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Interventions for drug abuse and other maladaptive habitual behaviors may yield temporary
success, but are often fragile and relapse is common. This implies that current interventions
do not erase or substantially modify the representations that support the underlying addictive
behavior — that is, they do not cause true unlearning. One example of an intervention that
fails to induce true unlearning comes from Crossley, Ashby, and Maddox (2013, Journal of
Experimental Psychology: General), who reported that a sudden shift to random feedback did
not cause unlearning of category knowledge obtained through procedural systems, and they
also reported results suggesting that this failure is because random feedback is non-contingent
on behavior. These results imply the existence of a mechanism that (1) estimates feedback
contingency, and (2) protects procedural learning from modification when feedback contin-
gency is low (i.e., during random feedback). This article reports the results of an experiment
in which increasing cognitive load via an explicit dual-task during the random feedback period
facilitated unlearning. This result is consistent with the hypothesis that the mechanism that
protects procedural learning when feedback contingency is low depends on executive function.

Keywords: Feedback Contingency; category learning; Unlearning; Declarative Memory;
Procedural Memory

Introduction

Relapse often occurs when an addict returns to the origi-
nal context of their drug use (Higgins et al., 1995). This may
occur because interventions given in clinics do not modify
addiction-driving stimulus-response (SR) associations, but
instead cause the learning of new clinic-specific associations.
Returning to the original context of drug abuse then reacti-
vates the preserved addiction-driving SR associations, caus-
ing relapse. If true, then this hypothesis means that the brain
has a gating mechanism to protect learning obtained in old
contexts from being modified during intervention. Our prior
work, which was focused on understanding this gating mech-
anism (Crossley, Ashby, & Maddox, 2013), found that feed-
back contingency – defined as the correlation between re-
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sponse confidence and outcome – is a principle driver of this
gate. The present study is an extension of this earlier work,
asking whether the estimation of feedback contingency de-
pends on executive mechanisms. The rest of the introduction
proceeds with a brief summary of the key findings reported
by (Crossley et al., 2013), followed by the logic of the current
study.

Crossley et al. (2013)

Crossley et al. (2013) attempted to understand why the
SR associations underlying procedural learning, habits, and
addiction are so remarkably resistant to modification. We
developed a task that attempted to erase recently formed SR
associations. The results showed promising initial signs of
true memory erasure.

Our experiments included three phases of equal duration:
acquisition, intervention, and test. During acquisition, all
participants were trained on the categories shown in panel
C of Figure 1. During intervention, the category structure
was unchanged, but feedback about response accuracy was
manipulated in an attempt to erase the learning that occurred
during the initial acquisition. Our goal was to erase the ini-
tially acquired SR associations by overwriting them with ran-
dom associations.
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Figure 1. A: An Example trial during single-task conditions.
B: An example trial during dual-task conditions. C: The cat-
egories used during the acquisition phase of Crossley et al.
(2013).

We investigated the effects of three different types of inter-
vention. All used random feedback (RF) on some percentage
of intervention trials. In the RF(.25) conditions, the inter-
vention feedback was random on all trials. Since there are
four categories, every intervention response was followed by
positive feedback with probability .25 and negative feedback
with probability .75. In the RF(.40) conditions, RF was also
given on every trial, but the probability of positive feedback
was .40 and the probability of negative feedback was .60. Fi-
nally, the mixed feedback conditions included RF(.25) feed-
back on a random 75% of trials and true feedback on 25% of
the trials.

In all conditions, feedback returned to 100% veridical dur-
ing the test phase. Half the participants in each condition
relearned the original categories (the relearning conditions)
and half learned new categories that used the same stim-
uli but permuted the category-response mappings. Thus the
study included six conditions created from a 3 × 2 factorial
design where three levels of intervention feedback [RF(.25),
RF(.40), mixed feedback] were crossed with two levels of
test (relearning, new learning).

