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Considerable evidence suggests that human category learning recruits multiple memory sys-
tems. A popular assumption is that procedural memory is used to form stimulus-to-response
mappings, whereas declarative memory is used to form and test explicit rules about category
membership. The multiple systems framework has been successful in motivating and account-
ing for a broad array of empirical observations over the last 20 years. Even so, only a couple of
studies have examined how the different categorization systems interact. Both previous stud-
ies suggest that switching between explicit and procedural responding is extremely difficult.
But they leave unanswered the critical questions of whether trial-by-trial system switching is
possible, and if so, whether it is qualitatively different than trial-by-trial switching between
two explicit tasks. The experiment described in this article addressed these questions. The
results 1) confirm that effective trial-by-trial system switching, although difficult, is possible;
2) suggest that switching between tasks mediated by different memory systems is more difficult
than switching between two declarative memory tasks; and 3) point to a serious shortcoming
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of current category-learning theories.

Introduction

Evidence that humans have multiple memory systems
(Eichenbaum & Cohen, 2001; Squire, 2004; Tulving &
Craik, 2000) inspired the development of theories that cat-
egory learning is also mediated by multiple qualitatively dis-
tinct systems. (Ashby, Alfonso-Reese, et al., 1998; Ashby &
O’Brien, 2005). According to this view, procedural memory
is used to form many-to-one stimulus-to-response mappings
(i.e., S-R associations), whereas declarative memory is used
to apply rules and test explicit hypotheses about category
membership. This arrangement raises a number of impor-
tant questions as to how these putative systems resolve their
competition for access to the motor systems that they must
share. For example, given a daily need to perform a variety of
tasks — some best served by declarative systems, and others
best served by procedural systems — can control be flexibly
passed between systems on a moment-by-moment basis?

ATRIUM (Erickson & Kruschke, 1998) and COVIS
(Ashby et al., 1998), the two dominant multiple system
category-learning theories, each assume that trial-by-trial
switching is a routine and common occurrence. However,
both theories were formulated in the absence of any data
on this important issue. Unfortunately, during the ensu-
ing 18 years, the landscape has only marginally changed.
We know of only two studies that directly address this is-
sue (Ashby & Crossley, 2010; Erickson, 2008). Both stud-
ies used experiments that required participants to switch be-

tween procedural and declarative categorization strategies on
a trial-by-trial basis in order to achieve optimal performance.
Ashby and Crossley (2010) reported that only 2 of 53 partic-
ipants (~ 4%) showed any evidence of trial-by-trial switch-
ing, whereas Erickson (2008), using a design that included
more switching cues, reported that only 51 of 170 partici-
pants (~ 30%) successfully switched between systems on a
trial-by-trial basis.

The poor success rates reported by Erickson (2008) and
Ashby and Crossley (2010) suggest that the current theories
might be much too optimistic about the ability of people to
system switch, and therefore that a more valid and conserva-
tive theory of system switching is badly needed. Construct-
ing such a theory on the basis of these two studies seems
fruitless however, because too many critical questions remain
unanswered. For example, why did the two studies find such
different success rates? Can trial-by-trial switching between
systems ever be reliably achieved? If so, what conditions
trigger a system switch? Is switching between declarative
and procedural systems qualitatively different than switching
between two tasks both mediated by declarative systems?

The primary goal of this article is to address these ques-
tions. The experiment described below included two condi-
tions. In one, participants were required to switch between
declarative and procedural strategies on a trial-by-trial basis
following a training procedure that was similar to the one
used by Erickson (2008). Both prior studies estimated the
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number of participants that successfully switched between
systems by using decision bound model fits to count how
many participants were able to adopt strategies of the opti-
mal type. The present experiment extends this method by
adding an additional behavioral probe at the end of the ex-
periment to test whether switching was successful. A sec-
ond condition replicated the first, except participants were
instead required to switch between two different declarative
strategies on a trial-by-trial basis. Our results suggest that
trial-by-trial switching between declarative and procedural
systems is possible given enough training and under optimal
conditions, and that switching between declarative and pro-
cedural strategies is more difficult than switching between
different declarative strategies.

A secondary goal of this article is to relate system switch-
ing to the large task-switching literature, which has been
primarily concerned with switching back and forth between
different declarative-memory-based tasks (e.g., Kiesel et al.,
2010; Monsell, 2003). Many such studies have established
that switch trials reliably increase response times (RTs) and
often decrease accuracy. The properties of the component
tasks that determine switch costs are of increasing interest
in this field. For example, some of the factors that have
been explored include the number and identity of response
effectors (Philipp, Weidner, Koch, & Fink, 2013), the com-
plexity of the stimuli (Witt & Stevens, 2013), the abstract-
ness of the rules (Stelzel, Basten, & Fiebach, 2011), and
the perceptual and attentional demands of the component
tasks (Chiu & Yantis, 2009; Nagahama et al., 2001; Rav-
izza & Carter, 2008; Rushworth, Hadland, Paus, & Sipila,
2002). This article is the first to compare task switching (i.e.,
between two declarative-memory tasks) and system switch-
ing (between a declarative- and a procedural-memory task),
and therefore makes an important contribution to the task-
switching and cognitive-control literatures, in addition to the
category-learning literature.

