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Abstract
A probabilistic, multidimensional model is described that accounts for sensory and hedonic ratings that are collected from the
same experiment. The model combines a general recognition theory model of the sensory ratings with Coombs’ unfolding
model of the hedonic ratings. The model uses sensory ratings to build a probabilistic, multidimensional representation of
the sensory experiences elicited by exposure to each stimulus, and it also builds a similar representation of the hypothetical
ideal stimulus in this same space. It accounts for hedonic ratings by measuring differences between the presented stimulus
and the imagined ideal on each rated sensory dimension. Therefore, it provides precise estimates of the sensory qualities of
the ideal on all rated sensory dimensions. The model is tested successfully against data from a new experiment.
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Introduction

Hedonic responses about a novel object are often based
on the sensory characteristics of that object. Is the color
pleasing? Does the curry have the right amount of heat?
A popular model of such responses, called the unfolding
model, was proposed more than 50 years ago by Coombs
(1964). The unfolding model assumes that when judging
one’s hedonic responses to a set of objects—for example,
foods, beverages, or paintings—the observer imagines their
ideal object within that category and then compares each
object in the set to this imagined ideal. The objects are
then ordered by preference according to their similarity to
the ideal. So the most preferred object is the one that is
most similar to the imagined ideal and the least preferred
is the one that is least similar to the ideal. A wide variety
of evidence supports this general model of preference (e.g.,
Chernev, 2003; Dubois, 1975; Rousseau, Ennis, & Rossi,
2012). The unfolding model has been generalized in a
variety of different ways (e.g., Borg, 2018; DeSarbo &
Rao, 1984; De Soete, Carroll, & DeSarbo, 1986; Ennis,
1993; Ennis & Johnson, 1994; Mullen & Ennis, 1991;
Schönemann & Wang, 1972; Zinnes & Griggs, 1974), and
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applied successfully in a wide variety of different domains
(e.g., Andrich, 1989; Davison, 1979; DeSarbo, Young, &
Rangaswamy, 1997; Ennis & Rousseau, 2020; Roberts,
Donoghue, & Laughlin, 2000).

The unfolding model provides an accurate account
of preference orderings, but it is less successful at
identifying the sensory characteristics associated with
the imagined ideal. Some multidimensional versions of
the model produce a multidimensional scaling (MDS)
solution that situates each of the to-be-judged objects and
the hypothetical ideal as a single point or probability
distribution in a multidimensional space (e.g., De Soete
et al., 1986; Zinnes & Griggs, 1974). However, as in
traditional MDS, no information is provided about the
nature of these dimensions. Sometimes, by noting which
stimuli are situated at one extreme on a dimension and
which stimuli are situated at the other extreme, it is possible
to speculate about the nature of one or more dimensions. For
example, if an MDS representation of odors places lemon
and lavender at opposite ends of some dimension then
one might infer that that dimension measures arousal (both
are pleasant, but lemon is stimulating whereas lavender
is calming). But with many dimensions, no such obvious
ordering will emerge, and whatever inferences are made are
generally impossible to test.

One experimental method for estimating the sensory
characteristics of a stimulus, which is popular within
the field of perception, is called the concurrent-ratings
task. In this paradigm participants rate the magnitude of
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each stimulus simultaneously on a number of sensory
dimensions, and then the observed ratings are used to
estimate the participant’s sensory, perceptual, or cognitive
impressions of the stimulus (Hirsch, Hylton, & Graham,
1982; Olzak, 1986). For example, consider an experiment
in which participants first taste cups of coffee that were
prepared using different amounts of ground coffee and
different amounts of sugar. Next, the participants are asked
to rate each cup on its sweetness and on the richness
of its flavor (e.g., on a 1 to 7 scale). In this case the
ratings would be used to estimate the sweetness and
richness of each cup, and these representations could be
used to judge whether sweetness interacts with richness,
and to understand the psychophysical transformations from
amount of sugar to perceived sweetness and amount of
ground coffee to perceived richness.

When stimuli are rated on a single sensory dimension—
most commonly sensory magnitude—the resulting data
often can be modeled accurately by a signal-detection the-
ory analysis. In fact, this is a popular experimental method
for estimating an ROC curve (e.g., Ashby & Wenger, in
press). When ratings are collected on multiple sensory
dimensions, then the percepts are multivariate, rather than
univariate, so the multidimensional generalization of signal-
detection theory called general recognition theory (GRT;
Ashby, 1988; Ashby & Townsend, 1986) is more appro-
priate. This analysis assumes that (1) the unobservable
perceived values have a trial-by-trial (or participant-by-
participant) multivariate normal distribution across the rel-
evant sensory dimensions, (2) the participant establishes a
set of criteria or cut-points on each rated dimension that
partitions that dimension into intervals, and (3) a different
numerical rating is assigned to each interval (Ashby, 1988;
Wickens, 1992). This model assumes that on each trial, the
participant determines in which interval the percept is in on
each rated dimension and then selects the associated ratings.