Operationally, we require two conditions to conclude that
unlearning is successful: (1) the behavior disappears during
the intervention, and (2) during test, both relearning and new
learning occur at the same rate as initial learning. In con-
trast, if learning is preserved during the intervention, then

A: Random Feedback Intervention B: Mixed Feedback Intervention C: Random Feedback Intervention

Acquisition Intervention Test Acquisition Intervention Test Acquisition Intervention Test

25% positive feedback 25% veridical, 75% random 40% positive feedback

Figure 2. Crossley et al. (2013) behavioral results with dif-
ferent interventions. A: Random feedback intervention with
25% positive feedback. Accuracy drops to near chance dur-
ing intervention, but is reacquired faster than original learn-
ing in the Relearning condition (red). In contrast, a lasting in-
terference is observed in the New Learning condition (blue).
Both results are consistent with the hypothesis that initial
learning was not overwritten by random feedback. B: Mixed
feedback intervention. Accuracy drops during intervention
– though not to chance (i.e., 25%) – but subsequent learn-
ing proceeds at approximately the same rate and to the same
extent as initial learning when either the original category-
response mappings (red) or new category-response mappings
(blue) are introduced. These results are consistent with the
hypothesis that initial learning was overwritten during the in-
tervention. C: Random feedback intervention with 40% pos-
itive feedback. Results are qualitatively identical to random
feedback intervention with 25% positive feedback, implying
that the mixed feedback results were driven by feedback con-
tingency and not by positive feedback.

relearning the original categories should be faster than initial
acquisition and learning of new categories should be slower
(because of interference).

Results are shown in Fig. 2. In the RF conditions (Fig.
2A and 2C), reacquisition is faster than initial learning, and
new category learning is slower, suggesting that RF does not
cause unlearning. In contrast, following mixed-feedback in-
tervention, reacquisition and new category learning both oc-
cur at approximately the same rate as initial learning. Thus,
this intervention may have caused true unlearning.

The RF results are incompatible with classic models (see
Figure 3A), which assume that procedural skills are learned
at cortical-striatal synapses via DA-dependent synaptic plas-
ticity, and that the DA signal is proportional to the reward
prediction error (RPE = Obtained Reward – Predicted Re-
ward). Since RF is by definition unpredictable, it generates
large RPEs, and therefore classic models predict that RF will
cause new learning of random associations, which will over-
write the original category knowledge, causing true unlearn-
ing. In contrast, Figure 2A and 2C show that RF did not
disrupt the previously acquired category knowledge.

Rapid relearning following RF suggests that a gating
mechanism protects procedural knowledge during RF.
We proposed striatal cholinergic interneurons called TANs
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Figure 3. A: The Classic Model. A classic model of proce-
dural learning based on a greatly simplified representation of
the “direct pathway” through the basal ganglia. S-R associa-
tions are learned at cortical-striatal synapses, which are mod-
ified via dopamine-dependent reinforcement learning. The
likelihood of repeating actions that lead to unexpected pos-
itive outcomes is gradually increased, and the likelihood of
repeating actions that lead to unexpected negative outcomes
is gradually decreased. B: The TANs Model. The classic
model of procedural learning with the addition of a context-
specific Pf-TAN pathway. This pathway acts as a gate on
cortical-striatal synaptic plasticity, permitting or preventing
the learning and expression of procedural knowledge. (SPN -
spiny projection neuron of the striatum. D1 - Direct pathway
SPN expressing the D1 DA receptor. D2 - Indirect pathway
SPN expressing the D2 DA receptor. SMA - Supplementary
Motor Area. SNpc - substantia nigra pars compacta. Pf -
parafascicular nucleus of the thalamus. VIS - visual cortex)

(Tonically Active Neurons) as a candidate gate (Ashby &
Crossley, 2011; Crossley et al., 2013). In their default state,
TANs exert a tonic presynaptic inhibition of cortical inputs
to the striatum (Figure 3) (Calabresi, Centonze, Gubellini,
Pisani, & Bernardi, 2000). Thus, the default state of the
gate is closed. However, TANs learn to pause in response
to stimuli that predict reward (Kimura, Rajkowski, & Evarts,
1984), removing the presynaptic inhibition, and allowing
striatal neurons to respond to cortical input and cortical-
striatal learning to occur (i.e., the gate opens). The TANs
are driven by centremedian and parafascicular (CM-Pf) in-
tralaminar thalamic nuclei, which signal salient environmen-
tal cues and changes in context (Shimo & Hikosaka, 2001;
Yamada, Matsumoto, & Kimura, 2004; Apicella, Legal-
let, & Trouche, 1997; Ravel, Sardo, Legallet, & Apicella,
2006). The TAN pause occurs only when the CM-Pf–
TAN synapse is strong, and learning at both CM-Pf–TAN
and cortical-striatal synapses is driven by DA-mediated re-
inforcement signals (Suzuki, Miura, Nishimura, & Aosaki,
2001; Setyono-Han, Henkelman, Foekens, & Klinj, 1982).

