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Objective:  To provide a select review of our applications of quantitative modeling to highlight the 

utility of such approaches to better understand the neuropsychological deficits associated with 

various neurologic and psychiatric diseases.   

Method:  We review our work examining category learning in various patient populations, 

including individuals with basal ganglia disorders (Huntington’s Disease and Parkinson’s Disease), 

amnesia and Eating Disorders.   

Results:  Our review suggests that the use of quantitative models has enabled a better understand 

the learning deficits often observed in these conditions and has allowed us to form novel hypotheses 

about the neurobiological bases of their deficits.  

Conclusions:  We feel that the use of neurobiologically-inspired quantitative modeling holds great 

promise in neuropsychological assessment and that future clinical measures should incorporate the 

use of such models as part of their standard scoring.  Appropriate studies need to be completed, 

however, to determine whether such modeling techniques adhere to the rigorous psychometric 

properties necessary for a valid and reliable application in a clinical setting. 

Public Significance:  This article reviews previous work highlighting the utility of quantitative 

modeling of cognitive processes in various patient populations.  We feel that future clinical 

neuropsychological tests will incorporate such models in their standard scoring procedures.  

 

 

This article selectively reviews our work using 

quantitative modeling to better understand learning 

deficits associated with various neurologic conditions.  

While it is understood that there have been many 

applications of modeling in various patient populations, 

the literature that we review allows us to describe a series 

of studies that have made use of a specific technique, the 

Perceptual Categorization Task (PCT; also called the 

General Recognition Randomization Technique; Ashby 

& Gott, 1988) that enables the consistent application of a 

set of quantitative models at the individual participant 

level, thus making these models highly relevant for 

evaluating individual differences in cognitive 

functioning.  In this paper, we first provide a brief history 

of quantitative modeling in normal cognition and how 

past work has almost exclusively relied on analyzing 

aggregate data (data collapsed across all participants). We 

argue that this approach to modeling can lead to erroneous 

conclusions.  We then briefly describe the PCT and how 

it has been used to test the Competition between Verbal 

and Implicit Systems (COVIS; Ashby, Alfonso-Reese, 

Turken, & Waldron, 1998) model of category learning.  

We next describe our applications of this quantitative 

modeling approach to the PCT with various patient 

populations and how these studies have helped support 

some of the most important aspects of the COVIS model.  

We then provide a brief description of some of the clinical 

applications of our quantitative modeling in various 

patient populations and how the application of this 

approach holds great promise for clinical applications.  

We conclude with a brief description of where we feel the 

field of neuropsychology might go in terms of future use 

of quantitative modeling in neuropsychological research 

and clinical work. 

 

The Role of Quantitative Modeling in  

Neuropsychology 

Statistical models, like ANOVA, model data without 

regard to the processes that produce that data. For 

example, a statistical model might assume that one group 

of scores is normally distributed and that two sets of 

scores are independent of each other. In contrast, process 
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models attempt to model the processes that produced the 

data. For example, signal detection models assume that hit 

and false alarm proportions are the result of a two-stage 

process (perception followed by a decision). Within 

neuropsychology, process models can be cognitive or 

neural (i.e., neurobiologically plausible). As their names 

suggest, cognitive process models describe the cognitive 

processes that mediate the behavior and neural process 

models describe the underlying neural processes based on 

what is known about the neurobiological systems being 

modeled.  

In every scientific field the first models tend to be 

statistical, because statistical models require little or no 

knowledge of the processes producing the data. As 

knowledge about the phenomenon under study 

accumulates, process models appear. Neural models 

require more knowledge about the task than cognitive 

models, so not surprisingly, the first process models in 

neuropsychology were cognitive. The explosive growth 

during the past several decades in neuroscience, and 

especially cognitive neuroscience, has added enough 

knowledge that neural models are now also making 

important contributions to neuropsychology. 

Statistical models can tell us that control and patient 

groups performed differently in a task, but they cannot tell 

us why. Process models have the more meaningful goal 

of explaining why the groups performed differently. For 

example, a statistical model might conclude that two 

groups performed differently in a certain task, whereas a 

cognitive model might conclude that the difference 

occurred because the groups perceived the stimuli in the 

same way, but the patient group made poorer decisions 

because of perseveration on a suboptimal strategy (e.g., 

Maddox & Filoteo, 2001). A neural model might add that 

the perseveration could possibly be due to reduced 

dopamine levels in the basal ganglia (e.g., Filoteo et al., 

2014).  

Another importance of process models is that they can 

provide accurate accounts of individual difference. In 

fact, process models go even further and warn that 

averaging data across participants, which is common in 

statistical modeling, often obscures the true structure of 

the data (Estes, 1956; Ashby, Maddox, & Lee, 1994; 

Maddox, 1999). Statistical models typically assume that 

variability in data is due to error (e.g., in measurement). 

If this is true, then averaging data across participants leads 

only to positive outcomes. Most importantly, error is 

reduced and because averaging brings the central limit 

theorem into play, the statistics become more normally 

distributed. However, process models warn that 

variability – especially variability across participants – 

can be due to process differences. Different participants 

might perform the same task using different cognitive 

strategies. The danger is then that their averaged data 

might not be characteristic of the cognitive processes used 

by any of the participants. 

Estes (1956) cautioned about this problem many 

years ago. He showed that if every participant’s accuracy 

jumps from 50% to 100% correct on one trial, but the trial 

on which this jump occurs varies across participants, then 

the resulting averaged learning curve will be gradually 

increasing. Thus, the averaged data suggest an 

incremental learning process, even though every 

participant displayed one-trial learning. Many other 

examples have been subsequently reported that document 

how averaging can change the psychological structure of 

data (Ashby, Maddox, & Lee, 1994; Maddox, 1999). For 

this reason, process models are typically applied 

separately to the data of each individual participant. 

