC 
units that control the behavior. Because of Hebbian learning, the asso-
ciations between the stimulus representations in visual cortex and the 
motor associations in PMC eventually become strong enough to trigger 
the behavior without assistance from the abstract rule representations in 
PFC. 

Now consider the predictions of the model for the RDT and IDT 

Fig. 1. Stimuli and category structures used in Experiment 1. The optimal bound for all category structures is x1 = 50. Panel (a) shows coordinate values of all stimuli 
used and panel (b) shows some example stimuli. 
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conditions of Experiment 1. In the RDT condition, the model predicts 
that the novel orientations of the transfer stimuli will activate visual 
cortical neurons that were never activated during training. As a result, 
their synapses into PMC will be weak (i.e., untrained), dropping the PMC 
response to visual input below the threshold needed to activate motor 
cortex. In this case, PFC input is needed to cause enough PMC activation 
to trigger a motor response. Accuracy should remain high, however, 
because the PFC retains the representation of the correct rule. Even so, 
because application of that rule now depends on working memory and 
executive attention (unlike automatic behaviors), transfer performance 
should be susceptible to dual-task interference. This is a strong predic-
tion because the transfer categories are more widely separated in the 
RDT condition than the training categories (see Fig. 1), and therefore the 
transfer task is objectively easier than the training task. Thus, the model 
predicts that even though the transfer categories are easier, participants 
should lose the ability to respond automatically to the RDT transfer 
stimuli. 

Somewhat counterintuitively, however, the model also predicts that 
transfer performance during the button-switch block of the RDT condi-
tion should appear automatic, in the sense that it should be susceptible 
to button-switch interference. This is because the model predicts that no 
matter how the response is selected, response execution is mediated by 

the same PMC-to-primary motor cortex projections during both training 
and transfer. Therefore, even if control is passed back to PFC during the 
RDT blocks, the same PMC-to-primary motor projections must be used to 
initiate the motor response as during training, and therefore a button- 
switch interference should still occur. In summary then, the model 
makes a set of strong and novel predictions about transfer performance 
in the RDT condition: 1) accuracy should remain high, 2) performance 
during the simultaneous dual-task should appear non-automatic (i.e., 
susceptible to interference), and 3) performance after the button switch 
should appear automatic (also susceptible to interference). 

Next, consider the IDT condition. The only difference between the 
IDT and RDT conditions is in the transfer stimuli. In both conditions, the 
categorization rule remains the same during training and transfer, and 
so do the response buttons. As a result, the model predicts that transfer 
accuracy should be high in both conditions and both conditions should 
be susceptible to a button-switch interference. But what about a dual- 
task interference? The IDT transfer stimuli differ from the training 
stimuli, but only on the irrelevant dimension. So the model predictions 
depend on what type of visual representation projects to PFC and PMC. If 
the projections from visual cortex to PMC are of the stimulus gestalt, 
then the visual inputs to PFC and PMC change in both conditions, so the 
model makes identical predictions in the RDT and IDT conditions. Ab-
stract rule representations in PFC would be needed to initiate motor 
behaviors in both conditions, so IDT transfer responding should be 
susceptible to a dual-task interference. In contrast, if the projections 
from visual cortex to PMC are only of values on the relevant dimension, 
then the model predicts that dual-task and button-switch performance 
should both remain automatic because from the perspective of PMC, the 
visual representations received during transfer would be identical to the 
visual representations received during training (since the stimuli do not 
change on the relevant dimension). 

Kovacs et al. (2021) made no assumptions about whether the visual 
representations used by the model were of stimulus gestalts or were 
restricted to the relevant stimulus dimensions only. Even so, there is 
reason to favor the hypothesis that the representations are of single di-
mensions. For example, humans learn categories like the ones used 
during the Experiment 1 training – in which the optimal strategy is a 
simple one-dimensional rule – much more quickly than categories that 
are identical except the stimulus space is rotated 45◦, so that the optimal 
decision boundary is diagonal (e.g., Ashby, Smith, & Rosedahl, 2020). In 
contrast, pigeons and rats learn both types of categories at exactly the 
same rate (Broschard, Kim, Love, Wasserman, & Freeman, 2019; Qadri, 

Fig. 2. Description of the three 200-trials blocks of the 15th and final (transfer) 
session of Experiment 1. All stimuli during this session were either from the IDT 
or RDT categories shown in Fig. 1. During the first 200 trials, participants 
categorized the novel stimuli while completing a simultaneous numerical 
Stroop dual task. During the second block of 200 trials, participants categorized 
the stimuli under the same procedures as during the first 14 training sessions. 
Finally, during the last block of 200 trials, participants categorized the stimuli 
in the usual manner, except the locations of the response buttons were reversed, 
and participants were explicitly instructed of this change. 

Fig. 3. A schematic of the Kovacs et al. (2021) model as it would look at the end of the training sessions of Experiment 1. The thicker projections represent increases 
in synaptic strength that result from Hebbian learning. PFC = prefrontal cortex, PMC = premotor cortex, S and L refer to units that respond to stimuli with small and 
large orientations, respectively. 
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Ashby, Smith, & Cook, 2019; Smith et al., 2011). This across-species 
difference supports the hypothesis that the human one-dimensional 
advantage is due to their ability to apply explicit rules with one- 
dimensional categories, and that pigeons and rats lack this ability. 
Critically though, both macaque and capuchin monkeys show a similar 
advantage to humans in the one-dimensional task, relative to the rotated 
diagonal-bound task (Smith, Beran, Crossley, Boomer and Ashby, 2010; 
Smith et al., 2012; Smith et al., 2015). This result suggests that the 
human one-dimensional learning advantage is not necessarily language 
based, and instead may be due to an ability to attend selectively to the 
single relevant dimension – a skill that is closely tied to PFC (e.g., Miller 
& Cohen, 2001). If so, then it seems natural that the visual representa-
tions used by the PFC rule units would exploit this selective attention 
ability. 

2. Experiment 1 

Experiment 1 tests some highly non-intuitive predictions of the 
Kovacs et al. (2021) theory – for example, that transfer performance in 
the RDT condition should appear automatic during the button-switch 
trials but non-automatic during the dual-task trials, and that this loss 
of automaticity in the presence of a dual task should occur even though 
the RDT transfer stimuli are objectively easier to categorize than the 
training stimuli (i.e., the RDT transfer categories are more widely 
separated than the training categories). In addition, it also tests whether 
the visual representations supporting explicit rule use are of gestalts or 
limited only to the relevant stimulus dimension. 

2.1. Methods 

2.1.1. Participants 
Twenty-nine healthy undergraduate students at the University of 

California, Santa Barbara, participated in this experiment in exchange 
for class credit. Fourteen participants were randomly assigned to the 
RDT condition, and the remaining 15 participants were assigned to the 
IDT condition. 

2.1.2. Stimuli and apparatus 
All stimuli were circular sine-wave gratings of constant contrast and 

size presented on a 21-in. monitor (1280 × 1024 resolution). Each 
stimulus was defined by a set of points (x1, x2) sampled from a 100 × 100 
stimulus space and converted to a disk using the following equations: 
spatial frequency = 2(x1/28) cycles per disk and orientation = 9x2/10 +
15 degrees counterclockwise rotation from horizontal(Treutwein, 
Rentschler, & Caelli, 1989). 

During training, stimuli in category A were uniformly distributed (in 
the 100 × 100 space) in the interval [30.77, 46.15] on the orientation 
dimension and [0, 42.31] on the spatial frequency dimension. Stimuli in 
category B were also uniformly distributed, over the intervals [53.85, 
69.23] and [0, 42.31] for orientation and spatial frequency, respec-
tively. The stimuli were generated with PsychoPy (Peirce, 2007), and 
subtended an approximate visual angle of 13◦. Note that perfect accu-
racy is possible if participants use the simple one-dimensional decision 
rule: Respond A if the orientation is less than 50◦; otherwise respond B. 