Our model that includes the TAN gating mechanism ac-
counts for a variety of behavioral and physiological data from
simple instrumental conditioning tasks (Ashby & Crossley,
2011; Crossley, Horvitz, Balsam, & Ashby, 2016), including

rapid relearning following extinction. However, even this
model failed to account for our RF results (Figure 2A and
2C). This is because we still modeled DA release as strictly
proportional to RPE, which fluctuates widely during RF. This
leads to random fluctuations in the CM-Pf–TAN synaptic
weight, preventing the TANs from reliably closing the gate.

For the TANs to close the gate and protect cortical-striatal
plasticity during RF, two conditions must be met: (1) Some
neural network must detect RF. Since RF is non-contingent
on behavior, the valence of feedback earned after each re-
sponse is uncorrelated with the confidence that the response
was correct (called response confidence). Contrast this with
veridical feedback, in which negative feedback is typically
accompanied by low response confidence. We recently
showed that category learning is exquisitely sensitive to this
feedback contingency (Ashby & Vucovich, in press). (2)
The TANs must close the gate when RF is detected. This
only occurs when CM-Pf–TAN synapses undergo consistent
weakening. Crossley et al. (2013) modeled this by assuming
that the DA response is attenuated and biased below baseline
when feedback contingency is low.

With these modifications, the model not only accounts for
savings in relearning after RF intervention, but also makes
a novel prediction: If true feedback is given on a small
percentage of trials (e.g., 25%), then the correlation be-
tween feedback valence and response confidence could be
high enough to cause the TANs to pause, allowing the
RF(.25) feedback on the other (75%) trials to induce true
unlearning. Results from our Mixed Feedback intervention
(Figure 2B) are consistent with this prediction.

The Present Study

Crossley et al. (2013) hypothesized that the gate on pro-
cedural learning — and therefore the key to unlearning —
is controlled by the degree of feedback contingency, but we
made no predictions about how feedback contingency is esti-
mated by the nervous system. This article begins addressing
this question – by asking whether the estimation of feedback
contingency depends on executive function (e.g., prefrontal
networks that support working memory and executive rea-
soning). Our rationale is as follows: If feedback contingency
is estimated by executive mechanisms, then increasing cog-
nitive load during the intervention phase (by requiring par-
ticipants to perform a simultaneous dual task) should dis-
rupt its estimation. This disruption should deprive the TANs
of the clear signal they require to close the gate during RF.
If the gate remains open during RF, then random SR asso-
ciations should overwrite the recently acquired procedural
knowledge, thereby allowing RF to cause true unlearning.

With this goal in mind, we performed an experiment that
mimicked the design of Crossley et al. (2013), except we
added a concurrent numerical Stroop task during key classi-
fication trials. Previous research suggests that this dual task
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interferes with category learning that recruits executive func-
tion and declarative memory much more than with category
learning that recruits procedural memory (Waldron & Ashby,
2001; Crossley, Paul, Roeder, & Ashby, 2016), and that the
types of categories used here recruit procedural learning even
when the dual task is being performed (Crossley, Paul, et al.,
2016).

In the Overlap-150, Overlap-250, and Overlap-350 con-
ditions, the first dual-task trial was 50 trials before the on-
set of intervention, and continued for 100, 200, or 300 tri-
als, respectively. In the No-Overlap-300 condition, the first
dual-task trial was 50 trials after the onset of intervention,
and continued for 250 trials. Comparing the three Overlap
conditions allows us to look for dose dependency. The No-
Overlap condition allows us to assess the importance of dis-
rupting the estimation of feedback contingency during the
transition from acquisition to intervention. We also included
a control condition in which no concurrent Stroop task was
ever performed.