Rule-Based
Learning

and Information-Integration Category

The current and previous research on system switch-
ing during categorization depends strongly on prior re-
search with rule-based (RB) and information-integration (II)
category-learning tasks. Example trials from the present
experiment and example RB and II category structures are
shown in Figure 1. In RB tasks, the categories can be learned
via an explicit hypothesis-testing procedure (Ashby et al.,
1998). In the simplest variant, only one dimension is relevant
(e.g., bar width), and the task is to discover this dimension
and then map the different dimensional values to the rele-
vant categories. However, there is no requirement that RB
tasks be one-dimensional (1D). For example, a conjunction
rule (e.g., respond ‘A’ if the bars are thick and the orienta-
tion is shallow) is an RB task because a conjunction is a pair
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Figure 1. Examples of one-dimensional RB (top) and II (bot-
tom) stimuli and category structures.

of logical conditionals, and thus, separate 1D rules are first
made about each relevant dimension and then these separate
decisions are combined. In II tasks, accuracy is maximized
only if information from two or more incommensurable stim-
ulus dimensions is integrated perceptually at a pre-decisional
stage (Ashby & Gott, 1988). In most cases, the optimal strat-
egy in II tasks is difficult or impossible to describe verbally
(Ashby et al., 1998). Verbal rules may be (and sometimes
are) applied but they lead to suboptimal performance because
they produce a maladaptive focus on only one stimulus di-
mension.

A variety of evidence suggests that success in RB tasks
depends on working memory and executive attention (Ashby
et al., 1998; Maddox, Ashby, Ing, & Pickering, 2004; Wal-
dron & Ashby, 2001; Zeithamova & Maddox, 2006), and is
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supported by a broad neural network that includes the pre-
frontal cortex, anterior cingulate, the head of the caudate nu-
cleus, and medial temporal lobe structures (Brown & Mars-
den, 1988; Filoteo, Maddox, Song, et al., 2007; Muhammad,
Wallis, & Miller, 2006; Seger & Cincotta, 2006). In contrast,
evidence suggests that success in II tasks depends on proce-
dural learning that is mediated largely within the striatum
(Ashby & Ennis, 2006; Filoteo, Maddox, Salmon, & Song,
2005; Knowlton, Mangels, & Squire, 1996; Nomura et al.,
2007). For example, switching the locations of the response
keys has no effect on RB categorization, but as in more tradi-
tional procedural-learning tasks, switching response keys in-
terferes with II categorization (Ashby, Ell, & Waldron, 2003;
Maddox, Ashby, et al., 2004; Maddox, Glass, O’Brien, Filo-
teo, & Ashby, 2010).

The stimuli and category structures used in our experi-
ment are illustrated in Figure 2. Note that there are two con-
ditions. The RB/II condition required trial-by-trial switching
between II and 1D RB categories, whereas the RB/RB con-
dition required switching between two RB category struc-
tures — one that requires a conjunction rule for optimal per-
formance and one that requires a 1D rule.

A comparison of Ashby and Crossley (2010) and Erickson
(2008)

As mentioned previously, the only two behavioral studies
to examine system switching during categorization reported
somewhat discrepant results. Ashby and Crossley (2010) re-
ported an almost complete failure to find any evidence of
trial-by-trial switching, whereas Erickson (2008) reported
that 30% of his participants appeared to switch successfully
between systems on a trial-by-trial basis.

Ashby and Crossley (2010) used circular sine-wave grat-
ings like those shown in Figure 1 with a hybrid category
structure that required a procedural strategy for half the stim-
uli, and a 1D rule for the other half. A 1D rule was optimal
when the bars had a steep orientation and a procedural strat-
egy was optimal when the orientation was shallow. Thus, the
only cue that signaled which type of strategy to use was bar
orientation. In contrast, Erickson (2008) included three cues
that signaled whether a declarative or procedural strategy was
required. First, the stimuli requiring a procedural strategy
were perceptually distinct from the stimuli requiring an ex-
plicit rule. Second, stimuli requiring a procedural strategy
were presented in one color, whereas stimuli requiring a rule
were presented in a different color. Third, the II categories
required different responses than the RB categories (i.e., A
and B versus C and D).

One possibility is that Erickson (2008) observed more
trial-by-trial switching because of the extra cues that he used.
Another possibility, however, is that Erickson’s participants
did not actually switch between different memory systems.
Instead, perhaps they were able to perform well by switching
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Figure 2. Stimuli and Category Structures used in the RB/II
(top panel) and RB/RB Conditions (bottom panel).

between two different declarative strategies. This possibility
is difficult to rule out because the stimuli used by Erickson
(2008) were constructed from commensurable stimulus di-
mensions (height of a rectangle and the horizontal position of
an internal vertical line segment). When two stimulus dimen-
sions are in the same units, then diagonal decision bounds are
often easy to describe verbally and therefore easy to discover
through an explicit, logical reasoning process. For example,
consider rectangles that vary in height and width. In this
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case, a diagonal bound with slope +1 defines a shape rule.
When the bound has an intercept of zero, then all rectan-
gles above the boundary are taller than they are wide, and all
rectangles below the boundary are wider than they are tall.
Following this example, it is possible that Erickson’s (2008)
participants used a rule based on the difference between the
height of the rectangle and the distance from the internal ver-
tical line to the left edge (for example) of the rectangle. The
appropriate category response would be chosen depending
on whether or not this difference exceeded a criterion. In
general, when stimuli are constructed from commensurable
stimulus dimensions it is often difficult to determine whether
explicit or procedural strategies are used from an accuracy or
model-fit analysis alone.