During the transfer session, the stimulus values were the same as 
during training, except in the RDT condition, the stimulus values were 
shifted on the relevant dimension – that is, orientation – whereas in the 
IDT condition they were shifted on the irrelevant dimension (i.e., spatial 
frequency). In the RDT condition, the category A stimuli were uniformly 
distributed over the intervals [0, 15.35] and [0, 42.31] for orientation 
and spatial frequency, respectively, and the category B stimuli were 
uniformly distributed over the intervals [84.62, 100] and [0, 42.31] for 
orientation and spatial frequency, respectively. In the IDT condition, the 
category A stimuli were uniformly distributed over the intervals [30.77, 
46.15] and [57.7, 100] for orientation and spatial frequency, respec-
tively, and the category B stimuli were uniformly distributed over the 

intervals [53.85, 69.23] and [57.7, 100] for orientation and spatial 
frequency, respectively. 

Stimulus presentation, feedback, response recording, and response 
time (RT) measurement were acquired and controlled using PsychoPy 
on a Macintosh computer. Responses were given on a standard Macin-
tosh keyboard: the “D” key for an A categorization and the “K” key for a 
B categorization (sticker-labeled as either A or B). Each correct response 
was followed by the word “Correct” on the screen in green letters, and 
each incorrect response was followed by the word “Incorrect” in red 
letters. 

2.1.3. Procedure 
The experiment lasted for 15 sessions over 15 consecutive workdays. 

The first 14 sessions were training, and the last session was transfer. 
Each session included 600 categorization trials. All together, each 
participant completed 8400 trials of training and 600 trials of transfer. 

On training days, participants were informed that they were taking 
part in a categorization experiment and were instructed to assign each 
stimulus to one of two categories, either A or B. A single trial proceeded 
as follows: The stimulus appeared in the center of the screen and 
remained on the screen until the participant responded, after which 
correct or incorrect visual feedback was immediately displayed for 2 s. 

During the transfer session, participants performed a total of 600 
trials split into three blocks: 1) 200 trials of categorization with a con-
current numerical Stroop task, 2) 200 trials of categorization only, and 
3) 200 trials of categorization with the locations of the response buttons 
switched. 

During the 200 dual-task trials of the transfer session (block 1), two 
different digits were randomly chosen on every trial (ranging from 2 to 
8), and displayed for 1 s on the left and right of the center of the screen, 
with each offset by approximately 2◦ of visual angle. One of the digits 
was displayed in a larger font at 6 cm in height. The other digit was 3 cm 
in height. A “congruent” trial in the numerical Stroop task was defined 
as a trial in which the digit with the larger value was displayed in a 
larger font, whereas an “incongruent” trial was defined as a trial where 
the digit with the smaller value was displayed in the larger font. 
Incongruent trials produce a Stroop-like interference (Waldron & Ashby, 
2001). The response keys and feedback for the numerical Stroop task 
were the same as for the categorization task. The D key (labeled A) was 
used to indicate left, and the K key (labeled B) was used to indicate right 
(matching their locations on a regular keyboard). 

Participants were instructed to memorize the numerical value and 
physical size of the two digits. The digits then disappeared and were 
followed by a blank screen for 300 msec, and then followed by the 
categorization stimulus. The categorization stimulus stayed on the 
screen until a categorization response was made. Categorization feed-
back was given after 300 msec and stayed on the screen for 700 msec. 
After the feedback, the screen went blank for 300 msec followed by a 
cue, either the word “Size” or the word “Value” If the cue was “Size,” the 
participant indicated whether the number presented in the larger font 
was on the right or the left of the screen. If the cue was “Value,” the 
participant indicated whether the number with the larger value was on 
the right or the left of the screen. The cue remained on the screen until 
the participant responded. Feedback was given in the same way as in the 
categorization task. As in the training sessions, half the categorization 
stimuli were from category A and half were from category B. In the 
numerical Stroop task, 170 trials were incongruent (85%), and the 
remaining 30 trials were congruent (15%). This manipulation aimed at 
drawing the analogy with the original Stroop task – that is, by opposing 
the natural bias of associating digit size with digit value. Half the correct 
responses were located on the left, and half on the right. Also, the digit 
with the larger value was located on the left for half the trials, and half 
the digits with the larger size were located on the left. Participants were 
instructed to focus on the numerical Stroop task and to perform the 
categorization task with the attentional resources they had left. Addi-
tionally, participants were instructed to respond as quickly as they could 
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without sacrificing accuracy. 
The trial-by-trial procedures for the 200 categorization-only trials of 

the transfer session (block 2) were identical to the training sessions. 
During the break between blocks 1 and 2, participants were again 
instructed to respond as quickly as they could without sacrificing 
accuracy. 

During the 200 button-switch trials of the transfer session (block 3), 
categorization trials were identical to training trials except the catego-
rization response key locations were switched. The letters “A” and “B” 
were displayed on the left and right side of the bottom of the screen in 
positions corresponding to the new locations of the response keys. 
Participants were instructed at the end of block two that everything in 
the next 200 trials would be the same except that the response keys 
would switch positions. They were also instructed to refer to the letters 
“A” and “B” displayed at the bottom of the screen to remind them of the 
new button locations. Additionally, participants were again instructed to 
respond as quickly as they could without sacrificing accuracy. 

2.2. Results 

Fig. 4 shows the mean proportion correct averaged over participants 
during each session of training. As expected, accuracy increased quickly 
and plateaued at a high level of performance (above 90% correct). The 
means of each participant's median RTs are shown in Fig. 5. Also as 
expected, note that RT gradually decreased over sessions, beginning at 
about 700 ms on session 1 and ending at 580 ms during the last training 
session (i.e., Session 14). 

2.2.1. Standard statistical analysis 
Results from the final transfer session are summarized in Fig. 6. The 

data from the categorization-only trials (i.e., block 2) were used as 
controls. 

As a first analysis, we analyzed the transfer session data using a series 
of generalized linear mixed models (GLMM). The accuracy analysis 
assumed a logistic link function, whereas the link function for the RT 
analysis was the identity. The main advantage of using a GLMM analysis 
instead of ANOVA is that, in the case of the trial-by-trial Bernoulli 
distributed accuracy data, the ANOVA assumption of normality is 
violated. However, we also analyzed the RTs using a standard ANOVA 
and the results were qualitatively identical. 

Recall that the final transfer session followed a 2 × 3 factorial design, 
in which 2 conditions (RDT, IDT) were crossed with 3 block types 
(categorization only, dual task, button switch). Therefore, the GLMM 
analysis included all of the models that would be tested in a standard 
ANOVA. This includes a null model in which there are no main effects or 
interaction, a model that only includes a main effect of condition (model 
Cond), a model that only includes a main effect of block (model Block), a 
model that includes main effects of condition and block (model Cond-
Block), and a full model that includes both main effects and an inter-
action. Separate GLMM analyses were performed for accuracy and RT. 
The accuracy results are described in Table 1 and the RT results are 
shown in Table 2. 

For the accuracy analysis, the best-fitting model was CondBlock, 
suggesting both main effects were significant, but not the interaction. 
The Bayes factors (BF) suggest that the evidence for both main effects is 
extreme, and the evidence that there is no interaction is also extreme 
(Lee & Wagenmakers, 2014). An examination of Fig. 6 suggests that the 
main effect of condition is driven by the higher accuracy in the RDT 
condition than in the IDT condition. This is not surprising since the RDT 
transfer stimuli were objectively easier to categorize than the IDT 
transfer stimuli (i.e., see Fig. 1). The main effect of block is driven by the 
lower accuracy during the button-switch block compared to the control 
or dual-task blocks, and the lack of an interaction suggests that the lower 
button-switch accuracy was similar in both conditions. 

The RT analysis led to different conclusions. The evidence for both 
main effects was again extreme, but now the evidence for an interaction 

was also extreme. In particular, the Full model was, by far, the best- 
fitting model, and a comparison of the Bayes factors for the Full and 
CondBlock models suggests the evidence for an interaction was 
extreme.2 Fig. 6 suggests that the main effect of condition is driven by 
the faster RTs in the RDT condition and the main effect of block is largely 
due to the faster RTs during the control block. The difference between 
the control and button-switch RTs is approximately the same in the two 
conditions, so the highly significant interaction is driven by the much 
larger difference between the control and dual-task RTs in the RDT 
condition than in the IDT condition. 

