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6.1 Introduction

Cognitive neuroscience was born in the 1990’s amid a
technological explosion that produced powerful new meth-
ods for noninvasively studying the human brain, including
functional magnetic resonance imaging (fMRI) and transcra-
nial magnetic stimulation (TMS). These exciting new tech-
nologies revolutionized the scientific study of the mind, giv-
ing unprecedented observability into the neural processes
that mediate human thought and action. With the new data

came a growing need for new kinds of theories that could
simultaneously account for the behavioral data that are the
bread and butter of traditional mathematical psychology as
well as the brain-related measures coming from the new tech-
nologies. Computational Cognitive Neuroscience (CCN)
was created to fill this void.

CCN evolved from computational neuroscience on one
side and connectionism, neural network theory, and machine
learning on the other. Like computational neuroscience,
CCN strives for neurobiological accuracy and like connec-
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tionism, a major goal is to account for behavior. But CCN
is unique because most computational neuroscience models
make no attempt to account for behavior and most connec-
tionist models make no attempt to be biologically detailed.
The biological detail included in CCN models adds many
more constraints on the modeling process than more tradi-
tional approaches. As a result, two researchers independently
modeling the same behavior are more likely to converge
on highly similar models with this new approach, and for
this reason the resulting models should have a permanence
that is unusual with older approaches. Not surprisingly, a
growing of number of researchers are now pursuing the en-
deavor of CCN modeling (e.g., Anderson, Fincham, Qin, &
Stocco, 2008; Ashby & Helie, 2011; Frank, 2005; Hartley,
Burgess, Lever, Cacucci, & O’Keefe, 2000; O’Reilly, Mu-
nakata, Frank, Hazy, et al., 2012).

6.1.1 A Brief History

The field of computational neuroscience became popular
with Hodgkin and Huxley’s (1952) Nobel Prize winning ef-
forts to model the generation of action potentials in the giant
squid axon. Like the Hodgkin and Huxley model, most com-
putational neuroscience models include only a single neuron.
A common approach, called compartment modeling, models
a neuron’s axons and dendrites as cylinders and the soma as
a sphere. Next, partial differential equations that describe the
propagation of action potentials are written for each of these
compartments. A standard application is to model the results
of patch-clamp experiments in which current is injected into
the neuron at some location and then the intracellular volt-
age is measured at a variety of locations on the cell. Some
compartment models are extremely accurate, but highly com-
plex. For example, some single-neuron models have hun-
dreds or even thousands of compartments (e.g., Bhalla &
Bower, 1993; Segev, Fleshman, & Burke, 1989). Histori-
cally, computational neuroscience models have almost never
tried to account for behavior. In most cases, such a goal is
precluded by the complexity of the single-neuron models that
are used.

Neural network theory originated in the work of
McCulloch and Pitts (1943). However, because the goal
quickly became to model or at least simulate behavior, neural
network theory diverged from computational neuroscience
with the work of Newell, Shaw, and Simon (1958) and
Rosenblatt (1958). At that time, computing power was too
limited and there simply was not enough known about the
neural basis of behavior to support a research program that
tried to model behavior in a biologically accurate way. Thus
the fields of artificial intelligence and the more modern re-
lated field of machine learning place almost all emphasis on
behavior and almost none on neuroscience.

Connectionism (Rumelhart & McClelland, 1986) and
modern neural network theory (e.g., Haykin, 2009) take an

intermediate approach in the sense that biologically plausi-
ble properties are often seen as advantages, although they
rarely are requirements. Connectionist models have some
features in common with the brain – including distributed
representation, continuous flow, and the modeling of mem-
ory as changes in synaptic strengths. Even so, almost all con-
nectionist models include many features that are now known
to be incompatible with brain function. For example, there is
generally no attempt to identify units in connectionist models
with specific brain regions, and even when there is, there is
little attempt to model inputs and outputs to these regions in
a biologically accurate way. Similarly, units in connection-
ist models typically do not behave like real neurons, and the
learning algorithms that are used often have little biological
plausibility (e.g., backpropagation).

Each of these fields makes important contributions. Com-
putational neuroscience provides a formal framework to test
theories of biophysics. Artificial intelligence and machine
learning allow engineers to construct machines and algo-
rithms that exhibit intelligent behavior. Connectionism al-
lows psychologists to construct neurally-inspired models of
behaviors that are so complex or poorly understood that it
would be premature to attempt to build more biologically
detailed models. CCN is not meant to supplant these older
approaches, but rather to fill a new void that was created by
the cognitive neuroscience revolution. There are now many
behaviors that are understood well enough at the neural level
to permit biologically detailed mathematical modeling. CCN
was born in an attempt to exploit these new data.

Because of this motivation, it is not surprising that the
field of CCN began shortly after the onset of the cognitive
neuroscience revolution during the 1990’s. The first break
with existing approaches came with attempts to associate
nodes in fairly traditional connectionist or neural network
models with specific brain regions. This trend toward in-
creased biological detail continued with more biologically
plausible learning algorithms, and more realistic models of
the individual units (e.g., Ashby, Alfonso-Reese, Turken,
& Waldron, 1998; Cohen, Braver, & O’Reilly, 1996; Co-
hen & Servan-Schreiber, 1992; McClelland, McNaughton, &
O’Reilly, 1995). Simultaneously, there were also attempts to
formulate general modeling principles of this new approach
(Ashby & Helie, 2011; Ashby & Valentin, 2007; O’Reilly,
1998; O’Reilly et al., 2012).

6.1.2 Organization of the Chapter

This chapter is organized as follows. Section 2 describes
some advantages of the CCN approach. Section 3 describes
some of the CCN principles that guide model development
and model testing. Section 4 describes some common ap-
proaches used in CCN models in which each unit models
a single spiking neuron. Section 5 describes an alternative
approach that models the firing rates of large populations
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of neurons. Section 6 describes models of learning that are
based on the neuroscience literature on long-lasting synaptic
plasticity. CCN models make predictions about neural acti-
vations in each brain region included in the model. To test
the model against empirical data, some modeling interface
is typically needed that converts the predicted neural activa-
tions to the dependent measure that defines the data. Section
7 describes these interfaces and other relevant issues for ap-
plications to single-unit recording data, behavioral data [i.e.,
accuracy and response time (RT)], fMRI BOLD responses,
TMS data, and pharmacological and neuropsychological pa-
tient data. Section 8 discusses the problem of parameter esti-
mation and model evaluation, and Section 9 closes with some
general comments and conclusions.

6.2 Advantages of CCN Modeling

Most of the advantages of CCN over more traditional
purely cognitive mathematical modeling are due to the many
neuroscience-derived constraints that CCN models must sat-
isfy – constraints that drastically reduce the space of compat-
ible models. Architecturally, the construction of CCN mod-
els is sharply constrained by neuroanatomy and basic neuro-
science results. For example, if the model includes a cortical
region and the striatum then neuroanatomy tells us that the
only possible CCN model of these two regions is one where
cortex sends an excitatory projection to the striatum and there
is no direct return projection from the striatum to cortex. Re-
strictions such as these are in sharp contrast with methods
used to construct traditional cognitive or connectionist mod-
els, where any architecture is allowed, and alternative models
are evaluated almost solely on the basis of goodness-of-fit to
available RT and accuracy data.

CCN models are constrained not only in architecture,
but also in process. For example, neuroanatomy speci-
fies whether each connection is excitatory or inhibitory, and
single-unit recording data serve to constrain the dynamics of
individual units in the model (e.g., whether the units have
a high or low tonic firing rate, whether they fire in bursts
or at a steady rate). Furthermore, neuroscience data also
sharply constrain how learning and memory are modeled.
For example, the evidence is good that dopamine (DA) medi-
ates feedback-driven synaptic plasticity in the striatum (e.g.,
Doya, 2007; Schultz, 2002). When DA neurons fire, DA is
released approximately uniformly throughout large regions
of the striatum, and as a result, any CCN model that includes
striatal-mediated learning must assume global rather than lo-
cal learning rules.

The more constrained CCN modeling process confers a
number of specific advantages to CCN models. The remain-
der of this section describes the most important of these.

6.2.1 Testing Against Many Different Data Types

Whereas cognitive models can generally be tested only
against RT and accuracy data, CCN models can be tested
against many different kinds of dependent measures. Theo-
retically this should include virtually any dependent measure
between behavior at the highest level and single-unit record-
ing data at the lowest level. So for example, the same CCN
model could be tested against RTs, accuracies, single-neuron
recording data, fMRI BOLD responses, and EEG recordings.
In addition, CCN provides a principled method for mod-
eling the effects of various interventions that affect neural
processes, including TMS, neuropharmacological treatment,
and neurosurgical procedures such as ablation or deep-brain
stimulation. Similar approaches could be used to account
for behavioral deficits that are associated with various neu-
ropsychological conditions (e.g., Parkinson’s disease, Hunt-
ington’s disease, anterograde amnesia). Requiring successful
models to simultaneously account for more different kinds of
data necessarily increases model identifiability.

6.2.2 Model Inflexibility

CCN models often include many unknown constants (or
parameters) that must be set (or estimated) during the model-
fitting process. A traditional cognitive-based mathematical
model with the same number of free parameters would be so
mathematically flexible that it would be difficult to falsify on
the basis of goodness-of-fit alone. This principle is immor-
talized in the following famous quote attributed to John von
Neumann (by Enrico Fermi): “With four parameters I can fit
an elephant, and with five I can make him wiggle his trunk”
(Dyson, 2004).

Von Neumann’s quote is most apt for David Marr’s (1982)
highest level of mathematical modeling – what he called the
computational level (and what is often referred to in mathe-
matical psychology as the descriptive level). When a param-
eter is added to a computational-level model, its sole pur-
pose is almost always to fit more data. Therefore, it is al-
most always true that every new parameter greatly increases
mathematical flexibility. However, as one moves down the
Marr hierarchy, the quote becomes less and less relevant.
At Marr’s algorithmic level (called process models in math-
ematical psychology), new parameters are added to model
some new (e.g., psychological) process. Modeling a new
process will generally increase mathematical flexibility, but
one new process could add several new parameters that work
together. This trend continues at Marr’s lowest, implemen-
tational level where the goal is to model the hardware that
implements the algorithms. Now new parameters are added
to model new structure and in many cases, a new process
might require several new structures, each of which requires
several new parameters to model.

For these reasons, implementational-level models gener-
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ally have many parameters but are nevertheless mathemat-
ically inflexible. CCN models are at Marr’s implementa-
tional level, and as expected, they tend to be very inflexible.
The inflexibility is built in via the architectural and process
constraints supplied by the relevant neuroscience literature.
For example, consider a CCN model that includes cortical
and striatal units. The equations describing each unit will
be characterized by a number of free parameters (for details,
see the section entitled “Models of Single Spiking Neurons”)
and there will be other parameters that describe the strength
of the cortical-striatal synapses. But because the projection
from cortex to striatum is excitatory and one way, changing
the values of any of these parameters can only have a very
limited effect on the behavior of the model. For every unit,
there are two sets of parameter settings: those that allow the
model to fire spikes and those for which the model never fires
spikes. The latter settings are disallowed because they fail to
produce neuron-like behavior. Any parameter combination
in the former group of settings will cause similar behavior in
the model – namely, any condition that causes cortical units
to increase their firing rate will also cause striatal units to
increase their firing rate. This is the only data profile that the
model can produce, regardless of how many free parameters
it contains, and regardless of the numerical values of those
parameters.

This inflexibility is a strength of CCN models. If the
results are qualitatively incompatible with the CCN predic-
tions, then the architectural and process assumptions of the
model are almost always incorrect. It is rarely the case that
the mispredictions are caused by poor parameter estimation.
As a result, invalid models are quickly rejected, hastening the
scientific process.

