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Abstract Identifying the strategy that participants use in
laboratory experiments is crucial in interpreting the results
of behavioral experiments. This article introduces a new
modeling procedure called iterative decision-bound model-
ing (iDBM), which iteratively fits decision-bound models
to the trial-by-trial responses generated from single partic-
ipants in perceptual categorization experiments. The goals
of iDBM are to identify: (1) all response strategies used by
a participant, (2) changes in response strategy, and (3) the
trial number at which each change occurs. The new method
is validated by testing its ability to identify the response
strategies used in noisy simulated data. The benchmark sim-
ulation results show that iDBM is able to detect and identify
strategy switches during an experiment and accurately esti-
mate the trial number at which the strategy change occurs in
low to moderate noise conditions. The new method is then
used to reanalyze data from Ell and Ashby (2006). Apply-
ing iDBM revealed that increasing category overlap in an
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information-integration category learning task increased the
proportion of participants who abandoned explicit rules, and
reduced the number of training trials needed to abandon
rules in favor of a procedural strategy. Finally, we discuss
new research questions made possible through iDBM.

Keywords Decision-bound modeling · Response
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Identifying the strategy used by participants in laboratory
experiments is crucial in interpreting the results of behav-
ioral experiments. For example, participants can add num-
bers either by using an algorithm or memory retrieval (if
they remember calculating that sum in the past) in an exper-
iment requiring arithmetic skills (Logan, 1988). Without the
possibility of identifying which strategy is being used, it is
difficult to interpret dependent variables such as response
times and response accuracy. Ashby and Gott (1988) first
proposed the “randomization technique” to address this
issue in perceptual categorization. This article extends their
technique in order to detect the presence and moment of
changes in response strategy.

In a basic categorization experiment, the participant sees
one stimulus on each trial, and assigns each of these stim-
uli to a category by pressing a response key (e.g., either the
key associated with a category A response or the key associ-
ated with a B response). Feedback indicating the correctness
of the response is typically (but not always) presented after
each response. The randomization technique can be used to
identify the response strategy used with stimuli that vary
on any number of perceptual dimensions, but most applica-
tions have used stimuli that vary on only two dimensions.
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Some examples are shown in Fig. 1. In this figure, each
symbol denotes the values of the stimulus on the two stim-
ulus dimensions, and the symbol color denotes the category
membership of each stimulus. The diagonal line describes
the optimal decision strategy.

Figure 1 color codes each stimulus according to its true
category membership. An alternative representation, shown
in Fig. 2, is to color code each stimulus according to
the response the participant made when that stimulus was
presented. We will denote this representation as the deci-
sion space. Whereas the stimulus space is defined by the
experimenter and typically is the same for all participants,
each participant generates his or her own decision space.
Example decision spaces for two hypothetical participants
presented with the Fig. 1 categories are shown in Fig. 2.

In traditional decision-bound modeling (DBM, Ashby,
1992; Maddox&Ashby, 1993), the experimenter fits a num-
ber of statistical models to the data in the decision space in
an attempt to determine the type of decision strategy that
the participant used. DBM assumes that participants parti-
tion the perceptual space into response regions. On every
trial, the participant determines which region the percept
is in, and then emits the associated response. Three dif-
ferent types of models are typically fit to the responses of
each individual participant: models that assume the partici-
pant guessed at random on every trial, models that assume
an explicit reasoning strategy, and models that assume a
procedural strategy. None of these models make detailed
process assumptions, in the sense that a number of differ-
ent process accounts are compatible with each of the models
(e.g., Ashby, 1992). For example, if a procedural model fits
significantly better than an explicit reasoning model, then

Fig. 1 Example of two-dimensional stimulus space. Each symbol
denotes a different stimulus. The coordinates of each symbol denote
the numerical values of the stimulus on the two stimulus dimen-
sions, and the symbol color denotes the category membership of each
stimulus. The diagonal line describes the optimal decision strategy

Fig. 2 Hypothetical decision spaces from two participants. As in
Fig 1, the coordinates of each symbol denote the numerical values of
the stimulus on the two stimulus dimensions. In this case, however, the
color of each symbol denotes the category decision made by the par-
ticipant. The solid line bound describes the best-fitting decision-bound
model

we can be confident that participants did not use a sim-
ple explicit rule (e.g., “respond A if the stimulus value on
dimension x is low and respond B if the value is high”), but
we could not specify which specific non-rule-based strategy
was used (e.g., a weighted combination of the two dimen-
sions versus more holistic memory-based processing). In
the Fig. 2 examples, the participant whose decision space is
shown in panel (a) is classified as using a procedural strat-
egy, whereas the panel (b) participant is classified as using
a simple explicit rule.

DBM has been used in hundreds of articles during the
past 25 years to identify the response strategies of partic-
ipants in perceptual categorization experiments. In head-
to-head comparisons, it frequently provides better fits to
categorization data than the best exemplar models (Ashby &
Lee, 1991; Maddox & Ashby, 1993; Maddox et al., 2002),
and it successfully classifies participants by strategy use
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(i.e., explicit versus procedural) in a way that accounts for
more than 20 different empirical dissociations between rule-
based (RB) and information-integration (II) categorization
tasks (e.g., Ashby & Valentin, 2016).1 Even so, one seri-
ous limitation of DBM is that it assumes that the participant
uses the same decision strategy on all trials used during the
model-fitting process. Of course, we expect the participant’s
decision strategy to change during the course of learning,
and a number of studies have documented such changes
(Haider & Frensch, 1996; Kalish et al., 2005; Logan, 1988).
Overall, these results suggest that participants change their
response strategy when two conditions are met: (1) a suffi-
cient number of errors have occurred, and (2) the participant
is aware of an alternative strategy. Since these conditions
are often satisfied in categorization experiments, strategy
changes are likely common, and unfortunately difficult to
detect.

This article introduces a new modeling procedure, called
iterative decision-bound modeling (iDBM), which fits
DBMs in a trial-by-trial iterative fashion. The goal of this
new approach is to identify: (1) all response strategies used
by a participant, (2) changes in response strategy, and (3)
the trial number at which each change occurs. The remain-
der of this article is organized as follows. First, the next
section briefly reviews DBM. Second, iDBM is introduced
and validated using benchmark simulated data. Third, the
data reported by Ell and Ashby (2006) are re-analyzed using
iDBM. This study explored the effects of varying amounts
of category overlap on response strategies during percep-
tual categorization. The original article used standard DBM
to determine the decision strategy of each participant. The
new analysis with iDBM allows us to sort participants in the
same way, but it also allows us to estimate how many times
each participant switched strategies and the trial number at
which each switch occurred. Hence, new conclusions can
be drawn about the effects of category overlap on strategy
selection. Fourth, the article concludes by discussing new
research questions made possible by iDBM.

Decision-bound models

Decision-bound models are a special case of general
recognition theory (GRT, Ashby & Soto, 2015; Ashby &
Townsend, 1986), which is a multidimensional generaliza-
tion of signal detection theory. As in GRT, DBMs assume
that both the stimuli and the perceptual systems are noisy.

1RB tasks are those where optimal accuracy is possible with a simple
explicit rule (e.g., “stimuli with thick bars are in A and stimuli with thin
bars are in B”), whereas II tasks are those in which optimal respond-
ing requires participants to integrate information from more than one
stimulus dimension at a pre-decisional level (e.g., as in Fig. 1). For a
more thorough discuss, see e.g., Ashby and Maddox (2005).