We also assessed all pairwise differences in Fig. 6 for significance via 
standard t-tests. These largely confirmed the GLMM analyses. In the IDT 
condition, the difference between control and dual-task accuracy was 
not significant [t (14) = 0.70, p = .49], nor was the RT difference [t (14) 
= 1.73, p = .11]. However, the differences between control and button- 
switch performance were significant – both for accuracy [t (14) = − 6.35, 
p < .005] and RT [t (14) = 4.88, p < .005]. In the RDT condition, the 
difference between control and dual-task accuracy was not significant [t 
(13) = 1.25, p = .23], but the RT difference was significant [t (13) =
4.46, p < .005]. Finally, the control versus button-switch differences 
were both significant in the RDT condition [accuracy: t (13) = − 5.19, p 
< .005; RT: t (13) = 6.35, p < .005]. 

The t-tests suggest that both conditions exhibited a button-switch 
interference that was characterized by a decrease in accuracy and an 
increase in RT (relative to control) when the response buttons switched 
locations. On the other hand, these tests also suggest no effect on ac-
curacy of the dual task in either condition, but a significant increase in 
RT in the RDT condition only. To examine this RT difference more 
closely, Fig. 7 shows the median RTs (averaged across participants) 
during each 40-trial block of the dual-task trials. Also shown for com-
parison are these mean RTs during the categorization-only trials. Note 
that in both conditions, responding is slower in block 1 than in any 
subsequent blocks – presumably because there was a settling-in period 
as participants adjusted to the sudden demand to perform two tasks at 
once. Furthermore, RT dropped about equally from blocks 1 to 2 in both 
conditions. Therefore, this figure suggests that the most appropriate 
comparison is between performance on blocks 2–5. When dual-task RTs 
are compared to control RTs over these blocks, t-tests indicate that the 
effect of the dual task on RT was not significant in the IDT condition [t 
(14) = 1.30, p = 0.22], and highly significant in the RDT condition [t 
(13) = 4.17, p = 0.001]. 

2.2.2. Decision-bound modeling analysis 
Before attempting to interpret these results, it is important to assess 

the type of decision strategy that participants were using. This is because 
a variety of different strategies could lead to approximately equal ac-
curacies, and one group could have higher accuracy than another, not 
because they were more likely to use a strategy of the optimal type, but 
for some other reason (e.g., better criterial learning; less criterial noise). 
To examine this issue, we fit a variety of different decision-bound 
models (Ashby & Valentin, 2018; Maddox & Ashby, 1993) to the re-
sponses of individual participants separately during each of their 15 
experimental sessions. The models assumed a procedural strategy, a 
rule-based strategy, or random guessing. These models are described in 
the Appendix, but briefly, the rule-based models assumed a single ver-
tical or horizontal decision bound. The procedural-strategy model 
assumed that the decision bound was a single line of arbitrary slope and 
intercept, and the guessing models assumed that participants guessed 
randomly on each trial. The procedural and rule-based models all 
included a noise variance parameter, and either one (in the case of the 

2 The Bayes factors in Tables 1 and 2 estimate the likelihood of the model 
relative to the likelihood of the null model. The ratio of the Bayes factors for the 
Full and CondBlock models estimates the likelihood of the Full model relative to 
the CondBlock model. 
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rule models), or two (in the case of the procedural model) free param-
eters that described the decision bound. For every participant, each of 
these different models was fit separately to responses from each of the 14 
training sessions, and to each of the three 200-trial blocks of the transfer 
session and in each case, the best-fitting model was recorded (i.e., the 
model with the lowest value of the BIC goodness-of-fit statistic). 

During the first session, 86% of the participants' responses were best 
accounted for by a model of the optimal type – that is, a model that 
assumed a vertical line decision bound. During the other training 

sessions, this percentage ranged from 72% to 100%. In all cases that a 
vertical-bound rule model did not fit best, the best fit was provided by a 
model that assumed a procedural strategy. However, in all cases, visual 
examination of the decision bounds predicted by these models indicated 
a bound that was nearly vertical – suggesting that there were only a few 
trials in these data sets that included responses that were inconsistent 
with a vertical-bound rule. Overall, this analysis suggests that partici-
pants clearly learned the optimal categorization strategy early in 
training and used this strategy consistently throughout the 13 

Fig. 4. Mean proportion correct for all training sessions of Experiment 1 averaged across participants. The error bars are 95% confidence intervals.  

Fig. 5. Median RTs for all training sessions of Experiment 1 averaged across participants. The error bars are 95% confidence intervals.  

P. Kovacs and F.G. Ashby                                                                                                                                                                                                                    



Cognition 226 (2022) 105168

8

subsequent training sessions. 
The results for the transfer session are shown in Table 3. Note that in 

both conditions, use of the optimal strategy was high in all three blocks. 
Therefore, the appearance of novel stimuli did not cause participants to 
switch strategies, nor did the presence of a dual task. Even the button 
switch had only a minor effect on strategy – confusing a few RDT par-
ticipants enough to cause them to resort to guessing. 

2.3. Discussion 

Twenty-nine participants each completed 8400 categorization 
training trials distributed over 14 experimental sessions. During this 
time they repeatedly practiced a simple one-dimensional categorization 
rule. Previous research suggests that after this amount of training, their 
responses were automatic. The participants were then divided into two 
groups and both groups completed one final session of 600 trials. During 
this last session, all participants saw new stimuli that could be catego-
rized using the same rule that they had automatized during training. In 
the IDT condition, the new stimuli had identical values as the training 
stimuli on the relevant dimension and unique values on the irrelevant 

dimension. In the RDT group, the opposite occurred – that is, the new 
stimuli had novel values on the relevant dimension, but the values on the 
irrelevant dimension were the same as in training. We then assessed 
whether automaticity persisted for these novel stimuli by examining 
performance in the presence of a dual task, and following a switch of the 
response buttons. 

Accuracy was universally high in both conditions, suggesting that 
participants had no trouble transferring the rule they had been prac-
ticing to the novel stimuli. Similar results have been reported after only 
one session of training (Casale et al., 2012), so this result is not 
unexpected. 

Fig. 6. Results from the final transfer session of Experiment 1. Control results are from the categorization-only block. DT = data from the dual-task block; BS = data 
from the button-switch block. Accuracy values are computed as a mean of each participant's proportion correct. RTs are the mean of each participant's median RT. 
Comparisons were performed with t-tests (** indicates p < 0.005). 

Table 1 
GLMM results for the accuracy data from the Experiment 1 transfer session.  

Model Terms Log L BIC BF 

Null β0 5126 10,263 1 
Cond β0 + C 5015 10,050 1.5e46 
Block β0 + B 5009 10,048 4.0e46 
CondBlock β0 + C + B 4897 9832 2.9e93 
Full β0 + C + B + (C × B) 4895 9849 6.2e89  

Table 2 
GLMM results for the RTs from the Experiment 1 transfer session.  

Model Terms Log L BIC BF 

Null β0 13,634 27,288 1 
Cond β0 + C 13,388 26,806 5.6e104 
Block β0 + B 13,441 26,921 6.2e79 
CondBlock β0 + C + B 13,189 26,427 9.5e186 
Full β0 + C + B + (C × B) 13,149 26,366 1.7e200  

Fig. 7. The mean of all participants' median RTs for each 40-trial block during 
the Experiment 1 transfer-session dual-task trials. The dotted lines show the 
mean RTs from the categorization-only trials of the transfer session. The error 
bars denote standard errors. 
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The more interesting results concern our tests of whether automa-
ticity transferred to the novel stimuli that participants categorized 
during the transfer session. First, consider the IDT condition. Our results 
strongly suggest that automaticity transferred in this condition. In 
particular, there was no effect of the dual task on either accuracy or RT, 
whereas switching the locations of the response buttons decreased ac-
curacy and increased RT. Both of these results are classic criteria of 
automatic responding (Schneider & Shiffrin, 1977; Shiffrin & Schneider, 
1977). 

