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Abstract
Decision bound models are derived from general recognition theory, which is a multidimensional
generalization of signal detection theory. This broad class of models has been remarkably
successful at accounting for data from categorization and identification experiments. Fitting
decision bound models however, requires the numerical evaluation of multiple integrals over the
multidimensional normal distribution. This article describes an extremely general algorithm for
fitting decision bound models to identification or categorization data that is both fast and
straightforward to implement. The algorithm is based on a mathematical technique called
Cholesky factorization.



Fitting Decision Bound Models to Identification or Categorization Data
On each trial of a categorization task, a stimulus is selected randomly from an ensemble

of n stimuli and presented to the observer. The observer responds with one of m response
alternatives preselected by the experimenter, where m < n. An identification task is identical,
except m = n. Data from both types of task are typically summarized in an n × m confusion
matrix containing in row i and column j the frequency of Rj responses on trials when stimulus Si
was presented. Among the most successful models at accounting for data from categorization
and identification experiments are decision bound models (Ashby & Lee, 1991, 1992; Ashby,
Lee, & Balakrishnan, 1992; Ashby & Perrin, 1988; Ashby & Townsend, 1986; Ashby &
Waldron, 1999; Ashby, Waldron, Lee, & Berkman, 2001; Ennis & Ashby, 1993; Maddox, 2001,
2002; Maddox & Ashby, 1993, 1996; Maddox & Bogdanov, 2000; Maddox & Dodd, 2003;
Maddox, Molis, & Diehl, 2002).

Decision bound models are derived from general recognition theory (Ashby &
Townsend, 1986), which is a multidimensional generalization of signal detection theory (e.g.,
Green & Swets, 1966).  Decision bound models assume the trial-by-trial perceptual effects of a
stimulus can be represented by a multivariate normal distribution. The models also assume that
the observer partitions the perceptual space into m regions (where m is the number of response
alternatives) and associates a unique response alternative with each region. The partitions
between these regions are called decision bounds. The percept on a trial when stimulus Si is
presented is represented as a random sample from the perceptual distribution associated with Si.
The observer is assumed to determine which region the percept is in and then to emit the
associated response.

Current applications of the model place no constraints on any parameters of the
perceptual distributions and a wide variety of different types of decision bounds have been
tested. These include models in which 1) the decision bounds are arbitrary linear functions (the
general linear classifier), 2) the decision bounds are arbitrary quadratic functions (the general
quadratic classifier), 3) the observer is assumed to give the response associated with the nearest
perceptual mean (the minimum distance classifier) or nearest striatal grid point (the striatal
pattern classifier), and 4) the decision bounds maximize response accuracy (the optimal
classifier).

 In all versions of the model, however, each frequency in the predicted confusion matrix
is obtained by integrating under some multivariate normal distribution throughout a specific
response region. Except for a few restricted special cases, the integration must be performed
numerically. For this reason, application of this class of models has been restricted to only a few
laboratories. This article describes an extremely general algorithm for fitting decision bound
models to identification or categorization data that is both fast and straightforward to implement.

EVALUATING INTEGRALS WHEN THERE IS A SINGLE DECISION BOUND
Suppose the perceptual space is r dimensional and let xi denote the r ×1 dimensional

random vector describing the perceptual effect on trials when stimulus Si is presented. The model
assumes xi has a multivariate normal distribution with mean vector µi and variance-covariance
matrix 'i. Figure 1 shows a contour of equal likelihood from a hypothetical 2-dimensional
perceptual distribution in which the perceived values along the two perceptual dimensions are
positively correlated. Figure 1 also shows a quadratic decision bound that divides the perceptual
plane into two regions. Suppose the region associated with response Rj is above the bound. Then
the probability of responding Rj on Si trials is equal to the proportion of the bivariate normal
distribution illustrated in Figure 1 that falls above the quadratic bound.



Figure 1. A contour of equal likelihood from a 2-dimensional perceptual distribution in which
the perceptual variates x1 and x2 are positively correlated. Also shown is a quadratic decision
bound that divides the perceptual plane into two response regions. The region associated with
response Rj is above the bound.