Hence, every time a stimulus is presented it elicits a new
and unique percept, even if the stimulus has been previously
encountered. Each percept is represented by a point in a
multi-dimensional perceptual space (one dimension for each
stimulus dimension), and the set of all possible percepts is
represented by a multivariate probability distribution. GRT
and DBMs assume that the participant’s decision process
divides the perceptual space into response regions. On each
trial, the decision process notes which region the percept is
in and then emits the associated response.

GRT is often applied to identification experiments in
which the stimuli are all highly confusable. In this case,
errors are often made because of perceptual confusions. As
a result, GRT models typically allocate many parameters to
the perceptual distributions. For example, it is not uncom-
mon to allow the means of each perceptual distribution to
be free parameters and to allow the perceptual distributions
associated with the different stimuli to all have different
variances and covariances (e.g., Ashby & Soto, 2015). In
category-learning experiments like the one illustrated in
Fig. 1, perceptual confusions are inevitable. However, most
errors are not caused by such confusions, but rather by
the application of a suboptimal decision strategy. For this
reason, DBM uses a highly simplified perceptual repre-
sentation relative to the most general versions of GRT. In
particular, DBM assumes that the mean of each percep-
tual distribution equals the stimulus coordinates and that all
perceptual distributions have equal variances on every per-
ceptual dimension and that all covariances equal zero. These
assumptions leave only one free perceptual parameter—
namely the common perceptual variance, denoted by σ 2

p .
All DBMs make the same perceptual assumptions. Three

different classes of models can be constructed depending
on what assumptions are made about the decision pro-
cess. These three classes are described in the following
subsections.

Explicit-reasoning models

Explicit reasoning models assume the participant uses an
explicit rule that is easy to describe verbally (Ashby et al.,
1998). This means that all models in this class only include
decision bounds that are perpendicular to one or more stim-
ulus dimensions. The most widely used models in this class
assume that participants set a decision criterion on a sin-
gle dimension. For example, a participant might base his or
her categorization decision on the following rule: “Respond
A if the bars are narrow; respond B if the bars are wide.”
These one-dimensional classifiers have two free parameters:
a decision criterion along the relevant perceptual dimen-
sion (e.g., bar width), and the perceptual noise variance.
Figure 2b shows responses from a hypothetical participant
that were best fit by a DBM of this type.
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More complex explicit-reasoning models assume a two-
dimensional rule such as a logical conjunction (e.g.,
“Respond A if the bars are narrow and the bar orientation
is steep; otherwise respond B”) or a unidimensional dis-
junction (e.g., “Respond A if the bars are of intermediate
width; respond B if the bars are narrow or thick”). Both of
these more complex model examples have three free param-
eters: one for each decision criterion, as well as a (common)
perceptual noise variance.

Procedural-learning models

Procedural-learning models assume that perceptual infor-
mation from all relevant dimensions is integrated before
a decision is made. This sharply contrasts with explicit-
reasoning models, which assume participants make sepa-
rate decisions about each relevant stimulus dimension, and
then combine these decisions if more than one criterion
is needed. The integration of information in a procedural-
learning model can be linear or nonlinear. The most common
application assumes linear integration, and the resulting
model is known as the general linear classifier (GLC). The
GLC assumes that participants divide the stimulus space
using a linear decision bound. One side of the bound is asso-
ciated with an “A” response, and the other side is associated
with a “B” response. The GLC has three parameters: the
slope and intercept of the linear decision bound, and a per-
ceptual noise variance. The responses of the hypothetical
participant illustrated in Fig. 2a are best fit by the GLC.

Note that diagonal bounds encourage procedural
response strategies because they are incompatible with
explicit verbal rules. For instance, “respond A if the bars are
thicker than they are steep” is a verbal rule that describes a
diagonal bound, but this rule has low saliency because bar
thickness and bar angle are non-commensurable stimulus
dimensions.

Guessing models

Guessing models assume that the participant guesses ran-
domly on every trial. All versions assume the probability
of responding “A” (and therefore also the probability of
responding “B”) is the same for every stimulus. As a result,
perceptual noise cannot change these predicted probabilities
and so there is no need to account for perceptual noise in
the guessing models. Because of this, guessing models do
not include a noise variance parameter. Two types of guess-
ing models are common. One version assumes that each
response is selected with equal probability. This model has
no free parameters. A second model, with one free param-
eter, assumes that the participant guesses response “A” with
probability p and guesses “B” with probability 1−p, where
p is a free parameter. This model is useful for identifying

participants who are biased toward pressing one response
key.

Model fitting

In regular applications of DBM, each model is fit sepa-
rately to the responses of every individual participant. The
data of each participant are usually divided into blocks of
at least 50 trials, but blocks of 100 or more trials are com-
mon. The models are then fit to single blocks of data.
Model parameters are estimated using maximum likeli-
hood (Ashby, 1992), and the best fitting model is typically
selected via the Bayesian information criterion (BIC):

BIC = r × ln(N) − 2 × ln(L) (1)

whereN is the block size, r is the number of free parameters
in the model, and L is the likelihood of the data given the
model (Hélie, 2006). The BIC statistic penalizes a model for
bad fit and for extra free parameters. To find the best model
among a set of competitors, one simply computes a BIC
value for each model and then chooses the model with the
smallest BIC. It is important to note that we only use BIC to
penalize models for additional free parameters. We are not
assuming that the true model is one of the fitted models, and
therefore we make no attempt to use BIC scores to estimate
model probability or likelihood (Neapolitan, 2004).

Limitations of DBM

As mentioned earlier, one inherent limitation of the DBM
method is that it assumes that the participant uses the same
decision strategy on every trial. This assumption makes
the most sense for later blocks in the experiment—after
accuracy has reached asymptote. For the earliest blocks,
however, this assumption is probably almost always false.
To minimize the problems that can arise from strategy
switching, applications of DBM that fit models to data col-
lected early in a session usually reduce block size down to
50 trials or so. But even this strategy will fail unless the par-
ticipant happens to coincidentally only switch strategies on
trials 51 and 101. Otherwise, the responses in the first block
of trials, for example, will be generated from multiple dif-
ferent decision strategies, and as a result, all decision-bound
models will provide poor fits to the data. The next section
introduces a new fitting method called iDBM that addresses
these limitations.