Next consider the RDT condition. Switching the response buttons 
decreased accuracy and increased RT, which is symptomatic of auto-
matic responding. However, the dual-task results suggest a contradic-
tory conclusion. Although the dual task had no effect on accuracy, it did 
significantly increase RT – by more than 100 ms. At first glance, it might 
seem that this interference could have been caused by a surprise effect – 
that is, that the surprise of seeing stimuli with novel values on the 
relevant dimension caused participants to respond more slowly. How-
ever, closer examination makes this hypothesis easy to reject. Most 
critically, Nosofsky (1991) reported that surprise effects of this type 
disappear after only two stimulus presentations. In Nosofsky's experi-
ment, participants learned a one-dimensional categorization rule similar 
to the one used here. The stimuli were circles that varied in size and the 
orientation of a radial line. The single relevant dimension was size. After 
a training period, participants completed several transfer blocks in 
which a few trials included stimuli that were much larger than any seen 
during training. On the first two such trials, RT was significantly greater 
than on trials when the largest training stimuli were presented. But on 
the third and fourth such trials, responding was faster to these novel 
transfer stimuli than to any other stimuli. Therefore, the surprise effect 
persisted for only two trials. The RDT dual-task block included 200 
trials, and Fig. 7 shows that the dual-task interference persisted for all 
200 trials – far longer than any documented surprise effect. Fig. 7 does 
show that the dual-task interference was largest during the first 40 trials, 
and the Nosofsky (1991) results suggest that surprise might have 
contributed to this effect. Even so, Fig. 3 shows that after 180 trials of 
practice and long after there was any possibility that participants were 
still surprised by the stimuli, there was still a dual-task interference in 
the RDT condition of around 100 ms. 

The classical interpretation of the dual-task interference that we 
observed in the RDT condition is that categorization was dependent on 
working memory and executive attention during the RDT dual-task tri-
als, and therefore was no longer automatic (Schneider & Shiffrin, 1977; 
Shiffrin & Schneider, 1977). In fact, there is direct evidence linking dual- 
task interference to the “overloaded recruitment” of PFC working 
memory units (Watanabe & Funahashi, 2014). 

On the other hand, the conclusion that automaticity did not transfer 

in the RDT condition requires more careful analysis because Hélie et al. 
(2010) concluded that the same qualitative pattern of results supported 
automaticity. Specifically, they reported that after 20 sessions of 
training on essentially the same category structure used here, and with 
the same stimuli, a similar simultaneous dual task had no effect on ac-
curacy but significantly increased RT. They concluded from this result 
that, despite the RT interference, responding was automatic. What jus-
tifies a different conclusion here? 

We believe that a number of results suggest that automaticity did not 
transfer in our RDT condition. First, if the dual-task interference on RT in 
the RDT condition occurred despite automatic responding, then the 
same interference should have been apparent in both conditions. How-
ever, we found no effect of the dual task on RT (or accuracy) in the IDT 
condition. This is especially noteworthy because the RDT categories 
were more widely separated than the IDT categories (i.e., see Fig. 1). 
Because of this greater separation, the stimuli in the RDT categories 
were objectively easier to categorize than the stimuli in the IDT cate-
gories. Despite this difficulty difference, the simultaneous dual task 
interfered more with the easier RDT categories than with the more 
difficult IDT categories, which strongly suggests that RDT responding 
was not automatic. 

Second, the absence of a dual-task interference on accuracy can not 
be taken as evidence of automatic responding. When a dual task is 
introduced on the very first trial of initial training, it significantly im-
pairs learning, in the sense that accuracy is lower at every point of 
training than in a single-task control group (Waldron & Ashby, 2001; 
Zeithamova & Maddox, 2006). However, in the present experiment, 
there is nothing left to learn during the dual-task transfer blocks. Rather 
than learn a rule, participants only have to apply a well-learned and 
highly practiced rule. The Kovacs et al. (2021) model predicts that 
participants will be able to do this accurately, regardless of whether they 
respond automatically, or whether they respond by appealing back to 
the learned rule. 

Third, there are a number of reasons that the dual-task RT interfer-
ence reported by Hélie et al. (2010) is more consistent with automaticity 
than with controlled rule application. First, Hélie et al. (2010) gave no 
RT instructions to their participants, and as a result there is no reason to 
believe they were responding as quickly as possible. In contrast, in the 
present experiment, participants were instructed to respond as quickly 
as possible without sacrificing accuracy. Second, Hélie et al. (2010) 
found an identical RT interference in an information-integration (II) 
categorization condition that is known to recruit procedural learning 
and memory, rather than rule learning. This is important because a dual 
task does not interfere with II category learning, even during the first 
session of training (Waldron & Ashby, 2001; Zeithamova & Maddox, 
2006). Therefore, the RT interference in the II condition is inconsistent 
with either automatic or controlled responding, and instead suggests 
that the identical RT interference that Hélie et al. (2010) observed in all 
conditions might have been an artifact caused by some unrelated design 
feature. One possibility is that participants were given no RT in-
structions, but another possibility concerns the slightly different timing 
used in the two studies. In both studies, the Stroop digits were displayed 
first, followed by a blank screen, followed by the categorization stim-
ulus. Participants then made their categorization response, followed by 
their dual-task response. In the current experiment, the digits were 
displayed for 1 s and the blank screen lasted for 300 ms. Therefore, 
participants had 1300 ms to encode the sizes and values of the Stroop 
digits before responding to the categorization stimulus. In the Hélie et al. 
(2010) experiment, the digits were displayed for 200 ms and the blank 
screen lasted for 100 ms, so participants only had 300 ms to encode the 
Stroop digits. Therefore, one hypothesis is that 300 ms was insufficient 
to complete this encoding and as a result, dual-task encoding persisted 
after the categorization stimulus was presented, thereby delaying the 

Table 3 
Decision-bound modeling results of the Experiment 1 transfer data. Number and 
percentage (in parentheses) of participants whose responses were best accoun-
ted for by each type of decision bound model.  

Block IDT RDT 

Single-Task Control 
Optimal 1D Rule 13 (87%) 13 (93%) 
Procedural Strategy 2 (13%) 0 (0%) 
Guessing 0 (0%) 1 (7%)  

Dual Task 
Optimal 1D Rule 15 (100%) 13 (93%) 
Procedural Strategy 0 (0%) 0 (0%) 
Guessing 0 (0%) 1 (7%)  

Button Switch 
Optimal 1D Rule 14 (93%) 9 (64%) 
Procedural Strategy 1 (7%) 0 (0%) 
Guessing 0 (0%) 5 (36%)  
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categorization RT.3 

In summary, we believe that the best account of our RDT results is 
that the button-switch results are consistent with automaticity, whereas 
the dual-task results are consistent with controlled responding, and 
therefore a loss of automaticity. Interestingly, this is exactly the pattern 
of results predicted by the Kovacs et al. (2021) model. Recall that this 
model predicts that rule-guided behaviors are initially triggered by the 
application of explicit rules, which are represented primarily in PFC, but 
after the behaviors become automatic they are initiated by projections 
from the stimulus representations in visual cortex directly to the rele-
vant motor representations in PMC. Therefore, a change in the values of 
the relevant stimulus dimension should activate representations in vi-
sual cortex that project to untrained synapses in PMC. As a result, 
automatic responding is lost. Even so, the correct rule representation 
remains in PFC, so accuracy remains high. The cost though, is that 
suddenly relying on PFC makes the categorization susceptible to dual- 
task interference. On the other hand, the model also predicts that the 
projections from PMC to primary motor cortex are activated anytime a 
response is triggered, regardless of whether the PMC units are activated 
by direct projections from visual cortex (after automaticity) or by rule 
units in PFC (before automaticity and during transfer). Therefore, the 
model predicts a button-switch interference because of the 8400 previ-
ous button presses that participants made in this task. 