6.2.3 Model Convergence

Another major advantage of the CCN approach is that
two researchers independently modeling the same behav-
ior are more likely to converge on highly similar models,
and this convergence should cause the resulting models to
have a permanence that is unusual with more traditional ap-
proaches. For example, the evidence is overwhelming that
the hippocampus plays an important role in episodic mem-
ory consolidation. So any CCN model of episodic memory
is likely to include a component that models some region(s)
in hippocampus. Since the neuroanatomy of hippocampus
is well understood, independently constructed CCN models
of episodic memory therefore should include some highly
similar components.

6.2.4 Ability to Unite Seemingly Disparate Fields

CCN modeling can sometimes uncover relationships
among seemingly unrelated behaviors. This is especially
likely when independent modeling efforts converge on com-
mon brain regions. For example, cognitive neuroscience

models of information-integration category learning and
implicit sequence learning independently identified similar
cortical-striatal circuits (e.g., Ashby et al., 1998; Grafton,
Hazeltine, & Ivry, 1995). This suggested that these two
seemingly disparate behaviors might share some previously
unknown deep functional similarity. Several studies ex-
plored this possibility. First, Willingham, Wells, Farrell,
and Stemwedel (2000) showed that implicit motor sequence
production is disrupted when the response key locations are
switched, but not when the hands used to depress the keys
are switched. Several studies subsequently showed that this
same pattern of results holds for information-integration cat-
egorization (Ashby, Ell, & Waldron, 2003; Maddox, Bohil,
& Ing, 2004; Maddox, Glass, O’Brien, Filoteo, & Ashby,
2010). Without linking categorization and sequence learning
through their hypothesized underlying neural circuits, this
dependence of information-integration categorization on re-
sponse location learning would have been much more diffi-
cult to discover.

CCN models can also sometimes establish links between
models that do not share any common brain regions. Re-
searchers who build and test CCN models are typically in-
terested in one subprocess more than others. For example,
researchers interested in visual perception might couple a de-
tailed model of some regions in visual cortex with an over-
simplified model of response selection that produces a styl-
ized output, whereas researchers interested in motor perfor-
mance might couple a detailed model of primary motor cor-
tex with an oversimplified model of visual perception that
produces a stylized input to the motor module.

If different researchers each build valid CCN models of
their module of interest, then it should be fairly straightfor-
ward to create a new model by linking the two separate CCN
models together, and this new model should be consistent
with all the behavioral and neuroscience data that are con-
sistent with either model alone. Furthermore, by relying on
neuroscience data, CCN modeling can even instruct us on
how to connect the models together (e.g., by looking at which
regions project to which). This ability to combine models of
different processes is not trivial; even if each of two models
work in their given domain, there is no guarantee that the
combined model will behave as desired.

6.3 CCN Modeling Principles

In traditional cognitive-based mathematical modeling of
behavior, the overriding criterion for establishing the valid-
ity of a model is goodness-of-fit to the behavioral data (usu-
ally penalized for model complexity; see, e.g., Pitt, Myung,
& Zhang, 2002). Unfortunately, there are many examples
where models making very different cognitive assumptions
provide approximately equal levels of goodness-of-fit, so in
many cognitive domains there are many competing mathe-
matical models that make very different cognitive assump-
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tions. In most cases, there is not much that can be done to
resolve these problems. One solution is to invoke the Prin-
ciple of Correspondent Change (Townsend & Ashby, 1983),
which states that the correct model should account for behav-
ioral changes across experimental conditions by only chang-
ing the values of parameters that correspond to the indepen-
dent variables that were varied to create the various condi-
tions. So for example, if the different conditions are identical
except for the brightness of the stimulus, then to fit the re-
sulting data the correct model should only need to change the
value of sensory parameters (so decision parameters should
be invariant across conditions). Although the Principle of
Correspondent Change is rarely invoked, when used it can
prove effective (e.g., Van Zandt, Colonius, & Proctor, 2000).

The Principle of Correspondent Change is an attempt to
add extra constraints to computational- and algorithmic-level
models. The constraints that define CCN can also be formal-
ized as a set of principles (Ashby & Helie, 2011; Meeter, Je-
hee, & Murre, 2007; O’Reilly, 1998). This section describes
three of the five principles that were proposed as constraints
on CCN modeling by Ashby and Helie (2011). For more
discussion, or an alternative list of principles, see Ashby and
Helie (2011), Meeter et al. (2007), or O’Reilly (1998).

6.3.1 The Neuroscience Ideal. A CCN model should
not make any assumptions that are known to contradict the
current neuroscience literature.

This principle formalizes the CCN goal of building mod-
els that are constrained by existing neuroscience data. Note
however, that the Neuroscience Ideal does not say that a CCN
model must be compatible with all existing neuroscience
data. A model is an abstraction, and therefore almost always
is incomplete. The brain is immensely complex, and every
CCN model must omit much of this complexity. The Neu-
roscience Ideal weighs these errors of omission much less
heavily than errors of commission (Meeter et al., 2007). For
instance, it is common in CCN modeling to omit connections
between some brain areas that are known to be connected.
This is done to keep the model simple and to focus on other
connections that the model assumes are functionally impor-
tant. A good fit suggests the missing connections might not
be functionally important to the phenomenon under study.
On the other hand, the Neuroscience Ideal disallows connec-
tions between brain areas that are known to not be connected
or to creating an inhibitory connection between two regions
when it is known that the real projection is excitatory.

Because of the great complexity of the human brain, every
CCN modeling project must decide on an appropriate level of
reductionism. The Simplicity Heuristic is a guide to solving
this problem.

6.3.2 The Simplicity Heuristic. No extra neuroscien-
tific detail should be added to the model unless there are
data to test this component of the model or past research has
shown that the neuroscientific detail is a major contributor

to the explanation.
This heuristic is an application of Occam’s razor. It is

especially important because unlike cognitive models, with
CCN models there will almost always be many extra neu-
roscientific details that one could add to an existing model.
Doing so will increase the complexity of the model, the num-
ber of free parameters, and the computing time required for
fitting. Unless there are data to test these extra components,
it will be impossible to know whether these extra details were
modeled correctly, and to what extent these untested details
contributed to the model’s success.

6.3.3 The Set-in-Stone Ideal. Once set, the architecture
of the network and the models of each individual unit should
remain fixed throughout all applications.

This could be considered a corollary to the Principle of
Correspondent Change. Connections between brain regions
do not change from task to task, nor does the qualitative na-
ture via which a neuron responds to input. Thus, the model’s
analogues of these features should also not change when the
empirical application changes. This ideal greatly reduces the
mathematical flexibility of CCN models. For example, al-
though a CCN model will initially have many unknown con-
stants, most of these will be set by single-unit recording data
and then, by the Set-in-Stone Ideal, they will remain invariant
across all applications of the model.

6.4 Models of Single Spiking Neurons

The units that comprise the neural network in a CCN
model should include more biological detail than the units
used in traditional neural network theory (e.g., Haykin, 2009)
or connectionism (Rumelhart & McClelland, 1986). CCN
models follow two different general approaches to this prob-
lem. One approach builds networks from units that mimic
spiking neurons, and another builds networks that model the
firing rates of populations of neurons in different brain re-
gions. This section describes spiking-neuron models and the
next section describes firing-rate models.

The spiking-neuron models used in CCN originate in the
classic Hodgkin-Huxley model (1952), which is a set of four
coupled differential equations. One describes fast changes in
intracellular voltage and three describe slow changes in var-
ious ion concentrations (i.e., Na+, K+, and Cl-). The model
correctly accounts for action potentials (both the upstroke
and downstroke), the refractory period, and subthreshold de-
polarizations that fail to produce a spike. From a CCN per-
spective, the model has several disadvantages. First, it was
created to model voltage changes in the giant squid axon,
rather than in mammalian neurons. Second, four differen-
tial equations must be solved numerically for every unit in
the model. As a result, models that include many units could
require prohibitive computing time. Third, for most CCN ap-
plications the Hodgkin-Huxley model violates the Simplicity
Heuristic because rarely do such applications attempt to ac-



6 ASHBY

count for data that depend on intracellular concentrations of
sodium, potassium, or chloride.

For these reasons, there have been a number of attempts
to produce models with fewer equations that display as many
of the desirable properties of the Hodgkin-Huxley model as
possible. Some of these attempts are described in the follow-
ing subsections.

6.4.1 The Leaky Integrate-and-Fire Model

The simplest model of a single unit that produces spiking
behavior, and also the oldest (Lapique, 1907), is the leaky
integrate-and-fire model (e.g., Koch, 1999). Suppose neuron
B receives an excitatory projection from neuron A. Let VA(t)
and VB(t) denote the intracellular voltages at time t in neu-
rons A and B, respectively. Then the leaky integrate-and-fire
model assumes that the rate of change of VB(t) is given by

dVB(t)
dt

= α f [VA(t)] + β − γVB(t), (1)

where α, β, and γ are constants. The function f [VA(t)] mod-
els temporal delays in the propagation of an action potential
from the pre- to the postsynaptic unit. This function is de-
scribed in detail in the subsection entitled “Modeling Synap-
tic Delays”, but briefly it models temporal delays that occur
when an action potential propagates down the axon in the
presynaptic unit, and the temporal smearing that occurs dur-
ing the chemical cascades initiated by this action potential
in the synapse and in the dendrites of the postsynaptic unit.
The parameter α is a measure of synaptic strength because
the larger this value the greater the effect of an action poten-
tial in the presynaptic unit. In many applications, learning is
modeled by assuming that α changes as a function of expe-
rience. The parameter β determines the spontaneous firing
rate of unit B, and γ determines the rate at which charged
ions leak out of the unit.

Equation (1) is a linear differential equation that does not
produce spikes. Instead it predicts continuous and smooth
changes in activation. To generate spikes from this model a
threshold Vpeak is set on VB(t). When VB(t) exceeds Vpeak it
is reset to Vreset and a spike is drawn by hand. An example
of activation produced by this model is shown in Figure 1.
The top panel shows the membrane potential predicted by
the model when Vpeak = -10 and Vreset = -50. The bottom
panel adds hand-drawn spikes.

The leaky integrate-and-fire model is simple enough that
it can be investigated analytically. In fact, in the absence
of any input from the presynaptic neuron A, solving Eq. 1
shows that VB(t) is just an exponential function. For almost
all other models however, analytic solutions are unavailable,
so numerical solutions are required. In these cases, it can be
difficult to predict how the activation will change if any of
the numerical constants are changed or if the model is modi-
fied in any other way. One solution to this problem is to ap-

Figure 1. Top Panel. Activation produced by the leaky
integrate-and-fire model (with β = 1/60, γ = 7/60, Vpeak =

−10, and Vreset = −50) . Bottom Panel. The same activation
as in the top panel, except with spikes added by hand.

Figure 2. Phase portrait for the integrate-and-fire model
(with β = 1/60, γ = 7/60, Vpeak = −10, and Vreset = −50).
The abscissa is intracellular voltage VB(t), whereas the ordi-
nate is V̇B(t) =

dVB(t)
dt

.

ply methods from nonlinear dynamics (e.g., Strogatz, 2014;
Wiggins, 2003).

For example, consider Figure 2, which shows a sort of
phase portrait for the leaky integrate-and-fire model. The
abscissa is intracellular voltage, and thus is the same as the
ordinate in Figure 1. The Figure 2 ordinate denotes values of
dVB(t)

dt [denoted there by V̇B(t)]. Thus, voltage increases for
any value of VB for which V̇B(t) > 0 and voltage decreases
for any VB for which V̇B(t) < 0. Note that voltage increases
for any negative value of VB (actually for any VB < 1/60) and
decreases when VB is positive (i.e., when VB > 1/60). When
VB is exactly equal to 1/60, the derivative is 0 and therefore,
voltage will remain at this value unless or until some external
input is added to the model. Thus, VB = 1/60 is a stable fixed
point of the model – or in other words, an attractor.