Iterative decision-bound modeling (iDBM)

Early models that assumed category learning is mediated
by multiple systems, including both COVIS and ATRIUM,
assumed trial-by-trial switching between the competing
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systems (Ashby et al., 1998; Erickson & Kruschke, 1998).
No statistical method could possibly identify such fre-
quent strategy switches. However, more recent studies have
reported that trial-by-trial strategy switching is extremely
difficult—in fact, so difficult that few participants
succeed even after training (Ashby & Crossley, 2010;
Erickson, 2008). These data suggest that strategy switches
are less common than originally thought, and therefore
that they might be identified via a statistical modeling
approach. iDBM is an attempt to solve this statistical
problem.

iDBM is a generalization of classical DBM that attempts
to identify every strategy change by each participant. The
end result is a list of all strategies used by the participant,
along with the trial numbers during which each strategy
was used. Thus, iDBM also tries to identify the exact trial
number when each strategy shift occurred. This extra infor-
mation, not provided by classical DBM, may provide a
better understanding of individual differences in category
learning and allow for stronger tests of category-learning
theories and models. For example, COVIS (Ashby et al.,
1998) predicts that participants are biased towards the use
of simple rules early in category learning, and that only
after they have abandoned explicit strategies will they con-
sider procedural strategies, even in II tasks where procedural
strategies are optimal. Unfortunately, this strong prediction
of COVIS is largely unexplored due to the unavailability
of a method capable of observing strategy shifts early in
learning.

iDBM uses classical DBM as its starting point. Define
the DBMs described above as basic models. With stimuli
that vary on two dimensions, there are four basic mod-
els: (1) guessing, (2) one-dimensional explicit rule models
that base their response on the value of the stimulus on the
x-dimension (1DX), (3) one-dimensional rule models that
base their response on the value of the stimulus on the y-
dimension (1DY), and (4) the GLC. iDBM assumes that
during the course of the experimental session, each partici-
pant switches among basic models some unknown (although
reasonably small) number of times. Thus, both the num-
ber of strategy switches, and the trial numbers when those
switches occur are unknown. For an entire session of data,
this leaves open an enormous number of possible combina-
tions of basic models. iDBM uses an iterative approach to
sort through all these and find the one combination that pro-
vides the best account of the responses of each individual
participant.

A basic model is a single DBM. A switch model is a
model composed of 2 basic models, and a parameter η iden-
tifying the switch trial (the trial on which a strategy switch
occurs). For example, a switch model may correspond to a
participant guessing from the first trial of the block through
trial η−1 and then switching to a 1DX strategy beginning on

trial η and continuing until the end of the block. With the 4
basic models described above, there are 4×4 = 16 possible
switch models. These include cases where the participant
switches between two different instances of the same basic
model (e.g., switching from a GLC with a positive slope to
a GLC with a negative slope). The number of free param-
eters for switch models is the sum of the number of free
parameters of the basic models composing the switch model
plus one (i.e., η). Hence, with the basic models defined in
this article, the number of free parameters in switch mod-
els varies from 3 (guessing → guessing) to 7 (GLC →
GLC).

The fitting algorithm is described in Table 1. As can be
seen, the general idea is to first load the data into a fit
window and then fit all the switch models and the basic
models to the data in this window. Note that η is included
as a regular parameter and estimated at the same time as
the model parameters. The best-fitting model by BIC is
then selected (Eq. 1). The fit window size is then increased
by one trial and the models are all refit. This is repeated
until the algorithm settles on the same best-fitting model
for s consecutive iterations and the estimated switch trial
(η) falls consistently within a predefined range. When these
conditions are met, a strategy switch is identified accord-
ing to the consistently selected model, and the switch trial
is set to the average of the estimated switch trials (η) for
the consistent run. The fit window is then reduced back to
its original size and slid to begin on the identified strategy
switch trial (η). The fitting procedure is then repeated until
one runs out of data. Note that it is possible that a basic
model is consistently identified as the best-fitting model.
This would indicate that the participant consistently used
a single response strategy throughout the entire session (in
this case, η is not estimated).

As an illustration, suppose we choose an initial fit win-
dow size of n = 50 and we set the number of consecutive
consistent model iterations to s = 10. iDBM would then
take trials 1...50 and fit all the basic models and all the
switch models and keep the best model according to BIC.
For example, the best fit might be by a switch model that
switches from a one-dimensional strategy on dimension X
to the GLC (i.e., 1DX → GLC) on trial 35 (i.e., η = 35).
The procedure would then be repeated with trials 1...51, and
then with trials 1...52, and so on until the same best model
is selected at least 10 consecutive times and the variance of
the estimated ηs is smaller than a predefined criterion (i.e.,
t in Table 1). At that point, a switch is identified using the
selected model (e.g., from 1DX to GLC), and the estimated
switch trial (η) is set to the mean of the estimated ηs for the
last 10 model fits (i.e., the run of consistent model selec-
tions). The fit window size is then reset to 50, and slid up
to begin on trial η. iDBM then takes trials η...(η + 49) and
starts over (i.e., fits all the basic and switch models, selects
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Table 1 Fitting algorithm for iDBM

1. Initialize variables:

(a) Define the set of models to be fit; e.g., M = {basic models ∪ switch models}.
(b) Set the first trial of the fit window to m = 1.

(c) Set the minimum fit window size to n trials.

(d) Set the minimum number of consecutive identifications of the same best-fitting model to s.

(e) Set the threshold on the variance of η for the s consecutive trials where the same model is identified as the winning model to t .

(f) Set up two empty lists called Winners and Final.

2. For trials m to (m + n − 1):

(a) Fit each model inM and record the BIC.

(b) Denote the model with the smallest BIC as the winner and add the name of this model to the end of the Winners list.

(c) If the length of the Winners list ≥ s AND the last model in this list is a switch model AND the last s models in the list are

all the same model AND V ar(η) < t for the last s models in the list then:

i. Add the name of the last model in the Winners list to the end of the Final list, with η set to the mean of the η values of the

last s models in the Winners list.

ii. Set m to the mean η value identified in Step 2ci.

iii. Empty the Winners list.

iv. Reset n to its original value.

v. Go back to Step 2.

(d) Increment n by 1 (i.e., replace n with n + 1).

(e) Go back to Step 2 until all data have been used.

3. All the models that best account for part of the data are listed in Final, along with the estimated switch trials (ηs).

the best model, increases the fit window size by 1, etc.). This
procedure is repeated until one runs out of data.

Testing iDBM with simulated data

Testing iDBM by using an optimal responder with
changing stimulus distributions

We first tested iDBM by applying it to a set of simu-
lated data that included 600 trials (a typical number for
one session of a perceptual categorization experiment). The
data were constructed by first assuming that 500 hypothet-
ical participants switched among a number of alternative
decision strategies. From trials 1–100, the hypothetical par-
ticipants all used a guessing strategy (Fig. 3, top left). On
trial 101, the participants all switched to a one-dimensional
rule strategy on the x dimension, and persisted with this
strategy until trial 350 (Fig. 3, top right). Finally, during tri-
als 351–600, the participants all used a linear procedural
strategy (Fig. 3, bottom). Noise was added to the data by
assuming that the simulated participant abandoned the oper-
ative iDBM strategy and made a random guess on 0 %, 20
%, 40 %, 60 %, or 80 % of the trials. Each noise condition
was simulated 100 times (i.e., 100 simulated participants for
each noise condition).