 

Category Learning as a Model Task in 

Neuropsychology 

The same statistical model can often be applied to 

data from a wide variety of different tasks. In contrast, 

process models can only be applied to tasks that depend 

on the same processes. So although a good process model 

can tell us far more than any statistical model about why 

a particular patient group performed some task differently 

than the control group, the same process model will be 

applicable to a smaller domain of tasks than a statistical 

model like ANOVA. The most useful tasks for process 

modeling will share two properties. First, they must be 

relatively simple to ensure a reasonable understanding of 

the underlying cognitive and neural processes. Second, 

they should recruit a widespread set of neural structures. 

A task that depends on only a small set of brain regions 

might be easy to model, but it would only facilitate our 

understanding of patient groups with known dysfunction 

in one of the implicated regions. 

One task that meets both criteria is perceptual 

category learning, which has been studied intensively for 

more than 50 years, and is known to depend on many 

different brain regions. Evidence of this latter fact can be 

seen in the many different neuropsychological 

populations who are impaired in some form of category 

learning. Included in this list are patients with Parkinson’s 

disease (PD), schizophrenia, amnesia, Huntington's 

disease (HD), anorexia, and Alzheimer’s disease. 

Furthermore, there are highly successful cognitive and 

neural process models of category learning.  

The breakthrough that made accurate cognitive and 

neural process models of category learning possible were 

the theoretical proposals and then subsequent empirical 

evidence that humans have multiple learning systems that, 

for the most part, are functionally and anatomically 

distinct, evolved at different times for different purposes, 

and that learn in qualitatively different ways (Ashby et al., 

1998; Ashby & Valentin, 2017a; Erickson & Kruschke, 
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1998; Nosofsky, Palmeri, & McKinley, 1994; Smith & 

Sloman, 1994). Roughly speaking, the category-learning 

systems shadow the brain’s memory systems. Learning 

requires some sort of memory, and there is no clear reason 

why any memory system should be precluded from 

encoding memories about categories, so it is likely that 

there are as many category-learning systems as there are 

memory systems (Ashby & O’Brien, 2005). Thus, every 

patient population with any kind of memory deficit is 

likely to be impaired in some form of category learning. 

Category-learning studies with neuropsychological 

populations have primarily focused on two different types 

of category learning: implicit and explicit (see Figure 1). 

While this is somewhat of a simplistic distinction, and it 

is obvious that overlapping neural systems contribute to 

both implicit and explicit learning (e.g., Poldrack & 

Packard, 2003), past behavioral and functional 

neuroimaging work with normal participants and various 

patient populations provides extensive evidence that 

implicit and explicit category learning are mediated 

differently (Ashby et al., 1998; Filoteo, Maddox, 

Simmons et al., 2005; Filoteo, Simmons, Zeithamova, 

Maddox, & Paulus, 2006; Knowlton & Squire, 1993; 

Maddox, Filoteo, Hejl, & Ing, 2004; Maddox, Filoteo, & 

Lauritzen, 2007; Maddox, Filoteo, Lauritzen, Connally, 

& Hejl, 2005; Nomura et al., 2007; E. E. Smith, Patalano, 

& Jonides, 1998; E. E. Smith & Sloman, 1994). Explicit 

category learning is dependent on hypothesis generation, 

logical reasoning, working memory and executive 

attention. Tasks that measure explicit category learning 

are often referred to as rule-based (RB) tasks, because 

there is typically a verbalizable "rule" that defines 

category membership. The Wisconsin Card Sorting Task 

is perhaps the most widely known example (Heaton, 

1981). Evidence suggests that rule-based category 

learning is mediated within an anterior brain network that 

includes the dorsolateral frontal lobes and the anterior 

caudate nucleus (Ashby et al., 1998).  

FIGURE 1 HERE 

 In contrast, there are several forms of implicit 

category learning in which a participant can learn 

categories without having any conscious awareness of a 

categorization strategy. Some of the tasks that have been 

used to examine implicit category learning in patient 

populations are information-integration (II) tasks, 

prototype-distortion tasks, and artificial-grammar tasks.  

II category-learning tasks, which require a similarity-

based decision strategy that is impossible to describe 

verbally, are thought to be learned via a procedural system 

that uses a dopamine-mediated reward signal in the basal 

ganglia to associate a perceptual stimulus with a motor 

response (Ashby & Waldron, 1999). The key structures 

are the posterior caudate/putamen and premotor cortex 

(e.g., supplementary motor area) (Nomura et al., 2007; 

Waldschmidt & Ashby, 2011). As their names imply, 

prototype-distortion tasks require participants to identify 

distortions of a prototype pattern and artificial grammar 

learning tasks require participants to decide whether a 

given letter string is consistent with some novel, unknown 

grammar. Both tasks are thought to be learned primarily 

through a perceptual priming system that is mediated 

within posterior visual cortices (Casale & Ashby, 2008; 

Reber & Squire, 1999; Reber, Stark, & Squire, 1998), 

although other neural systems are also involved 

(Forkstam, Hagoort, Fernandez, Ingvar, & Petersson et 

al., 2006; Skosnik et al., 2002). 

The majority of our category-learning studies used 

the PCT first developed by Ashby and Gott (1988), in 

which individuals are presented with simple stimuli and 

asked to learn to categorize them into distinct groups. The 

stimuli often consist of lines that vary in length and 

orientation or Gabor patches that vary in orientation and 

spatial frequency (see Figures 2 and 3). In this task, 

participants are presented with a stimulus and are asked 

to categorize it into Category A or Category B. Once a 

response is made, the participant is given immediate 

corrective feedback. Each category is defined as a 

probability distribution – often a multivariate normal 

distribution – and prior to the start of the experiment the 

category exemplars are created by drawing a large 

number of random samples from each of these 

distributions. For a complete description of all the 

methods needed to run an experiment of this type, see 

Ashby and Valentin (in press-b). 