The model does not make strong predictions about the results of the 
IDT condition – primarily because it does not completely describe the 
nature of the stimulus representations that are used to activate units in 
PMC. Certainly a change in values on the relevant stimulus dimension 
would cause the stimulus representations to change. But the model 
makes no predictions about whether a change in values of the irrelevant 
dimension will cause the stimulus representations to change. There are 
two clear alternatives. First, the stimulus representations used to select 
responses in one-dimensional categorization tasks could be gestalts. In 
this case, the model makes the same predictions in both conditions, 
because the stimuli changed between training and transfer in both 
conditions. The second possibility though, is that selective attention 
filters out irrelevant stimulus information, in which case the stimulus 
representations used to select responses depend only on values on the 
relevant stimulus dimension. In this case, the stimulus representations 
that were projected to PFC and PMC in the IDT condition were identical 
during training and transfer, so the model predicts that automatic 
responding will transfer to the novel stimuli. Our results strongly sup-
port this latter hypothesis. In the IDT condition, the dual-task and 
button-switch results were both consistent with automaticity – that is, 
there was no dual-task interference on either accuracy or RT, and the 
button-switch interference was significant for both dependent measures. 

The sample sizes in the RDT and IDT conditions were relatively 
modest (14 and 15, respectively), which raises the question of whether 
Experiment 1 was sufficiently powered. Unfortunately, computing 
power for the appropriate GLMMs is statistically challenging, not only 
because of the multiple factors included in the experiment, but also 
because accurate power estimation requires knowledge of both the 
within- and between-participant variability. As a result, the standard 
approach is to estimate power from thousands of simulated data sets (e. 
g., Kumle, Võ, & Draschkow, 2021), and even then, these estimates are 
only valid if all the sources of variance are correctly specified. Because 
we know of no prior literature that could be used to estimate between- 
participant variability, we did not attempt these simulations. Howev-
er, there are several reasons why we believe that Experiment 1 was 
sufficiently powered. First, although the most critical statistical analyses 
were restricted to data collected during the final transfer session, each 
participant completed 14 prior sessions that included a total of 8400 
trials. This extensive training strongly decreases within-participant 

variability in both accuracy and RT (e.g., Hélie et al., 2010), which 
means that our design should be more powerful than the typical cate-
gorization experiment with the same number of participants that ex-
cludes the extensive prior training. Second, the Bayes factors show that 
the evidence supporting the critical RT interaction was extreme, and 
power analyses are most critical when interpreting nonsignificant ef-
fects.4 Third, Experiment 2 tests a prediction that follows directly from 
our interpretation of the Experiment 1 results. As we will see, that 
prediction was strongly confirmed, which increases confidence in our 
interpretation of the Experiment 1 results. 

3. Experiment 2 

The results of Experiment 1 suggest that automatic rule-guided be-
haviors are not initiated by some abstract verbal rule, but rather directly 
by the visual stimulus – and more specifically, only by the relevant 
dimension(s) of the visual stimulus. This conclusion seems to conflict 
with results reported by Roeder and Ashby (2016), who concluded that 
abstract rules are automatized in RB categorization tasks. The experi-
mental design used by Roeder and Ashby (2016) and a summary of their 
results are shown in Fig. 8. Each participant in this experiment 
completed 21 sessions that included 7 consecutive 3-day cycles. During 
days 1 and 2 of each cycle, participants practiced on the primary cate-
gories shown in panel (a) of Fig. 8, whereas on the third day of each 
cycle they practiced the secondary categories. At the beginning of each 
session, participants were told whether the categories that day were 
primary or secondary, although they were never given any other in-
structions about the category structures or about what categorization 
strategy they should use. Note that the optimal strategy on the primary 
categories is a logical disjunction: “Respond A if the stimulus has a small 
value on dimension 1 or if the stimulus has a large value on dimension 1; 
otherwise respond B.” In contrast, for the secondary categories the 
optimal strategy is a simple one-dimensional rule. 

An examination of panel (a) of Fig. 8 shows that half the stimuli 
changed category membership on days when the secondary categories 
were practiced and half the stimuli retained their primary category as-
signments. The stimuli that retained the same category assignment on all 
days, called congruent stimuli, are denoted in Fig. 8 by black symbols, 
whereas stimuli that switched assignments, called incongruent stimuli, 
are denoted by gray symbols. 

The key data-analysis question was whether performance differed on 
congruent and incongruent stimuli. If an abstract rule is automatized 
then there should be no difference because the rules on primary and 
secondary days are different. However, if stimulus-response associations 
are automatized then performance should be worse on incongruent 
stimuli, which is exactly what Roeder and Ashby (2016) observed in a 
separate group of participants who practiced on II categories that are 
known to recruit procedural learning and memory systems. The RB re-
sults are shown in the bottom panel of Fig. 8. Note that on primary days, 
there was no difference in accuracy or RT between congruent and 
incongruent stimuli, and on this basis, Roeder and Ashby (2016) 
concluded that abstract rules are automatized in RB tasks. 

However, on further reflection, the Roeder and Ashby (2016) results 
do not necessarily conflict with the results of our Experiment 1. The 
Experiment 1 results suggest a refinement of the Kovacs et al. (2021) 
Fig. 3 model in which the projections from visual cortex to PFC and PMC 
are restricted to visual representations of the relevant stimulus 
dimension(s) only. The Roeder and Ashby (2016) primary and second-
ary categories had different relevant dimensions. Therefore, this 
hypothesis predicts that the visual projections on primary and secondary 
days will be from different visual units onto different synapses in PFC 
and PMC and therefore practicing different stimulus-response 

3 We thank Sebastien Hélie (personal communication) for suggesting this 
account. 

4 If an effect is nonsignificant, then the only possible error is a type 2 error, 
and power is one minus this probability. 
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associations on incongruent stimuli during secondary days will not 
interfere with associations formed on primary days. Our hypothesis is 
that, from the perspective of PMC, completely different stimuli were 
used on primary and secondary days and therefore, there were no 
stimuli in the Roeder and Ashby (2016) study that switched response 
assignments. 

Experiment 2 tests this prediction by replicating the design of Roeder 
and Ashby (2016), except with category structures for which the revised 
Kovacs et al. (2021) model predicts that the incongruent stimuli should 
cause interference. The stimuli and categories we used in Experiment 2 
are shown in Fig. 9. As in Roeder and Ashby (2016), Experiment 2 

included seven consecutive 3-day cycles. On the first two days of each 
cycle, participants practiced the primary categories shown in Fig. 9. On 
the third day of each cycle, they practiced the secondary categories. At 
the beginning of each day, participants were instructed about whether 
they would be practicing the primary or secondary categories during 
that session, but they were never given any instructions about the nature 
of the categories. 

Note that, as in the Roeder and Ashby (2016) experiment, half the 
stimuli in Experiment 2 switch their category assignments on primary 
and secondary days, and half maintain their same assignment on all 
days. Also note that the primary categories are identical in the two 

Fig. 8. (a) Categories used in the rule-based condition of the experiment reported by Roeder and Ashby (2016). Congruent stimuli that maintained their same 
category assignment on primary and secondary days are shown in black, whereas incongruent stimuli that switched assignments are shown in gray. (b) Proportion 
corrects and RTs over the first 20 experimental sessions of the experiment. 
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experiments, and in both experiments the secondary categories are 
separated by a simple one-dimensional rule. However, unlike Roeder 
and Ashby (2016), the same stimulus dimension is relevant on all days in 
our Experiment 2. Therefore, the revised Kovacs et al. (2021) model 
predicts that, in contrast to the results of Roeder and Ashby (2016), 
performance should be worse on incongruent stimuli than on congruent 
stimuli. 

3.1. Methods 

3.1.1. Participants 
Thirty-one undergraduate students at the University of California, 

Santa Barbara participated in this experiment in exchange for course 
credit. 