Note that the way we added noise to the simulated data
violates the assumptions of all DBMs, and therefore of all
basic models that are used in iDBM.2 In DBM, normally
distributed noise changes the percept, which means that it
changes the coordinates of the stimulus in stimulus space.
Because of the normality assumption, small changes are
more likely than large changes. All stimuli are presumed to
be equally affected, and these changes can cause the model
to switch responses on any given trial. But noise induced
response changes are much more likely for stimuli near the
decision bound than for stimuli far from the bound because
a response change can only occur when noise moves a per-
cept to the opposite side of the decision bound. In contrast,
in our simulated data, every response was equally likely
to be a guess, regardless of how far the percept was from
the decision bound. Testing models against incompatible
rather than compatible data provides a stronger and more

2Technically the simulated data are compatible with an iDBM in which
strategy switching occurs on almost every trial—for example, back
and forth between guessing and the GLC. However, this model is non-
identifiable since it would likely have more free parameters than data
points. To protect against this problem we assume a lower bound on
the number of consecutive trials during which a response strategy is
used (e.g., 30 trials). With this added restriction, the simulated data are
incompatible with all iDBMs (except for the 0 % noise condition).
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Fig. 3 Simulated data used to evaluate iDBM (before any noise
is added). Symbols denote different categories. Trials 1–100 used a
guessing strategy (top left), trials 101–350 used a one-dimensional

rule strategy on the x dimension (top right), and trials 351–600 used
a procedural strategy (bottom). The data from all three panels were
concatenated and then noise was added

realistic test of the models, since real data are likely to be
somewhat incompatible with all tested models. Our noise
conditions were designed in an attempt to create data sets
that were increasingly incompatible with iDBM, yet based
on a simple and compelling underlying structure.

The algorithm from Table 1 was directly applied to the
data from each of the 500 simulated participants in succes-
sion with the following settings. All the models described
above were fitted (16 switch models + 4 basic models = 20
models), the minimum window size was set to n = 100,
the minimum number of consecutive model identifications
was set to s = 15, and the threshold on the variance of esti-
mated ηs was set to t = s + 6 = 21. Note that none of
these parameters were optimized. Instead they were set to
reasonable values based on previous experience with the fit-
ting procedure used in the 100 × 100 decision space. These
parameters should thus be adequate for any stimuli that are
re-scaled into an arbitrary 100 × 100 coordinate space.

Simulation results

The optimal model-fitting results with the simulated data
would be to detect two strategy switches: (1) a switch from
guessing to 1DX on trial 101 and (2) a switch from 1DX
to GLC on trial 351. Figure 4 shows the mean number of
switches and the trial number of the first and last switches
identified by iDBM for each condition. As can be seen, the
correct number of switches was identified fairly accurately
for the 0 % and 20 % noise conditions, with a mean num-
ber of switches of 2.09 and 1.98, respectively. Higher noise
conditions resulted in underestimation, with a mean num-
ber of switches of 1.61 for noise condition 40 %, 1.57 for
noise condition 60 %, and 0.31 for noise condition 80 %.
In the 80 % noise condition, switches were only detected in
18 out of the 100 simulations. This explains why the mean
number of switches is so low (i.e., there are many zeros). In
contrast, at least one strategy switch was detected in all the
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a b c

Fig. 4 Mean number of estimated switches for each noise condition.
(a) Mean number of switches detected. True number of switches was 2.
(b) Estimated trial number of the first switch when at least one switch
is detected. True switch trial was trial 101. (c) Estimated trial number

of the last switch when more than 1 switch was detected. True switch
trial was trial 351. In all panels, error bars correspond to standard
errors of the means

simulations for all other noise conditions. This shows that
iDBM underestimated strategy switching in high noise con-
ditions, rather than overestimated, which suggests that with
these parameter settings, iDBM is conservative in detecting
strategy switches (and therefore avoids false positives).

Figure 4b shows the mean estimated trial number of the
first strategy switch for all conditions when at least one
strategy switch was detected. As can be seen, the mean esti-
mated trial number of the first switch is accurately estimated
for the 0 %, 20 %, and 40 % noise conditions (98.34, 99.63,
and 102.81, respectively). This suggests that the first switch
(i.e., from guessing to 1DX) is accurately detected for the 40
% noise condition, and that the switch that is sometimes not
detected is the second switch (i.e., from 1DX to GLC). For
higher noise conditions, the estimated first switch trials are
higher than expected, with estimates of 135.94 and 164.11
for the 60 % and 80 % noise conditions, respectively. How-
ever, strategy switches were also not always detected in high
noise conditions.

Figure 4c shows the mean estimated trial number of the
last strategy switch for all conditions when more than one
switch was detected, which occurred in 100, 94, 55, 48, and
12 simulations for noise conditions 0, 20, 40, 60, and 80 %,
respectively. Similar to the first-switch analysis, the trial of
the last switch was accurately estimated in the 0, 20, and
40 % noise conditions (359.12, 354.46, and 345.71, respec-
tively). However, last switch estimates for higher noise
conditions were underestimated, suggesting that the switch
from 1DX to the GLC is difficult to detect in high-noise
conditions and is often missed. The trial estimates of the last
switch were 266.02 and 206.75 for noise conditions 60 %
and 80 %, respectively.

The results described so far focused on the number of
detected switches and the trial numbers at which switches
were detected. However, it remains to be seen if the iden-
tified switches correspond to the correct strategies. As a

reminder, the first identified switch should be Guessing to
1DX and the last identified switch should be 1DX to GLC.
The first identified switches for conditions 0 , 20, and 40 %
are shown in Fig. 5.3 As can be seen, the correct first strat-
egy switch was identified in at least 96% of the simulations
for all noise conditions. When iDBM incorrectly identifies
the strategy switch, the incorrect strategy switch is typically
identified as Guessing to GLC.

The last identified switch models (when at least two
switches were detected) are shown in Fig. 6. The correct
1DX to GLC switch was identified in most cases for all
noise conditions (0, 20, and 40 %). For noise conditions of
0 and 20 %, the correct strategy was identified 82 and 97 %
of the time (respectively), and for noise condition 40 %, the
correct strategy was identified 66 % of the time. However,
this second switch was only detected in 55 % of the simu-
lations in the 40 % noise condition (compare with 100 and
94 % of the simulations in the 0 and 20 % noise conditions,
respectively).

Finally we compared the performance of iDBM to clas-
sical DBM. To generate a BIC for the best-fitting iDBM we
used the switch trials identified by iDBM to separate the
data into blocks during which the iDBM analysis suggested
that the simulated participant was using a single strategy.
Next, we fit the DBM corresponding to that identified strat-
egy to the data in that block. Finally, the likelihood of each
block was summed and used to calculate the overall BIC
score (Eq. 1). The number of free parameters was the sum
of the number of free parameters of the best-fitting model in
each block, plus the number of detected switches.

The mean BIC for each noise condition is shown in
Table 2. For reference, the BIC score for the classical DBM

3Noise conditions of 60 and 80 %were not further analyzed given their
failure to accurately identify switch trials.
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a b c

Fig. 5 First strategy switch identified for each noise condition. a Noise = 0 %, b Noise = 20 %, c Noise = 40 %. The noise conditions of 60 and
80 % were omitted due to their failure to accurately identify switch trials

that best fit the entire data set is also shown. This is the score
that would result if current DBM practice was followed. As
can be seen, the BIC score achieved with iDBM is smaller
(better) than the one obtained with classical DBM for noise
conditions 0, 20, and 40 %. The advantage of iDBM over
DBM increases as noise decreases, and the two methods
perform about equally well with noise levels of 60 % and
80 % (when the best-fitting DBM model is the guessing
model). This suggests that there may not be much struc-
ture left in the data at such high noise levels, which would
explain the diminished ability of iDBM to identify switches.