Figure 2 shows samples from two category 

distributions in which the stimuli are Gabor patches that 

vary in orientation and spatial frequency. Each stimulus 

is represented as a point in two-dimensional space. In 

Figure 2, the x-axis represents the spatial frequencies (i.e., 

widths) of the dark and light bars and the y-axis represents 

their orientation. Black squares represent exemplars of 

Category A and open circles represent exemplars of 

Category B. The arrows in Figure 2 link a sample stimulus 

to its representation in this two-dimensional stimulus 

space. In these studies, a single categorization strategy 

maximizes accuracy. The nature of this strategy is 

determined by the relationship between the two category 

distributions, and thus, by the two stimulus attributes. 

When the categories are each defined by a multivariate 

normal distribution (as in Figures 2 and 3), the optimal 

strategy is always equivalent to using a linear or quadratic 

decision boundary that divides the stimulus space into 

separate category A and B response regions. The solid 

line in Figure 2 denotes this optimal decision bound. A 

participant who responds A to any stimulus falling to the 

left of this bound and B to any stimulus falling to the right 

will maximize long-run accuracy.  

FIGURE 2 HERE 
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A major advantage in using the PCT is that it allows 

us to construct tasks that require participants to learn 

different types of categorization strategies, either implicit 

or explicit, by simply changing the distribution of the 

stimuli within the categories. Specifically, the task 

depicted in Figure 2 requires an explicit rule because the 

optimal strategy (depicted as the solid line) is easily 

verbalized. In essence, optimal performance requires that 

the participant learn to attend to only the spatial frequency 

of the stimuli and identify the value of bar width that best 

separates the two categories. This rule is easy to describe 

verbally: "assign stimuli with wide bars to Category A, 

and stimuli with narrow bars to Category B". For this 

reason, Figure 2 depicts a rule-based task. In contrast, 

Figure 3 depicts two examples of II tasks that require a 

procedural categorization strategy – one in which the 

optimal decision bound is linear (Figure 3A) and one in 

which it is nonlinear (i.e., quadratic; Figure 3B). In this 

example, the optimal strategy that defines category 

membership is based on a relationship between the length 

and the orientation of the line stimuli (that is, information 

from the two dimensions must be integrated). Because 

these stimuli are in non-commensurable physical units 

(length and orientation), it is difficult to verbalize an 

optimal rule of this nature, and thus learning has to occur 

at an implicit level. In these examples, the rule depicted 

in Figure 3A is based on a linear combination of the two 

stimulus dimensions, whereas the rule depicted in Figure 

3B is based on a nonlinear combination of the two 

dimensions.  A large body of research has demonstrated 

that learning in RB and II tasks is dissociable (Ashby & 

Maddox, 2011). 

FIGURE 3 HERE 

 

COVIS Model of Category Learning 

The past 20 years has seen enormous advances in our 

understanding of the neural processes that mediate 

learning in II and RB tasks.  The most comprehensive and 

best tested neural theory is the COVIS theory of category 

learning (Ashby et al., 1998; Ashby & Crossley, 2011; 

Ashby, Ennis, & Spiering, 2007; Ashby & Waldron, 

1999; Cantwell, Crossley, & Ashby, 2015). Briefly, 

COVIS postulates two systems that compete throughout 

learning – a frontal-based system that learns explicit rules 

and depends on declarative memory systems and a basal 

ganglia-mediated procedural-learning system. The 

procedural system is phylogenetically older. It can learn a 

wide variety of category structures, but it learns in a slow 

incremental fashion and is highly dependent on reliable 

and immediate feedback. In contrast, the explicit rule-

learning system can learn a fairly small set of category 

structures quickly – specifically, those structures in which 

the contrasting categories can be separated by simple 

explicit rules. So COVIS assumes that the explicit, rule-

learning system dominates in RB tasks. But COVIS also 

assumes that the explicit system is unable to learn the 

optimal strategy in II tasks, and so must pass control to 

the procedural-learning system.  

The key structures in the COVIS explicit, rule-

learning model include the anterior cingulate, the 

prefrontal cortex, the head of the caudate nucleus, and the 

hippocampus. The model postulates that rule learning 

includes a number of separate sub-processes, including: 

generating or selecting new candidate rules, maintaining 

candidate rules in working memory, applying these rules, 

using feedback to update rule salience, and switching 

attention away from a discredited rule to a newly selected 

rule. COVIS predicts that rule maintenance, rule 

selection, and rule switching are all facilitated by 

dopamine.  

The key structure in the COVIS procedural-learning 

system is the striatum. COVIS assumes that arbitrary 

stimulus-response associations of the type required for 

success in II tasks are learned via incremental changes in 

synaptic plasticity at cortical-striatal synapses that are 

facilitated by a form of dopamine-mediated reinforcement 

learning. The terminal site of learning is presumed to lie 

somewhere in premotor cortex, which explains for 

example, why switching the location of the response keys 

interferes with performance in II tasks, but not in RB tasks 

(Ashby, Ell, & Waldron, 2003; Maddox, Bohil, & Ing, 

2004). 

A complete review of COVIS is beyond the scope of 

this article. For a recent detailed review of the 

neuroscience of COVIS, see Ashby and Valentin (2017-

a), and for a detailed computational description, see 

Ashby, Paul, and Maddox (2011).  In COVIS, dopamine 

has different effects on the rule-learning and procedural 

systems. In the rule-learning system, COVIS assumes that 

rule selection and rule switching are both impaired if brain 

dopamine levels decrease, but the model assumes that 

selection depends on cortical dopamine levels, whereas 

switching depends on basal ganglia dopamine levels 

(Ashby et al., 1998). In the procedural system, dopamine 

plays a crucial role in learning: it provides the reward 

signal required for reinforcement learning. A reduction in 

tonic levels of dopamine or in the dynamic range of phasic 

dopamine bursts impairs the ability of the procedural 

system to learn stimulus-response associations.  