If feedback contingency estimation depends on executive
function then two behavioral markers are expected: (1) the
dual task should slow the drop in categorization accuracy
that occurs with the onset of RF; and (2) reacquisition of the
original category learning should be slower in the dual-task
conditions than in the no dual-task control.

Methods

IRB Approval

All methods were approved by the University of Texas
at Austin IRB, with study title “The Unlearning of Human
Procedural Skills” and Human Subjects Assurance Number:
00002030.

Design

There were four dual-task conditions (Overlap-150,
Overlap-250, Overlap-350, and No-Overlap-300) and one no
dual-task control condition. The dual-task conditions dif-
fered on two dimensions, (1) the number of trials on which
the dual task was applied, and (2) whether or not the onset of
the dual task preceded the onset of intervention.

Participants

163 participants were recruited from the University of
Texas at Austin undergraduate population. There were 30
participants in the Overlap-150 condition, 34 participants in
the Overlap-250 condition, 32 participants in the Overlap-
350 condition, 33 participants in the No-Overlap-300 condi-
tion, and 34 participants in the control condition. After ex-
clusions (described in the next subsection), 119 participants
were included in the reported analyses. Of these, there were

23 in the Overlap-150 condition, 26 in Overlap-250 condi-
tion, 22 in the Overlap-350 condition, 21 in the No-Overlap-
300 condition, and 27 in the control condition. All partici-
pants completed the study and received course credit for their
participation. All participants had normal or corrected-to-
normal vision.

Exclusions

Of these 163 participants, 25 were excluded from the re-
ported analyses for failing to reach a an average accuracy of
40% correct during the last 50 trials of the acquisition phase
(described below). An additional 19 were excluded for fail-
ing to perform the concurrent numerical Stroop task with an
average accuracy greater than or equal to 80%.

Stimuli and Categories

Stimuli were black lines that varied across trials only in
length (pixels) and orientation (degrees counterclockwise ro-
tation from horizontal). The stimuli are illustrated graphi-
cally in Figure 1, and were identical to those used by Cross-
ley et al. (2013).

Procedure

Participants in all conditions were told that they were to
categorize lines on the basis of their length and orientation,
that there were four equally-likely categories, and that high
levels of accuracy could be achieved. The experiment in-
cluded three phases: acquisition (300 trials), intervention
(400 trials), and reacquisition (150 trials). During acquisition
and reacquisition, feedback was based on the participant’s re-
sponse, whereas feedback was random during the interven-
tion. Participants were given no prior instructions about the
phases, and the transition from one phase to another occurred
without any warning to the participant.

At the start of each non-Stroop trial, a fixation point was
displayed for 1 second and then the stimulus appeared. The
stimulus remained on the screen until the participant gener-
ated a response by pressing the “Z” key for category “A”,
the “W” key for category B, the “/” key for category C, or
the “P” key for category D. Written instructions informed
participants of the category label to button mappings. An
“invalid key” message was displayed if any other button was
pressed. The word “Correct” was presented for 1 second if
the response was correct or the word “Wrong” was presented
for 1 second if the response was incorrect (except during the
intervention phase in which feedback was completely ran-
dom).

Stroop trials began with a fixation point that was displayed
for 1 second. The category stimulus and the Stroop stimuli
(numbers flanking the category stimulus) were displayed si-
multaneously. After 200 ms the Stroop stimuli were replaced
by white rectangles which remained on the screen until they
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made a category response. Responses emitted before the
Stroop stimuli were replaced by white rectangles were not
accepted. Feedback about the category response was given
immediately in the same fashion as on non-Stroop trials. The
word “value” or “size” then appeared on the screen prompt-
ing participants to indicate which side contained the numer-
ically larger or the physically larger number. Participants
pressed the “F” key to choose the number on the left or the
“J” key to choose the number on the right. The word “Cor-
rect” was then again presented for 1 second if the response
to the Stroop task was correct or the word “Wrong” was pre-
sented for 1 second if the response was incorrect. See Figure
1 for example trials both including and excluding the Stroop
component. The Stroop task was included on trials 251-400
in the Overlap-150 condition, 251-500 in the Overlap-250
condition, 251-600 in the Overlap-350 condition, and 350-
650 in the No-Overlap-300 condition.