Figure 2 also shows that as voltage increases from the re-
set value (-50 mv), the derivative continuously decreases, so
although voltage increases to the attractor, it does so in a
slower and slower manner. In other words, the plot of voltage
against time must be negatively accelerating – a property that
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Figure 3. Top Panel. Typical spiking profile produced by
the quadratic-integrate-and-fire model. Bottom Panel. Phase
portrait for the quadratic-integrate-and-fire model. In both
cases β = 11.83, γ = .117, Vr = −60, Vt = −40, Vpeak = 35,
and Vreset = −50.

is easily seen in Figure 1.
The fact that the leaky integrate-and-fire model does not

naturally predict spiking is widely considered a weakness of
the model (e.g., Izhikevich, 2007). Also, it does a relatively
poor job of describing msec by msec changes in the mem-
brane potential of real neurons and it is not flexible enough
to model qualitative differences in the dynamics of different
types of neurons. For these reasons, other single-equation
models have been developed.

6.4.2 The Quadratic Integrate-and-Fire Model

Perhaps the most popular single-equation alternative to
the leaky integrate-and-fire model replaces the linear de-
cay term with a quadratic polynomial. The resulting
model is known as the quadratic integrate-and-fire model
(Ermentrout, 1996; Latham, Richmond, Nelson, & Niren-
berg, 2000). For the scenario modeled in Eq. (1), the
quadratic integrate-and-fire model assumes that the rate of
change of VB(t) is given by

dVB(t)
dt

= α f [VA(t)] + β + γ [VB(t) − Vr] [VB(t) − Vt] , (2)

where α, β, and γ are constants, Vr is the resting membrane
potential, Vt is the instantaneous threshold potential and, as
before, the function f [VA(t)] models temporal delays in the
propagation of an action potential from one neuron to an-
other. Unlike the leaky integrate-and-fire model, Eq. (2) pro-
duces the upstroke of action potentials via its natrual dynam-
ics, although it does not produce the downstroke. To create
spikes, an extra voltage resetting step is required to generate
the downstroke of the action potential – specifically, when
VB(t) reaches Vpeak it is reset to Vreset. Figure 3 shows an
example of the spiking behavior produced by Eq. (2).

The bottom panel of Figure 3 shows the model’s phase
portrait. Note that the derivative V̇B(t) is always positive, so

in this model intracellular voltage can only rise. This is why
the artificial voltage resetting mechanism is required. Also
not that V̇B(t) is positively accelerating. Thus, as the voltage
increases, the magnitude of the increase becomes progres-
sively greater. This is the property that allows the model to
account for the upstroke of the action potential. Because of
this property, the quadratic integrate-and-fire model is gen-
erally viewed as a superior alternative to the leaky integrate-
and-fire model (Izhikevich, 2007).

6.4.3 The Izhikevich Model

Much more realistic behavior is possible if a second dif-
ferential equation is added that models slow changes in ion
concentrations. One of the first of these was the FitzHugh-
Nagumo model, in which the rate of change in voltage (i.e.,
the derivative) is modeled as a cubic polynomial and slow
changes in ion concentrations are modeled with a linear dif-
ferential equation (FitzHugh, 1961; Nagumo, Arimoto, &
Yoshizawa, 1962). Izhikevich (2003) proposed a similar
model that replaces the cubic polynomial with the quadratic
integrate-and-fire model. The Izhikevich (2003) model re-
quires less computing time to evaluate than the FitzHugh-
Nagumo model, has simpler dynamics, and can account for
some qualitative firing phenomena that are outside the scope
of the FitzHugh-Nagumo model (e.g., tonic and rebound
bursting; Izhikevich, 2004). The Izhikevich (2003) model
assumes

dVB(t)
dt

= α f [VA(t)] + β + γ [VB(t) − Vr] [VB(t) − Vt] − θUB(t),

dUB(t)
dt

= λ [VB(t) − Vr] − ωUB(t), (3)

where the quadratic integrate-and-fire model is as before and
θ, λ, and ω are constants. In these equations VA(t) and VB(t)
again denote intracellular voltages at time t and UB(t) is an
abstract regulatory term that is meant to describe slow re-
covery in unit B after an action potential is generated. UB(t)
could represent activation in the K+ current or inactivation
in the Na+ current, or some combination of both. As before,
when VB(t) reaches Vpeak it is reset to Vreset. At the same time
however, UB(t) is also reset to UB(t) + Ureset).

The Eq. 3 model is highly flexible and produces some
extremely realistic spiking behavior. Figure 4 shows exam-
ples of four qualitatively different kinds of dynamical be-
havior that can be produced from this model (from Izhike-
vich, 2003) when different numerical values are chosen for
its parameters, and Izhikevich (2003) has identified at least
17 other types. Figure 4 shows predictions from the vari-
ous models in the same patch-clamp type experiment where
current is injected into the unit at the same time in each case.
Especially when noise is added, many of the spike trains pro-
duced by the models are almost indistinguishable from single
unit recordings collected from real neurons (for many exam-
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Figure 4. Spike trains produced by four different versions of
the Izhikevich (2003) model in the same patch-clamp experi-
ment, where the injected current is denoted by I(t). (Regular
spiking neuron: β = .52, γ = .007, θ = .01, λ = −.06, ω =

0.03,Vr = −60,Vt = −40,Vpeak = 35,Vreset = −50,Ureset =

100. Intrinsically bursting neuron: β = .52, γ = .012, θ =

.01, λ = .05, ω = 0.01,Vr = −75,Vt = −45,Vpeak =

50,Vreset = −56,Ureset = 130. Chattering neuron: β =

1.04, γ = .03, θ = .02, λ = .09, ω = 0.03,Vr = −60,Vt =

−40,Vpeak = 25,Vreset = −40,Ureset = 150. Medium spiny
neuron: β = 2, γ = .02, θ = .02, λ = −.2, ω = 0.01,Vr =

−80,Vt = −25,Vpeak = 40,Vreset = −55,Ureset = 150.)

ples, see Chapter 8, Izhikevich, 2007). One reasonable strat-
egy, which follows from the Simplicity Heuristic, is to use
the Izhikevich model for any units in the network for which
single-unit recording data are available. If no such data are
available then the simpler quadratic integrate-and-fire model
could be used instead. Numerical solutions of Eqs. (1) –
(3) are readily obtained using Euler’s method. For example,
Izhikevich (2007) provides Matlab code that solves Eqs. (3)
using this approach.

The Izhikevich model has many free parameters that each
affect the resulting dynamics of the model – oftentimes in
interrelated ways. As a result, finding parameter estimates
for a neuron type that has not been previously modeled can
be a daunting task. Studying the phase portrait can greatly fa-
cilitate this process. For example, consider Figure 5, which
illustrates the phase protrait of the regular spiking neuron.
The top panel shows the spike train produced by the model
in a patch-clamp experiment in which current is injected into
the neuron beginning at time t = 900 ms and ending at time
t = 1200ms. Notice that the neuron fires a burst to the in-
jected current, and then immediately transitions to its slow
spontaneous firing (with rate completely determined by the
parameter β). The middle and bottom panels show phase
portraits that describe the model’s qualitative behavior. The
middle panel shows the phase portrait while the current is

Figure 5. Top Panel. Typical spiking profile produced by
the regular spiking neuron version of the Izhikevich (2003)
model in a patch-clamp experiment where current is injected
into the unit (denoted by the gray box). Middle Panel. Phase
portrait during the time of the injected current. Bottom Panel.
Phase portrait during the time after the injected current.

being injected and the bottom panel shows the phase por-
trait after the current has been turned off. In both figures
the abscissa shows values of the intracellular voltage VB(t)
and the ordinate shows values of UB(t). The gray quadratic
curve, known as the voltage nullcline, denotes values of the
(VB,UB) ordered pair for which V̇B(t) = 0. The derivative is
negative for all points inside the parabola and positive for all
outside points. The dotted black line is the UB nullcline [i.e.,
the set of all (VB,UB) for which U̇B(t) = 0], with U̇B(t) < 0
for all points above the line and U̇B(t) > 0 for all points
below.

The numbers, 1, 2, and 3, in Figure 5 identify time points.
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Time 1 is at 900 ms – right when the current is first injected.
Note that the voltage has just been reset because the model
has just spontaneously spiked. Time 2 is just after the voltage
was reset following the first spike produced during current
injection, and time 3 coincides with the offset of the injected
current. Note that at time point 1, V̇B(t) > 0, so the intracel-
lular voltage VB(t) begins to increase. The further the trajec-
tory moves away from the voltage nullcline, the greater the
value of V̇B(t) and the faster the voltage increase. When the
threshold for another spike is reached (i.e., at VB(t) = Vpeak,
where Vpeak = 35 mV in this case), the voltage is reset to
VB(t) = Vreset (-50 mV in Figure 5) and UB(t) is reset to
its current value plus Ureset (i.e., 100). At time 2, note that
V̇B(t) < 0, so right after the second spike, voltage decreases
slightly (readily apparent in the top panel). But as the trajec-
tory crosses the voltage nullcline, V̇B(t) switches to positive
and voltage begins to increase again, ever more rapidly until
another spike is produced.

Note that the effect of the injected current is to raise the
voltage nullcline. This moves more (VB,UB) points into the
region for which V̇B(t) > 0, which increases the model’s fir-
ing rate. Thus, manipulating any parameters that affect the
width or location of the voltage nullcline will affect the over-
all firing rate of the model (i.e., γ,Vr,Vt, and β). The delay
between spikes can be manipulated via the resetting param-
eters (Vreset and Ureset) and the parameters that control UB(t)
(i.e., λ and ω). For example, to increase the delay, parame-
ter values should be chosen that cause the trajectory to reset
near the voltage nullcline. This will guarantee that V̇B(t) is
near zero, and therefore that voltage will initially change only
slowly.

6.4.4 Modeling Synaptic Delays

Regardless of which spiking-neuron model is used, the
free parameters that determine the dynamics of each unit
should be set so that the behavior of the unit is as consistent
as possible with what is known about the behavior of the real
neurons the unit is meant to model. Then by the Set-in-Stone
Ideal these parameter values should remain invariant across
all applications of the model.

The integrate-and-fire model, the quadratic integrate-and-
fire model, and the Izhikevich model all describe changes in
membrane potential at one particular spatial location within
a neuron. They do not describe the propagation of action
potentials throughout the cell. Nor do they model delays
that occur when an action potential is propagated across a
synapse. Modeling these phenomena is considerably more
complex.

The standard approach to modeling the propagation of ac-
tion potentials within a neuron (e.g., down an axon) is called
compartment modeling (e.g., Koch, 1999). As mentioned
earlier, in this approach a neuron is modeled as a collection
of cylinders and spheres, each of which is called a compart-

ment. Separate partial differential equations are written that
describe the propagation of the action potential within each
compartment and all these equations are used to predict how
an action potential propagates from a dendrite down to the
end of an axon. The standard partial differential equation that
describe propagation within each compartment is called the
cable equation (e.g., Koch, 1999). This approach is widely
used to account for detailed results of patch-clamp experi-
ments in which current is injected at one location on the neu-
ron and the results are recorded at various other locations.

Modeling synaptic events is potentially even more com-
plex. For example, when an action potential reaches the ter-
minal end of an axon: 1) synaptic vesicles open, 2) neuro-
transmitter is released, 3) the neurotransmitter diffuses across
the synapse, 4) the neurotransmitter binds to postsynaptic re-
ceptors, and 5) the neurotransmitter-receptor complex either
allows positively charged ions to flow directly into the neuron
(in the case of ionotropic receptors) or else initiates a chemi-
cal cascade that indirectly causes the postsynaptic neuron to
become depolarized (in the case of metabatropic receptors).
All these processes cause temporal delay in the propagation
of the action potential from the presynaptic to the postsynap-
tic neuron, and they also introduce a temporal smear. The
action potential is a spike but its postsynaptic effects are not.
Modeling any one of these processes can be challenging1.