Since the bound is quadratic, all points on the bound must satisfy the equation

h(x) = x’Ax + b’x + c = 0 (1)

where A is a symmetric matrix of constants, b is a vector of constants, and c is a scalar. h(x) can
be viewed as a discriminant function because for all x below the bound, h(x) < 0, and for all x
above the bound, h(x) > 0. Because of this property
 

P(Rj*Si) =                 mvn(µi, Σi) dx  (2)...∫∫∫ Cx

where mvn(µi, 'i) is the probability density function of a multivariate normal distribution with
mean vector µi and variance-covariance matrix 'i and Cx = {x# h(x) > 0}.



To evaluate the Eq. 2 integral, one could 1) step through a rectangular grid of points in x-
space, 2) at each point compute h(x), 3) for each x for which h(x) > 0, compute the height of the
mvn(µi, 'i) probability density function (pdf), and 4) increment the integral by an amount equal
to the volume of the appropriate rectangular right prism. The main problem with this approach is
that the grid in step 1 has to cover the perceptual distributions associated with all stimuli in the
experiment, which means that in most applications it would be prohibitively large. The method
we propose solves this problem and also eliminates step 3.

The first step is to standardize the Eq. 2 integral.
PROPOSITION 1. Suppose the r-dimensional random vector xi has a multivariate normal
distribution with mean vector µi and variance-covariance matrix 'i . Let z denote an r-
dimensional multivariate normal vector with mean vector 0 and variance-covariance matrix I
(where I is the identity matrix). Then, if there exists a matrix Pi such that x = Pi z + µi, then 

P(Rj*Si) = II@@@I mvn(µi, Σi) dx
                                                                          Cx

                                                                   =  II@@@I mvn(0, I) dz
                                                                           Cz
where Cz = {z*h(Pi z + µi) > 0}. ~

Thus, for any mean vector and variance-covariance matrix of the Si perceptual
distribution, P(Rj | Si) can always be computed by integrating over the multivariate z-distribution.
Because of this, we can lay an initial grid over z-space that can be used for all stimuli and all
parameter estimates. Note also, that if h(x) is the quadratic function of Eq. 1, then h(Pi z + µi) is
also quadratic. In fact,

h(Pi z + µi) = h*(z) = z’(Pi’APi)z + (2µi’ APi + b’Pi)z + (µi’ Aµi + b’µi + c) (3)

To use Proposition 1 we must find a matrix Pi such that

xi = Pi z + µi . (4)

Equation 4 holds if and only if

Σi = Pi Σ z Pi’ = Pi Pi’ (5)

so the matrix Pi can be found from Eq. 5. There are many solutions to this problem. For example,
let Q be the matrix whose columns are the eigenvectors of 'i, and let D be the diagonal matrix
whose entries are the corresponding eigenvalues of 'i. Then,

Σi = Q D Q’ = Q D½ D½ Q’ = (Q D½ ) (Q D½ )’

so one solution is Pi = Q D½. Unfortunately, eigenvectors and eigenvalues are not quickly
computed, so this solution is not ideal. The next result provides a much more efficient solution.
PROPOSITION 2. For any variance-covariance matrix 'i , there exists a unique lower
triangular matrix Pi , such that Σi = Pi Pi’. This is called the Cholesky factorization of  'i.  
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PROOF.  See Graybill (1976, pp. 231) or Johnson and Kotz (1970, chapter 29).
The advantage of Cholesky factorization is that the Cholesky matrix Pi is easily obtained.

To see this, note that Σi = Pi Pi’ implies

Solving for the pij leads to:
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Using these results, evaluation of the Eq. 2 integral is accomplished via the following
steps.

1) Create a z-grid. The z-grid is created by selecting n z-values, each of which is the
midpoint of an equal area interval. For an integral over the bivariate normal, we typically select
100 z-values on each dimension. These values are chosen before the integral is evaluated and
stored in an array. Call the ith value in this array zi. An r-dimensional grid is created by taking
the Cartesian product of the z- array r times. For example, with a bivariate integral and 100
values in the z-array, the z-grid contains 10,000 points (i.e., 1002). Each point is the center of a
rectangle whose volume under the bivariate z-distribution equals .0001 (i.e., 1/10,000).