3.1.2. Stimuli and apparatus 
Due to COVID restrictions, participants performed the experiment at 

home on their own home computers. As in Experiment 1, all stimuli were 
circular sine-wave gratings that varied across trials in spatial frequency 
(i.e., bar width) and bar orientation. Each stimulus was defined by a set 
of points (x1,x2) sampled from a 100 × 100 stimulus space and con-
verted to a disk using the following equations: spatial frequency = .1x1 
+ 0.25 cycles per disk and orientation = .9x2 degrees counterclockwise 
rotation from horizontal.5 

There were two different kinds of sessions: primary and secondary. 
The experiment included seven 3-day blocks, during which participants 
practiced the primary categories on the first two days and the secondary 
categories on the third day. The secondary session was omitted from the 
last cycle, so the entire experiment included 20 sessions over 20 nearly 
consecutive days. 

The stimuli were the same as in Experiment 1, as were the events that 
occurred on each trial, and their timing. The category structures are 

shown in Fig. 9. On primary days, the optimal rule was a 1D disjunctive 
rule. On secondary days, the optimal rule was a simple 1D rule. In both 
sessions, the single relevant stimulus dimension was spatial frequency. 

During primary sessions, stimuli in category A were uniformly 
distributed (in the 100 × 100 space) in two distinct intervals [0, 25] and 
[75, 100] on the spatial frequency dimension and [0,100] on the 
orientation dimension. Stimuli in category B were uniformly distributed 
(in the 100 × 100 space) in the interval [25,75] on the spatial frequency 
dimension and [0, 100] on the orientation dimension. During secondary 
sessions, stimuli in category A were uniformly distributed (in the 100 ×
100 space) in the interval [0, 50] on the spatial frequency dimension and 
[0, 100] on the orientation dimension. Stimuli in category B were uni-
formly distributed (in the 100 × 100 space) in the interval [50,100] on 
the spatial frequency dimension and [0, 100] on the orientation 
dimension. 

3.1.3. Procedure 
The trial-by-trial procedures were identical to Experiment 1, except 

participants were informed that they would be participating in two 
different kinds of sessions, primary and secondary. They were instructed 
that the optimal strategy would be different on the secondary days, but 
they were given no instructions about the nature of the categories or 
about the type of strategies they should employ. At the beginning of each 
session, participants were informed about whether they would practice 
primary or secondary categories on that day. 

3.2. Results 

Fig. 10 shows the accuracy results for each 300-trial block and 
Fig. 11 shows the means of the median RTs. Data from the first two days 
are omitted because at this point in the experiment – that is, before the 
first secondary session – there were no incongruent stimuli. Note that 
accuracy is considerably higher for congruent stimuli in every session 
and RT is lower. A comparison back to Fig. 8 shows that these results are 
strikingly different from those of Roeder and Ashby (2016). 

To test these conclusions statistically, we used the same GLMM an-
alyses as in Experiment 1. We ran these analyses separately for all the 
data combined, the data only from primary sessions, and the data only 
from secondary sessions. The results were similar in all cases, but the 
results from the primary sessions are most important because the 

Fig. 9. Stimuli and category structures used in Experiment 2. Congruent stimuli that maintained their same category assignment on primary and secondary days are 
shown in black, whereas incongruent stimuli that switched assignments are shown in gray. 

5 Note that the transformation to spatial frequency was nonlinear in Experi-
ment 1 and linear in Experiment 2. This is because the Experiment 1 IDT 
transfer stimuli differed from the training stimuli in spatial frequency, so the 
range of perceived bar widths was much greater in Experiment 1 than in 
Experiment 2. In fact, the range was great enough that we felt it important to 
account for the nonlinear relationship between spatial frequency and perceived 
bar width. 
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number of primary sessions (i.e., 14) was chosen to ensure that 
responding had become automatic by the end of training (according to 
results of Hélie et al., 2010). As a result, this section focuses on the re-
sults from the primary categories only. 

The accuracy analyses are shown in Table 4 and the RT analyses are 
shown in Table 5. In both cases, we tested models that included a main 
effect of session, a main effect of congruence (congruent stimuli versus 
incongruent stimuli), and an interaction. As described in the Methods, 
due to COVID restrictions, all participants performed the experiment at 
home on their personal computers. As a result, there were more frequent 
extreme RT outliers than in typical laboratory experiments. Therefore, 
as a conservative approach, we excluded from the RT analyses all RTs 
longer than 5 s. Fig. 11 shows that the median RTs were all well below 1 
s, so any RT > 5 s was almost surely due to some irrelevant distraction. 

This criterion excluded 1.2% of the RTs from the primary sessions (2638 
out of 223,200 total RTs). 

Table 4 shows that for the accuracy analysis, the best-fitting model 
(CongSess) included both main effects but no interaction. The Bayes 
factors (BF) suggest that the evidence for both main effects is extreme, as 
is the evidence that there is no interaction (Lee & Wagenmakers, 2014). 
An examination of Fig. 8 suggests that the main effect of congruency is 
driven by the higher accuracy for congruent stimuli that was evident in 
every experimental block. Note that this same difference also occurred 
with the secondary categories, where it was even more extreme. In fact, 
the main effect of congruency was highly significant even when we 
analyzed data from all sessions together and when we analyzed data 
from the secondary sessions only. 

Table 5 shows that for the RTs, the best-fitting model again included 
both main effects but no interaction. And as with the accuracy analysis, 
the Bayes factors (BF) suggest that the evidence for both main effects is 
extreme, as is the evidence that there is no interaction. Fig. 9 shows that 
the main effect of congruency is driven by the faster RTs for congruent 
stimuli that was evident in every experimental block, and that this same 
effect was seen with both primary and secondary categories. 

The accuracy and RT results support the predictions of the revised 
Kovacs et al. (2021) model only if participants were using the disjunc-
tion rule shown in Fig. 9 on primary days. For example, our labeling of 
stimuli as congruent or incongruent assumed this strategy. High accu-
racy and low RT is possible with multiple strategies, so a strategy 
analysis is needed to supplement our GLMM analyses of accuracy and 
RT. For this reason, we fit decision-bound models to the responses of 
each individual participant from each of their 20 experimental sessions. 
The models, which are described in the Appendix, were the same as the 
models used in Experiment 1, except the rule-based models also 
included a model that assumed participants used a disjunction rule. 

Each of the 31 participants completed 14 sessions with the primary 
categories and 6 sessions with the secondary categories. Therefore, we 
fit all the models to 434 sets of primary session data (31 × 14) and 186 
sets of secondary session data (31 × 6). The results are summarized in 
Table 6. The disjunctive classifier assumed a disjunction rule of the type 
that is optimal on primary days, the “1D: bar width” model assumed a 
one-dimensional rule of the type that is optimal on secondary days, the 
procedural strategy model assumed that perceptual information from 
both dimensions was (pre-decisionally) integrated, and the guessing 
models assumed random guessing (see the Appendix for details). Note 
that on the critical primary days, the participants used a disjunction rule 

Fig. 10. Proportion correct in Experiment 2 shown separately for congruent 
and incongruent stimuli on primary and secondary days. 

Fig. 11. Means (across participants) of the median RTs in Experiment 2 shown 
separately for congruent and incongruent stimuli on primary and second-
ary days. 

Table 4 
GLMM results for the accuracy data from the Experiment 2 primary sessions.  

Model Terms Log L BIC BF 

Null β0 93,366 186,745 1 
Congruence β0 + C 92,676 185,376 2.3e297 
Session β0 + S 93,086 186,321 2.0e92 
CongSess β0 + C + S 92,394 184,947 2.8e390 
Full β0 + C + S + (C × S) 92,334 184,963 9.6e386  

Table 5 
GLMM results for the RTs from the Experiment 2 primary sessions.  

Model Terms Log L BIC BF 

Null β0 1,720,526 3,441,076 1 
Congruence β0 + C 1,720,494 3,441,024 2.5e11 
Session β0 + S 1,720,171 3,440,503 5.0e124 
CongSess β0 + C + S 1,720,139 3,440,450 1.4e136 
Full β0 + C + S + (C × S) 1,720,131 3,440,569 2.2e110  

Table 6 
Decision bound modeling results for Experiment 2.  