Models that describe how action potentials propagate
down an axon and cross synapses must necessarily be consid-
erably more complex than the one- and two-equation spiking
neuron models considered in this chapter. The benefit of this
extra complexity is that such models can make predictions
at a more reductionistic level than say, the Izhikevich model.
The Izhikevich model gives good accounts of spike trains,
but is unable to account for data at lower levels (e.g., patch-
clamp experiments that record from more than one site on the
neuron; experiments that measure changes in ion concentra-
tions over time). The cost of the extra complexity needed
to make predictions at lower levels is a dramatic increase in
computing time. One goal of CCN applications is to account
for at least some behavior. Thus, CCN models must include
multiple units in multiple brain regions. As a result, com-
puting time is a serious consideration. The current state-of-
the-art in CCN modeling is to account for any data between
behavior (at the highest level) and spike trains (at the lowest
level). In such applications, compartment models and mod-
els of synaptic transmission would be used only to predict
the time-course of the postsynaptic effects of a spike in the
presynaptic neuron. If this is the goal then we should seek
simpler alternatives.

The problem is to model the temporal delays of spike

1Note that most applications of compartment modeling do not
model any of these synaptic events. This is because the most com-
mon goal of compartment modeling is to account for results of
single-neuron patch-clamp experiments.
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propagation and the temporal smearing that occurs at the
synapse in a simple way that can be combined with any of the
one- or two-equation models of spiking considered above. A
standard solution is to use the so-called alpha function (Rall,
1967). This is the function f [VA(t)] in Eqs. (1) – (3). The
idea is that every time the presynaptic unit spikes, the follow-
ing input is delivered to the postsynaptic unit (with spiking
time t = 0):

f (t) =
t
δ

exp
(
δ − t
δ

)
. (4)

This function has a maximum value of 1.0 and it decays to
.01 at t = 7.64δ. Thus, δ can be chosen to model any desired
temporal delay. If a second spike occurs before f (t) decays
to zero then a second alpha function is added to the residual
f (t) (again, with time of the second spike at t = 0).

6.4.5 Noise

In many applications it will be desirable to add noise to
the models. There are two primary advantages to this. First,
of course, human behavior is almost always probabilistic.
Without noise the models will always produce the same re-
sult given the same initial conditions. So noise is necessary
to account for probabilistic responding. Second, noise can
drive the model out of a dangerous attractor state that can
arise with any global learning rule.

Learning rules in neural network models can be classi-
fied as local or global. Local rules, like backpropagation,
modify every synapse using a different error signal. In con-
trast, global learning rules use the same error signal at ev-
ery synapse. The evidence is good that most of the brain
uses global learning rules (with the possible exception of the
cerebellum). For example, dopamine (DA), which is widely
thought to serve as a training signal, is released in roughly
equal amounts at all target synapses. One dangerous prop-
erty of global learning is that it can lead to an attractor state in
which response accuracy is constrained to remain at chance.
Fortunately, adding noise to a model can break it free from
this dangerous attractor state.

As an illustration of this problem, consider a simple two-
stimulus, two-response task in which the network must learn
to emit one response if stimulus A is presented and an-
other response if stimulus B is presented. So after train-
ing, presentation of stimulus A should activate motor unit
A more strongly than motor unit B. Initially, before train-
ing, the strength of the synapse between sensory unit A and
the two motor units should be roughly equal. If two synap-
tic strengths are exactly equal, then the pre- and postsynap-
tic activations will be identical at both synapses (since the
presynaptic activation is from the same cortical unit), and
therefore any global learning algorithm will specify an equal
amount of strengthening or weakening of both synapses on
every trial, regardless of whether the response was correct or

incorrect. Thus, if there is no noise then once the weights be-
come equal they must remain equal for all time, thereby pre-
venting the network from learning the desired associations.
Adding noise to the postsynaptic activation breaks the model
free from this attractor state. When noise is added, the post-
synaptic activations at the two synapses will not be the same,
even if the presynaptic activations and synaptic strengths are
identical. As long as the postsynaptic activations are differ-
ent, the change in synaptic strength will be different at the
two synapses and learning can proceed.

Noise can be added to each of the models by adding a
white noise term to each voltage equation. For example, the
leaky integrate-and-fire model then becomes

dVB(t)
dt

= α f [VA(t)] + β − γVB(t) + σε(t), (5)

whereσ is a constant and ε(t) is white noise. Note that except
for the first, input term, Eq. (5) is exactly equivalent to an
Ornstein-Uhlenbeck process. So whereas ε(t) and ε(t +τ) are
statistically independent for any value of τ, VB(t) and VB(t+τ)
are not independent, at least for reasonably small values of
τ (because of the leak created by the γVB(t) term). In real
biological systems, inertia prevents physical changes large
enough to guarantee that ε(t) and ε(t +τ) will be independent
for small values of τ. As a result, many researchers have pro-
posed that the Ornstein-Uhlenbeck process is a better model
of biological noise processes than white noise (e.g., Ricciardi
& Sacerdote, 1979).

Adding a white noise term to each voltage equation con-
verts the differential equation into a stochastic differential
equation (e.g., Øksendal, 2003). In general, this compli-
cates the process of deriving numerical predictions from the
model. First, of course, adding noise to a voltage equation in-
troduces variability to the spike times, which will generally
cause variability in the predicted value of every dependent
variable. This variability complicates model evaluation (for
details see the section entitled “Parameter Estimation and
Model Evaluation”).

Second, the white noise term will defeat many numerical
algorithms that are commonly used to solve differential equa-
tions. This is because white noise is not smooth and many
differential equation solvers dynamically adjust the step size
depending on the smoothness of the solution. In the pres-
ence of white noise, these algorithms keep shrinking the step
size in an unsuccessful attempt to find a smooth solution, and
often will eventually fail because the solution is not smooth
even when the step size is as small as possible. On the other
hand, simpler methods that use a fixed step size – such as
Euler’s method – work well in the presence of noise.

6.5 Firing-Rate Models

The human brain contains somewhere on the order of 1011

neurons. Although Izhekivich actually constructed a spiking-
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neuron model with this many units2, simulating any behav-
ioral task with this complex a model is essentially impossible
with today’s technology. Furthermore, the brain is thought
to exhibit considerable redundancy. For example, many neu-
rons in the same cortical column or hypercolumn exhibit sim-
ilar firing properties. For reasons such as these, an alterna-
tive approach to spiking-neuron models tries to model mean
activity in large populations of neurons. The key variable is
the instantaneous firing rate within each of these populations,
and as a result, this class of models is known as firing-rate
models.

Firing-rate models originated with the pioneering work of
Wilson and Cowan (1972, 1973), who based their work on
mean-field approaches from statistical mechanics. A com-
plete review of this large field is beyond the scope of this
chapter. For more details, see the excellent chapters by Er-
mentrout and Terman (2010, Chapter 11) or Dayan and Ab-
bott (2001, Chapter 7).

Firing-rate models make many strong assumptions. In
particular, they assume that all neurons within a population
(e.g., a cortical column) are statistically identical and in close
spatial proximity of each other. In addition, it is assumed that
the neurons within a population are randomly interconnected
and that these interconnections are dense enough so that any
two neurons in the same population are connected – either
directly or via interneurons. Furthermore, each population
is assumed to include many neurons, and only two kinds of
populations are allowed – one in which all neurons are exci-
tatory and another in which all neurons are inhibitory. Given
these assumptions, the mean instantaneous firing rate in any
single population is defined as

R(t) = lim
∆T→0

1
∆T

(
# of spikes during (t, t + ∆T ) in population

# of neurons in population

)
.

(6)
Note that as ∆T → 0, each neuron in the population either
fires once during the interval (t, t + ∆T ) or not at all. There-
fore R(t) can also be interpreted as the proportion of active
neurons at time t, and as a result 0 ≤ R(t) ≤ 1.

As mentioned earlier, a popular method for modeling the
postsynaptic effects of a presynaptic spike is via the alpha
function described by Eq. (4). According to this model, ev-
ery presynaptic spike generates a new alpha function post-
synaptically. Firing-rate models follow a similar approach.
Suppose the firing rate in a presynaptic population of exci-
tatory neurons is Rpre(t), and further suppose that the mean
synaptic strength between all neurons in the pre- and post-
synaptic populations is w. Then in firing-rate models, post-
synaptic activation at time t, denoted by Ipost(t), is equal to
the convolution of the presynaptic firing rate Rpre(t) and the
alpha function, weighted by mean synaptic strength:

Ipost(t) = w
∫ t

0
f (t − s)Rpre(s)ds, (7)

where f (t) is the alpha function of Eq. (4).
This approach is easily extended to more complex archi-

tectures. For example, suppose some postsynaptic popula-
tion receives input from ME populations of excitatory neu-
rons and MI populations of inhibitory neurons. Let wEi de-
note the mean strength of all synapses of excitatory presy-
naptic population i neurons onto neurons in the postsynap-
tic population, and let wI j denote the mean strength of all
synapses of inhibitory presynaptic population j neurons onto
postsynaptic neurons. Then firing-rate models predict that
the mean activation in the postsynaptic population equals:

Ipost(t) =

ME∑
i=1

wEi

∫ t

0
f (t − s)REi(s)ds

−

MI∑
j=1

wI j

∫ t

0
f (t − s)RI j(s)ds, (8)

where REi(t) is the firing rate in excitatory presynaptic pop-
ulation i at time t and RI j(t) is the firing rate in inhibitory
presynaptic population j.

The Eq. (4) alpha function models postsynaptic effects of
a spike [i.e., f (t) in Eqs. (7) and (8)] as a gamma function. In
firing-rate models, other choices are also used. An especially
popular choice – largely because of mathematical tractability
– is the exponential function f (t) = (1/τ)e−t/τ. In this case,
Eq. (8) reduces to

τ
dIpost(t)

dt
=

ME∑
i=1

wEiREi(t) −
MI∑
j=1

wI jRI j(t) − Ipost(t) (9)

Note the similarity of this equation to the leaky integrate-
and-fire model described in Eq. (1). The main difference is
that artificial spikes are generated in the leaky integrate-and-
fire model but not in Eq. (9).

The last step is to convert the postsynaptic activation into
postsynaptic firing rate. This is necessary because the acti-
vations predicted by Eqs. (8) and (9) are theoretically un-
bounded, whereas the firing rate R(t) is constrained to the
interval [0,1]. The standard approach is to assume that the
postsynaptic firing rate equals

Rpost(t) = F
[
Ipost(t)

]
, (10)

where F is a monotonically increasing function known as the
activation function. A common choice is to assume that F is
a (sigmoidal) logistic function. According to this model

Rpost(t) =
1

1 + exp
(
−

Ipost(t)−α
β

) , (11)

2This unpublished simulation, which made no at-
tempt to simulate behavior, is described on his website at
http://www.izhikevich.org/human_brain_simulation/Blue_Brain.htm.
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where α and β are constants. The constants α and β can be
used to model a nonzero tonic firing rate and that presynap-
tic firing does not cause postsynaptic firing rate to saturate.
When α = 0, note that Rpost(t) = .5 if the activation is 0 (i.e.,
if Ipost(t) = 0). Thus, when α = 0 the tonic firing rate is
substantial (i..e, half the neurons in the population are active
at any given time). Larger values of α cause the tonic firing
rate to decrease. In contrast, increasing the value of β lowers
the asymptotic firing rate produced by any given (constant)
activation level.