Testing for Successful Switching Between Systems

Ashby and Crossley (2010) and Erickson (2008) at-
tempted to diagnose successful system switching by analyz-
ing block-by-block accuracy and decision-bound model fits.
While each of these techniques makes an important contribu-
tion, neither is sufficient to prove system switching conclu-
sively. In the experiments described below, we added a test
block after training that reversed the locations of the response
keys (which we henceforth refer to as a button-switch). Pre-
vious research suggests that a button switch impairs procedu-
ral strategies more than declarative strategies (Ashby et al.,
2003; Maddox, Bohil, & Ing, 2004; Maddox et al., 2010).
Theoretically, this is because procedural learning is medi-
ated by S-R associations that were gradually strengthened
through trial and error. Reversing the buttons then requires
unlearning of the original S-R associations, and relearning
the new reversed associations'. Declarative strategies, on the
other hand, can be quickly adapted to accommodate a button
switch because performance in this case is driven by explic-
itly applied rules. Therefore, if participants are successfully
switching between declarative and procedural strategies, then
the button switch should impair trials that require a procedu-
ral strategy, but not trials that require a declarative strategy.

There is, however, evidence that button switches can also
impair sufficiently complex declarative strategies (Nosofsky,
Stanton, & Zaki, 2005). Thus, any impairment that occurs
as a result of a button switch could conceivably be due to
the use of a complex declarative strategy, rather than a pro-
cedural strategy. We therefore ran a control condition (the
RB/RB condition) in which the II structures were replaced
with complex RB structures in order to specifically examine
this possibility. If button switch impairments in our switch-
ing task are due to the use of complex declarative strategies,
then they should also be present in this condition. If not, then
any button switch impairment observed in the RB/II condi-
tion is likely due to procedural learning.

Methods
Participants & Conditions

Thirty-four undergraduates at UCSB served as partici-
pants in the RB/II condition, and 22 served as participants
in the RB/RB condition. All participants were given course
credit for their participation, and they all had normal or cor-
rected to normal vision.

Stimuli were gray-scale, circular sine-wave gratings that
varied across trials in spatial frequency (cycles per degree,
CPD) and orientation (radians, rad). Each stimulus sub-
tended approximately 5 degrees of visual angle and was dis-
played against either a blue or a green background using rou-
tines from the Psychophysics toolbox (Brainard, 1997).

Stimuli were sampled from one of four possible distribu-
tions (illustrated in the top panel of Figure 2 for the RB/II
condition, and the bottom panel of Figure 2 for the RB/RB
condition) following the randomization technique developed
by Ashby and Gott (1988). To control for statistical out-
liers, the random sample was discarded if its Mahalanobis
distance (Fukunaga, 1990) was greater than 3.0. This pro-
cess was repeated until 400 Category A, 400 Category B,
400 Category C, and 400 Category D exemplars had been
generated. Parameters for these category distributions are
reported in Table 1. After each sample was collected, the
coordinates of all stimuli were linearly transformed so that
the sample statistics exactly equaled the population param-
eter values. Each random sample (x,y) was converted to a
stimulus according to the nonlinear transformations defined
by Treutwein, Rentschler, and Caelli (1989), which roughly
equates the salience of each dimension (see Appendix B for
details).

Procedure

The procedures were identical in both conditions. Each
condition consisted of one session lasting approximately 50
minutes in duration that included 9 blocks of 100 trials each.
Participants were free to rest as long as they wished between
blocks. Participants were required to classify a stimulus
into one of four categories on every trial. Stimuli sampled
from the 1D RB categories were displayed against a blue
background, and stimuli sampled from the II categories or
the conjunction-rule RB categories were displayed against a
green background. Participants were informed that the back-
ground colors indicated that different categorization strate-
gies would be necessary for optimal performance. They were