Ashby and Ennis (2002) combined the unfolding model
and the signal detection model of the ratings task to account
for simultaneous sensory and liking ratings. This model
used the participant’s sensory ratings to estimate the sensory
representation of the ideal. However, the model was only
developed and applied to situations in which the various
stimuli all varied on a single sensory dimension. This
article extends the model of Ashby and Ennis (2002) to
more complex real-world stimuli that vary on many sensory
dimensions. The resulting model estimates the distribution
of imagined ideals (i.e., across trials and participants) by
identifying the ideal mean on each rated sensory dimension
and estimating the variance-covariance matrix of the ideal
distribution across all rated dimensions.

The newmodel, which we call the GRT-unfolding model,
is described in the next subsection. We then describe general
methods for applying the model to data from an experiment

that collects ratings on multiple sensory dimensions or
attributes and on some hedonic dimension, such as liking.
The methods and results sections describe an empirical
test of the GRT-unfolding model against data from a new
experiment. Finally, we discuss implications of our results
and close with some brief conclusions.

The GRT-unfoldingmodel

This section develops the GRT-unfolding model. An
intuitive illustration of the assumptions underlying the
model is provided in Fig. 1 for one hypothetical trial of
a coffee-tasting experiment similar to the one described
earlier. The only difference is that in this experiment
participants are asked to rate: 1) the sweetness of the coffee;
2) the richness of the flavor; and 3) how much they like
the coffee—all on 1 to 4 rating scales. The figure depicts
hypothetical events on a trial in which the participant rates
sweetness and liking, but not richness. The circle in the top
panel is a contour of equal likelihood from the bivariate
normal distribution that represents all possible percepts that
are elicited by the specific cup of coffee that the participant
tastes on this trial. It is a contour of equal likelihood
because every point on this circle describes a percept that
is equally likely to occur in any single tasting.1 The star
labeled xi represents the specific percept experienced by the
participant when tasting the current cup of coffee—that is,
the specific perceived sweetness and richness of the current
cup, which is the ith cup of coffee in the experiment. Let x1

denote the perceived sweetness and x2 the richness of the
flavor (i.e., so xi = [x1, x2]′). The percept xi is assumed to
be a random sample from the bivariate normal distribution
that describes all possible percepts elicited by this cup. Note
that the perceived sweetness of this particular cup (i.e., x1)
falls in the interval assigned to a rating of 3, so in this
hypothetical example, the participant responds with a rating
of 3 when asked to judge sweetness.

The model assumes that if the participant had been asked
to rate the richness of the coffee’s flavor, rather than its
sweetness, then the participant would have evaluated the
position of the percept x2 relative to the positions of three
criteria established on the richness dimension (i.e., denoted
X2,1, X2,2 and X2,3, respectively). These are not shown in
Fig. 1 to keep the figure as simple as possible.

The tilted ellipse in the top panel of Fig. 1 is a contour
of equal likelihood from the imagined ideal cup of coffee.
Note that on average, the imagined ideal coffee is sweeter
and has a richer flavor than the current cup. The star labeled
y denotes the sensory values of the imagined ideal on this
trial, which again is assumed to be a random sample from

1Points inside the circle are more likely to occur than points on the
circle, and points outside the circle are less likely to occur.
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Fig. 1 A schematic illustrating the GRT-unfolding model for a hypothetical trial in which a participant tastes a cup of coffee and then provides
ratings (from 1 to 4) on the coffee’s sweetness and on liking. The circle and ellipse in the top panel are contours of equal likelihood from the
sensory and ideal distributions, respectively. The participant’s responses on this trial are “3” on sweetness and “2” on liking

the bivariate normal distribution that describes all possible
imagined ideals. So note that the model predicts that
because of a variety of different sources of variability (e.g.,
in preference and memory), the imagined ideal changes

from trial to trial. The model assumes that to respond with
a liking rating, the participant imagines the ideal cup of
coffee, computes the distance (or similarity) of the current
cup to this imagined ideal, and then responds with a rating
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based on this distance, with greater distances (or lower
similarities) eliciting lower levels of liking and therefore
smaller ratings. In Fig. 1, the distance falls in the interval
assigned to a rating of 2 (see the bottom panel), so the
participant responds with a liking rating of 2 on this trial.

More generally, consider an experiment in which
participants are presented with N stimuli (one per trial)
and each stimulus varies on D sensory dimensions. The
goal is to collect ratings from 1 to r for each stimulus on
the sensory strength for all D dimensions and on liking or
some other hedonic response (with r representing maximum
strength or maximum liking). In this general experiment, the
GRT-unfolding model makes the following assumptions.