As an example, consider the simple case where a single
presynaptic population of excitatory neurons projects to a
postsynaptic population. Figure 6 shows predictions of Eqs.
(9) and (11) when the firing rate of the presynaptic popula-
tion equals .8 during the time interval [100,300] and is zero at
all other times. Several features of these predictions deserve
comment. First, note that the spontaneous firing rate equals
0 in the presynaptic population and .2 in the postsynaptic
population (because α > 0) – an illustration that firing-rate
models can account for any tonic firing rate. Second, note
that the model makes the reasonable prediction that a sudden
onset of firing in the presynaptic population causes the post-
synaptic firing rate to increase gradually (i.e., exponentially),
and similarly that a sudden drop in presynaptic firing causes
a gradual decrease (again exponential) in postsynaptic firing
rate.

6.6 Learning

6.6.1 Synaptic Plasticity

The many different learning algorithms that can be found
in the machine learning literature are often classified into
three types. Unsupervised learning algorithms operate in
the absence of any feedback or guidance. The most widely
known version is Hebbian learning, in which all active
synapses are strengthened, regardless of whether the re-
sponse was rewarded or punished. Reinforcement learning
algorithms depend on feedback but not on any guided in-
struction. They typically use a global learning algorithm that
delivers the same feedback signal to every synapse in the net-
work. Supervised learning algorithms depend on local feed-
back that supplies a unique training signal to every synapse.
The most widely known examples include the delta rule and
backpropagation.

The human brain exhibits many forms of neural plasticity
that operate over a wide range of different time scales (for
reviews, see e.g., Malenka & Siegelbaum, 2001; Stanton,
Bramham, & Scharfman, 2006). The plasticity-related phe-
nomena that are widely thought to be associated with learn-
ing and memory are long-term potentiation (LTP) and long-
term depression (LTD) (e.g., Martin, Grimwood, & Morris,
2000). LTP and LTD refer to a long-lasting increase and
decrease, respectively, in the efficacy of a synapse, which

Figure 6. Predictions of a firing rate model for the case where
an excitatory presynaptic population projects to a postsynap-
tic population. The top panel shows the firing rate of the
presynaptic population. The middle panel shows the postsy-
naptic activation, and the bottom panel shows the postsynap-
tic firing rate (with τ = 30,wE j = 240, α = 70, β = 50).

results from simultaneously stimulating the pre- and post-
synaptic neurons. LTP and LTD have been closely studied
in many different brain regions and in many different cell
types. The conditions that promote LTP and LTD are qual-
itatively different in different regions, and it has been noted
that these conditions closely match popular unsupervised-,
reinforcement-, and supervised-learning algorithms. In par-
ticular Doya (2000) and others have noted that the rules that
govern LTP and LTD match Hebbian learning in cortex and
medial temporal lobe structures (including hippocampus;
e.g., Feldman, 2009), reinforcement learning in the basal
ganglia (and especially the striatum; e.g., Houk, Adams, &
Barto, 1995), and supervised learning in the cerebellum.

The most common excitatory neurotransmitter in the brain
is glutamate and virtually all long-range cortical projections
are glutamatergic. For these reasons, it is fortunate that the
most widely studied form of LTP occurs at glutamatergic
synapses. Glutamate binds to a number of different types
of receptors, but the most important for LTP are NMDA re-
ceptors. NMDA is an ionotropic receptor that is a channel
for Na+ and Ca2+. It requires partial depolarization to be-
come activated (because of an extracellular Mg2+ plug that
prevents Na+ and Ca2+ from entering the cell during resting
membrance potentials), and so it has a higher threshold for
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activation than other non-NMDA glutamate receptors (e.g.,
AMPA).

NMDA-receptor activation initiates a number of chemi-
cal cascades that can affect synaptic plasticity. One of the
most important and best understood is the pathway that phos-
phorylates calcium/calmodulin-dependent protein kinase II
(CaMKII). When calcium enters the cell through the acti-
vated NMDA receptor, it binds to calmodulin and the cal-
cium/calmodulin complex phosphorylates CaMKII. When
fully phosphorylated, CaMKII initiates a variety of processes
that eventually increase the efficacy of the synapse (e.g.,
Lisman, Schulman, & Cline, 2002). Dopamine (DA) plays
an important role in these processes because if it is in the
synapse within a second or so of the NMDA-receptor acti-
vation then it can potentiate the phosphorylating effects of
calcium/calmodulin (via D1 receptor activation) and thereby
potentiate synaptic efficacy (Yagishita et al., 2014).

A large literature shows that DA neurons in the ventral
tegmental area (VTA) and substantia nigra pars compacta
(SNpc) increase their firing above baseline following unex-
pected rewards (e.g., Hollerman & Schultz, 1998; Mirenow-
icz & Schultz, 1994; Schultz, 1998). Thus, this form of DA-
enhanced LTP should be in effect following an unexpected
reward in any brain region that is a target of VTA or SNpc
DA neurons (and that expresses DA D1 receptors). This in-
cludes all of frontal cortex but not for example, visual or au-
ditory cortex. In these regions however, there is evidence
that acetylcholine may play a modulatory role similar to DA
in LTP and LTD (e.g., Gu, 2003; McCoy, Huang, & Philpot,
2009). A variety of evidence suggests that the long-term ef-
ficacy of the synapse is weakened (i.e., LTD occurs) when
presynaptic activation either fails to activate NMDA recep-
tors, or else activates them only weakly (Bear & Linden,
2001; Kemp & Bashir, 2001).

Although the biochemistry of CaMKII-mediated synaptic
plasticity is similar in all DA target regions, the functional
role of this plasticity is qualitatively different in the stria-
tum and frontal cortex. Within the striatum, DA is quickly
cleared from synapses by DA active transporter (DAT) and,
as a result, the temporal resolution of DA in the striatum is
high enough for DA to serve as an effective reinforcement-
learning signal. For example, if the first response in a training
session is correct and the second response is an error then
within the striatum, the elevated DA levels that result from
the positive feedback on trial 1 should have decayed back to
baseline levels by the time of the response on trial 2. Unlike
the striatum however, DAT concentrations in frontal cortex
are low (e.g., Seamans & Robbins, 2010). As a result, cor-
tical DA levels change slowly. For example, the delivery of
a single food pellet to a hungry rat increases DA levels in
prefrontal cortex (PFC) above baseline for approximately 30
min (Feenstra & Botterblom, 1996). Thus, the first rewarded
behavior in a training session is likely to cause frontal corti-

cal DA levels to rise, and the absence of DAT will cause DA
levels in frontal cortex to remain high throughout the training
session. As a result, all synapses that are activated during the
session are likely to be strengthened, regardless of whether
the associated behavior is appropriate or not. Thus, although
DA may facilitate LTP in frontal cortex, it appears to operate
too slowly to serve as a frontal-cortical reinforcement train-
ing signal (Lapish, Kroener, Durstewitz, Lavin, & Seamans,
2007).

6.6.2 Models of Learning in the Striatum and Cortex

The structural changes that accompany LTP and LTD can
be modeled in a variety of ways. One critical decision is
whether to build a discrete-time or a continuous-time model.
This choice largely depends on the nature of the data that
the model will be tested against. If the data have a discrete
trial-by-trial structure (i.e., the time is reset at the beginning
of each trial), as is common in many cognitive-behavioral
experiments, then a discrete-time model should be used be-
cause no data would exist to test the extra assumptions re-
quired of a continuous-time model. On the other hand, when
modeling a continuous-time task (i.e., when the time is reset
only once, typically at the beginning of the experiment), a
continuous-time learning model is required. A cognitive ex-
ample might be a sequence-learning task in which feedback
is provided following each response and there is no pause
between responses.

6.6.2.1 Discrete-time models of learning at synapses
that lack fast DA reuptake. At synapses that lack fast
DA reuptake, synaptic plasticity mimics Hebbian learning.
In frontal cortex, for example, the first rewarded response
should cause DA levels to rise above baseline and subse-
quent rewarded responses will cause DA to remain elevated
for the duration of the training session. As a result, all ac-
tive synapses will be strengthened, regardless of whether
they received correct or error feedback. In this case, the key
phenomena to model are that plasticity depends only on the
product of pre- and postsynaptic activation. Strengthening
of the synapse requires post-synaptic NMDA receptor acti-
vation. Activation below this threshold weakens the synapse.

Let wA,B(n) denote the strength of the synapse on trial n
between presynaptic unit A and postsynaptic unit B, and let
VJ(t) denote the intracellular activation in unit J (J = A or B)
at time t. The key variables to compute are the integrated
alpha functions of units A and B. Suppose the time between
stimulus presentation and response is T . Then define

IJ(T ) =

∫ T

0
f [VJ(t)]dt (12)

for J = A or B. Note that IJ(T ) describes the total postsynap-
tic effect of all spikes produced by unit J during the duration
of the trial. Given these definitions, the following difference



14 ASHBY

equation can used to adjust the strength of the A/B synapse
between trials n and n + 1:

wA,B(n + 1) = wA,B(n)

+ α H [IB(t) − θNMDA] IA(t)
{
1 − e−λ[IB(t)−θNMDA]

}
[1 − wA,B(n)]

− β H [θNMDA − IB(t)] IA(t) e−λ[θNMDA−IB(t)]wA,B(n) (13)

The function H[g(x)] is the Heaviside function that equals 1
when g(x) ≥ 0 and 0 when g(x) ≤ 0. The constant θNMDA rep-
resents the threshold for NMDA-receptor activation. When
postsynaptic activation is right at this threshold then the unit
will produce a certain number of spikes during the trial dura-
tion T . Each spike generates an alpha function and θNMDA is
theoretically equal to the integral of all these superimposed
alpha functions. So the synaptic strengthening term is pos-
itive only on trials when the postsynaptic activation consis-
tently exceeds the threshold for NMDA-receptor activation.
When the synapse is strengthened, note that the amount of
strengthening increases with the product of the presynaptic
activation and an exponentially increasing function of the
postsynaptic activation – similar to all other versions of Heb-
bian learning. The [1 − wA,B(n)] term is a rate-limiting term
that prevents wA,B(n+1) from exceeding 1.0, and the constant
λ scales the postsynaptic activation.

Most Hebbian learning rules do not include any mecha-
nism to decrease synaptic strength. The last term in Eq. (13)
is therefore unusual. First, note that this last term equals 0
except when postsynaptic activation is consistently below the
NMDA-receptor threshold. Second, note that the exponential
term reaches its maximum when postsynaptic activation is
near the NMDA threshold and decreases as the postsynaptic
activation gets smaller and smaller. This is consistent with
the neurobiology. For example, in the absence of any post-
synaptic activation we do not expect any synaptic plasticity.
The wA,B(n) at the end prevents wA,B(n + 1) from dropping
below 0.

Figure 7 shows predicted changes in synaptic strength
[i.e., wA,B(n+1)−wA,B(n)] for this model as a function of the
magnitude of postsynaptic activation during both early [when
wA,B(n) = 0.2] and late [when wA,B(n) = 0.8] learning.

6.6.2.2 Discrete-time models of learning at synapses
with fast DA reuptake. In the striatum, DA reuptake is
fast, so at cortical-striatal synapses LTP and LTD follow a
form of reinforcement learning. One way to model synaptic
plasticity at such synapses is as follows:

wA,B(n + 1) = wA,B(n)
+ α H [IB(t) − θNMDA] H[D(n) − Dbase]

× IA(t)
{
1 − e−λ[IB(t)−θNMDA]

}
[D(n) − Dbase][1 − wA,B(n)]

− β H [IB(t) − θNMDA] H[Dbase − D(n)]

× IA(t)
{
1 − e−λ[IB(t)−θNMDA]

}
[Dbase − D(n)]wA,B(n)

− γ H [θNMDA − IB(t)] IA(t) e−[θNMDA−IB(t)]wA,B(n), (14)

Figure 7. Change in synaptic strength predicted by the Heb-
bian learning model described in Eq. (13) as a function
of amount of postsynaptic activation (here scaled from 0 to
1). Predictions are shown for early in learning [i.e., when
wA,B(n) = 0.2] and late in learning [i.e., when wA,B(n) = 0.8].

where D(n) is the amount of DA released on trial n and Dbase
is the baseline DA level.