Discussion

The simulation results confirm that iDBM is capable of
detecting and identifying both the strategy switch and the
trial number when this switch occurs for low to moderate
noise conditions. In all but the highest levels of noise (60
and 80 %), the switch from a guessing strategy to a one-
dimensional rule was correctly identified in at least 96 %
of the cases. Furthermore, the identified switch trial num-
ber was close to perfect when noise levels were 40 % or

lower, and over-estimated when the noise level was higher
(Fig. 4b). The second switch, from 1DX to GLC was trick-
ier to detect. It was consistently detected at the correct trial
number for noise levels of 20 % or less, but less accurately
detected at higher noise levels. Finally, the overall fit to the
data of iDBM is better than DBM with noise levels of 40
% or lower, and the advantage of iDBM over regular DBM
increases as the noise level decreases. iDBM and DBM fit
the data about equally well in the highest noise conditions,
when there is little structure left in the data.

One reason the switch from 1DX to GLC is difficult to
detect at high noise levels is that, as described above, the
noise was added to the simulated data in a way that is incom-
patible with all DBMs, and therefore with all versions of the
iDBM. Thus, the more noise we add, the worse all DBMs
will fit. The BIC goodness-of-fit measure penalizes mod-
els for extra parameters. The 1DX model only has two free
parameters and therefore incurs only a small BIC penalty.
In contrast, the model that assumes a switch from 1DX to
GLC has six free parameters and therefore incurs a much
larger penalty. High noise levels almost guarantee that the
absolute fit of the switching model can only be modestly

a b c

Fig. 6 Last strategy switch identified (when at least two switches were detected) for each noise condition. a Noise = 0 %, b Noise = 20 %, and c
Noise = 40 %. Noise conditions 60 and 80 % were omitted due to the iDBM failure to accurately identify switch trials
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Table 2 Mean BIC for each noise condition with an optimal responder

Noise level iDBM DBM

0 % 226.70 511.35 (GLC)

20 % 552.03 656.35 (GLC)

40 % 756.95 768.94 (GLC)

60 % 833.34 831.78 (Guessing)

80 % 833.61 831.78 (Guessing)

better than the fit of the pure 1DX model, and in many
cases, the improvement in fit of the switching model will
not be enough to overcome its greater BIC penalty. In the
next section, additional benchmark tests are run to assess the
ability of iDBM to detect strategy switches of suboptimal
responders without changing the stimulus distribution.

Testing iDBM by using a suboptimal responder without
changing the stimulus distributions

In the previous set of simulations, the stimulus distributions
were changed on trials 101 and 351 and the optimal respon-
der was assumed to change strategy to optimally respond
to the new stimulus distributions. However, in most exper-
iments, the stimulus distributions do not change, and only
the participant’s response strategy changes (which can be
suboptimal). To remove the possible confound of chang-
ing the stimulus distributions, another set of benchmark
simulations was run. In this second set of simulations, the
stimulus distributions were II (Fig. 3, bottom) for all 600
trials. However, the simulated participants used a guessing
strategy from trials 1 to 100, a 1DX strategy from trials 101
to 350, and a GLC strategy from trials 351 to 600. Note
that an optimal responder should have used a GLC response
strategy throughout. The same simulation methodology and
parameters were used as in the previous set of benchmark
simulations. However, only noise levels of 0, 20, and 40 %

were included, since the first set of simulations suggest that
there is so little structure in the data when the noise levels
are 60 or 80 % that all models perform poorly.

Simulation results

The optimal model fitting results with the simulated data
would be to detect two strategy switches: (1) a switch from
guessing to 1DX on trial 101 and (2) a switch from 1DX
to GLC on trial 351. Figure 7 shows the mean number of
switches and the trial number of the first and last switches
identified by iDBM for each condition. As can be seen, the
correct number of switches was identified fairly accurately,
with a mean number of switches of 2.06, 1.84, and 1.76
for noise conditions 0, 20, and 40 %, respectively. At least
one strategy switch was detected in all the simulations. This
shows that iDBM again underestimated strategy switching
in noisy conditions, rather than overestimated, which fur-
ther supports that with these parameter settings, iDBM is
conservative in detecting strategy switches.

Figure 7b shows the mean estimated trial number of the
first strategy switch for all conditions. As can be seen, the
mean estimated trial number of the first switch is accurately
estimated for all noise conditions (100.05, 103.29, and
124.93, for noise conditions 0, 20, and 40 %, respectively).
This suggests that the first switch (i.e., from guessing to
1DX) is accurately detected for the 40 % noise condition
(although the switch trial is slightly over-estimated), and
that the switch that is sometimes not detected is the second
switch (i.e., from 1DX to GLC).

Figure 7c shows the mean estimated trial number of the
last strategy switch for all conditions when more than 1
switch was detected, which occurred in 99, 83, and 45 sim-
ulations for noise conditions 0, 20, and 40 %, respectively.
The trial of the last switch was accurately estimated in the
0 % and 20 % noise conditions (355.58 and 345.69, respec-
tively), and under-estimated in the 40 % noise condition

a b c

Fig. 7 Mean number of estimated switches for each noise condition.
a Mean number of switches detected. True number of switches was
2. b Estimated trial number of the first switch. True switch trial was

trial 101. c Estimated trial number of the last switch when more than 1
switch was detected. True switch trial was trial 351. In all panels, error
bars correspond to standard errors of the means
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a b c

Fig. 8 First strategy switch identified for each noise condition. a Noise = 0 %, b Noise = 20 %, c Noise = 40 %

(292.56). This result is consistent with the first set of simu-
lations and suggests that the switch from 1DX to the GLC
is difficult to detect in high noise conditions and is often
missed.

As a reminder, the first identified switch should be Guessing
to 1DX and the last identified switch should be 1DX to
GLC. The first identified switches are shown in Fig. 8. As
can be seen, the correct first strategy switch was identified in
at least 95% of the simulations for all noise conditions. Sim-
ilar to the first set of simulations, incorrect identifications
were typically identified as Guessing to GLC.

The last identified switch models (when at least two
switches were detected) are shown in Fig. 9. The correct
1DX to GLC switch was identified in most cases for noise
conditions 0 and 20 % (91 and 95 %, respectively) but not
for a noise level of 40 %. For a noise level of 40 %, only
2.2 % of the simulations identified the correct switch. Most
identified switches (89 %) where erroneously labeled as
1DX to guessing.

Finally, the mean BIC for each noise condition is shown
in the first two columns of Table 3 (1DX → GLC). As
can be seen, the BIC score achieved with iDBM is smaller
(better) than the one obtained with classical DBM for noise

values of 0 % and 20 %, and the advantage of iDBM over
DBM increases as noise decreases. However, DBM has a
slightly better fit for a noise level of 40 %. In this condition
almost half the trials are random guesses, which causes all
models to fit poorly and therefore BIC favors models with
fewer parameters. This also explains the diminished ability
of iDBM to identify switches in this condition.