The gradual loss of dopamine producing cells in 

Parkinson’s disease (PD) leads to dysfunction in frontal 

and basal ganglia systems. Thus, PD was identified early 

on as an ideal patient population to examine the 

neurological plausibility of COVIS, given the role that 

COVIS proposes for frontal brain regions, basal ganglia 

structures, and dopamine in the learning of RB and II 

categories. 
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Cognitive Process Modeling of Neuropsychological 

Deficits 

Another major advantage of examining performance 

of PD and other patient populations on the PCT, and the 

one most relevant to this article, is that it readily lends 

itself to the application of sophisticated process models. 

The earliest applications used cognitive models (e.g., 

Filoteo, & Maddox, 1999; Filoteo, Maddox, Salmon, & 

Song, 2005; Maddox, & Filoteo, 2001; Maddox, Filoteo, 

Delis, & Salmon, 1996), but more recently neural process 

models have also been applied successfully to several 

different patient groups (Ashby et al., 1998; Filoteo et al., 

2014; Hélie, Paul, & Ashby, 2012a, 2012b). This section 

describes our work using cognitive process models to 

better understand deficits associated with a variety of 

different neuropsychological conditions. 

Our cognitive process modeling has almost 

exclusively used decision bound models (Ashby, 1992; 

Maddox & Ashby, 1993). Decision bound models assume 

that participants partition the perceptual space into 

response regions. On every trial, the participant 

determines which region the percept is in, and then emits 

the associated response. Two different types of decision-

bound models are typically fit to the responses of each 

individual participant: models that assume an explicit 

rule-learning strategy and models that assume an implicit 

procedural strategy. It is also common to fit other models 

that assume the participant guesses at random on every 

trial. Decision bound models have two types of 

parameters – those that describe the shape and location of 

the decision bound, and at least one variance parameter 

that describes trial-by-trial variability in perceptual and 

decisional processing. In addition, two statistics are used 

to assess the quality of fit (Ashby, 1992). First, the overall 

goodness-of-fit (or fit) value of the model measures how 

well the model accounted for the participant’s responses 

(with a low value signaling a good fit). Second, the 

numerical value of the variance estimate, hereafter 

referred to as the application variability value, measures 

how consistently the participant applied the same strategy 

on a trial-by-trial basis (with a low value signaling a 

consistent strategy). 

Decision bound models are derived from general 

recognition theory (Ashby & Townsend, 1986), which is 

a multivariate generalization of signal detection theory 

(e.g., Macmillan & Creelman, 2004; Wickens, 2002). As 

in signal detection theory, decision bound models 

separate the categorization response into separate 

perceptual and decisional components. Therefore, a 

comparison of the parameter estimates from the best-

fitting models can reveal whether the deficits associated 

with a specific neuropsychological disorder primarily 

affect how the patients perceive the world or how they 

learn and make decisions. In addition, comparing fits of 

explicit rule-learning models, implicit procedural-

learning models, and guessing models allow one to 

identify the general strategy a participant used to perform 

a given task (e.g., implicit vs. explicit). This is necessary 

because it is sometimes the case that a participant will 

attempt to use one approach to solve a task, such as an 

explicit approach, despite the fact that another approach, 

such as an implicit approach, is more optimal and would 

lead to higher accuracy. For a more detailed description 

of decision-bound models, and a step-by-step description 

of how to apply these models to categorization data, see 

Ashby and Valentin (in press-b).  

 

Modeling of Implicit Category Learning 

In two separate studies (Maddox & Filoteo, 2001; 

Filoteo, Maddox, Salmon, et al., 2005) we compared 

category learning in a group of PD patients to a group of 

age, education, and gender-matched healthy control (HC) 

participants using II tasks in which the optimal decision 

bounds were linear and nonlinear, and similar to the 

bounds depicted in Figures 3a and 3b, respectively. 

Accuracy results for Maddox and Filoteo (2001), which 

are depicted in Figure 4, demonstrated that the PD 

patients performed as well as HC participants in learning 

the linearly separable categories, but they were impaired 

in learning the categories that were nonlinearly separable. 

FIGURE 4 HERE 

To examine PD patients’ deficit in the nonlinear II 

condition in the Maddox and Filoteo (2001), we next 

applied a decision-bound model (called the general 

quadratic categorization model) that assumed the 

participant used a categorization strategy that was based 

on a suboptimal decision bound that was nevertheless of 

the same form as the optimal bound (i.e., so quadratic, but 

with a different shape from the optimal bound depicted in 

Figure 3b; Ashby, 1992; Maddox &Ashby, 1993). For 

each participant, we computed the goodness-of-fit of the 

model and the application variability value. The average 

of these indices are displayed in Figure 5.  Interestingly, 

the difference in fit values for the PD patients and HC 

participants remained discrepant across the 600 trials, 

whereas the application variability values were less 

discrepant across the 600 trials.  These results suggest that 

PD patients are impaired at learning the procedural 

strategy, as indicated by the consistent difference between 

the PD patients and HC participants in fit values across 

the trials of the experiment, but once they learned a 

strategy, the PD patients were able to consistently apply 

that strategy across the trials of the task.   

FIGURE 5 HERE 

In a subsequent study with PD patients (Filoteo, 

Maddox, Salmon, et al., 2005) we again administered 

linear and nonlinear II tasks to PD patients and HC 

participants using the category distributions depicted in 
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Figure 3.  The accuracy results from this study again 

suggested that PD patients are impaired in learning 

nonlinearly separable II categories, but not in learning II 

categories that are linearly separable (see Figure 6).  This 

latter finding is consistent with Maddox and Filoteo 

(2001) as well as another previous study of ours (Ashby, 

Noble, Filoteo, Waldron, & Ell, 2003) that demonstrated 

PD patients were not impaired in learning II categories 

that were defined by a linear relationship between 

stimulus dimensions.  Taken together, these results 

suggest that the basal ganglia are involved in learning 

complex categorization strategies and that the deficit in 

the nonlinear II task could be due to PD patients having 

greater difficulty in learning to categorize perceptually 

dissimilar stimuli into the same category. This latter 

possibility was also supported by a recent study we 

conducted (Filoteo & Maddox, 2014). 