I'This account actually predicts that a button switch should cause
catastrophic interference in procedural strategies, which has never
been observed in an II task. We recently proposed a revision to
this classic account that correctly predicts a more moderate button-
switch interference (Cantwell, Crossley, & Ashby, 2015). The key
point, however, is simply that button switches reliably interfere with
II tasks more robustly than they interfere with RB tasks
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Table 1
Category Distribution Parameters.
U My o oy COVyy
RB/II Condition
IIA 43 57 16791 119.0 59.36
IIB 57 43 16791 119.0 59.36
RBC 140 50 10 200 0
RB D 160 50 10 200 0
RB/RB Condition
Conjunction Al 31.33  48.67 11.4 171.8 0
Conjunction B1 48.67 31.33 11.4 171.8 0
Conjunction A2 | 51.33 68.67 1718 114 0
Conjunction B2 | 68.67 51.33 171.8 114 0
I-DC 140 50 10 200 0
1-DD 160 50 10 200 0

further informed that stimuli displayed against a blue back-
ground (1D RB trials) only required attention to one dimen-
sion and that stimuli displayed against a green background
(IT and conjunction-rule trials) required attention to both di-
mensions. They were instructed to press the ‘s’ key with the
second finger of their left hand for category ‘A’, to press the
‘d’ key with the first finger on their left hand for category ‘B’,
to press the ‘k’ key with the first finger on their right hand for
category ‘C’, and to press the ‘1’ key with the second finger
on their right hand for category ‘D’. Participants were further
informed that all stimuli displayed against a blue background
belonged to either category ‘A’ or category ‘B’ and that stim-
uli displayed against a green background belonged to either
category ‘C’ or category ‘D’.

Each trial began with a fixation cross lasting 750 ms. A
stimulus was then presented for a maximum duration of 5000
ms. If the participant responded within 5000 ms the stimulus
disappeared, and 500 ms later a feedback tone was presented
for 1000 ms. Correct responses were indicated by a pure
sine tone (500 Hz, .73 seconds in duration), and incorrect
feedback was indicated by a saw-tooth tone (200 Hz Hz, 1.22
seconds in duration).

Participants were first trained on the 1D RB categories for
100 trials, then on the I (RB/II condition) or conjunction-
rule RB categories (RB/RB condition) for 400 trials, and
then on randomly intermixed (with equal probability) RB
and II categories for 300 trials in the RB/II condition or on
randomly intermixed 1D RB and conjunction-rule RB cate-
gories for 300 trials in the RB/RB condition. Each condi-
tion concluded with 100 trials of intermixed RB and II cate-
gories (RB/II condition) or 1D rule and conjunction-rule cat-
egories (RB/RB condition) with the response key-category
label mappings switched. Specifically, the category A and
B response keys switched locations, and so did the category
C and D response keys. Throughout the entire experiment

the category labels ‘A’, ‘B’, ‘C’, and ‘D’ appeared along
the bottom of the screen in a spatial position and order that
corresponded to the correct keyboard key - category label
mapping. Thus, when the button locations were switched, so
were the labels.

Decision Bound Modeling

To identify participants most likely to have switched suc-
cessfully between declarative and procedural strategies, we
partitioned the data from each participant into blocks of 100
trials, isolated and grouped the trials according to their re-
spective category substructure (i.e., Il or RB) and fit differ-
ent decision bound models to the responses from each sub-
structure (Ashby & Gott, 1988; Maddox & Ashby, 1993).
Three different kinds of models were fit to each of these
data sets. Rule-learning models assumed either a 1D rule
(on either orientation or bar width) or a conjunction rule (re-
spond ‘B’ if the bars are wide and the orientation is shal-
low; otherwise respond ‘B’). The 1D rule models have two
free parameters (a decision criterion on the relevant percep-
tual dimension, and a perceptual noise variance), and the
conjunction rule model has three free parameters (a sepa-
rate decision criterion on each dimension, and a perceptual
noise variance). Procedural-learning models assumed a lin-
ear decision bound of arbitrary slope and intercept. These
models are consistent with a procedural strategy since they
integrate perceptual information from the two stimulus di-
mensions pre-decisionally. Procedural-learning models have
three free parameters (the slope and intercept of the linear
decision bound, and a perceptual noise variance). The third
model class assumed a guessing strategy. One version as-
sumed unbiased guessing (no free parameters), and another
version (with one free parameter) assumed biased guessing
(guess A with probability p and guess B with probability
1 — p, where p is a free parameter).

We estimated best-fitting parameters via maximum likeli-
hood, and used the the Bayesian information criterion (BIC;
Schwarz, 1978) for model selection. BIC is defined as
BIC = rIn N — 21n L, where r is the number of free param-
eters, N is the sample size, and L is the likelihood of the
data given the model. The BIC statistic penalizes models for
extra free parameters. To determine the best-fitting model,
the BIC statistic is computed for each model, and the model
with the smallest BIC value is the winning model. As in Er-
ickson (2008), only participants whose responses during the
last block of intermixed trials (i.e., trials 701-800) were best
fit by a model that assumed a strategy of the optimal type
were classified as ‘switchers.’
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Figure 3. Proportion of participants failing to avoid the ex-
clusion criteria during each phase of the experiment. (1D =
one-dimensional RB, CJ = conjunction-rule RB)

Results
Exclusion Criteria

Since we are interested in system switching, it is essential
that we identify and remove participants who failed to learn
during any of the single category-structure training phases.
Obviously, it is only possible to study the ability of people to
switch between categorization strategies in participants who
can learn each strategy separately. So the statistic we used to
screen participants was mean accuracy during the last block
of single category-structure training. We separately analyzed
our data with exclusion criteria of 55%, 60%, 65%, and 70%
correct. The results were qualitatively identical for each of
these criteria, although some of the statistics that were sig-
nificant for the more stringent criteria were nonsignificant
for the more lenient criteria. Here we report results based
on an exclusion criterion of 65% correct because this value
reflected a fairly natural break point that seemed to best sepa-
rate learners from nonlearners. Figure 3 shows the proportion
of participants in both conditions that failed to reach this cri-
terion level of accuracy (i.e., at least 65% during the single
category-structure training, or during the blocks where the
different category structures were intermixed).