Parameter space analysis

As mentioned earlier, the parameters of iDBM were set for
an arbitrary 100 × 100 stimulus space using previous expe-
rience in our lab. In order to explore how this parameter
setting affects the behavior of the model, we ran a param-
eter space analysis by individually doubling and halving
the values of parameters n (minimum fit window size), s

(minimum number of consistent consecutive model identi-
fications), and t (variance threshold on estimated η). One
hundred simulations were run for each parameter value with
the same II category structures and strategy switches used
above with a noise level of 20 %. The resulting BIC values
are shown in Table 4. As can be seen, the window size had
a negligible effect on how well iDBM fits the simulation

a b c

Fig. 9 Last strategy switch identified (when at least two switches were detected) for each noise condition. a Noise = 0 %, b Noise = 20 %, and c
Noise = 40 %
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Table 3 Mean BIC for each noise condition with a suboptimal responder

1DX → GLC 1DX → 1DY GLC → GLC

Noise level iDBM DBM iDBM DBM iDBM DBM

0 % 222.1 532.8 – – – –

20 % 573.0 656.1 954.1 831.8 617.3 773.1

40 % 790.7 772.0 – – – –

data, and the number of consistent consecutive model iden-
tifications and variance on estimated η had a small effect.
Note however that in all cases the BIC for the parame-
ter settings used in this article is lower than those in the
parameter space analysis (BIC = 573.0). The selection of
parameter values is thus reasonable and we therefore rec-
ommend that future work uses these same parameter values
after re-scaling the stimulus space into an arbitrary 100 ×
100 coordinate system.

Additional simulations

The previous simulations assessed iDBM’s ability to iden-
tify switches between strategies of different types, but par-
ticipants sometimes switch between strategies of the same
type (e.g., from 1DX to 1DY). To explore this possibility,
additional simulations were run with the same II distribu-
tions as above (Fig. 3c) for all 600 trials. There were two
conditions: (1) The simulated participants used a guessing
strategy from trials 1 to 100, a 1DX strategy from trials 101
to 350, and a 1DY strategy from trials 351 to 600, and (2)
The simulated participants used a guessing strategy from tri-
als 1 to 100, a GLC strategy with a positive slope from trials
101 to 350 (which is optimal), and a GLC strategy with a
negative slope from trials 351 to 600. One hundred simulations
were run for each condition with a noise level of 20 %.

iDBM detected 1.33 and 2.21 switches in conditions 1
and 2, respectively. In both cases, the first switch (away
from guessing) was easily detected on mean trial 105.8
and 103.6 (for each condition, respectively). The second
switch was always detected in Condition 2 [GLC(pos) →
GLC(neg)], but only detected in 19 % of the simulations

Table 4 Mean BIC in the parameter space analysis

Parameter Half Double

n 615.5 611.6

s 604.8 625.1

t 624.6 604.3
.

Note. The parameter space analysis was run with a noise level of 20
%. For comparison, the iDBM BIC with the regular parameter settings
was 573.0 (see Table 3)

in Condition 1 (1DX → 1DY). When the second switch
was detected, the trial number was accurately estimated,
with mean switch trials of 350.4 and 358.6, respectively. In
Condition 1, the correct first switch was correctly identi-
fied in 99 % of the cases, and in Condition 2 the correct
first switch correctly identified in 79 % of the cases. For the
second switch, the correct switch was identified in 68 % of
the simulations in Condition 1 (when a second switch was
detected), and 62 % of the simulations in Condition 2. The
BIC for these additional simulations is shown in Table 3.

Discussion

The simulation results obtained with suboptimal responders
are consistent with those obtained with optimal respon-
ders. iDBM can accurately detect switches from guessing to
1DX strategies, and can detect changes from 1DX strategies
to GLC under moderate or low levels of noise. The main
difference is that suboptimal responders are slightly more
sensitive to noise, so iDBM does a not perform as well as
DBM when 40 % of the trials are random guesses.

The parameter space was also explored by doubling and
halving the values of the parameters corresponding to the
minimum fit window size, number of consistent consecu-
tive model identifications, and threshold on the variance of
estimated η. The results show that that the window size has
a negligible effect on iDBM’s fit to the data, and that the
other two parameters had a small effect. These simulations
also confirmed that the parameter values used in this article
were reasonable and outperformed the other tested values.

Finally, a last set of simulations was run in which sim-
ulated participants were switching between two rule-based
strategies or two procedural strategies. The results showed
that the trial numbers of the switches were accurately esti-
mated in both sets of simulations and that the correct
switches were identified, but that the switch between 1DX
and 1DY often went undetected, which made the fit of
iDBM worse than DBM in this condition. This result is
likely caused by the random noise in the data, since re-
running the simulation without noise yields a BIC of 204.9
for iDBM (compared to 749.1 for DBM). Because of the
noise, many stimuli are classified in the same category
with 1DX and 1DY, which makes that switch difficult to
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detect. In the next section, iDBM is used to re-analyze (real)
empirical data reported by Ell and Ashby (2006).

Revisiting the data of Ell and Ashby (2006)

Ell and Ashby (2006) conducted three experiments to
assess the effects of category overlap on strategy selection.
Specifically, they were interested in whether high levels of
category overlap might encourage participants to use one-
dimensional rules in an II categorization task, rather than
the optimal procedural strategy. The five conditions of their
first two experiments are illustrated in Fig. 10. Note that the
optimal strategy is identical in all conditions, and the con-
ditions differ only in the amount of category overlap. In the
Low Overlap condition (top left panel), a one-dimensional
rule and the optimal procedural strategy both achieve perfect
accuracy. In contrast, in the High Overlap condition (bottom
left) the best one-dimensional rule achieves an accuracy of
only 58 % correct, whereas the optimal procedural strategy
yields an accuracy of 70 % correct.

Following COVIS (Ashby et al., 1998), Ell and Ashby
hypothesized that human participants are biased towards

Fig. 10 II categories used in Experiments 1 and 2 of Ell and Ashby
(2006). In the Low Overlap condition, the stimuli denoted by the filled
circles were only presented (without feedback) at the end of training
during a test phase. Reproduced with permission (c) Springer

using explicit rules, but that the larger the accuracy advan-
tage for the procedural strategy over a one-dimensional
rule, the more likely that participants will abandon rules
in favor of a procedural strategy. In Fig. 10, the accuracy
advantage of the optimal procedural strategy over the best
one-dimensional rule is 0, 8, 21, 16, and 12 %, in the
Low to High Overlap conditions, respectively. Thus, Ell and
Ashby predicted that the number of participants using a
one-dimensional rule in each condition would be ordered as
follows: Low > Medium–Low > High > Medium–High >

Medium, and also that the number of participants using a
procedural strategy should be ordered in the opposite direc-
tion. The results of Experiment 1 closely matched these
predictions, with an observed ordering of Low = High >

Medium–Low = Medium–High > Medium. Note that the
only discrepancy occurred in the High Overlap condition.
However, performance was quite poor in this condition,
and Ell and Ashby (2006) did not fit guessing models. So
what looked like rule-use might actually have been guess-
ing. Experiment 2 was a replication of the High Overlap
condition from Experiment 1, but with longer training and
monetary compensation for added motivation. The results
were similar to those obtained in Experiment 1.

In Experiment 3, the stimuli from the Medium–Low,
Medium, Medium–High, and High Overlap conditions of
Experiment 1 were rotated in stimulus space 45◦ counter-
clockwise. Note that this turns the optimal strategy into a
one-dimensional rule, and also means that the previous opti-
mal procedural accuracy is now the accuracy of the best
one-dimensional rule (i.e., 100, 96, 78, and 70 % correct,
respectively). Importantly, adopting a procedural strategy
does not provide an advantage in any of these conditions, so
participants should use a one-dimensional rule in all condi-
tions. Figure 11 shows the resulting stimulus distributions.
As expected, over 80 % of the participants adopted a rule in
all conditions of Experiment 3 (Ell & Ashby, 2006).