FIGURE 6 HERE 

In regard to the modeling of the data from Filoteo, 

Maddox, Salmon et al. (2005), we examined the fit values 

for the models that best fit each participant’s data in the 

final block of trials. The only difference between the two 

groups were the fit values from the nonlinear II task, with 

the PD patients fit values being significantly greater than 

the HC participants, a finding that indicates that the 

strategy used by the PD patients was less optimal than the 

HC participants, but they applied that process just as 

consistently as HC participants.  These findings replicate 

those from our initial II study with PD patients (Maddox 

& Filoteo, 2001). 

We also applied several decision-bound models to the 

data from Filoteo, Maddox, Salmon et al. (2005) to 

determine if participants learned the categories using 

either an implicit, procedural strategy or an explicit, rule 

strategy.  Each model was fit to the final block of trials, 

which tend to be the most stable responses.  The results 

indicated no statistically significant differences between 

the percentages of PD patients and HC participants who 

used a procedural approach in the linear condition (55% 

vs. 65%, respectively) or the nonlinear condition (80% for 

both groups).  We next compared the accuracy rates for 

the final block of trials in the linear and nonlinear 

conditions for only those PD patients and HC participants 

who used a procedural approach.  The results are depicted 

in Figure 7 and show that for only those PD patients and 

HC participants who used a procedural approach, the 

groups did not differ in the linear II condition, but PD 

patients were significantly less accurate than the HC 

participants in the nonlinear II condition.  These results 

indicate that PD patients who adopted a procedural 

approach in the nonlinear condition were impaired 

relative to those HC participants who also adopted a 

procedural approach, and they suggest that an impairment 

in II category learning significantly contributed to PD 

patients’ deficits in the overall accuracy analysis.  These 

findings are important in that they demonstrate that PD 

patients are actually impaired in learning nonlinear II 

tasks even when they used a procedural approach to 

learning the task.  That is, their deficit was not due to 

using the wrong approach, but rather to using the correct 

approach less accurately. 

FIGURE 7 

It is also important to note that patients with amnesia 

are not impaired in learning nonlinear II tasks (Filoteo, 

Maddox, & Davis, 2001a).  In this study, we examined 

two amnesiac patients, one who developed amnesia 

following bilateral medial temporal lobe damage 

secondary to encephalitis (patient JW), and a second 

patient who developed amnesia following white matter 

damage secondary to a drug-binge that resulted in a 

vascular event (patient PK).  Accuracy rates and decision-

bound models indicated that the two amnesiacs were 

normal in learning the nonlinear II task relative to HC 

participants.  Furthermore, patient JW was able to retain 

the rule over a 24-hour period.  These results indicate that 

memory systems involved in explicit learning are not 

intricately involved in learning nonlinear II tasks. 

Another form of category learning that has been 

studied in patients with PD is probabilistic learning, in 

which a set of stimuli is probabilistically related to one of 

two outcomes. The most popular task that has been used 

with PD patients is the Weather Prediction Task (WPT), 

which requires subjects to learn to categorize stimuli 

(consisting of various cue combinations) that are 

probabilistically associated with one of two categorical 

outcomes – 'rain' or 'sunshine' (Gluck, Oliver, & Myers, 

1996).  Most studies have demonstrated that PD patients 

show some form of impairment on the WPT relative to 

HC participants (Knowlton, Mangels, & Squire, 1996; 

Shohamy, Myers, Grossman et al., 2004; Witt, Nuhsman, 

& Deuschl, 2002; but see Moody, Bookheimer, Vanek, & 

Knowlton, 2004; Price, 2005).   

To examine the nature of PD patients’ deficits on the 

WPT, Gluck and colleagues (Gluck, Shohamy, & Myers, 

2002) quantitatively instantiated several different 

strategic approaches one could use when performing the 

WPT and applied this strategy analysis to PD patients' 

performances on this task (Shohamy, Myers, Grossman et 

al., 2004; Shohamy, Myers, Onlaor, & Gluck., 2004). The 

results indicated that both PD patients and HC 

participants tended to learn the WPT early on by 

memorizing stimuli with only a single cue present 

(referred to as a singleton strategy).  As learning 

progressed, however, the majority of HC participants 

tended to switch to 'multi-cue' strategies that required the 

integration of multiple cues within the display. In 

contrast, the PD patients tended to continue to use a 

singleton strategy that they had adopted during the early 
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part of learning and failed to switch away to the more 

advantageous multi-cue approach, which is consistent 

with other studies that demonstrated an association 

between WPT performance and the number of 

perseverative errors on the WCST (Knowlton et al., 1996; 

Price, 2005; but see Shohamy, Myers, Grossman et al., 

2004 for an alternative explanation).   

Furthermore, Shohamy, Myers, Onlaor et al. (2004) 

found that PD patients and HC who switched to a multi-

cue strategy did not differ on the WPT in terms of 

accuracy, suggesting that when patients can change to a 

more efficient strategy on the WPT, they are able to apply 

it just as accurately as controls.  This finding is in contrast 

to Filoteo, Maddox, Salmon et al. (2005) who showed that 

PD patients who used a procedural approach were still 

impaired in terms of accuracy in learning a nonlinear II 

task, as compared to HC participants who also used a 

procedural approach.  Taken together, the approaches 

applied by our group, and in the work of Shohamy and 

Gluck, demonstrate the utility of quantitative modeling 

for a more fine-grained analysis of the cognitive processes 

involved in category learning. 