1) The sensory value on a trial when stimulus i

is presented is represented by a D × 1 random
vector xi in which x′

i = [x1, x2, ..., xD], where
xd represents the sensory magnitude on stimulus
dimension d . Because of stimulus and perceptual noise
and individual difference, xi varies randomly over trials
and participants. We assume xi has a multivariate
normal distribution with mean vector μ

i
and variance-

covariance matrix �i .
Note that the variance-covariance matrix�i contains

D(D−1)/2 covariances and D variances. For example,
in the next section we consider an application of
the GRT-unfolding model to an experiment in which
participants rate the stimuli on 6 sensory dimensions.
In this case, each �i includes 15 covariances and 6
variances. If these are all free parameters then the
model would include 27 parameters for each stimulus
(15 covariances, 6 variances, and 6 means). These
would require an enormous amount of data for accurate
estimation. Furthermore, estimation of the covariances
would require simultaneous ratings on all possible
pairs of dimensions, plus the assumption that all of
these ratings are based on the same sensory sample
of the stimulus. Unfortunately, this assumption seems
untenable. For example, if a participant is asked to rate a
stimulus on 6 different dimensions then it seems likely
that the participant would re-examine the stimulus one
or more times before responding with all 6 ratings.
According to the model, the sensory representation of
the stimulus after each examination is represented by a
new random sample xi . If ratings on two dimensions
are based on different xi samples then the correlation
(e.g., across trials) between the ratings will not reflect
the correlation between sensory dimensions.

For these reasons, we only consider applications of
the model to experimental paradigms in which a single
one of the D + 1 ratings are requested on each trial,
and each stimulus is presented to every participant
on at least D + 1 different trials to ensure that all

the necessary ratings are collected. In this case, no
information about covariances is available, and as a
result, we assume that all covariances equal 0 and
therefore that �i is diagonal. Furthermore, we also
assume, without loss of generality, that all variances
equal 1. This just serves to set the arbitrary unit of
measurement on each dimension. Collectively, these
assumption mean that, for all stimuli, �i = I, where I
is the identity matrix.

2) When asked to rate the sensory magnitude of the
stimulus on dimension d , the participant constructs
r − 1 response criteria, denoted Xd,1, Xd,2, ...Xd,r−1,
and responds with rating j if and only if Xd,j−1 <

xd ≤ Xd,j , where Xd,0 = −∞ and Xd,r = ∞.
Note that in the Fig. 1 example, the perceived value
of stimulus i on dimension 1 of this hypothetical trial
(i.e., x1) lies between X1,2 and X1,3 and therefore the
participant rates the sensory magnitude of this stimulus
on dimension 1 as 3.

3) To generate a liking rating, the participant first imagines
an ideal stimulus, which is represented by the D ×
1 random vector y. Because of variability in the
imagining process (e.g., due to variability in memory
and affective state) and individual difference, y varies
randomly over trials and participants. We assume y has
a multivariate normal distribution with mean vector μ

Y
and variance-covariance matrix �Y .

The variance of the ideal distribution on each stimu-
lus dimension is inversely related to the psychological
importance of that dimension. If a dimension is impor-
tant for liking, then the imagined ideal should have con-
sistent values on that dimension. In contrast, if a dimen-
sion is unimportant for liking, then one would expect
the imagined ideals to vary widely on that dimension.
In the Fig. 1 example, note that the imagined ideal
distribution has greater variance on sweetness than on
richness, and that the values on these two dimensions
have a slight positive correlation. The greater sweetness
variance indicates that sweetness is less critical to liking
than richness because when participants imagine their
ideal cup of coffee they are more consistent in their
imagined richness than in their imagined ideal level of
sweetness.

4) The participant computes the Mahalanobis distance
�Y,Xi

between the imagined ideal y and the sensory
value xi (from step 1). As we will see, this is just
regular Euclidean distance except each dimension is
weighted by its psychological importance to the ideal,
where importance is measured by the inverse of the
variance of the ideal distribution on that dimension (as
described in point 3).

Figure 2 shows an example of this dimensional
weighting by importance. Note that in this example,
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the ideal distribution has smaller variance on the
richness dimension than on sweetness, indicating that
participants treat richness as a more important criterion
of their imagined ideal cup of coffee than sweetness.
The two circles denote contours of equal likelihood
from the perceptual distributions of two actual cups
of coffee—Si and Sj . Note that the means of these
distributions are both the same Euclidean distance from
the mean of the ideal distribution (i.e., a distance of
D). Even so, the units of Euclidean distance are the
same as the units of the sensory space, whereas the
units of Mahalanobis distance are standard deviations
of the ideal distribution. Therefore, percepts elicited by
cup Si will tend to be closer according to Mahalanobis
distance to imagined ideal cups of coffee than percepts
elicited by cup Sj because the Si percepts are fewer
standard deviations from the ideal than the Sj percepts
(i.e., the ideal standard deviation is larger on the
sweetness dimension than on richness). As a result,
the GRT-unfolding model predicts that participants will
usually like cup Si more than cup Sj , despite the fact
that both cups are the same Euclidean distance from the
ideal mean.