The proportion of participants who failed on II trials in
the RB/II condition during the switching phase was sig-
nificantly greater than the proportion of participants who
failed on conjunction-rule RB trials in the RB/RB condition
[Xz(]) = 13.09, p = 0.00, i1 = 1.64]. None of the other differ-
ences between conditions shown in Figure 3 are significant
[1D training: y*(1) = 0.74,p = 039,h = -0.47; 11/ CJ
training: x*(1) = 0.94,p = 0.33,h = 0.51; 1D switching:
/\/2(1) =1.79,p = 0.18, h = 1.01]. All participants that failed
any task element were excluded from further analyses. This
left 17 of the 34 participants in the RB/II condition and 13 of
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Figure 4. Mean accuracy of non-excluded participants in
each block of 50 trials. Error bars are SEMs. (1D = one-
dimensional, CJ = conjunction rule)

the 22 participants in the RB/RB condition.

Accuracy-Based Analyses

Figure 4 shows mean accuracy for every block of 50 trials
in both conditions. Recall that participants were first trained
for 100 trials on the 1D RB categories, followed by 400 trials
either on II categories (RB/II condition) or conjunction-rule
RB categories (RB/RB condition). In both conditions, the
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single category-structure training was followed by 300 trials
where stimuli from the two category structures were inter-
mixed. Finally, the experiment concluded with 100 more in-
termixed trials, with the response keys switched within each
category structure.

One-Dimensional RB Training. The 1D RB categories
were learned well within the first training block as indicated
by a non-significant effect of block [F(1,28) = 2.74,p =
0.11,Q = 0.61], and equally well in both conditions as in-
dicated by a non-significant effect of condition [F(1,28) =
0.22, p = 0.64,Q = 0.05], and a non-significant condition X
block interaction [F(1,28) = 1.52, p = 0.23,Q = 0.34].

II and Conjunction-Rule Training. The II and
conjunction-rule categories were learned with practice, as
indicated by a significant effect of block [F(7,196) =
12.36,p = 0.00,QQ = 0.95 ]. They were matched in dif-
ficulty as indicated by a non-significant effect of condition
[F(1,28) = 0.32, p = 0.58,Q < 0.01], and a non-significant
interaction [F(7,196) = 0.59, p = 0.77,Q = 0.05].

Intermixed Performance. Performance on 1D RB tri-
als remained considerably better than performance on ei-
ther the II or conjunction-rule trials during the intermixed
phase, as indicated by a significant main effect of trial type
[F(1,308) = 149.25,p = 0.00,Q = 0.88]. Performance
on both trial types improved equally well with practice, as
indicated by a significant main effect of block [F(5,308) =
2.54,p = 0.03,Q = 0.07], and non-significant interactions
[condition X block: F(5,308) = 0.16,p = 0.98,Q < 0.01;
condition X trial type: F(1,308) = 0.89, p = 0.34,Q = 0.01;
block x cue: F(5,308) = 0.75,p = 0.59,Q = 0.02; condi-
tion X block x cue: F(5,308) = 0.59, p = 0.71,Q = 0.02].

Button Switch Performance. Figure 5 shows button-
switch costs for all trial types and conditions. In the RB/II
condition, the cost on 1D trials was significant during the
first button-switch block [#(16) = 2.23, p < 0.05 >,d = 1.24
], but not during the second button-switch block [#(16) =
1.27,p = 0.22,d = 0.41]. The cost on II trials was sig-
nificant during the first [#(16) = 3.67,p < 0.01,d = 3.37],
and the second [#(16) = 2.95,p < 0.05,d = 2.18] button-
switch blocks. The cost on II trials was not significantly
greater than the cost on 1D trials during the first button-
switch block [#(16) = 0.21,p = 0.42,d = 0.01 ], but was
marginally greater during the second button-switch block
[#(16) = 1.51,p = 0.08,d = 0.57].

In the RB/RB condition, the cost on 1D trials was not sig-
nificant during the first [#(12) = 1.62,p = 0.13,d = 0.76],
or the second [#(12) = 1.17,p = 0.26,d = 0.40] button-
switch block. The cost on conjunction-rule trials was signif-
icant during the first button-switch block [#(12) = 2.41,p =
0.03,d = 1.68 ], but not during the second button-switch
block [#(12) = 1.23,p = 0.24,d = 0.43]. The cost on con-
junction trials was marginally significantly greater than the
cost on 1D trials during the first [#(12) = 1.45, p = 0.09,d =
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Figure 5. Button-switch costs in non-excluded participants.
The solid black lines inside each box represent the median,
and each box extends from the 25" to the 75" percentile.
Each whisker extends to the most extreme data point that is
within 1.5 times the interquartile range from the median. Cir-
cles represent outliers that are further away from the median
than this. Top) RB/II Condition. Bottom) RB/RB Condition.
‘Early’ refers to the difference in accuracy between the last
50 trials of the intermixed phase and the first 50 trials of the
button-switch phase. ‘Late’ refers to the accuracy difference
between the last 50 trials of the intermixed phase and the last
50 trials of the button-switch phase.