 

Modeling of Explicit Category Learning 

In several previous studies, we examined PD patient’s 

ability to learn RB tasks where the optimal rule was 

similar to that shown in Figure 2 (Ashby, Noble, et al., 

2003; Filoteo, Maddox, Ing, Zizak, & Song, 2007; 

Maddox & Filoteo, 2001; Maddox, Aparicio, Merchant, 

& Ivry, 2005).  As noted above, optimal responding 

required the participant to categorize the stimulus into one 

category if the widths of the bars from the Gabor patch 

were narrow or into the other category if the widths of the 

bars were wide. In this case, the orientation of the bars did 

not determine category membership, although the stimuli 

varied on this dimension on each trial. In each of the 

studies that examined this type of RB task, we found that 

PD patients were impaired, but only when there was 

variation on the stimulus dimension that was not relevant 

for categorizing the stimuli.  These results indicate that 

the ability of PD patients to learn the explicit categories 

was impacted to a much greater extent than HC 

participants as the number of varying irrelevant 

dimensions increased (c.f., Filoteo, Maddox, Ing, Zizak, 

& Song, 2005), suggesting that deficits in selective 

attention might contribute to the PD patients' impairment 

in explicit category learning.  

In addition to deficits in selective attention, PD 

patients have also been shown to be impaired in other 

processes known to be required for learning RB tasks.  For 

example, in learning explicit rules, participants must 

generate hypotheses regarding the possible rule, test such 

hypotheses using feedback, switch to a new hypothesis if 

the one currently in use is not correct, and keep track of 

those hypotheses that either did not work or are currently 

working. These processes rely to a large extent on 

working memory, and given that PD patients have been 

shown to be impaired in this process (Gilbert, Belleville, 

Bherer, & Chouinard, 2005; Owen et al., 1993; Owen, 

Iddon, Hodges, Summers, & Robbins, 1997; Postle, 

Jonides, Smith, Corkin, & Growden, 1997), it is possible 

that deficits in working memory might also contribute to 

PD patients' impairment in learning explicit 

categorization rules. To examine this issue, we conducted 

a study (Filoteo, Maddox, Ing, et al., 2007) in which PD 

patients and HC participants were asked to learn three 

explicit category structures: the rule depicted in Figure 2, 

which as noted previously is an RB task that emphasizes 

selective attention, and the other two rules that are 

depicted in Figure 8, which emphasize working memory. 

In the conjunctive RB condition depicted in Figure 8A, 

optimal responding required the subject to respond "A" if 

the stimulus was more vertical and had narrow bars, and 

otherwise to respond "B". Note that this strategy 

combines independent decisions about the two features 

and is highly verbalizable. As such, this task is considered 

to be explicit. The optimal rule is depicted by the solid 

horizontal and vertical lines in Figure 8A. In the 

disjunctive condition depicted in Figure 8B, the optimal 

rule required that the subject respond "A" if the stimulus 

was more vertical and had narrow bars or if the stimulus 

was more horizontal and had wide bars, and to respond 

"B" if the stimulus was more vertical and had wide bars 

or if the stimulus was more horizontal and had narrow 

bars. The optimal rule is depicted by the solid horizontal 

and vertical lines in Figure 8B. Although optimal 

responding in both the conjunctive and disjunctive tasks 

required participants to use a verbalizable combination of 

the two stimulus dimensions, the two tasks likely 

emphasize working memory to a different degree. 

Specifically, the logical expression associated with the 

disjunctive rule is much longer than the logical expression 

associated with the conjunctive rule, and therefore should 

require greater working memory. Thus, a comparison of 

PD patients’ performances in the conjunctive and 

disjunctive conditions could help determine whether 

working memory deficits might also contribute to PD 

patients’ explicit category learning deficits.  

FIGURE 8 HERE 

Figure 9 displays the accuracy results from the three 

conditions. As can be seen, PD patients demonstrated a 

large impairment on the one-dimensional explicit 

condition (Figure 9a), replicating previous findings 

(Ashby et al., 2003; Maddox, Aparicio et al., 2005). In 

contrast, the patients were not impaired in the conjunctive 

condition (Figure 9b) or the disjunctive condition (Figure 

9c). Importantly, both groups displayed less learning in 

the disjunctive condition than the conjunctive condition, 
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which was likely due to the greater working memory 

requirements of the former task. The pattern of PD 

patients' performance suggests that the explicit deficit 

exhibited by these patients in past studies is likely related 

to impairment in selective attention, but not working 

memory.  

FIGURE 9 

We next applied several procedural-learning and rule-

learning models to the data, and as might be expected, we 

found that in the conjunctive and disjunctive conditions 

there were no group differences in percentage of PD 

patients or HC participants who used a rule-learning 

process in the last block of trials (conjunctive condition: 

PD = 80%, HC = 73%; disjunctive condition: both groups 

= 100%) and there were no differences between the two 

groups in their fit values or variability estimates that best 

accounted for their data.  In contrast, in the single-

dimension condition, although both groups used a rule-

learning process  (PD = 92%, HC = 75%), the fit values 

indicated that PD patients were less able to use the 

optimal rule when learning to categorize the stimuli 

compared to the HC participants, but the two groups did 

not differ on the variability estimates. 

 

Clinical Applications of Quantitative Modeling of 

Category Learning in PD 

Our previous work highlights that PD patients can be 

impaired on both II and RB tasks relative to HC 

participants, but for very different reasons.  In the case of 

RB tasks, it appears that selective attention deficits play a 

major role in the impairments we observed in PD, 

whereas in the case of II tasks it appears that PD patients 

are impaired in learning more complex procedural 

strategies (i.e., when the optimal approach is nonlinear).  

Although these results are interesting and tell us to some 

extent under what circumstances the basal ganglia play a 

role in category learning, they tell us very little about the 

potential clinical utility of examining category learning in 

PD.  An important step in doing so is to determine both 

the cross sectional sensitivity and specificity of category 

learning deficits in PD, as well as the predictability of 

future cognitive decline based on current category 

learning performances.    