5) The participant constructs r − 1 response criteria,
denoted XI,1, XI,2, ...XI,r−1, and responds with liking
rating j if and only if XI,j < �Y,Xi

≤ XI,j−1, where
XI,0 = ∞ and XI,r = 0. Note that in the Fig. 1
example, the distance between the imagined ideal and
the perceived stimulus (i.e., �Y,Xi

) lies between XI,2

and XI,1 and therefore the participant responds with a
liking rating of 2.

Fitting themodel to data

For each stimulus, the data can be collected as a (D+1)× r

matrix in which the entry in row d and column j is the
frequency that participants assigned rating j to the stimulus
on dimension d , where row D + 1 is liking. Note that each
matrix has (D + 1) × (r − 1) degrees of freedom, since
there is one constraint per row (i.e., each row sum equals
the number of trials that participants rated the stimulus on
the attribute associated with that row). There is one such
matrix for each of the N stimuli, so overall, the data include
N × (D + 1) × (r − 1) degrees of freedom.

The model predicts that the probability that rating j is
assigned to stimulus i on sensory dimension d equals the
area under the dimension d marginal pdf of xi between
Xd,j−1 and Xd,j . Because these marginal distributions are
all normal, each of these probabilities can be computed
via straightforward z transformations and appeal to the
cumulative z distribution function.

Computing the predicted probabilities of various liking
ratings is considerably more difficult. The predicted

Fig. 2 An example of how Mahalanobis distance weights the
importance of psychological dimensions. Although the mean percepts
elicited by cups of coffee Si and Sj are the same Euclidean distance
from the mean of the ideal cup, the Si mean is closer according
to Mahalanobis distance, and as a result, the GRT-unfolding model
predicts that participants will usually like cup Si more than cup Sj

probability that participants assign stimulus i a liking rating
of j equals

PL(j |Si) = P(XI,j < �Y,Xi
≤ XI,j−1), (1)

where, as before, �Y,Xi
is the Mahalanobis distance

between the imagined ideal y and the sensory value xi .
Since �Y,Xi

is nonnegative, note that

PL(j |Si) = P(XI,j < �Y,Xi
≤ XI,j−1)

= P(X2
I,j < �2

Y,Xi
≤ X2

I,j−1). (2)

Now

�2
Y,Xi

= (y − xi )
′�−1

Y (y − xi )

= w′�−1
Y w, (3)

where w = y − xi is a multivariate normally distributed
random vector with mean vector μ

W
= μ

Y
− μ

i
and

variance-covariance matrix �W = �Y + I.
The random variable �2

Y,Xi
defined by Eq. 3 has the

distribution of a weighted sum of D non-central χ2 random
variables, each with one degree of freedom (Scheffé, 1999).
Efficient numerical integration algorithms are available to
compute the Eq. 2 probability under these distributional
assumptions (e.g., de Micheaux & de Micheaux, 2017).
However, D = 6 in the application described in the next
section, which is large enough so that this weighted sum
could be considered approximately normally distributed.
Therefore, to implement the normal approximation to the
Eq. 2 probability, we need only to compute the mean and
variance of �2

Y,Xi
.
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The Appendix shows that the Eq. 3 random variable has
mean

μ�2 = D + trace(�−1
Y ) + (μ

Y
− μ

i
)′�−1

Y (μ
Y

− μ
i
) (4)

and variance

σ 2
�2 = 2D + 4trace(�−1

Y ) + 2trace(�−2
Y )

+4(μ
Y

− μ
i
)′�−1

Y (I + �−1
Y )(μ

Y
− μ

i
). (5)

Therefore, we can approximate the predicted probability
that rating j is assigned to stimulus i on the liking
dimension by computing the area between X2

I,j and X2
I,j−1

under the pdf of a normal distribution with mean and
variance specified by Eqs. 4 and 5, respectively.

An empirical application

As an empirical test of the model, we ran an experiment in
which 29 participants rated the 20 images of hypothetical
planets shown in Fig. 3 on six sensory dimensions and on
an hedonic dimension. Specifically, participants were told
to imagine that they were in a spaceship traveling through
deep space, and that their mission was to rate planets they
encountered (from 1 to 7) on the prominence of a number
of sensory dimensions (water, clouds, rings, moons, blue-

green, red-yellow) and on how important it was to retain a
photograph of the planet and send it back to earth.

Method

Stimuli

All images were gathered using SpaceEngine
(SpaceEngine.org), a universe simulator that randomly gen-
erates a plethora of astronomical objects. The procedural
generation process creates 3-dimensional rendered planets,
which are captured with extreme detail using a 3840×2160
4K resolution and resulting in over 8 million pixels per
image. Due to the stochastic nature of each image, the
options for planetary features and combinations are nearly
limitless. The stimuli used in this experiment are displayed
in Fig. 3.