2) Use Σi to find the Cholesky matrix Pi (i.e., using the solution provided above).
3) Find the image of the Eq. 2 quadratic bound in z-space (i.e., using the solution

provided in Eq. 3). Call this function h*(z).
4) Compute the integral. This is done by stepping through the nr points in the z-grid. Call

the kth of these points zk. First, compute the numerical value of h*(zk). If h*(zk) < 0, then go to the
next point in the z-grid. If h*(zk) > 0, then increment the value of the integral by 1/nr. 

The only time-limiting operation in this procedure is the computation of h*(zk). By



1 The discriminant value equals zero with probability zero.

selecting the z-grid beforehand with the property that each point is the center of an equal volume
region, much computation is avoided.

MULTIPLE DECISION BOUNDS
When there are multiple decision bounds, the algorithm described in the last section can

be used in a slightly generalized form. Consider the case when there are m different decision
bounds. Each of these can be described by a discriminant function. For example, the kth bound
satisfies hk(x) = 0. The discriminant functions can always be defined in such a way that hk(0) < 0.
Every point in the x-space will be associated with either a positive or negative discriminant value
for each discriminant function1. Thus, every point can be characterized by a string of m pluses
and minuses. The sign of the kth of these depends on whether the point is on the same side of the
kth bound as the origin, or on the opposite side. Note also that every point in the response region
is associated with the same pattern of pluses and minuses, because every point in the region has
the same relation to the origin with respect to each bound as every other point.

As an example, consider the model illustrated in Figure 2. The four decision bounds
define four discriminant functions h1, h2, h3, and h4. Every point in the region associated with
response R1 generates a negative value on each discriminant function. Thus, this region is
associated with the pattern (-,-,-,-). Similarly, every point in the R5 region is associated with the
pattern (+,-,+,-). The nine conditional response probabilities P(Rj|Si), for j = 1, 2, ..., 9, can be
computed simultaneously in one pass through the z-grid. During step 4 of the algorithm, at each
new z-point all four discriminant functions are computed and a match is performed between the
obtained pattern of pluses and minuses and the patterns associated with each of the nine response
regions. The integral associated with the matching region is then incremented by 1/nr. Thus,
computation time is only weakly related to the number of response alternatives. Instead, the
more important factor is the number of stimuli, since each new stimulus requires a new pass
through the z-grid.

The pattern matching can be performed quickly using integer arithmetic, which is
typically much faster than if the same operations were performed in real or double-precision
mode. We illustrate the method using the example of Figure 2. To begin, for each of the four
discriminant functions, define a new variable δi with the property that δi = 1 if hi (x) > 0 and δi =
0 if hi (x) < 0. Next, create the variable

T = 1 + δ1 + 2 δ2 + 4 δ3 + 8 δ4 (6)

The variable T associates a unique integer value (from 1 to 16) with each of the nine Figure 2
response regions. The intermediate values of the integrals associated with the nine conditional
response probabilities can be stored in an array indexed by the variable T. For example, for every
point in region R4, T = 5, so when the evaluation of a z-point leads to T = 5, the value in the fifth
position of the integral array can be incremented by 1/n2.

Figure 2. A contour of equal likelihood from the perceptual distribution associated with stimulus
Si and 4 decision bounds that divide the perceptual plane into 9 response regions.



FITTING THE OPTIMAL CLASSIFIER, THE MINIMUM DISTANCE CLASSIFIER, AND
THE STRIATAL PATTERN CLASSIFIER

The method described above requires that each decision bound is specified by a
discriminant function. The discriminant functions are transformed to z-space and the integral is
then computed. In some models, however, the decision rule is not easily described in terms of
discriminant functions. There are three obvious examples: the optimal classifier, the minimum
distance classifier, and a model introduced by Ashby and Waldron (1999) called the striatal
pattern classifier (SPC). We will begin by considering the optimal classifier, and then since the
minimum distance classifier and the SPC are computationally similar, we will consider these two
models together.