Note that the synaptic strengthening term requires two
conditions – postsynaptic activation above the threshold for
NMDA-receptor activation and DA above baseline. Once
these conditions are met, synaptic strengthening is the same
as in the Eq. (13) Hebbian-learning model. Two different
conditions cause the synapse to be weakened. The second
[the last γ term in Eq. (14)] is the same as in the Hebbian-
learning model. The first (i.e., the β term) however, is unique
to striatal-mediated reinforcement learning. Cortical-striatal
synapses are weakened if postsynaptic activation is strong
and DA is below baseline – a condition that would occur
for example, on trials when feedback indicates the trial n re-
sponse was incorrect.

Figure 8 shows predicted changes in synaptic strength
[i.e., wA,B(n + 1) − wA,B(n)] for this model as a function of
the magnitude of postsynaptic activation, separately for early
[when wA,B(n) = 0.2] and late [when wA,B(n) = 0.8] learn-
ing, and following correct and incorrect responses. Note that
synaptic plasticity following correct (rewarded) responses is
similar to plasticity in the Hebbian model (compare the top
panel of Figure 8 with Figure 7). The only real difference
is that learning is attenuated more during late learning in the
reinforcement learning model. This is because DA fluctua-
tions decrease as rewards become more predictable (more on
this in the next subsection). Note that errors have a greater
effect on synaptic plasticity late in learning. This is because
errors are expected early in learning, so DA fluctuations are
small. Late in learning however, when accuracy is high, er-
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Figure 8. Change in synaptic strength predicted by the rein-
forcement learning model described in Eq. (14) as a function
of amount of postsynaptic activation (here scaled from 0 to
1). Predictions are shown for early in learning [i.e., when
wA,B(n) = 0.2] and late in learning [i.e., when wA,B(n) = 0.8],
and following a correct response and an error. (α = 2, β = 4,
γ = 1).

rors are unexpected, which causes a large DA depression and
therefore a large decrease in synaptic efficacy.

6.6.2.3 Modeling DA Release. The Eq. (14) model of
reinforcement learning requires that we specify the amount
of DA released on every trial in response to the feedback
signal [the D(n) term]. The more that DA increases above
baseline (Dbase), the greater the increase in synaptic strength,
and the more it falls below baseline, the greater the decrease.

Although there are a number of powerful models of DA
release, Eq. (14) requires only that we specify the amount
of DA released to the feedback signal on each trial. The
key empirical results are (e.g., Schultz, Dayan, & Montague,
1997; Tobler, Dickinson, & Schultz, 2003): (1) midbrain DA
neurons fire tonically, and therefore have a nonzero baseline
(i.e., spontaneous firing rate); (2) DA release increases above
baseline following unexpected reward, and the more unex-
pected the reward the greater the release, and (3) DA release
decreases below baseline following unexpected absence of
reward, and the more unexpected the absence, the greater the
decrease. One common interpretation of these results is that
over a wide range, DA firing is proportional to the reward
prediction error (RPE) – that is, to the difference between
obtained reward and predicted reward. If we denote the ob-

tained reward on trial n by Rn and the predicted reward by
Pn, then the RPE on trial n is defined as:

RPEn = Rn − Pn. (15)

So positive prediction errors occur when the reward is better
than expected, and negative prediction errors when the re-
ward is worse than expected. Either signals that learning is
incomplete.

A simple model of DA release can be built by specifying
how to compute 1) obtained reward, 2) predicted reward, and
3) exactly how the amount of DA release is related to the
RPE. A straightforward solution to these three problems is
as follows (Ashby & Crossley, 2011). First, in tasks that pro-
vide positive feedback, negative feedback, or no feedback on
every trial and where reward magnitude never varies, then
a simple model can be used to compute obtained reward.
Specifically, define the obtained reward Rn on trial n as +1
if correct or reward feedback is received, 0 in the absence of
feedback, and -1 if error feedback is received.

Second, predicted reward can be computed using a sim-
ple average of past rewards, so long as the average employs
temporal discounting in order to ensure that recent trials are
weighted more heavily than earlier trials. Temporal discount-
ing is critical to make the model sensitive to abrupt changes
in reward probabilities. According to this approach, the pre-
dicted reward on trial n + 1 equals

Pn+1 =
1

S n

n∑
i=1

θn−iRi, (16)

where

S n =

n∑
i=1

θi−1.

So S n is the sum of the weights on each Ri. Note that if
θ = 1 then S n = n and Pn equals the arithmetic mean of all
past rewards. The more θ is reduced below 1, the greater the
temporal discounting. Note that this model of predicted re-
ward is stimulus and response dependent. Because predicted
reward can vary greatly across stimuli and typically depends
on what response is emitted, “trial n + 1” in Eq. (16) should
be interpreted as the (n+1)th occurrence of this same stimulus
and response.

Equation (16) is not the most convenient form for com-
puting predicted reward – in part because it requires starting
the sum from scratch on every trial. A more convenient form
would be one where the current estimate of predicted reward
is updated after each new reward is received. It turns out that
Eq. (16) can be rewritten in such a manner as follows:

Pn+1 = Pn +
1

S n
(Rn − Pn). (17)

Equations in this form are ubiquitous in the reinforcement
learning literature (e.g., Sutton & Barto, 1998) – that is,
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equations where the new estimate (e.g., Pn+1) is constructed
by adjusting the old estimate (e.g., Pn) by a fractional amount
of the prediction error (i.e., Rn − Pn). Models based on this
form include the Rescorla-Wagner Model, temporal differ-
ence learning, SARSA, and Q-learning (e.g., see Sutton &
Barto, 1998). Because of its great importance, a derivation
of Eq. (17) is given next.

Derivation of Eq. (17). Equation (17) is derived from
Eq. (16) as follows:

Pn+1 =
1

S n

n∑
i=1

θn−iRi

=
1

S n

Rn +

n−1∑
i=1

θn−iRi


=

1
S n

Rn + θ

n−1∑
i=1

θn−1−iRi


=

1
S n

Rn +
θS n−1

S n−1

n−1∑
i=1

θn−1−iRi


=

1
S n

(Rn + θS n−1Pn)

=
1

S n
Rn +

θS n−1

S n
Pn.

Next note that θS n−1 = S n − 1. Therefore

Pn+1 =
1

S n
Rn +

S n − 1
S n

Pn

=
1

S n
Rn + Pn −

1
S n

Pn,

from which Eq. (17) follows immediately. �

The final problem is to determine the amount of DA re-
lease associated with every possible value of RPEn. A sim-
ple model was proposed by Ashby and Crossley (2011), who
assumed that the amount of DA release is related to the RPE
in a manner that is consistent with the data reported by Bayer
and Glimcher (2005). Specifically, they assumed that

D(n) =


1 if RPEn > 1
.8RPEn + .2 if − .25 ≤ RPEn ≤ 1
0 if RPEn < −.25.

(18)

Note that the baseline DA level is .2 (i.e., when RPEn = 0)
and that DA levels increase linearly with the RPE. How-
ever, note also the asymmetry between DA increases and
decreases. As is evident in the Bayer and Glimcher (2005)
data, a negative RPE quickly causes DA levels to fall to zero,
whereas there is a considerable range for DA levels to in-
crease in response to positive RPEs3.

6.6.2.4 Continuous-time models of Hebbian learning.
All the learning models considered so far assume the data
come from an experiment with a discrete-trial structure. In
this case, synaptic strengths are updated off-line between tri-
als. However, in continuous-time tasks the updating must
be done in real time. This requires more detail than in the
models we have so far considered. Not surprisingly, fewer
continuous-time models of learning have been proposed.

Even so, one continuous-time model of Hebbian learn-
ing is widely used. This model was motivated by evi-
dence that the magnitude and even the direction of plas-
ticity at a synapse depends not only on the magnitude of
the pre- and postsynaptic activations, but also on the timing
– a phenomenon known as spike-timing-dependent plastic-
ity (STDP). Considerable data show that if the postsynaptic
neuron fires just after the presynaptic neuron then synaptic
strengthening (i.e., LTP) occurs, whereas if the postsynaptic
neuron fires first then the synapse is weakened (e.g., Bi &
Poo, 2001; Sjöström, Rancz, Roth, & Häusser, 2008). Fur-
thermore, the magnitude of both effects seems to fall off ex-
ponentially as the delay between the spikes in the pre- and
postsynaptic neurons increases. Let Tpre and Tpost denote
the time at which the pre- and postsynaptic neurons fire,
respectively. Then a popular model of STDP (e.g., Zhang,
Tao, Holt, Harris, & Poo, 1998) assumes that the amount of
change in the synaptic strength equals

∆ =

e−θ+(Tpost−Tpre), if Tpost > Tpre

eθ−(Tpost−Tpre), if Tpost < Tpre
(19)

Figure 9 shows an example of this function.
To implement this form of Hebbian learning, the strength

of each synapse is updated according to Eq. (19) anytime the
pre- and postsynaptic units both fire.

6.7 Testing CCN Models

CCN models can be tested against a wide variety of data,
including data from single-unit recording, fMRI, and TMS
experiments, as well as behavioral experiments with either
healthy young adults or certain special neuropsychological
patient groups (e.g., Parkinson’s disease patients), who may
or may not be operating under the influence of some drug
(e.g., a DA agonist or antagonist). In most of these cases,
some modeling interface is required to generate the relevant
dependent measure from the neural activations that the mod-
els produce in each of their included brain regions. This sec-

3Bayer, Lau, and Glimcher (2007) subsequently reported that
when the RPE is negative, DA firing remains below baseline for
longer periods the more negative the RPE, suggesting that negative
RPEs may be coded by a combination of firing rate and the duration
of the pause in DA cell firing. This suggests that the dynamic range
of positive and negative RPEs may be more balanced than assumed
by the Eq. (18) model.
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Figure 9. Amount of change in synaptic strength predicted
by STDP as a function of the difference in time between fir-
ing in the postsynaptic neuron (i.e., Tpost) and the presynaptic
neuron (i.e., Tpre).

tion describes the most common of those interfaces and dis-
cusses some special issues that might arise during the mod-
eling process.

6.7.1 Single-Unit Recording Data

One advantage that the spiking-neuron models hold over
the firing-rate models is that only the former can be tested
against single-unit firing data. A two-step process is recom-
mended. During the first step, the models of each neuron
type are separately fit to spike trains collected from single-
neuron patch-clamp experiments. For example, if the Izhike-
vich spiking model is used then the end result of this first
step will be numerical values for all constants in Eq. (3) that
allow the model to provide good fits to the patch-clamp data.
An example is shown in Figure 10.

Because of all the free parameters that are estimated, this
step does not provide a test of the model. For example, be-
cause the patch-clamp data are from a single neuron, the net-
work architecture of the model is irrelevant to goodness-of-
fit. Even so, this step achieves two important goals. First, if
successful, it guarantees that the units of the model have sim-
ilar qualitative dynamics to the neurons they represent. And
second, it fixes most of the free parameters of the model. By
the Set-in-Stone Ideal, all free parameters that are fixed dur-
ing this step must remain at these same fixed values during
all future tests of the model. This is a major advantage of
spiking-unit models over firing-rate models. In most cases,

Figure 10. Patch-clamp recording data from the striatal
TAN of a rat (top panel) and fits of a modified Izhikevich
model under the same experimental conditions (from Ashby
& Crossley, 2011).

all free parameters of firing-rate models must be estimated
during the model-testing process, whereas most free parame-
ters of spiking-unit models can be estimated during this first,
preliminary step. Therefore, when fit to behavioral or fMRI
data, spiking-unit models will typically require estimation of
fewer free parameters than firing-rate models.