Participants

Twenty-nine students at the University of California,
Santa Barbara participated in an (approximately) one-hour
experiment in exchange for course credit. All participants
had normal color vision and were sampled randomly from a
population in which 62% self-reported as female, 42% as a
racial minority, and 21% as Hispanic or Latino. All relevant
ethical regulations were followed and the study protocol
was approved by the Human Subjects Committee at UCSB.
Informed consent was obtained from all participants, and

Fig. 3 The 20 planets shown to each participant
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every participant was allowed to quit the experiment at any
time for any reason and still receive credit.

Procedure

Participants were told to imagine that they were in a
spaceship traveling through deep space and that the ship
automatically takes photos of planets that it encounters.
They were also told that their mission was to rate each
planet on a number of physical attributes and on how
important they thought it was to send the image back to
earth so that the rest of humanity would know of that
planet’s existence. Participants were presented the images in
5 phases. During each phase, the 20 images were displayed
one-at-a-time in a random order. In phase 1, participants
passively observed the images. In phases 2–5, each image
was displayed with a ratings bar that ranged from 1 to 7
and participants were instructed to move the mouse and
click the integer on the ratings bar that agreed with their
rating. During phases 2 and 4, the image and ratings bar
were accompanied by a word cue that specified the physical
attribute to be rated, such as “water”. Participants rated 6
different attributes (or dimensions) and each attribute/image
combination was presented once per phase, resulting in a
total of 240 sensory judgments during phases 2 and 4 (2
sensory judgments per planet per dimension). During phases
3 and 5, the image and ratings bar were accompanied by
the word cue “importance”. Prior to each phase, participants
were reminded that their job was to use the mouse to click
the value on the scale that best reflected the prominence
of the feature indicated by the word cue, with 1 being
least prominent and 7 being most prominent. Each image
was presented once during phases 3 and 5, resulting in 2
importance judgments per planet.

A few participants were not sufficiently engaged in
some phases of the experiment. These participants tended
to repeat the same rating, over and over. Therefore, any
importance phase (3 and 5) in which the participant emitted
3 or fewer unique ratings was excluded from analysis. Six
liking phases were excluded, leaving 52 liking phases for
analysis. Additionally, any sensory phase (2 and 4) in which
the participant gave the same rating on any dimension to
all images was excluded from analysis. Two sensory phases
were excluded, resulting in 56 sensory phases for analysis.

Any model of these data could only recover psycholog-
ically meaningful representations if the sample sizes are
large enough to provide accurate estimation of the true rat-
ing probabilities. The frequency with which participants
assign rating j to stimulus Si has a multinomial distribution
with variance Np(1− p), where N is the number of ratings
collected on stimulus Si and p is the true probability that
stimulus Si is rated j . Therefore, the standard error of the
proportion that estimates p is

√
p(1 − p)/N . With 7-point

rating scales and a heterogeneous sample of participants, the
true rating probabilities would all equal p = 1/7 = .014.
Under this null hypothesis, a sample size of N = 48 results
in a standard error of approximately 0.05. Our smallest sam-
ple size was larger than this (i.e., N = 52), hence under this
same null hypothesis, our standard errors of measurement
would all be less than 0.05.

Results

The data from this experiment were aggregated across
participants and then recorded in a 20 (planets) ×
7 (dimensions) × 7 (ratings) frequency array, where
importance was included as one of the 7 dimensions. The
importance ratings for each planet are shown in Fig. 4. For
each planet and dimension, the frequency sum across the 7
ratings equals the number of trials participants were asked
to rate that planet on that dimension. Therefore, the data
include 6 degrees of freedom for each planet and dimension,
and so the entire data set includes 840 degrees of freedom
(i.e., 20 × 7 × 6).

The GRT-unfolding model was fit to these data. The
model included a total of 183 free parameters. Without
loss of generality, we fixed the mean vector for planet N,
μ

N
, to the zero vector. In addition, as described earlier, to

limit the number of free parameters we fixed the variance-
covariance matrices of all sensory distributions to �i = I.
The following parameters were all free to vary:

1) The remaining 19 mean vectors, μ
i
for all i �= N . Each

μ
i
is 6 × 1, so there were a total of 114 free mean

parameters (i.e., 19 × 6).
2) Six criteria, Xd,j , on each of the 6 sensory dimensions,

resulting in an additional 36 parameters.
3) Six means for the ideal distribution, μ

Y
,

4) The 6 × 6 ideal variance-covariance matrix, �Y (21
free parameters).

5) Six criteria, XI,j , on the squared-distance-to-ideal
dimension.

All parameters were estimated via constrained optimization
by linear approximation (COBYLA; Powell, 1994) using
SciPy (Virtanen et al. 2020) in Python (Van Rossum &
Drake, 1995) by minimizing the sum of squared errors
between the predicted and observed response frequencies.