When there are many stimuli, the simplest way to describe the rule used by the optimal
classifier is that at each point x, the likelihoods are all computed (e.g., f i (x), for i = 1, 2, ..., 9),



and then the response associated with the largest of these is given. When the stimulus
presentation probabilities are all equal this decision rule maximizes response accuracy. To fit
this model, the algorithm described above needs only to be altered slightly. The linear
transformation, z = Pi

-1(xi - µi), carries optimal bounds to optimal bounds, so the identity of the
stimulus associated with the maximum likelihood in x-space is preserved by the Cholesky
transformation. As a result, the conditional response probabilities associated with stimulus Si can
be computed using a modified version of the Cholesky algorithm in which steps 3 and 4 are
replaced with:

3) Transform all perceptual distributions to z-space. To compute the conditional response
probabilities for stimulus Si, the Si perceptual distribution is standardized via the transformation
z = Pi

-1(xi - µi). After applying this same transformation to the other perceptual distributions, the
Sk distribution is multivariate normal with mean vector Pi

-1(µk - µi) and variance-covariance
matrix Pi

-1 Σk Pi
-1'.

4) Compute the integral. The integral can now be computed by stepping through z-space.
At each point in the z-grid, the likelihood is computed with respect to each of the transformed
perceptual distributions. The integral associated with the largest of these is incremented by 1/nr.

The minimum distance classifier and the SPC are similar to the optimal classifier, except
that instead of computing likelihoods, some distances are computed, and the response associated
with the smallest of these is given. In the minimum distance classifier, the distances are from the
percept to each perceptual mean, whereas in the SPC the distances are from the percept to
arbitrary points that mark the centroid of each response region. Unfortunately, the analogous
algorithm does not work for these models (i.e., where distance is substituted for likelihood in
step 4). This is because distance relations are not preserved by the Cholesky transformation. This
is easily seen in Figure 3. In the x-space the point xk is closest to the Sj perceptual mean, so the
minimum distance classifier responds Rj to this percept. However, after the Cholesky
transformation z = Pi

-1(xk - µi), the point in z-space that corresponds to xk (i.e., zk) is closest to the
Si perceptual mean. As a consequence, the conditional response probabilities predicted by the
minimum distance classifier are most easily computed in x-space. Even so, for both the
minimum distance classifier, steps 1 and 2 of the Cholesky algorithm are still used. However,
steps 3 and 4 must be replaced by:

3) Transform the z-grid to x-space. Step through the z-grid. At each z-point, compute the
corresponding x-point via the transformation xi = Pi z + µi.

4) Compute the integral. For each point in x-space, compute the distance to every
perceptual mean (in the case of the minimum distance classifier) or to every striatal grid point (in
the case of the SPC) and then increment the integral associated with the smallest of these by 1/nr.

This algorithm will be considerably slower than an analogous algorithm based on
discriminant functions because of the linear transformation that is required on every point in the
z-grid. On the other hand, the minimum distance/SPC algorithm is exceedingly general. With
appropriate modification, it can be used to fit any model that assumes multivariate normal
perceptual distributions and that specifies a well-defined decision rule.

Figure 3. An illustration that distance relations are not preserved by the linear transformation
from the x-space to the z-space. In the top panel, the point xk is closer to the mean of the Sj
perceptual distribution than to the mean of the Si distribution, but the bottom panel shows that
this distance ordering is reversed after the transformation to z-space.



CONCLUSIONS
For many years, the most successful model of stimulus identification was the so-called

similarity-choice model (Luce, 1963; Shepard, 1957). For example, in 1992, J. E. K. Smith
summarized its performance by concluding that the similarity-choice model “has never had a
serious competitor as a model of identification data” (p. 199). However, in recent comparisons to
decision bound models, whose fits were made possible by the algorithm described in this article,
the similarity-choice model has fared poorly. For example, Ashby et al. (2001) fit the similarity-
choice model and a variety of decision bound models to 25 separate data sets collected in a
variety of different experiments. In 20 of these 25 cases the best account of the data was
provided by a decision bound model, and in many of these instances the improvement provided
by the decision bound model over the similarity-choice model was substantial.



Despite these successes, applications of decision bound models have been confined to
just a few laboratories, at least partly because of the time-consuming and seemingly
sophisticated computation needed to fit the model. The algorithm described in this article is
conceptually straightforward and runs quickly on modern computers, and we believe it largely
solves this problem.
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