Participants were instructed to try their hardest on both
task components but to prioritize performance on the Stroop
task. Both the category-learning task and the Stroop task
were explained to participants prior to beginning the experi-
ment, and on screen messages warned them when the Stroop
component would begin, and again when it would end. These
messages read, “You will now perform both the categoriza-
tion task and the paired numbers task simultaneously. Keep
trying your hardest!” and “You have now finished the section
with the paired numbers task. You will now be shown only
the line categorization task. Keep trying your hardest.” 85%
of Stroop trials the numerically larger number was physically
smaller. The proportion of Stroop trials that prompted “size”
or “value” was split 50/50. Accuracy on the numerical Stroop
task was indicated at the top of the screen when they received
feedback regarding their performance on the concurrent task
on each trial. This score was displayed in green if it was
above 80% and red if it was below 80%. Note that when we
refer to the “dual-task”, we are referring to the Stroop task
just described.

Statistical Analyses

All t-tests comparing effects between conditions use the
Welch-Satterthwaite approximation to the degrees of free-
dom to account for violations of homogeneity of variance.

Results

Numerical Stroop Accuracy

Figure 4 shows histograms characterizing mean dual-task
performance seperately for each condition. Overall, mean
accuracy on the dual-task was very good, with mean pro-
portion correct at 0.88 in the Overlap-150 condition, 0.87 in
the Overlap-250 condition, 0.84 in the Overlap-350 condi-
tion, and 0.82 in the No-Overlap-300 condition. Participants
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Figure 4. Histograms showing distribution of mean Nu-
merical Stroop accuracy seperately for each condition. A:
Overlap-150. B: Overlap-250. C: Overlap-350. D: No-
Overlap-300.

that failed to perform the dual-task with an average accu-
racy greater than or equal to 80% were excluded from further
analyses (see the “Exclusions” section above).

Classification Accuracy

Figure 5 shows the mean accuracy in each block of 25 tri-
als across the duration of the experiment. Recall that if feed-
back contingency is estimated via executive mechanisms,
then (1) dual-task trials should slow the change in classi-
fication performance during intervention, and (2) dual-task
conditions should show reduced savings relative to the no
dual-task control. We see evidence for both features in our
data.

Acquisition. All conditions are identical for the first 250
trials (10 blocks) of acquisition (before dual-task onset), and
so we expect performance during these blocks to be the same
across conditions. However, Figure 5 shows modest differ-
ences between some of the conditions. A 5 Condition ×
10 Block repeated-measures ANOVA revealed a significant
main effect of Condition F(4, 1180) = 8.29, p < 0.01,Ω =

0.02, and a significant main effect of Block F(1, 1180) =

250.83, p < 0.01,Ω = 0.17, but no significant interaction
F(4, 1180) = 1.95, p = 0.10,Ω = 0.01. Posthoc t-tests in-
dicated that the main effect of Condition was driven by the
Overlap-150 condition being significantly less than the No-
Overlap-300 condition[t(39) = −2.26, p < 0.05, d = 0.81]
and the Overlap-350 condition being significantly less than
the No-Overlap-300 [t(41) = 2.30, p < 0.05, d = 0.82].

Intervention. If the estimation of feedback contingency
depends on executive function, then we expect change in
performance during intervention to be slowed during the si-
multaneous performance of the dual task. This is clearly
seen in the first four blocks of the intervention phase (vi-
sual inspection of Figure 5), and is supported by the re-
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Figure 5. Mean accuracy per 25 trial block. The blue line in
each panel is the no dual-task control condition. The hatch
marks indicate dual-task trials. The key features are (1) dual-
task slows the change in classification strategy (seen in this
plot as “accuracy” decline), and (2) the dual-task conditions
show less savings than the no dual-task control. There is
no obvious dose-dependent effect of the dual task, nor is
there an obvious difference between dual-task conditions.
A: Overlap-150 (dual-task applied on trial 251 through trial
350). B: Overlap-250 (dual-task applied on trial 251 through
trial 450). C: Overlap-350 (dual-task applied on trial 251
through trial 550). D: No-Overlap-300 (dual-task applied on
trial 351 through trial 650). Error bars are SEM.