New analyses with iDBM

While the Ell and Ashby (2006) data were a useful first test
of the hypothesis that the probability of using a procedural
strategy depends on the magnitude of its accuracy advan-
tage over the best one-dimensional rule, the interpretation
of the Ell and Ashby results were limited by their modeling
procedures. Those procedures allowed a count of the num-
ber of participants whose responses were better described
by a procedural strategy or a one-dimensional rule at the
end of training, but they were incapable of determining how
many strategy switches were made by each participant or of
estimating when the last switch occurred. A stronger ver-
sion of the Ell and Ashby (2006) hypothesis would be that
the switch trial from a one-dimensional rule to a procedu-
ral strategy will occur sooner when the accuracy advantage
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Fig. 11 RB categories used in Experiment 3 of Ell and Ashby (2006).
In the Medium–Low Overlap condition, the stimuli denoted by the
filled circles were only presented (without feedback) at the end of
training during a test phase. Reproduced with permission (c) Springer

of the procedural strategy over the rule is increased. iDBM
allows for a test of this hypothesis. In addition, guess-
ing models were not fit to the data in the original article,
and since guessing seems likely—especially when there is
high overlap between the categories and optimal accuracy is
low—guessing models were included in the new analyses.

The Ell et Ashby data were re-scaled in the 100 × 100
space and the algorithm from Table 1 was applied to the
data from all three experiments using the same parameter
settings as for the simulated data. The results for Experi-
ment 1 were as follows: (1) For the Low Overlap condition,
all participants except one began by guessing, and then
switched to a one-dimensional rule. The exception partici-
pant began with a procedural strategy but then switched to
a one-dimensional rule. The mean trial number on which
participants switched to a one-dimensional rule was 23. (2)
For the Medium–Low Overlap condition, all participants
except one began by alternating between guessing and RB
strategies but eventually switched to the optimal procedu-
ral strategy. The mean switch trial to adopt the procedural
strategy was 274. The exception participant used a procedu-
ral strategy throughout the experiment. (3) In the Medium
condition, 3 of the 5 participants used the correct proce-
dural strategy throughout the experiment and stayed with
that strategy for the duration of the experiment. The other
two participants unstably switched among one-dimensional
rules, guessing, and a procedural strategy during the first
training session (600 trials), but stably switched to the
correct procedural strategy on the first trial of Session 2
(trial 601). (4) In the Medium-High condition, four of the
five participants began by unstably switching between a

one-dimensional rule and a guessing strategy but eventu-
ally switched to the correct procedural strategy on mean
trial 670 (except for short periods of guessing at the begin-
ning of each session). The other participant kept switching
among all three strategies (i.e., one-dimensional rule, guess-
ing, procedural) and never settled on a stable strategy. (5)
In the High Overlap condition, one participant successfully
switched to the correct procedural strategy on trial 417 of
Session 2 (trial 1017). The other four participants never
settled on any one strategy.

The new iDBM analyses showed the following ordering
for mean switch trial numbers: Medium (244) < Medium-
Low (274) < Medium–High (670) (see Fig. 12). These
results are consistent with a stronger version of the Ell and
Ashby (2006) hypothesis that the Medium Overlap con-
dition should lead to the earliest switching to the correct
procedural strategy. However, switches in the Medium–Low
condition happened earlier (and more frequently) than in
the Medium–High condition. This difference between the
new iDBM results and the previous results may be caused
by the inclusion of guessing models. Tasks that are objec-
tively more difficult (such as the Medium–High condition)
may discourage some participants and lead to more guess-
ing. This could prevent participants from stably switching
to a procedural strategy.

Another interesting result of the new analysis concerns
the High and Low Overlap conditions. As in the original Ell
and Ashby (2006) analysis, iDBM concluded that almost
no participants selected a procedural strategy in either of
these conditions. However, iDBM suggests that this hap-
pened for different reasons in the two conditions. In the Low
Overlap condition, iDBM concludes that participants settled
fairly quickly on a one-dimensional rule, which is sufficient
for perfect accuracy. This is predicted by COVIS (Ashby
et al., 1998), which assumes that humans are biased toward
using rules. In contrast, iDBM concludes that participants
in the High Overlap condition never settled on a procedural
strategy because the task was too difficult. Instead, they

Fig. 12 Mean switch trial to the correct strategy in Ell and Ashby
(2006)’s Experiment 1 as identified by the iDBM
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oscillated among one-dimensional rules, procedural strate-
gies, and random guessing. This is a more extreme version
of what happened in the Medium–High condition, where
many participants became discouraged by the difficulty of
the task. This interpretation is further supported by the
results of Experiment 2 (a replication of the High Overlap
condition from Experiment 1), in which all but one partic-
ipant eventually switched to the correct procedural strategy
(on mean trial 1,055). Only one participant never settled on
any one strategy (compared with four in the High Overlap
condition of Experiment 1). Participants in the High Over-
lap condition of Experiment 1 had more than 2000 trials of
training, so the fact that participants could select the cor-
rect procedural strategy in Experiment 2, but not in the High
Overlap condition of Experiment 1 suggests that the added
monetary incentive in Experiment 2 may have increased
the participants’ motivation enough for them to identify the
correct procedural strategy.

The data from Experiment 3 were also fit. Similar to Ell
and Ashby (2006), we found that most participants in all
conditions used the correct rule-based strategy. More specif-
ically: (1) For the Medium Overlap condition, all but one
participant used the correct one-dimensional rule for the
entire duration of the experiment. The exception began by
guessing before correctly selecting a one-dimensional rule
on trial 219. However, this participant later abandoned the
rule strategy during the third training session to use instead a
procedural strategy on trial 1,444. This was probably caused
by fatigue. (2) In the Medium–Low Overlap condition, 6
of the 8 participants used the correct rule strategy for the
duration of the experiment. The other 2 participants began
by alternating between guessing and procedural strategies
but switched to the correct rule strategy on mean trial 72.
(3) In the Medium–High Overlap condition, four of the
five participants used the correct rule strategy from trial
1. However, one of these four participants responses were
sometimes unstable, so there do appear to be some short
episodes of guessing interspersed throughout the training.
The other participant started by guessing but selected the
correct rule strategy on trial 19. (4) In the High Overlap
condition, one participant used the correct rule strategy for

the duration of the experiment. The other four participants
started with guessing and procedural strategies, were some-
times unstable, but all ended up selecting the correct rule
strategy on mean trial 1,351. These results are consistent
with the previous analysis of Ell and Ashby (2006) and with
the predictions of COVIS (Ashby et al., 1998) that humans
are biased towards using rules. Our results also suggest
that errors entice participants to switch strategies (Kalish
et al., 2005), so higher overlap increases the number of trials
needed to settle on a stable strategy, even when the optimal
strategy is a one-dimensional rule.

Finally, Table 5 shows the mean BIC estimated with
iDBM and classical DBM for each condition in each exper-
iment of Ell and Ashby (2006). Experiments 1 and 2 used
II stimuli, so the GLC is the optimal strategy. As can be
seen, the results obtained are similar to those obtained with
the simulated data (Table 2). For low overlap conditions
(Low and Medium–Low), iDBM provides a better fit than
classical DBM. For higher overlap conditions, the fits are
similar for iDBM and classical DBM, with a small advan-
tage for classical DBM due to the smaller number of free
parameters. Higher overlap produced more errors, which
corresponds to higher noise levels in the simulated data.
Experiment 3 used RB categories, and the optimal strat-
egy was 1DX. Again, the results show that the advantage of
iDBM over classical DBM increases as overlap (and errors)
decreases. However, in this case iDBM fits the data better
than classical DBM for every level of overlap.