Overall, the GRT-unfolding model accounted for 95.27%
of the variance in the data (r2=.9527). Although the model
included 183 free parameters, because the data had 840 deg-
rees of freedom, after parameter estimation, there were still
657 degrees of freedom left to test the model (i.e., 840 −
183). So accounting for 95% of the variance in these 657
proportions seems impressive. Not surprisingly, however, the
model was more successful at accounting for the sensory
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Fig. 4 Importance ratings for each of the 20 planets

ratings than the liking ratings. Specifically, the GRT-unfolding
model accounted for 96.09% of the variance in the sensory
ratings data and 73.67% of the variance in the liking ratings.

Figure 5 shows estimated sensory distributions for
each planet on each dimension as well as the estimated
criteria. Note that, except for rings, the planets vary fairly
continuously on all sensory dimensions. Not surprisingly,
the perceived prominence of rings is approximately bimodal
with some planets displaying prominent rings (e.g., planets
A, C, and F) and other planets showing a prominent absence
of rings (e.g., planets B, D, and S).

Table 1 shows the variance-covariance matrix of the
estimated ideal distribution. The variances provide an
inverse measure of how important each dimension is to
the ideal. Note that the smallest variance is on the clouds
dimension and the next smallest is on water. The small
variances suggest that when ideal planets are imagined on

different trials, participants always tend to imagine a planet
with similar values on the water and cloud dimensions.
In contrast, the variances on the red-yellow and moons
dimensions are large, suggesting that the different imagined
ideals vary widely on the red-yellow and moons dimensions.
Therefore, for example, if the imagined ideal sometimes
has a moon and sometimes does not, then the presence or
absence of a moon is not an important attribute of the ideal
planet.

Figure 6 shows the ideal distribution and the mean of
each planet distribution projected onto the plane defined
by the two most important sensory dimensions—namely,
water and clouds. The ellipses denote the contours of equal
likelihood of the ideal distribution, so the ideal mean lies
at the center of these ellipses. Note from Table 1 that water
and clouds are negatively correlated in the ideal distribution,
which is the reason that the ellipses in Fig. 6 have a
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Fig. 5 Estimated sensory distributions from the best-fitting version of the GRT-unfolding model, along with the estimated criteria on each
dimension that participants used to assign ratings

negative orientation. This makes sense because as cloud
cover increases there is less available surface to display
water. Note that planet B is closest to the ideal mean,
closely followed by planets A and C, and that planets R,
S, and T are furthest (i.e., see Fig. 3 for ordering relative
to the ideal when considering all dimensions). Therefore,
these data suggest that the ideal planet would have a greater
prominence of cloud cover and water than any of the planets
that were shown to participants.

Discussion

The GRT-unfolding model uses sensory ratings to build
a probabilistic, multidimensional representation of the
sensory experiences elicited by exposure to each stimulus.
If participants rate the stimuli onD sensory dimensions then
the sensory representations built by the model will be D

dimensional. And the model will also build a representation
of the ideal stimulus in this same space. It then attempts
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Table 1 Variance-covariance matrix of the ideal distribution from the best-fitting version of the GRT-unfolding model

Water Clouds Rings Moons Blue-Green Red-Yellow

Water 33.65 −20.46 33.27 29.46 30.45 −10.09

Clouds 23.09 −23.32 −10.77 1.46 1.78

Rings 191.14 245.11 83.73 21.00

Moons 558.85 113.26 66.89

Blue-Green 145.61 20.25

Red-Yellow 214.29

to account for hedonic ratings by measuring differences
between the presented stimulus and the imagined ideal on
each of theseD sensory dimensions. This approach can only
hope to account for the hedonic responses of participants
if the rated sensory dimensions include all stimulus
attributes that significantly affect the hedonic response.
To take an extreme example, consider an experiment in
which participants rate a set of stimuli on D sensory
dimensions but that the participants’ hedonic responses to
those stimuli depend exclusively on some other, unrated
sensory dimension. In this case, the hedonic responses will

be independent of the stimulus value on any of the rated
dimensions, and therefore a comparison of the stimulus to
the ideal values on the D rated dimensions will not predict
the participant’s hedonic response. So the efficacy of the
GRT-unfolding model depends strongly on the ability of the
experimenter to identify all sensory dimensions that could
significantly affect the hedonic responses of participants to
the selected stimuli.

Given this, the default expectation should be that the
model will account for sensory ratings better than it
accounts for hedonic ratings. In the experiment described

Fig. 6 Contours of equal likelihood of the ideal distribution from the best-fitting version of the GRT-unfolding model (i.e., the ellipses) and the
sensory means of each planet projected onto the plane defined by the water and cloud dimensions
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here, the GRT-unfolding model accounted for 96% of the
variance in the sensory ratings and 74% of the variance
in the hedonic ratings. Therefore, we believe that one
plausible account for this difference is that participants
based their hedonic responses, at least in part, on some
unrated dimension or attribute of the planets. Traditional
multidimensional unfolding models that lack any sensory
data could just add more unspecified dimensions to the
model until goodness-of-fit is maximized (e.g., exactly as in
MDS). Even so, note that a better fit by such a model would
provide only vague information about the sensory qualities
of the ideal. Given that the GRT-unfolding model provides
precise estimates of the sensory qualities of the ideal on all
rated sensory dimensions, we believe that accounting for
74% of the variance in the hedonic ratings is impressive,
especially since the model was provided no information
about how participants might make these judgments.