Model Number of sessions Percentage 

Primary Sessions 
Disjunctive Classifier 431 99.3 
1D: Bar Width 3 0.7 
Procedural Strategy 0 0 
Guessing 0 0  

Secondary Sessions 
Disjunctive Classifier 60 32.3 
1D: Bar Width 122 65.6 
Procedural Strategy 4 2.2 
Guessing 0 0  
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of the optimal type during almost every session. This result greatly in-
creases confidence in our interpretation of the GLMM results. 

Several points are worth noting about the results from the secondary 
sessions. First, participants almost always used a rule-based strategy (i. 
e., on 97.8% of the sessions). Second, participants used a rule of the 
optimal type (i.e., a one-dimensional rule on bar width) on most of the 
sessions (i.e., about two-thirds). Third, the disjunctive classifier that was 
optimal on primary days provided the best fit on about one-third of the 
sessions. This is not too surprising since participants had twice as much 
practice with the disjunction rule, and by the end of training they had 
automatized this rule. Note though, from Fig. 9, that if the disjunction 
rule was used on every trial during secondary sessions, accuracy would 
be only 50%, whereas Fig. 8 shows that accuracy on secondary sessions 
averaged about 85% correct. A closer examination of the secondary 
sessions for which the disjunctive classifier provided the best fit indi-
cated that in almost every case, only a few responses were incompatible 
with the optimal one-dimensional rule. These few responses allowed the 
disjunctive classifier to fit better, even though the great majority of re-
sponses were compatible with a one-dimensional rule.6 Therefore, we 
believe that our results suggest that virtually all participants used a one- 
dimensional rule of the optimal type on all but a few trials on each 
secondary day. However, about a third of the secondary sessions 
included a few trials in which participants inadvertently applied the 
more well-practiced disjunction rule. 

3.3. Discussion 

Although the design of Experiment 2 was nearly identical to the 
design used by Roeder and Ashby (2016), the results of the two exper-
iments were strikingly different. Whereas Roeder and Ashby (2016) 
found no difference on primary days in either accuracy or RT for 
congruent versus incongruent stimuli, we found that responding was 
more accurate and faster for congruent than for incongruent stimuli. A 
comparison of Figs. 8 and 9 shows that the two experiments used 
identical primary categories, and in both experiments the secondary 
categories required a simple one-dimensional decision rule. The only 
difference was that in the Roeder and Ashby (2016) experiment, the 
relevant dimension on secondary days was irrelevant on primary days, 
whereas in our Experiment 2, the same stimulus dimesion was relevant 
on all days. 

Our results are inconsistent with the conclusions of Roeder and 
Ashby (2016) that participants automatize an abstract rule in RB tasks. 
In both experiments, the rule on primary and secondary days was 
different, so if participants had automatized a rule, the two experiments 
should have yielded identical results. On the other hand, the results of 
both experiments are predicted by the revised version of the Kovacs 
et al. (2021) model in which the projections from visual cortex to PFC 
and PMC are restricted to visual representations of the relevant stimulus 
dimension only (see Fig. 3). In the Roeder and Ashby (2016) experiment, 
the relevant dimension changed from primary to secondary days, and as 
a result the model predicts that the visual input to PMC was funda-
mentally different on primary and secondary days. In other words, the 
model predicts that the effective stimuli were completely different on 
primary and secondary days, and as a result, the network mediating 
automaticity did not recognize any stimuli as being incongruent. In 
contrast, in our Experiment 2, because the same stimulus dimension was 
relevant on primary and secondary days, the model predicts that the 
visual projections into PMC were the same on every day, and therefore 
performance was worse on incongruent stimuli because of the 

interference that was caused by practicing competing motor responses 
on primary and secondary days. 

4. General discussion 

This article describes the results of two extensive experiments that 
included a combined total of 633,000 categorization trials. The experi-
ments investigated the nature of what is automatized after lengthy 
practice with a rule-guided behavior by testing novel predictions of a 
recent neurocomputational model (Kovacs et al., 2021). The results of 
both experiments suggest that an abstract rule, if interpreted as a verbal- 
based strategy, was not automatized during training, but rather the 
automatization linked a set of stimuli with similar values on one visual 
dimension to a common motor response. 

It is important to note, however, that our results do not suggest that 
participants no longer had easy access to an abstract rule after auto-
maticity developed. In fact, the Kovacs et al. (2021) model predicts that 
access to the abstract rule is always available via projections from visual 
cortex to PFC (see Fig. 3). However, the model predicts that after 
automaticity has developed, the behavior is not initiated by this indirect 
path to PMC, but rather by a faster, direct projection from visual cortex, 
and that it is only this direct projection that links stimuli with similar 
values on one visual dimension to a common motor response. Support 
for this prediction comes from reports that, after automaticity has 
developed, rule-sensitive neurons in the PMC of monkeys fire before 
rule-sensitive neurons in PFC (Wallis & Miller, 2003). 

Our results clarify a number of puzzling results in the literature. First, 
categorization tasks, like the ones used here, in which the optimal bound 
is a vertical or horizontal line (and in which the stimulus dimensions are 
perceptually separable) are known as rule-based (RB) tasks in the 
literature. These are often compared to information-integration (II) tasks 
that are identical, except the categories are rotated 45◦ in stimulus space 
(so the separating decision bound is now diagonal). One curious, and 
previously unexplained result is that capuchin and macaque monkeys 
both learn these one-dimensional RB categories more quickly and to a 
higher asymptotic accuracy than the rotated II categories (Smith et al., 
2010; Smith et al., 2015; Smith, Crossley, et al., 2012). Humans show an 
even more pronounced RB advantage than macaques, whereas pigeons 
and rats learn rotated RB and II category structures at exactly the same 
rate (Ashby et al., 2020; Broschard et al., 2019; Smith et al., 2011; Smith 
et al., 2012). Furthermore, the RB advantage shown by humans (and 
monkeys) is not because of an inherent difference in task difficulty, but 
rather because humans learn the two tasks in qualitatively different 
ways (Ashby et al., 2020). 

One leading account of human category learning, called COVIS, 
proposes that humans learn RB categories by experimenting with sim-
ple, explicit rules and that in II tasks they instead rely on procedural 
learning (Ashby, Alfonso-Reese, Turken, & Waldron, 1998; Ashby & 
Waldron, 1999). The COVIS acronym stands for COmpetition between 
Verbal and Implicit Systems because the original proposal was that the 
learning of rules depends on verbal strategies. However, the superior 
performance of macaques in RB versus II tasks is strong evidence that 
verbalization is not a necessary condition for the RB advantage. So why 
are monkeys better at RB tasks than in rotated II tasks? 

The present results offer an answer to this question. Monkeys are 
better at one-dimensional RB tasks than in rotated II tasks because they 
can allocate executive attention selectively to the single relevant stim-
ulus dimension in the RB task, and this ability is not language depen-
dent. In fact, the evidence is good that PFC plays a key role in this type of 
top-down selective attention (e.g., Desimone & Duncan, 1995). Macaque 
monkeys have a well-developed PFC, and so it is not surprising that there 
is much neural evidence for feature-based selective attention in monkeys 
(e.g., Fuster, 1990; Maunsell & Treue, 2006). Therefore, our results 
suggest that the most fundamental difference between rotated RB and II 
tasks may not so much be that language facilitates RB learning, but 
rather that selective visual attention does, whereas this attentional 

6 The maximum-likelihood-based goodness-of-fit statistic that we used (i.e., 
BIC) assigns an extreme penalty to any response that is incompatible with the 
assumed decision rule (e.g., to any B response in the presumed A response re-
gion), and this penalty gets much worse the further the discrepant response is 
from the decision boundary. 