0.60], but not the second [#(12) = 0.46, p = 0.33,d = 0.06 ]
button-switch block.

Note that the II button-switch cost in the RB/II condition
and the conjunction-rule button-switch cost in the RB/RB
condition were similar during the first button-switch block,
and the cost to each decreased during the second button-
switch block. Even so, the recovery on II trials (RB/II condi-
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Figure 6. Trial-by-trial switch costs for accuracy (percent
correct) and mean RT (seconds). The solid black lines inside
each box represent the median, and each box extends from
the 25™ to the 75" percentile. Each whisker extends to the
most extreme data point that is within 1.5 times the interquar-
tile range from the median. Circles represent outliers that are
further away from the median than this.

tion) was only partial, whereas complete recovery occurred
on conjunction-rule trials (RB/RB condition). However, if
participants are using a procedural system to respond to II
trials and a declarative system to respond to conjunction-rule
trials, then we would expect the cost incurred on II trials to
be significantly greater than the cost incurred on conjunction-
rule trials. Our data displayed this pattern qualitatively, but
failed to reach significance: the recovery during conjunction-
rule trials was not significantly greater than the recovery dur-
ing II trials [#(20) = —-0.74, p = 0.23,d = 0.12].

Trial-By-Trial Switch Cost. The task switching litera-
ture has more or less ubiquitously reported switch costs in
the form of decreased accuracy and / or increased response
times (RTs) on switch trials relative to stay trials (Monsell,
2003; Wylie & Allport, 2000). Here, we examine whether
the switch cost incurred when switching to a procedural sys-
tem from a declarative system differs from the switch cost
incurred from switching the opposite direction.

Every stimulus was either from 1D RB categories,
conjunction-rule RB categories, or II categories. Therefore,
let J|K denote the event in which the stimulus on the current
trial is from type J catgories and the stimulus from the pre-
ceding trial was from type K categories, for J and K = 1D,
CJ (for conjunction-rule RB), or II. In the RB/II condition,

the four trial types are II|II, IT|1D, 1DIII, and 1D|1D (corre-
sponding to II stay, II switch, RB switch, and RB stay trials,
respectively), whereas in the RB/RB condition, the four trial
types are CJ|CJ CJ|1D, 1D|CJ, and 1D|1D. The trial-by-trial
switch costs are therefore defined as II|1D — II|IT and 1DIII —
1D|1D in the RB/II condition and CJ|1D — CJ|CJ and 1D|CJ
— 1D|1D in the RB/RB condition.

Figure 6 shows the trial-by-trial accuracy and mean RT
switch costs of all four types. There was a reliable RT switch
cost for every switch type in both conditions [RB/II condi-
tion: I]1D — II|II: #(16) = 5.42,p < 0.001,d = 7.34; 1D|II
— 1DJ|1D: #(16) = 9.06, p < 0.001,d = 20.51; RB/RB con-
dition: CJ|1D — CJ|CJ: #(12) = 6.76, p < 0.001,d = 13.19;
1DI|CJ — ID|ID: #(12) = 7.74,p < 0.001,d = 17.28]. The
accuracy switch cost was highly significant when switch-
ing to 1D from II [1D|II — ID|ID: #(16) = -3.48,p <
0.001,d = 3.03], and it was marginally significant when
switching to a conjunction rule from 1D [CJ|1D — CJ|CIJ:
1(12) = -192,p = 0.08,d = 1.06]. The other two
types of switch costs were not significant [II|/ID — TI|II:
1(16) = -0.86, p = 0.40,d = 0.19; 1D|CJ — 1D|ID: #(12) =
—-0.66,p =0.52,d = 0.13].

All prior evidence has indicated that system switching is
difficult (Ashby & Crossley, 2010; Erickson, 2008), which
might seem to suggest that the between-system switch costs
in the RB/II condition should be greater than the within-
system switch costs in the RB/RB condition. Our results
provided only weak support for this prediction. The accu-
racy cost of switching to a 1D rule was greater in the RB/II
condition than in the RB/RB condition [#(26) = —1.76,p =
0.04,d = 0.61], but the RT cost was not [#(22) = —1.18, p =
0.88,d = 0.30], and the costs of switching from a 1D rule to
an II strategy were not significantly different from the costs
of switching from a 1D rule to a conjunction rule [Accuracy:
1(26) = 0.86,p = 0.80,d = 0.14; RT: #(28) = —0.63,p =
0.73,d = 0.08].

Model-Based Analyses

Figure 7 shows the number of participants whose re-
sponses were best fit by each type of decision bound model
for every block in both conditions. Recall that during the
first (100 trial) block in both conditions, participants exclu-
sively practiced the 1D categories, during blocks 2 — 5 they
exclusively practiced either the II categories (in the RB/II
condition) or the conjunction-rule categories (in the RB/RB
condition), during blocks 6 — 8 they switched back and forth
between 1D and II (RB/II condition) or between 1D and a
conjunction rule (RB/RB condition), and in block 9 they con-
tinued to switch back and forth except with the response keys
switched.