During the second step, the model is tested against single-
unit recordings from the same neuron types as in the first
step, except during in vivo recordings made while the animal
is engaged in a behavior as similar as possible to the behav-
ior that is the main focus of study. Since these recordings do
depend on the network architecture, this step does provide
a test of the model. The test is not parameter-free however,
because some parameters will remain un-estimated after step
1. Mostly these will be synaptic strengths between different
connected units in the model.

For example, Ashby and Crossley (2011) used this ap-
proach to test a CCN model of striatal function. They first
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used patch-clamp data to build accurate Izhikevich models
of two prominent striatal neuron types – namely, medium
spiny neurons (96% of all striatal neurons) and TANs (i.e.,
tonically active neurons, which represent 2% of all striatal
neurons; the TAN fit is shown in Figure 10). Next, with
all these parameters held fixed, they showed that their net-
work model accurately accounted for in vivo recordings from
medium spiny neurons and TANs in a variety of different be-
havioral paradigms.

6.7.2 Behavioral Data

Spiking-unit and firing-rate networks produce activation
in a distributed neural network, but without some added as-
sumptions they produce no behavior. So to fit the models
to behavioral data it is necessary to add some assumptions
that describe how neural activation is related to behavior. In
most cases, this process involves three steps. The first is to
identify which brain region in the hypothesized network con-
trols the behavioral response – that is, one must decide where
to place the decision units. The second step is to decide, in
each unit, what function of neural activity should drive the
decision. For example, should the decision be based on the
number of spikes, or the spiking rate, or perhaps on the in-
tegrated membrane potential? Finally, in tasks with multiple
response alternatives, the third step is to decide how to re-
solve the competition among the various competing units in
the critical brain region.

Step 1. What brain region controls behavior? The de-
cision about where to place the decision units depends on
one’s knowledge of the task and the relevant neuroscience
literature, and on one’s modeling goals. In tasks that require
finger or arm movements, typical choices would be the sup-
plementary motor area, dorsal or ventral premotor cortex, or
primary motor cortex. In contrast, if the task requires an eye-
movement response then the critical area may be in the lateral
intraparietal area, the supplementary eye fields, the frontal
eye fields, or the superior colliculus. On the other hand, in
many cases the goal may be to model cognition rather than
the specific motor response that implements the outcome of
the relevant cognitive processes. Ignoring motor processing
simplifies the modeling because all areas downstream of the
critical cognitive region can be omitted. Note that this strat-
egy will underestimate RT since some key synapses will be
omitted, but it might not affect accuracy predictions at all,
especially in tasks where errors are due to cognitive failures,
rather than to simple motor errors. For example, models of
working memory typically assume that the key decision units
are in PFC (e.g., Ashby, Ell, Valentin, & Casale, 2005; Frank,
Loughry, & O’Reilly, 2001), since an extensive literature im-
plicates the PFC as the most critical site for working memory.
As a result, models of working memory often grossly over-
simplify or omit altogether projections from PFC to premotor
and motor cortices.

Step 2. What function of neural activity drives the de-
cision? After the anatomical location of the decision units
has been selected, the next step is to decide what function of
activity in these units will initiate the behavior. With firing-
rate models the obvious choice is to set a threshold on firing
rate. When the threshold is crossed the behavior is initiated.
With spiking-unit models, several choices are possible, but
one especially appealing choice is to set a threshold on the
integrated output alpha function:∫ t

0
f [VB(x)] dx, (20)

where f [ ] is the alpha function defined in Eq. (4). The idea
is to compute this integral continuously and initiate the be-
havior when the threshold is first exceeded. This decision
variable has a number of attractive properties. Most impor-
tantly, it depends on the unit’s output and because we expect
the motor response to be driven by the output of the units in
the decision region, the integrated alpha function is therefore
as close to the behavior as possible without adding another
downstream unit to the model (e.g., in contrast to a choice
such as intracellular voltage, or even the number of spikes
produced).

Step 3. How is a response selected when there are
multiple alternatives? There has been considerable work
on this problem in the field of neuroscience over the past
decade or so. Especially illuminating have been studies in
which single-unit recordings were made from putative deci-
sion neurons during a task in which an animal had to select
among competing motor responses on each trial (for reviews,
see e.g., Bogacz, Wagenmakers, Forstmann, & Nieuwenhuis,
2010; Rangel & Hare, 2010; Wang, 2008). For example, in
an early and influential study, Shadlen and Newsome (2001)
reported that neurons in the lateral intraparietal area reliably
predicted the eye-movement responses of monkeys in a task
that required the animals to determine the direction of mo-
tion of random dot patterns. Furthermore, these neurons dis-
played the push-pull profile that one might expect from a
classic diffusion process – that is, neurons that predicted a
movement of the eyes to the right increased their firing rate
when the correct response to the stimulus was a rightward
movement and decreased their firing rate when the stimu-
lus signaled a leftward movement. The formal correspon-
dence between these properties and the diffusion process was
quickly noted (e.g., Smith & Ratcliff, 2004).

Of course, generalizing the diffusion model to more than
two alternatives is not straightforward, but it is well known
that an accumulator or race model with lateral inhibition
among the channels mimics a diffusion process (Bogacz,
Usher, Zhang, & McClelland, 2007; Usher & McClelland,
2001). Thus, in tasks with more than two response alter-
natives, a sound yet reasonably simple solution is to set a
criterion on each decision unit and allow the first unit that
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crosses this threshold to control the response, but also to
build in lateral inhibition among all decision units (McMillen
& Holmes, 2006; Usher & McClelland, 2001).

For example, suppose each of M decision units is mod-
eled via the quadratic integrate-and-fire model described by
Eq. (2). Suppose the Jth of these units receives input from
m units in an earlier layer (or brain structure). Then we can
model the lateral inhibition among output units on unit J via:

dVJ(t)
dt

= α

m∑
i

f [Vi(t)] + β + γ [VB(t) − Vr] [VB(t) − Vt]

− ω

M∑
I,J

f [VI(t)] (21)

The last term is a standard model of lateral inhibition (e.g.,
Usher & McClelland, 2001). Note that this model assumes
that the total amount of lateral inhibition on unit J is an in-
creasing function of the total amount of activation in all out-
put units.

6.7.3 FMRI Data

One of the great advantages of CCN models over tradi-
tional cognitive models is that they can be tested against
fMRI and other neuroscience data. CCN models predict
changes in neural activation in a variety of different brain
regions and fMRI records an indirect measure of neural acti-
vation. Thus, fMRI provides a natural platform from which
to test CCN models. Nevertheless, some challenges must
be overcome to take full advantage of fMRI methodology.
First, CCN models make direct predictions about neural ac-
tivation, but they do not make direct predictions about the
blood-oxygen-level-dependent (BOLD) signal that is most
commonly measured in fMRI experiments. Thus, the first
problem is to generate predicted BOLD responses from the
model’s predicted neural activations. Second, CCN mod-
els make anatomic predictions about where the task-related
changes in neural activation should be found, but they typ-
ically do not make predictions that are specific enough to
identify a small set of voxels in the region of interest (ROI)
that could be used to test the model. For example, a model
might specify that during a certain period of a working mem-
ory task, a specific type of activation should occur in dorso-
lateral PFC (dlPFC). However, such a model would gener-
ally not predict that every voxel in dlPFC would show this
activation pattern – only that some would. So, a second sig-
nificant problem that must be solved is to identify exactly
which voxels within dlPFC should be used to test the model.
Finally, a third problem is to compare the observed and pre-
dicted BOLD responses in the selected voxels and to decide
on the basis of this comparison whether the model succeeds
or fails at accounting for the results of the experiment.

Although a variety of similar solutions to these problems
have been proposed (Ashby & Waldschmidt, 2008), within

the past few years consensus has settled on an approach,
called model-based fMRI, that fully exploits current fMRI
data-analysis software packages (O’Doherty, Hampton, &
Kim, 2007). The basic idea is to first fit the model to the
behavioral data collected during the scanning session sepa-
rately for each participant. Next, parameter estimates from
the model fits are used to generate predicted neural activa-
tions that are unique for every participant. The third step is to
generate a predicted BOLD response from each brain region
in the model, and then to correlate these predictions with ob-
served BOLD responses from every voxel in the brain. These
two steps can be performed by any of the popular fMRI data-
analysis software packages. Finally, all the resulting correla-
tions are assessed for statistical significance.

Model-based fMRI can be used to account for individ-
ual differences in fMRI data, but if the computational model
is good, it can also be used to identify brain regions that
respond selectively to components or sub-processes of the
task. In particular, if the model has different parameters that
describe different perceptual or cognitive processes that are
presumed to mediate the behavior under study, then differ-
ent regressors can be created that make specific predictions
about each of these processes. For example, O’Doherty et al.
(2004) used this approach to identify separate brain regions
associated with the actor versus the critic in actor-critic mod-
els of reinforcement learning.

Steps 1 & 2. Generating predicted neural activations
The first step is to fit the model separately to the behavioral
data collected from each participant during the scanning ses-
sion. Details on this process are given in the section entitled
“Parameter Estimation and Model Evaluation.” After this fit-
ting process is complete, each participant will be character-
ized by a unique set of parameter estimates. The second step
is to use these estimates to generate predicted neural acti-
vations for each brain region identified by the model. The
critical issue to consider here is spatial resolution. A typical
voxel size in fMRI is 23 to 33 mm3. So the goal of this step
should be to produce the model’s best estimate of total neural
activation in regions of about this size. This typically means
that activations from all neurons within the same specified
brain region should be added together.

Logothetis and colleagues reported evidence that the
BOLD response is more closely related to local field po-
tentials than to the spiking output of individual neurons
(Logothetis, 2003; Logothetis, Pauls, Augath, Trinath, &
Oeltermann, 2001). Local field potentials integrate the field
potentials produced by small populations of cells over a sub-
millimeter range, and they vary continuously over time. So if
the CCN model is constructed from spiking units, the spike
trains produced by the model must be converted to local field
potentials. This can be done by lowpass filtering each spike.
Fortunately, this is exactly the operation performed by the al-
pha function. So with spiking-unit models, after the scanning
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task is simulated (separately for each participant) every spike
within each brain region is used to trigger an alpha function
and these are all added together to mimic the spatial sum-
mation that occurs during fMRI. These summed alpha func-
tions represent the predicted local field potentials during the
scanning session with the corresponding brain region. Pre-
dicted activation in firing-rate models is already temporally
smoothed, so with firing-rate models no extra low-pass filter-
ing is needed.

Step 3. Generating predicted BOLD responses The
fMRI BOLD response increases with the amount of oxy-
genated hemoglobin in a voxel relative to the amount of de-
oxygenated hemoglobin (Ogawa, Lee, Kay, & Tank, 1990).
In comparison with the neural activation that presumably
drives it, the BOLD response is highly sluggish, reaching a
peak around 6 sec after the neural activation that induced it,
and slowly decaying back to baseline 20–25 sec later. Almost
all current applications of fMRI assume that the transforma-
tion from neural activation to BOLD response can be mod-
eled as a linear, time-invariant system (e.g., Boynton, Engel,
Glover, & Heeger, 1996).