To further determine the potential clinical utility of 

PD patients’ category learning deficits, we re-examined 

their accuracy performances on the nonlinear II task 

described above using several different approaches and 

found the following in our PD samples:  (1) nonlinear II 

accuracy was more sensitive than traditional measures of 

neuropsychological functioning (e.g., WCST and verbal 

fluency) in differentiating between PD patients and HC 

participants cross-sectionally, (2) accuracy on the 

nonlinear II task had a .91 positive predictive value (i.e., 

the probability that an individual has PD given they are 

impaired on the task), and a .74 negative predictive value 

(i.e., the probability that an individual does not have PD 

given they were not impaired on the task) in making this 

distinction, and (3) PD patients’ accuracy on the nonlinear 

II task was highly predictive (r = -.78; 61% of the variance 

accounted for) of future decline on a measure of global 

cognitive functioning (total score on the Mattis Dementia 

Rating Scale; Mattis, 1988), even after age, gender, motor 

impairment, mood, baseline performance on the MDRS, 

and performance on the WCST were taken into 

consideration (Filoteo, Maddox, Song, & Salmon, 2007).  

We also examined whether our quantitative modeling 

analyses would provide any additional predictive 

information regarding global cognitive decline. We found 

that PD patients whose responses on the nonlinear II task 

were best fit by one of the procedural-learning models 

declined less on the MDRS than those whose data were 

best fit by a rule-learning model. This difference is 

depicted in Figure 10. Most importantly, we determined 

whether the inclusion of the decision-bound models could 

help predict decline on the MDRS above and beyond what 

was predicted by accuracy performance alone. As noted 

above, final-block accuracy in the nonlinear II condition 

predicted 61% of the variance associated with future 

decline on the MDRS. To examine this issue, we 

conducted a stepwise regression analysis in which we 

predicted change on the MDRS by first entering final-

block accuracy and then in the next step entering whether 

a patient's performance was best fit by an implicit or an 

explicit model.  The inclusion of this latter variable 

predicted a significant additional 15% of the variance 

above and beyond the 61% predicted by accuracy level 

alone. Thus, using a single II category-learning task, we 

were able to predict 76% of the total variance associated 

with future cognitive decline in a nondemented PD 

sample after a relatively brief period of time (just 1.6 

years). These results clearly establish the clinical utility 

for the use of quantitative modeling for a better prediction 

of global cognitive decline in nondemented PD patients.  

FIGURE 10 HERE 

Another important question in determining the 

clinical utility of any assessment approach is to determine 

whether that approach has any specificity in 

differentiating among various patient populations.  To 

examine this issue, we developed a modified version of 

COVIS (Maddox, Filoteo, & Zeithamova, 2010) and 

applied it to PD patients’ nonlinear II data as well as a 

data set obtained from patients with Huntington’s disease 

(HD; Filoteo, Maddox, & Davis, 2001b), a patient 

population that is well known to have basal ganglia 

pathology. In this application, the models suggest that the 

locus of HD patients' nonlinear II deficit is in their 

increased reliance on rule-learning strategies. Note that 

this finding is in contrast to that for PD patients whose 
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deficit was in the application of sub-optimal procedural-

based strategies. This finding is important because it 

allows us to pinpoint differences in the PD and HD 

patients’ deficits in performing an II task, which could not 

have been done based on accuracy alone. 

A final potentially important application of 

quantitative modeling is to identify specific sub-processes 

that might underlie any patient population’s impairment 

on a given task.  Recently, we used a neural process model 

to examine cognitive deficits in individuals with Anorexia 

Nervosa (AN) (Filoteo et al., 2014).  AN is also thought 

to impact the basal ganglia and disrupt several 

neurocognitive processes that we have demonstrated to be 

impaired in patients with PD, such as cognitive set 

shifting (Roberts, Tchanturia, Stahl, Southgate, & 

Treasure, 2007; Roberts, Tchanturia, & Treasure, 2010; 

Shott et al., 2012; Steinglass, Walsh, & Stern, 2006; 

Tchanturia, Morris, Surguladze, & Treasure, 2002, 

Tchanturia et al., 2011). As we demonstrated in our past 

work, the deficit on such tasks in PD appear to be related 

to deficits in selective attention and not set-shifting, per 

se, but the mechanisms underlying set-shifting deficits in 

AN had not been studied in any detail.  

To address this issue in AN, we administered an RB 

category-learning task in which participants were shown 

multi-dimensional stimuli, such as a cartoon version of a 

house, and asked to categorize each image into one of two 

categories.  The RB rule that determined category 

membership was based on a single dimension and was 

highly verbalizable (e.g., if the roof of the house is flat it 

belongs to Category 1, but if the shape of the roof is a 

triangle, then it belongs to Category 2).  Participants were 

given immediate feedback as to the accuracy of each 

response.  After 80 trials, the rule shifted to a different 

dimension without the participant being told (e.g., now 

the relevant rule was if there was a tree in front of the 

house, the stimulus belonged to Category 1, but if there 

was not a tree in front of the house the stimulus belonged 

to Category 2).  The accuracy results are shown in Figure 

11 and demonstrated that, relative to their controls, the 

AN participants demonstrated greater learning prior to the 

rule shift, but when the rule shifted, the controls were 

better able to learn the new rule, whereas the AN 

participants had greater difficulty.  These accuracy 

findings suggested hyper-learning prior to the rule shift 

and impaired set-shifting after the rule shift in the AN 

group. 

FIGURE 11 HERE 

The application of neural modeling to AN is 

philosophically different than to PD. In the case of PD, 

we have a clear understanding of the underlying neural 

etiology – namely, the death of dopamine-producing 

neurons. So the primary reason to fit a neural model to 

data from a task where the cognitive deficits of PD 

patients are well understood is to test the model. If the 

model is valid, then reducing dopamine levels in the 

model should produce cognitive deficits similar to those 

seen in PD patients, without the need to make any other 

modifications to the model. Once validated, the model can 

then be used for other more interesting applications, such 

as predicting how PD patients should perform in some 

novel task, or investigating the efficacy of some novel PD 

treatment.  