Another limitation of the model is that it implicitly
assumes that all of the rated sensory dimensions are
separable, rather than integral. The classic definition is that
two stimulus dimensions are separable if it is possible to
attend to one and ignore variation in the other (Garner, 1974;
Shepard, 1964). If this is impossible then the dimensions
are integral. Classic separable dimensions are color and
shape. The judgments that observers make about the color
of an object are unaffected if the shape of the object
changes from circle to square. Classic integral dimensions
are the brightness and saturation of a color patch. Brightness
judgments change when the saturation of the color patch
changes. In ratings experiments, participants are asked to
rate the presented stimulus on single sensory dimensions.
This requires them to allocate all attention to that dimension
and ignore all other sensory values of the stimulus. The
classic account is that such selective attention is possible
only if the rated dimension is separable from the other
sensory dimensions.

GRT distinguishes between perceptual and decisional
separability. Perceptual separability holds if the perception
of a stimulus component is unaffected by changes in
the level of some other component, whereas decisional
separability holds if the decision about the level of a
component is unaffected by changes in the perceived
value of the other component (Ashby & Townsend,
1986). Technically, the GRT-unfolding model assumes that
decisional separability holds, but it makes no assumptions
about perceptual separability. In the Fig. 1 example,
the vertical decision bounds that the model assumes
participants use to assign sensory ratings satisfy decisional
separability because, for example, the criterion used to
decide whether the sweetness of the sample should
be rated as “1” versus “2” does not depend on the

richness of the sample. Participants can learn to use
strategies that satisfy decisional separability, even with
the prototypically integral dimensions of brightness and
saturation (Ell, Ashby, & Hutchinson, 2012). As a result,
assuming decisional separability is considerably weaker
than assuming perceptual separability. Even so, with
integral stimulus dimensions, more variability should be
expected in the decision strategies participants use to
provide ratings on the various sensory dimensions, which
could reduce the overall efficacy of the model.

As described earlier, a number of multivariate generaliza-
tions of the unfolding model have been proposed (De Soete
et al., 1986; Ennis, 1993; Ennis & Johnson, 1994; Mullen &
Ennis, 1991; Zinnes & Griggs, 1974). Despite the theoreti-
cal value of these models, Ennis and Ennis (2013) suggested
three reasons why these generalizations have not had a
greater practical impact. First, the models require pairwise
comparisons that can be expensive to obtain (e.g., “which
do you prefer, A or B”). The GRT-unfolding model avoids
this criticism because it only requires hedonic and sensory
ratings on single stimuli. For example, with the 20 planets
used in our experiment, pairwise comparisons would require
collecting ratings on 190 different pairs (i.e., (20 × 19)/2),
whereas the GRT-unfolding model only requires ratings on
the 20 individual planets. Therefore, the GRT-unfolding
model requires far fewer trials than previous models, and
the data it does require readily can be collected remotely via
any of several widely available current software packages.

On the other hand, it is relatively straightforward to
extend the GRT-unfolding model to paired-comparisons
data. The key is to use some intermediary model that
converts paired-comparisons proportions to single-stimulus
scale values. A simple and obvious option for this step is
the Luce (1959) choice model. For example, suppose the
proportion of participants who prefer stimulus A to stimulus
B equals P(A, B). Then according to the Luce (1959)
choice model, there exist non-negative numerical values vA

and vB for which

P(A, B) = vA

vA + vB

. (6)

Since the vi lie on a ratio scale, the unit of measurement is
arbitrary. As a result, without loss of generality, one of the vi

can be set to 1. Given this constraint, it is straightforward to
estimate a vi for each stimulus from the paired-comparisons
data.

Ratings data are categorical since the responses of
observers are restricted to some finite set of integer
values (e.g., some integer from 1 to 7). The response
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criteria shown in Fig. 1 provide a model of how these
categorical responses are generated from the underlying
continuous perceptual representations. In contrast, Eq. 6
provides continuous measures of the judged dimension. In
the case of preference judgments, the GRT-unfolding model
would interpret these values as continuous measures of
the similarity of each stimulus to the ideal. For example,
according to the similarity model proposed by Ashby and
Perrin (1988), the preference score vi would be interpreted
as the amount of overlap between the ideal and stimulus
i perceptual distributions. The final step in generalizing
the GRT-unfolding model to paired-comparisons data would
be to estimate the parameters of the ideal distribution
from the set of distributional overlaps associated with all
of the stimuli used in the paired-comparisons experiment.
Another advantage of this generalization is that many
preference judgments are context dependent (e.g., Tversky
& Simonson, 1993), and the Ashby and Perrin (1988)
similarity model provides a mechanism to model such
dependencies.