In the linear systems approach, one can conceive of the
vascular system that responds to a sudden oxygen debt as a
black box in which the input is neural activation, and the out-
put is the BOLD response. If the system is linear and time
invariant, then it is well known that the BOLD response at
time t, denoted by B(t), to any neural activation N(t) can be
written as

B(t) =

∫ t

0
N(x)h(t − x)dx. (22)

Equation (22) is the well-known convolution integral that
completely characterizes the behavior of any linear, time-
invariant system (see, e.g., Chen, 1970). The function h(t) is
traditionally called the impulse response function because it
describes the response of the system to an input that is a per-
fect impulse. In the fMRI literature, however, h(t) is known
as the hemodynamic response function, often abbreviated as
hrf. The hrf is the hypothetical BOLD response to an ideal-
ized impulse of neural activation, typically peaking at 6 sec
and lasting for 30 sec or so. Thus, predicted BOLD responses
can be generated from the model by numerically convolving
the predicted neural activations with a suitable model of the
hrf. Popular fMRI data analysis software packages such as
SPM and FSL will perform the numerical convolution. All
the user needs to do is supply a vector that contains the pre-
dicted neural activation at each TR of the scanning session
and specify a functional form for the hrf. Many alternative
models of the hrf have been proposed (e.g., a common choice
is a gamma function), and the packages allow the user con-
siderable flexibility with respect to this choice. For a com-
plete description of this entire process, see Ashby (2011).

Step 4. Comparing predicted and observed BOLD re-
sponses Once predicted BOLD responses have been com-

puted, the next step is to correlate these predictions with
the observed BOLD responses in every voxel. All popu-
lar fMRI software packages routinely compute these corre-
lations by using the general linear model (GLM) of statistics
(see Ashby, 2011, for details). The standard analysis converts
each correlation coefficient to the z- or t-statistic associated
with the null hypothesis that the correlation is zero. The re-
sult is a z-statistic (for example) in every voxel in the brain,
which collectively are known as a statistical parametric map
(SPM).

Step 5. Assessing statistical significance The final step
is to make a statistical significance decision about every z-
statistic in the SPM. Of course with only one such deci-
sion the solution to this problem is taught in every introduc-
tory statistics course, but spatial resolution is high enough
with modern imaging equipment that an adult human brain
might be characterized by several hundred thousand voxels,
and therefore several hundred thousand simultaneous signif-
icance decisions are required. To complicate matters further,
spatial correlations guarantee that the separate statistics are
not independent. Although there is no optimal solution to this
problem, many different alternative methods have been pro-
posed for correcting for this huge number of multiple com-
parisons. Current software packages allow the user to choose
among many of these alternative solutions (again, see Ashby,
2011, for details).

This correlational analysis can be used in either a con-
firmatory or exploratory manner. The confirmatory analy-
sis is to check whether significant correlations appear in the
brain regions predicted by the model. Most CCN models
will predict different neural activations in each brain region
included in the model. The strongest possible confirmatory
result would be that voxels in which the observed BOLD re-
sponse is significantly correlated with the predicted BOLD
response in one of these regions appear in that region but not
in any of the other regions in the model, and that a similar
unique confirmation is found for every hypothesized brain
region. So for a model that includes brain regions A, B, and
C, voxels where the BOLD response correlates with the pre-
dicted BOLD response in region A are found in region A, but
not in regions B or C, and voxels where the BOLD response
correlates with the predicted BOLD response in region B are
found in region B, but not in regions A or C (and similarly
for region C).

The exploratory analysis is to identify brain regions that
are not in the model in which the observed BOLD response
is nevertheless correlated with the predicted BOLD response
for some region in the model. Such correlations could ex-
ist for a number of reasons, including because the model is
incomplete.
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6.7.4 TMS Data

TMS uses a small device to direct focused electromag-
netic pulses through the skull of human participants. The
stimulation typically targets a specific cortical site that was
previously identified using high-resolution MRI. Many stud-
ies have used TMS to investigate the causal role of some
specific cortical region in a particular cognitive process or
behavior (e.g., Sandrini, Umiltà, & Rusconi, 2011).

Most current TMS studies use theta-burst stimulation,
with typical protocols delivering a burst of 3 pulses at 50 Hz
(i.e., 20 ms between each pair of pulses) and then repeating
this pattern for as long as several minutes. Theta-burst TMS
induces electrophysiological changes in the targeted site that
last up to 60 min, and behavioral changes in tasks that de-
pend on that site for a similar time period (Huang, Edwards,
Rounis, Bhatia, & Rothwell, 2005). The current thinking is
that theta-burst TMS induces long-term changes in synaptic
plasticity within targeted regions by altering the pattern of
Ca2+ influx through post-synaptic NMDA receptors (Huang,
Rothwell, Chen, Lu, & Chuang, 2011). Whether synaptic
strengthening or weakening are potentiated depends on the
exact stimulation protocol. For example, a continuous 40
sec train of 3-pulse bursts has a long-term inhibitory effect,
whereas a 2 sec train of 3-pulse bursts that is repeated every
10 sec for 3 min causes a long-term facilitatory effect. Huang
et al. (2011) developed a mathematical model that accurately
predicts the long-term effects of a wide variety of different
theta-burst protocols.

In most TMS experiments the data of primary interest are
behavioral (i.e., RTs and accuracies). The goal is typically to
investigate how the TMS affects these behavioral measures.
CCN models that assign a functional role to the cortical re-
gion targeted by the TMS can be tested against the resulting
data. A particularly simple way to model the effects of theta-
burst TMS within the CCN framework that is nevertheless
consistent with the Huang et al. (2011) theory is to assume
that TMS changes θNMDA in Eqs. (13) and (14) – that is,
it changes the threshold for NMDA-receptor activation. In-
creasing θNMDA simulates a reduction in Ca2+ influx and will
cause more synaptic weakening and less strengthening. In
contrast, decreasing θNMDA simulates an increase in Ca2+ in-
flux and causes less synaptic weakening and more strength-
ening. For example, Helie, Roeder, Vucovich, Rünger, and
Ashby (2015) used this approach to show that their proposed
CCN model of automatic sequence production successfully
accounted for the interfering effects of TMS to the supple-
mentary motor area on the RT speed-up that normally occurs
during sequence learning (e.g., where the TMS data were re-
ported by Verwey, Lammens, & van Honk, 2002).

6.7.5 Pharmacological and Neuropsychological Patient
Data

Many CCN models also make predictions about how per-
formance should change in relevant tasks when participants
perform the task under the influence of certain medications
or drugs, or when the participants are from some special neu-
ropsychological population. For example, because the rein-
forcement learning model described in Eq. (14) includes a
term that depends on the amount of DA released on each
trial, any CCN model that uses this reinforcement learning
algorithm should make specific predictions about how per-
formance should be affected by any drug or neuropsycholog-
ical condition that alters brain DA levels. This would include
DA agonists and antagonists, and neuropsychological condi-
tions such as Parkinson’s disease. For example, Hélie, Paul,
and Ashby (2012a, 2012b) used this approach to account for
a variety of cognitive deficits that occur during Parkinson’s
disease and to account for the beneficial effects of positive
mood on rule-based category learning.

6.8 Parameter Estimation and Model Evaluation

It is almost always impossible to derive predictions from
CCN models analytically. Even the simplest CCN models
are typically described by a rather large set of simultane-
ous nonlinear differential equations. At best these can be
solved numerically. However, most CCN models will in-
clude noise terms, in which case the differential equations
become stochastic. In this large majority of cases, Monte
Carlo simulation is almost always necessary.

Finding best-fitting values of the parameters is a notori-
ously difficult problem when the model predictions are noisy
and require simulation. The typical approach is to simu-
late many independent and identical subjects and then treat
the mean of all these simulations as the model predictions.
This can be time consuming and of course the resulting pre-
dictions will still be noisy and therefore standard minimiza-
tion algorithms are not appropriate. Fortunately, genetic al-
gorithms (e.g., Haupt & Haupt, 2004) can often be used
successfully. For example, Cantwell, Crossley, and Ashby
(2015) estimated parameters of a spiking-unit CCN model
using particle swarm optimization (Clerc, 2012), which cre-
ates a population of potential solutions (the “particles”) and
then iteratively moves these particles in parameter space ac-
cording to both their historically best position, and the best-
known position of their neighborhood. Due to the stochastic
nature of the models, the “function” to be optimized (e.g.,
sum of squared errors) is not strictly a function at all. Hence,
particle swarm optimization, which makes very few assump-
tions about the form of the problem, is an appropriate tool
where traditional optimization routines will fail. After pa-
rameter estimation was complete, Cantwell et al. (2015) ran
an additional 100 simulations with the best-fitting parameter
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values and the model predictions were computed by taking
the mean across all 100 simulations.

The inflexibility of CCN models (i.e., see the section en-
titled “Advantages of CCN Modeling”) eases the parameter
estimation process. Small changes in almost any parameter
usually cause only a negligible change in the model’s predic-
tions, and therefore small errors in the parameter estimation
process will generally have little or no effect on any con-
clusions that are drawn about the empirical validity of the
model. For example, following a crude parameter estimation
process, Ashby and Crossley (2011) implemented a sensitiv-
ity analysis in which the most important parameters in their
spiking-unit CCN model were successively changed by -1%,
-10%, +1%, and +10%. After each change, the behavior of
the model was simulated under the same experimental condi-
tions that were used to generate the data the model was tested
against. Next, after each new simulation, the correlation was
computed between the predictions of the best-fitting model
and the predictions generated from the new version of the
model. In all except one case, these correlations exceeded
.99, suggesting that the model makes the same qualitative
predictions for a wide range of each of its parameters. The
only exception occurred for a +10% increase in a response
threshold parameter [i.e., the threshold mentioned in the dis-
cussion of Eq. (20)]. In this case, the correlation was .74.
Importantly, however, even in this case, the perturbed model
predicted the same qualitative pattern to the data as the best-
fitting version of the model.

This inflexibility also means that parameter space parti-
tioning (PSP; Pitt, Kim, Navarro, & Myung, 2006) will of-
ten allow stronger inferences when applied to CCN mod-
els than when applied to traditional process-level models.
PSP determines what different kinds of qualitative data pat-
terns a model can predict by systematically exploring the
model’s entire parameter space. Specifically, it uses an ef-
ficient Markov chain Monte Carlo search algorithm to com-
pute the volume of parameter space over which the model
can account for each different qualitative data pattern.

PSP is an especially effective method for rejecting a model
because if observed data show a particular qualitative pattern
and the PSP indicates that the volume of parameter space
where the model can mimic this pattern is 0, then the model
can be rejected. Of course, flexible models can fit more dif-
ferent types of data patterns, so the more flexible the model
the less that can be learned from PSP. With CCN models
however, PSP can lead to some strong inferences. For exam-
ple, Valentin, Maddox, and Ashby (2016) used PSP to show
that CCN models based on current theories of DA release are
incompatible with observed effects of aggregate feedback on
procedural learning. Similarly, Paul and Ashby (2013) used
PSP to show that a large class of CCN models could only
account for empirical interactions between declarative and
procedural memory systems by predicting the existence of an

as-yet undiscovered neuroanatomical projection from cortex
to the striatum.

6.9 Conclusions

The birth of mathematical psychology did not signal the
advent of mathematical modeling in psychology. For ex-
ample, Fechner, Thurstone, and Hull all incorporated heavy
doses of modeling into their research programs. Even so,
these were all descriptive models, or in the language of Marr
(1982), computational-level models. The birth of mathemat-
ical psychology could be seen as the beginning of process
or algorithmic-level modeling in psychology. Stimulus sam-
pling theory (Estes, 1950) sparked a revolution – not be-
cause it was the first mathematical model of learning (e.g.,
see Hull, 1943) – but at least in part because it was the
first algorithmic-level model. Now, more than a half century
later, it may be time to move to the next level of modeling –
namely the implementational level. CCN represents a serious
attempt to take this next step.

CCN presents new challenges to mathematical psychol-
ogy. Some basic knowledge of neuroscience is required and
parameter estimation tends to be more difficult than with
many traditional process models. Even so, the potential ben-
efits are significant. These include 1) model convergence, be-
cause different researchers must respect similar neuroscience
constraints, 2) faster rejection of poor models, because of the
mathematical inflexibility of CCN models, 3) the ability to
test models against a much wider spectrum of data types, and
4) the potential to unite disparate fields when common brain
regions are implicated in seemingly unrelated behaviors.
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