On the other hand, the etiology of AN is less clear. In 

this case, the model can be used to better understand the 

neural and cognitive differences between individuals with 

AN and HC participants. The idea is to fit the model to 

data from both groups and examine which parameters 

need to be manipulated to account for the group 

differences. When Filoteo et al. (2014) followed this 

strategy, they found that the model gave good fits to all 

aspects of both data sets under the following conditions. 

First, the AN group showed hypersensitivity to negative 

feedback, which accounted for the hyper-learning on the 

first category structure (but did not cause the model to 

predict hyper-learning on subsequent structures). Second, 

the AN group had reduced brain dopamine levels, which 

caused set-shifting deficits (i.e., perseveration). Both of 

these conditions have been previously suspected in AN 

(Bailer et al., 2013; Frank et al., 2005; Harrison, O’Brien, 

Lopez & Treasure, 2010; Harrison, Treasure, & Smillie, 

2011; Jappe et al., 2011), so in this case the neural 

modeling provided a more rigorous test of existing 

theories.   

This latter application of a neural model to the 

behavioral data of AN patients highlights the utility of this 

approach.  By identifying what parameters need to be 

altered to replicate behavioral findings in AN, we can 

perhaps more precisely pinpoint the underlying 

neurocognitive mechanisms that are impaired.  

Furthermore, if such mechanisms are found to be play a 

role in the pathogenesis of the disease, the model can then 

be used to determine if different interventions have any 

behavioral effects on those model parameters thought to 

represent those processes.  For example, if a behavioral 

intervention targeted at decreasing AN patients’ 

sensitivity to punishment can be identified, then we would 

expect a decrease in their hyper-learning prior to a rule 

shift, whereas a trial of dopaminergic medication might 

improve their ability to shift set after the rule change. 

 

Future Directions 

We conclude this article with a few thoughts on the 

possible future role of quantitative modeling in 

neuropsychology and psychiatry.  First, we feel that the 

application of modeling in patient populations will 

continue to provide a greater understanding of the specific 

cognitive and neural processes that lead to impaired 
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performance on a given cognitive task.  For example, our 

application of a neural processing model to the hyper-

learning and impaired set-shifting in AN allowed us to 

formulate and test more detailed hypotheses regarding the 

underlying causes of these phenomena. Second, we 

demonstrated that quantitative modeling can be applied 

successfully at the individual participant level, which is 

an obvious prerequisite for their use in clinical 

assessment.  As an example, signal-detection models have 

been incorporated into clinical neuropsychological tests 

of recognition memory (e.g., the California Verbal 

Learning Test-2; Delis et al., 2000).  We feel that this is a 

future direction for process models such as those 

described in this article, and that the data provided by 

these models could potentially be part of the standard 

scoring of clinical neuropsychological tests.  So, in 

addition to accuracy or response time, clinical 

neuropsychologists of the future should be able to use 

process models to gain more insight about the specific 

processes impaired in their patients. As such, a major step 

forward will be for clinical studies to determine the 

psychometric properties of the data provided by process 

models to make certain that they meet the rigorous 

requirements needed to assess neuropsychological 

functioning in clinical populations.  
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Figure 1.  Classification of explicit and implicit category learning tasks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  Stimulus distributions and sample stimuli used in a rule-based (RB) perceptual categorization task.  Filled squares 

represent stimuli from Category A and open circles represent stimuli from Category B.  The solid line represents the optimal 

one-dimensional decision bound.  Arrows point from specific stimulus exemplars to their location in the two-dimensional 

stimulus space.  From Filoteo, Maddox, Ing, and Song (2007). 
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Figure 3.  Sample stimuli and stimulus distributions for (A) the linear information-integration (II) task and (B) the nonlinear 

II task in which the stimuli were single lines that vary in length and orientation. Open circles represent stimuli from Category 

A and closed circles represent stimuli from Category B.  The solid line and curve represent the optimal rules.  Arrows point 

from specific stimulus exemplars to their location in the two-dimensional stimulus space.  From Filoteo, Maddox, Salmon, 

and Song (2005). 
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Figure 4.  Accuracy (proportion correct) for the patients with Parkinson’s disease (PD) and normal controls (NC) for the 

600-trial session in 100-trial blocks for (a) the linear II task, and (b) the nonlinear II task. Standard errors are also included.  

From Maddox & Filoteo (2001). 
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Figure 5.  (a) Fit values, and (b) application variability estimates for the patients with Parkinson’s disease (PD) and normal 

controls (NC) for the 600 trial experimental session in 100-trial blocks in the nonlinear integration experiment. From 

Maddox & Filoteo (2001). 
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Figure 6. Overall accuracy for linear and nonlinear conditions for patients with Parkinson’s disease (PD) and Healthy 

Control (HC) participants. Error bars denote standard error of the mean. From Filoteo, Maddox, Salmon et al. (2005). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.  Accuracy rates for Parkinson’s disease (PD) patients and healthy control (HC) participants whose data were best 

fit by a procedural-learning model in the last block of trials in the linear and nonlinear II tasks. Error bars denote standard 

error of the mean.  From Filoteo, Maddox, Salmon et al. (2005). 
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Figure 8.  Stimulus distributions for (A) conjunctive, and (B) disjunctive rule-based category learning tasks. Filled squares 

represent stimuli from Category A and open circles represent stimuli from Category B.  Solid lines represent the optimal 

bounds for each condition.  From Filoteo, Maddox, Ing, and Song (2007). 
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Figure 9.  Accuracy for Parkinson’s disease (PD) patients and normal control (NC) participants for (A) one-dimensional, 

(B) conjunctive, and (C) disjunctive rule-based category learning conditions. From Filoteo, Maddox, Ing, and Song (2007). 
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Figure 10.  Decline on the Mattis Dementia Rating Scale in Parkinson’s disease patient subgroups whose data were best fit 

by an implicit model or an explicit model.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Accuracy (proportion correct) for weight restored Anorexic patients (AN-WR) and control women (CW) groups 

(error bars are standard error of the mean) in the study by Filoteo et al. (2014).  
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