P. Kovacs and F.G. Ashby                                                                                                                                                                                                                    



Cognition 226 (2022) 105168

15

ability provides no benefit in II tasks. 
Second, our results offer an alternative interpretation of the many 

reports of rule-sensitive neurons in PMC (Muhammad et al., 2006; 
Vallentin et al., 2012; Wallis & Miller, 2003). These studies reported 
single-unit recordings from neurons in PMC that fired when a monkey 
applied one of two categorization rules. Furthermore, these neurons did 
not fire when the alternative rule was applied, and the neural responses 
were the same regardless of which stimulus was shown and what cue 
was used as a signal to the animal about which rule to apply. Neurons 
with similar firing properties have frequently been found in PFC (Asaad, 
Rainer, & Miller, 2000; Hoshi, Shima, & Tanji, 2000; White & Wise, 
1999), but finding such neurons in PMC is somewhat surprising, given 
that the primary function of PMC has long been thought to be the se-
lection of motor actions. Our results suggest that rule-sensitive neurons 
in PMC might not be implementing a categorization rule as it is 
commonly interpreted, but rather linking a set of stimuli with similar 
values on one visual dimension to a common motor response. 

Third, our results suggest that the automatization of rule-guided 
behaviors and procedural skills might not be fundamentally different. 
Ashby, Ennis, and Spiering (2007) proposed that the automatic execu-
tion of procedural skills is mediated entirely within cortex and that the 
development of automaticity is associated with a gradual transfer of 
control from the basal ganglia circuits that mediate initial procedural 
learning to cortical-cortical projections from the relevant sensory areas 
directly to units in areas of PMC that initiate the behavior. According to 
this account, a critical function of the basal ganglia is to train purely 
cortical representations of automatic procedural behaviors (Hélie, Ell, & 
Ashby, 2015). The Kovacs et al. (2021) model proposes a similar account 
of the automatization of rule-guided behaviors, except for two key dif-
ferences. First, in the case of rule-guided behaviors, the PFC trains the 
automatic cortical representations, rather than the basal ganglia. And 
second, the PMC targets are rule-sensitive units, rather than units 
associated with a specific motor goal. Despite these differences, both 
models assume that the development of automaticity is a gradual 
transfer of control from neural networks that mediate initial learning to 
direct projections between sensory association areas of cortex and PMC. 
The current results reduce the differences between these two theories 
because they suggest that the PMC targets in the two models are not 
fundamentally different. For both procedural and rule-guided behaviors, 
the PMC targets link sensory representations to motor behaviors. Our 
results suggest that the only real difference might be in the nature of the 
visual representations – gestalts in the case of procedural skills and 
single stimulus dimensions in the case of rule-guided behaviors. 

Finally, at a more speculative level, our results might also be used to 
reflect on possible developmental origins of rule use. If rules are only 
abstract sets of verbal instructions, then their learning must necessarily 
be language dependent. If so, then procedural learning that is mediated 

by basal ganglia circuits can play at most a minor role in their acquisi-
tion. However, our results elevate the role that selective attention might 
play in this process and, together with the capuchin and macaque results 
(Smith et al., 2010; Smith et al., 2015; Smith, Crossley, et al., 2012), 
suggest that rule automatization might not necessarily even require 
language. Furthermore, the fact that our results reinforce neuroscience 
theories of automaticity that propose similar accounts for behaviors that 
are initially rule-guided versus mediated by procedural learning, sug-
gests that rules might develop from an initial period of procedural 
learning. Together, all of these considerations suggest an intriguing 
hypothesis that might be worth developing and testing. First, initial rule 
use begins with a period of procedural learning that is facilitated by 
dopamine-mediated reinforcement learning in the basal ganglia (as 
described e.g., by Ashby & Crossley, 2010 and Cantwell, Crossley, & 
Ashby, 2015). Second, this process simultaneously trains cortical- 
cortical projections from the visual areas that respond to the stimulus 
to the relevant PMC targets (as proposed by Ashby et al., 2007). Finally, 
PFC selective-attention circuits directed at these visual representations 
begin to filter out irrelevant stimulus information (e.g., Feldman, 2021), 
leading to an end result in which the PMC targets receive input only 
about the relevant stimulus dimension. 

In summary, our results suggest that the common interpretation that 
rule-guided behavior is mediated by a verbal-based strategy that im-
plements a set of explicit instructions, is valid, at most, only for a period 
of initial learning. After rule-guided behaviors are practiced long enough 
to become automatic, they appear to no longer be mediated by anything 
resembling a rule, but instead to be triggered directly by the visual 
stimulus. Similar proposals have been made for automatic behaviors 
that are initially acquired via procedural learning, so our results suggest 
that behaviors that are acquired via rule or procedural learning, 
although initially depending on very different neural networks, may be 
mediated in almost identical ways after they become automatized. The 
only real difference appears to be that in the case of rule-guided be-
haviors, top-down selective attention whittles away irrelevant visual 
information, in the sense that the automatic behavior is triggered by 
visual representations that depend only on relevant stimulus 
information. 
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Appendix 

This appendix provides a brief overview of the decision bound modeling (DBM) used to investigate the strategies participants used in both ex-
periments. For more details, including exact equations that describe each model, see Ashby and Valentin (2018), or Maddox and Ashby (1993). 

In DBM, a series of models are fit to each participant's response data. To monitor the learning process, all models were fit to the 600 trials from each 
successive training session separately for each participant. In Experiment 1, the strategies participants used during each transfer block were examined 
by fitting all models separately to each of the three 200-trial blocks of the transfer session. Experiment 1 included a total of 29 participants, who each 
completed 14 training sessions, and 3 blocks of 200 trials during the final transfer session. So in total, all models were fit to 493 different data sets [i.e., 
29 × (14 + 3)]. Experiment 2 included 31 participants who each completed 14 sessions with the primary categories and 6 sessions with the secondary 
categories. In this case, we fit all the models to 434 sets of primary session data (31 × 14) and 186 sets of secondary session data (31 × 6). For each of 
these data sets, we compared the performance of three qualitatively different types of models: models that assumed the use of an explicit rule, models 
that assumed a procedural strategy, and models that assumed participants guessed on every trial. 
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A.1. Models that assume an explicit rule 

There were two types of models in this class. The one-dimensional (1D) model assumes that the participant sets a criterion on a single stimulus 
dimension and uses that criterion to separate the categories. The 1D model has two free parameters: the decision criterion and the variance of 
perceptual and criterial noise. There were two versions of this model – one that assumed selective attention to orientation, and one that assumed 
selective attention to bar width. 

The disjunctive classifier assumes that the participant sets two criteria on a single dimension and uses those criteria to partition the attended 
dimension into three intervals – small, medium, and large – and then to give one response to stimuli that fall in the small or large regions and the 
contrasting response to stimuli falling in the medium region. The disjunctive classifier has three free parameters: two decision criteria and the variance 
of perceptual and criterial noise. There were four versions of this model, depending on which dimension was attended, and whether an A or B response 
was given to the middle response region. This model was only used in the analysis of the Experiment 2 results. 

A.2. Models that assume a procedural strategy 

One model assumed a procedural strategy – namely, the general linear classifier (GLC). The GLC assumes the participant separates the categories 
using a linear decision bound. When the decision bound is neither vertical nor horizontal, it mimics a procedural strategy in which information from 
the two dimensions is integrated pre-decisionally (i.e., in a linear fashion). The GLC has three free parameters: the slope and intercept of the decision 
bound, and the noise variance. 

A.3. Models that assume guessing 

Two models assumed the participant guessed on every trial. One model assumed A and B responses each were emitted with probability 0.5, and one 
model assumed that an A response was given with probability p and a B response was given with probability 1 − p, where p is a free parameter. The 
former model has zero free parameters and the latter model has one (i.e., p). The former model is useful for identifying participants who try, but fail to 
learn, and the latter model is useful for identifying participants who ignore the stimulus and simply press the same response key on every trial (in 
which case, the best-fitting parameter value is either p = 0 or p = 1). 

A.4. Model comparison 

All model parameters were estimated using the method of maximum likelihood. The Bayesian Information Criterion (BIC) was used to determine 
which model best fit the data: 

BIC = rln(N) − 2ln(L), (1)  

where N = sample size (i.e., number of trials in the sample), r = the number of free parameters (e.g., 3 for the GLC), and L is the model likelihood. Note 
that BIC penalizes models for both a bad fit and for the number of free parameters. A lower BIC is better, so the best-fitting model for each data set is the 
one with the lowest BIC. 

Appendix B. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.cognition.2022.105168. 
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