General discussion

This article introduced a new modeling approach, called
iDBM, that iteratively fits decision-bound models to
category-learning data in order to identify: (1) all response
strategies used by a participant, (2) changes in response
strategy and, (3) the trial number at which each change
occurs. Unlike classical DBM, the new approach does
not assume that the participant uses the same decision
strategy on every trial, and therefore does not require that
the data be arbitrarily separated into blocks before model

Table 5 Mean BIC for each experiment and condition in Ell and Ashby (2006)

Exp. 1 (II) Exp. 2 (II) Exp. 3 (RB)

Overlap iDBM DBM iDBM DBM iDBM DBM

High 3,093.0 3,073.3 2,735.9 2,705.7 2,372.6 2,390.8

Medium-High 2,548.4 2,503.0 – – 1,654.1 1,714.7

Medium 1,361.4 1,337.1 – – 970.2 1,011.7

Medium-Low 561.9 586.4 – – 176.4 221.3

Low 175.9 185.7 – – – –
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fitting. The new method was validated by testing its ability
to identify the response strategies used in noisy simulated
data. The benchmark simulation results show that iDBM is
able to detect and identify strategy switches during an exper-
iment and accurately estimate the trial number at which
the strategy change occurs in low to moderate noise condi-
tions. Strategy changes in high noise conditions were more
difficult todetect, butwhendetected theywere typically correctly
identified. Importantly, iDBM rarely if ever produced false
alarms. When the data are too noisy, strategy switches are
missed rather than incorrectly detected. The benchmark
simulations also show that the fit advantage of iDBM over
classical DBM increases as the noise in the data decreases.

The new method was then used to re-analyze data
reported by Ell and Ashby (2006). This new analysis
allowed much stronger conclusions to be drawn about how
category overlap affects strategy selection. In particular, the
results of iDBM suggest that increasing the accuracy advan-
tage of procedural strategies over one-dimensional rules not
only increased the proportion of participants abandoning
rules, but also reduced the number of training trials needed
to abandon rules in favor of a procedural strategy. This result
is in agreement with previous research (Spiering & Ashby,
2008). The analysis further suggests that when both the
rule-based and procedural strategies yield low categoriza-
tion accuracy, participants tend to get discouraged and either
guess or oscillate among a number of response strategies
without ever settling on a stable strategy. These conclusions
are consistent with previous work on strategy shifts (e.g.,
Kalish et al., 2005), and were absent from Ell and Ashby’s
(2006) original article because earlier available methods did
not allow such detailed hypotheses to be investigated.

Generality of the method and limitations

The applications considered in this article were all to exper-
iments that used the randomization technique (i.e., to exper-
iments where the stimuli in each category were random
samples from some underlying probability distribution).
However, iDBM could be applied to any type of catego-
rization experiment where DBMs can be fit and tested,
and therefore is not restricted to randomization experiments
(for some non-randomization examples, see e.g., Ashby &
Lee, 1992). The only extra requirement is that trial-by-trial
responses are available.

iDBM was developed as a straightforward extension of
DBM. Even so, the iterative algorithm described in Table 1
is general enough that it can be used with any models that
can be fit using maximum likelihood and the BIC goodness-
of-fit statistic. Table 1 refers to a set of basic models, but
nothing in the algorithm assumes these are DBMs. So the
algorithm should work for any set of basic models (e.g.,
exemplar models or prototype models). The switch models

would then be defined by all possible pairs of basic mod-
els, along with an η parameter specifying the switch trial.
After that, the fitting procedures would be identical to those
described here. The inclusion of non-DBM models should
be explored in future work.

The choice of which models to include in the set of basic
models is likely to significantly affect the fitting procedure.
For example, Donkin et al. (2015) recently showed that
adding more models when using DBM can change the inter-
pretation of the results. It is important to keep in mind that
the conclusions reached depend on which models belong to
the set of basic models, and that it is possible that some
other untested model might fit better than any of the basic
models. Hence, the strategy identified by iDBM is the best
among the tested alternatives, but one should refrain from
concluding that the detected strategy is the “true” strategy.

Another important limitation of the proposed method
is that iDBM does not address the possibility of small
improvements or tuning of parameters within a strategy.
With iDBM, small changes in the way a strategy is applied
(e.g., a small change in the rule criterion) will likely go
undetected, while larger changes will be detected as changes
in strategy. We are not claiming that these adjustments in the
way strategies are applied are not occurring. This simplifi-
cation is a consequence of iDBM’s focus on strategy shifts,
and strategy tweaking is outside the scope of the proposed
method. However, a future version of iDBM may attempt
to address both continuous learning within a strategy and
abrupt changes in strategy simultaneously.

Lastly, like all iterative fitting procedures, iDBM can
get trapped in local minima. Hence, it is possible that on
any given iteration, the selected switch model is not the
true best-fitting model included in the set of switch models.
However, the iterative nature of iDBM may be helpful in
avoiding this pitfall because the same switch model needs
to be consistently selected for a number of consecutive
iterations, with a small variance on estimated η, before a
switch is identified. Because the starting point of the fitting
procedure is varied, it is less likely that iDBM would sys-
tematically fall in the same local minimum for several trials
in a row. Hence, while the risk of local minima is not elim-
inated, it is unlikely to be a serious problem when using
iDBM.

Future work

This article shows how iDBM could be used to explore the
effects of category overlap on strategy selection, but many
other research questions can also be explored using this new
approach. For example, as mentioned earlier, COVIS pre-
dicts that in II tasks, participants will initially either guess,
or experiment with simple explicit rules before eventually
adopting a procedural strategy. Although this prediction is
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nearly 20 years old, it has never been tested. Our re-analysis
of the Ell and Ashby (2006) data suggests the prediction
may have some validity, but obviously, a much more exten-
sive test is needed. Fortunately, iDBM makes such a test
possible.

Another issue that iDBM opens up for possible study
is the frequency of strategy switching. All current multi-
ple systems models of category learning, including COVIS
and ATRIUM (Erickson & Kruschke, 1998), predict trial-
by-trial switching. If trial-by-trial switching did occur, then
iDBM would surely underestimate the switching frequency.
This is because iDBM is conservative with respect to iden-
tifying a strategy switch. Even so, iDBM should be able to
answer the question of whether strategy switches are rare
or common. Furthermore, iDBM could be used to compare
the frequency of within– versus between-system switches.
For example, is it more common for participants to switch
between two explicit strategies (e.g., from 1DX to 1DY)
than to switch from an explicit to a procedural strategy (e.g.,
from 1DX to GLC)? If one-dimensional rules and procedu-
ral strategies are mediated by different neural systems, then
it seems plausible that switching between two neural sys-
tems should be mediated differently than switching between
two strategies that are both mediated by the same neural sys-
tem. Previously, these issues could not be studied because
there was no method for identifying a strategy switch. We
developed iDBM to fill this void, and hope that the possibil-
ity of identifying strategy switches may usher in a new era
of insight into classification performance.
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