Visual inspection of Figure 7 shows clearly that during the
exclusive training blocks the vast majority of participants re-
sponded in a manner consistent with the optimal strategy for



SYSTEM SWITCHING 9

RB/Il Condition RB/RB Condition
2
.
@ @ ®
g g
» a 2
] s
= £ £ ¢
F e &
3 s 5,
- 8 g
= 2 H
o ' E
] 5
z Z o
°- °
2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9
Block Block
o o
£ 2 o
€ -
§ §
g g
»n 52 S =
© € T
£ 5§ H
£ £
o ? s
- 3 H
B B~
H H
z z
o
° °
1 6 7 8 9 1 6 7 8 9
Block Block
- 10 - cJ @ Procedural @S Guessing

Figure 7. The number of participants best fit by each model
type during each block in both conditions. The left column
shows RB/II results and the right column shows RB/RB re-
sults. The top row shows performance on II and conjunction-
rule trials, and the bottom row shows performance on 1D
trials.

all category structures in both conditions (i.e., 1D rule use
dominates during 1D training, procedural strategies domi-
nate during II training, and conjunction rule use dominates
during CJ training). For 3 of the 4 category structures, op-
timal strategy use was unaffected by trial-by-trial switching
(i.e., during the intermixed blocks 6 — 8). The one exception
was on II trials in the RB/II condition. During the early in-
termixed blocks (6 and 7), a few participants abandoned their
procedural strategies to either guess or use a 1D rule. By the
last intermixed block however (i.e., block 8), all but 2 were
using a procedural strategy again.

The button switch (during block 9) had no effect on strat-
egy use during 1D trials in the RB/RB condition. Three
participants abandoned an optimal-type strategy in favor of
guessing both during the conjunction rule trials in the RB/RB
condition and during 1D trials in the RB/II condition. How-
ever, neither of these reductions was significant [1D users
RB/II condition: )(2(1) =0.94,p = 0.17,h = 0.52; conjunc-
tion rule users RB/RB condition: y*(1) = 0.68, p = 0.20,4 =
0.49]. On the other hand, the button switch had a more se-
rious effect on categorization strategies during II trials in the
RB/II condition. In fact, the number of participants using
a procedural strategy dropped by more than half, which is
a significant reduction [,\/2(1) = 6.31,p = 0.01,h = 1.05].
Of the 8 participants who abandoned procedural strategies, 5
resorted to guessing and 3 switched to a 1D rule.

Discussion

Ashby and Crossley (2010) reported an almost complete
failure of system switching in a straightforward categoriza-
tion task in which perfect accuracy was possible if partic-
ipants used a simple 1D categorization rule for disks with
steep orientations and a procedural strategy for disks with
shallow orientations. This abysmal performance was unex-
pected given that a number of studies have shown that partici-
pants readily learn a variety of nonlinear decision bounds that
are at least as complex as the decision bound in the Ashby
and Crossley (2010) experiment (Ashby, Waldron, Lee, &
Berkman, 2001; Maddox & Ashby, 1993). One possible key
difference though is that in the previous studies the complex
bound had no 1D component (horizontal or vertical). Thus,
participants were never consistently rewarded for using an
explicit strategy on a significant subset of trials. As a result,
the best interpretation of those earlier studies may be that
participants responded via the procedural system on every
trial.

Erickson (2008) reported a higher success rate at trial-by-
trial system switching than Ashby and Crossley (2010), using
a design that included a number of cues that signaled whether
each stimulus required a declarative or procedural strategy.
Even so, only about 30% of Erickson’s participants showed
evidence of successful switching, and even this value may
be an over-estimation because the stimuli used by Erickson
(2008) were constructed from commensurable stimulus di-
mensions, which sometimes make it difficult to identify pro-
cedural responding.

Thus, in summary, only a couple of prior studies have in-
vestigated trial-by-trial system switching, and those studies
paint a bleak picture. Both studies suggest that switching
between explicit and procedural responding is extremely dif-
ficult. But they leave unanswered a number of critical ques-
tions. Is effective trial-by-trial system switching possible?
If so, is it qualitatively different than trial-by-trial switch-
ing between two explicit tasks? The experiment described
in this article addressed these questions. In the RB/II condi-
tion, participants attempted to trial-by-trial switch between
an explicit 1D rule and a nonverbalizable similarity-based
strategy that depends on procedural learning and memory.
In the RB/RB condition, different participants trial-by-trial
switched between two different explicit rules — the same 1D
rule as in the RB/II condition and a conjunction rule that was
approximately equal in difficulty to the procedural strategy
required in the RB/II condition.