Ennis and Ennis (2013) noted that a second reason that
previous models have not had a greater practical impact is
that they are mathematically complex, which makes them
difficult to apply. In contrast, the GRT-unfolding model
is simple to apply due to the normal approximation to
the squared Mahalanobis distance between the sensory
representation of the stimulus and the imagined ideal.
This approximation reduces the complexity of the model
significantly since the probability of the various sensory
and liking ratings can be computed via straightforward z
transformations and appeal to the cumulative z distribution
function. Hopefully, these advantages will lead to more
applications of the GRT-unfolding model to academic and
industry data sets.

Third, Ennis and Ennis (2013) noted that another reason
that previous multidimensional unfolding models are not
more popular is because they do not generate individual-
level ideal representations. This is largely due to the
enormous amount of data they require (e.g., because
they rely on paired-comparisons experiments). As we just
noted, the GRT-unfolding model requires much less data
and therefore is much less susceptible to this problem.
Nevertheless, because the GRT-unfolding model requires
ratings on each identified sensory dimension, the amount
of data it requires increases (linearly) with the number of
rated sensory dimensions. Therefore, whereas individual
ideal representations should be straightforward to estimate
in applications where only a few sensory dimensions require
ratings, estimating individual ideal representations is more
problematic when many sensory dimensions are required.
For example, in our empirical application to planets, we
collected ratings on 6 sensory dimensions, which was too

many to allow the model to be fit to individual participant
data when each participant completed only a single 50-
minute experimental session.

If individual ideal representations are desired, then there
are several options. One, of course, is to collect sufficient
data from each participant to allow the model to be fit to
individual-participant data—either by increasing the length
of the experimental session or increasing the number of
sessions. A second option is to reduce the number of rated
sensory dimensions, which would increase the number of
ratings that could be collected on each dimension in a single
session. The trick here is to eliminate dimensions that do
not affect the participant’s hedonic response. One approach
might be to run an initial group experiment with many
dimensions, fit the model to the group data, and then use
these results to identify the key sensory dimensions. For
example, the variances listed in Table 1 indicate that in
our experiment, Moons had little or no effect on hedonic
ratings, and Rings and Red-Yellow had at most a minimal
effect. Therefore, a follow-up experiment that asked for
ratings only on the Water, Clouds, and Blue-Green sensory
dimensions might be able to collect enough data to allow
estimation of individual ideals at the cost of only a minimal
decrease in goodness-of-fit. Another approach to reducing
the number of sensory dimensions is to consult someone
with expertise with the stimuli (e.g., a Master Sommelier in
the case of wines).

Finally, a third option is to estimate an ideal represen-
tation, not for individual participants, but for groups of
similar participants, or perhaps for groups of similar stim-
uli. For example, the ideal may change if the coffee is made
with some flavored coffee bean. In either case, a separate
experiment is required for each identified group, but each
participant in these experiments only needs to complete a
single experimental session. This approach seems especially
relevant for product design, since industries do not create
unique products for each individual, but they might create
a product that is tailor-made for one particular segment of
consumers.

As an empirical test of the GRT-unfolding model,
we chose the planets shown in Fig. 3 because they are
interesting, real-world objects. However, the GRT-unfolding
model could be applied to any stimuli. Because the model
estimates the sensory values of the ideal stimulus, it has the
potential to greatly benefit product development. In many
cases, the sensation elicited by a stimulus on an identified
sensory dimension is directly related to some underlying
physical quantity. For example, the sweetness of a Merlot
wine is related to its residual sugar content (among other
factors). Therefore, identifying the ideal sweetness of a
Merlot could facilitate the efforts of vintners to create more
popular wines.
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Appendix

The mean of the Eq. 3 random variable is (e.g., Khatri, 1980;
Paolella, 2018)

μ�2 = trace(�−1
Y �w) + μ′

w
�−1

Y μ
w

= trace[�−1
Y (�Y + I)] + (μ

Y
− μ

i
)′�−1

Y (μ
Y

− μ
i
)

= D + trace(�−1
Y ) + (μ

Y
− μ

i
)′�−1

Y (μ
Y

− μ
i
). (7)

Furthermore, if we let λi denote the ith eigenvalue of �Y ,
then Eq. 7 reduces to

μ�2 = D +
D∑

i=1

λ−1
i + (μ

Y
− μ

i
)′�−1

Y (μ
Y

− μ
i
). (8)

Note that the last term is just the squared Mahalanobis
distance between the means of the two distributions.

The variance of the Eq. 3 random variable is (e.g., Khatri,
1980; Paolella, 2018)
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If expressed in terms of the eigenvalues of �Y , then Eq. 9
becomes
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Therefore, we can approximate the predicted probability
that rating j is assigned to stimulus i on the liking
dimension by computing the area between X2

I,j and X2
I,j−1

under the pdf of a normal distribution with mean and
variance specified by Eqs. 7 and 9, respectively (or
alternatively, by Eqs. 8 and 10, respectively).
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