Half of our RB/II participants performed well, and they
did so in a manner consistent with system switching — that
is, their performance was consistent with the hypothesis that
declarative systems mediated performance on 1D trials and
procedural systems mediated performance on II trials. First,
the responses of almost all of these participants were best
accounted for by a 1D explicit rule on RB trials and by a
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model assuming a procedural strategy on II trials. Second,
accuracy on II trials was initially impaired more than accu-
racy on 1D trials during the button-switch phase. Third, the
button-switch impairment on 1D trials fully recovered dur-
ing the second button-switch block, whereas the impairment
on II trials never recovered. Fourth, in the RB/RB condition,
there was no button-switch impairment at all on the 1D trials,
and the initial impairment on conjunction-rule trials fully re-
covered during the second button-switch block. These latter
two points are consistent with the hypothesis that declarative
systems mediated performance on all trials in the the RB/RB
condition and control was passed back and forth between
procedural and declarative systems in the II/RB condition.
The key idea here is that initial button-switch costs may re-
flect a plethora of processes indicative of either declarative
or procedural processes. For example, working memory de-
mands and procedural interference will both be high soon af-
ter a button-switch. However, we suggest that these working
memory demands should ease off with relative ease as partic-
ipants get used to the reverse mappings. Procedural interfer-
ence, on the other hand, requires the gradual rewiring of asso-
ciations formed through trial-and-error, and should therefore
be considerably harder to adapt to the reversed mappings.

The task switching literature has been primarily con-
cerned with switching back and forth between different
declarative-memory-based tasks (e.g., Kiesel et al., 2010;
Monsell, 2003), and has now examined a variety of factors
that influence this process (see our introduction for some of
these factors). This literature indicates that switch trials reli-
ably increase response times (RTs) and often decrease accu-
racy. Our article is the first to compare task switching (i.e.,
between two declarative-memory tasks) and system switch-
ing (between a declarative- and a procedural-memory task).
Our results suggest that switching between tasks mediated
by different memory systems is more difficult than switch-
ing between two declarative-memory tasks. Several results
support this conclusion. First, more RB/II than RB/RB par-
ticipants failed to meet the meager accuracy criterion of 65%
correct during the intermixed training phase (see Figure 3).
Second, more RB/II than RB/RB participants abandoned a
strategy of the optimal type during intermixed training (see
Figure 7). Third, the trial-by-trial switch costs were slightly
though significantly greater in the RB/II condition than in the
RB/RB condition (i.e., the accuracy cost of switching to a 1D
rule was significantly greater in the RB/II condition).

Our results have important theoretical implications. All
current category-learning models that include multiple sys-
tems assume that trial-by-trial system switching is a routine
and common occurrence. For example, COVIS (Ashby et al.,
1998) assumes that control is passed back and forth between
systems depending on which system is most confident on
each trial. Similarly, ATRIUM (Erickson & Kruschke, 1998,
p- 119) assumes that ‘each module learns to classify those

stimuli for which it is best suited’. Our results, together with
those of Erickson (2008) and Ashby and Crossley (2010),
suggest that system switching is much more difficult that as-
sumed by such models, and therefore that some significant
revisions of existing multiple systems models are in order.

In hindsight, the assumption of effortless trial-by-trial sys-
tem switching made by models such as COVIS and ATRIUM
might now seem unrealistic. Even so, at the time these theo-
ries were proposed, no relevant data existed that would allow
a more accurate model of system switching to be constructed,
and the assumption of effortless switching was easy to im-
plement computationally. In 1998, the primary focus was
on establishing that humans have multiple category-learning
systems, not on building an accurate model of how control
is passed back-and-forth between those putative and at that
time, hypothetical systems. After nearly two decades of re-
search directed at this primary focus, the time finally seems
propitious to direct attention at the second-generation ques-
tion of system switching. Building a more accurate model of
system switching, however, requires an empirical database.
We believe that our results represent a significant step in this
direction, and for this reason, that the present article fills a
critical void in the literature.
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Appendix:
Nonlinear Stimulus Transform

This appendix describes the method we used to generate
spatial frequency, orientation (f, o) pairs that define our stim-
uli. Spatial frequency, f, values carry units of cycles per
degree of visual angle, and orientation values carry units of
radians. First, (x, y) pairs with arbitrary units were generated
from a bivariate uniform distribution on the interval (0, 100)
for each dimension. Next, these (x,y) pairs were linearly
transformed into (x7, yr) pairs to span the interval (-1, 2) on
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dimension xr and ({7, 3% + {7) on dimension yr via

3x

- 2X Al
7= 700 (A-D
3y /4
_ry T A2
Y= 700 T 10 (A2)

Next, x7 values were mapped to spatial frequency values, f,
via
f=27 (A3)

We used a multistep procedure to convert yy values in o val-
ues. First, we collected and sorted in ascending order all yr
values into a vector y,. From y;, we defined new vectors

z = 4.7sin’y, (A4)

and

_yn( =1+ ) - y2(n)? + (22 (n) - 22(n))?
- (max yr, — minyr,)(maxy, — miny,)

T

—minyr, + miny;
(A.5)

where the n terms reference the n”* element of the corre-
sponding vector, and

yr,(D) = /y3(D) + 22(1)

Finally, the elements of yr, were returned to their original
sort order and recombined into (f, o) pairs.

(A.6)
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