sults of a 5 condition × 4 block repeated-measures ANOVA.
A significant effect of Condition [F(4, 466) = 17.34, p <
0.001,Ω = 0.11] primarily reflected an overall difference
in intervention performance in dual-task conditions relative
to the no dual-task control. The effect of Block and the in-
teraction between Condition and Block were also significant
[Block: F(1, 466) = 59.37, p < 0.001,Ω = 0.10; Condition:
F(4, 466) = 2.41, p < 0.05,Ω = 0.02]. The directional inter-
pretation of the omnibus test is supported by several planned
comparisons on the overall mean accuracies during the first
four blocks of the intervention phase. Early intervention
accuracy in all dual-task conditions in which the dual-task
was introduced before the onset of the intervention phase
was significantly different from intervention accuracy in the
no dual-task control [ Overlap-150 vs no dual-task control:
t(41) = 5.34, p < 0.01, d = 4.44; Overlap-250 vs no dual-
task control: t(47) = 4.99, p < 0.01, d = 3.61; Overlap-350
vs no dual-task control: t(36) = 2.87, p < 0.05, d = 1.38;
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Figure 6. Savings (mean of the first 50 reacquisition trials -
mean of the first 50 acquisition trials) in all conditions of the
present experiment. Error bars are SEM.

No-Overlap-300 vs no dual-task control: t(31) = 0.88, p =

0.38, d = 0.14 ].
Savings. If the computation of feedback contingency

depends on executive function, then we expect the dual-task
conditions to exhibit less savings than the no dual-task con-
trol – that is, we expect reacquisition of the original cate-
gories to be slower under dual-task conditions. This is appar-
ent via visual inspection of Figure 6, which shows the mean
savings per condition.

There was no significant savings in any of the dual-task
conditions [Overlap-150: t(22) = −0.27, p = 0.79, d = 0.02;
Overlap-250: t(25) = −0.95, p = 0.35, d = 0.18; Overlap-
350: t(21) = 0.39, p = 0.70, d = 0.03; No-Overlap-300:
t(20) = −0.49, p = 0.63, d = 0.05; ], but there was signif-
icant savings in the no dual-task control condition [t(26) =

2.57, p < 0.05, d = 1.29 ].
Moreover, the savings observed in the no dual-task control

condition was significantly greater than in all dual-task con-
ditions except the Overlap-350 condition. [ Overlap-150 <

no dual-task control: t(43) = −1.78, p < 0.05, d = 0.48;
Overlap-250 < no dual-task control: t(51) = −2.47, p <
0.05, d = 0.86; Overlap-350 < no dual-task control: t(45) =

−1.45, p = 0.08, d = 0.31; No-Overlap-300 < no dual-task
control: t(38) = −1.88, p < 0.05, d = 0.58 ], and was sig-
nificantly greater than the savings pooled across all dual-task
conditions [t(26) = 2.57, p < 0.05, d = 1.29].

Recall that our design was constructed to allow for an
examination of dose-dependency between the Overlap con-
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ditions. To answer this question, we performed a 1-way
ANOVA asking if savings is different between these con-
ditions. There was no significant difference between these
conditions [F(1, 69) = 0.22, p = .64,Ω = 0.003], indicating
that we did not observe a dose-dependency.

We also designed our experiment to investigate the impor-
tance of placing the dual-task on the transition from acquisi-
tion to intervention. Since the No-Overlap-300 condition is
significantly greater than the Overlap-150 and Overlap-350
Conditions, we can only examine this question by comparing
the Overlap-250 condition to the No-Overlap-300 condition.
A t-test revealed no significant difference [t(41) = .18, p =

.86, d = 0.06], indicating that we found no evidence sugges-
tion that the placement of the dual-task matters.

Discussion

Summary

Our results support our earlier conclusion (Crossley et al.,
2013) that feedback contingency, defined as the correlation
between response confidence and feedback valence, may be
key to controlling a gate that prevents or permits the modifi-
cation of procedural SR associations. To our knowledge, this
is the first article to investigate the cognitive mechanisms that
estimate feedback contingency. Specifically, our goal was to
determine whether executive function and declarative mem-
ory mechanisms mediate contingency estimation. If they do,
then a dual-task that depends on working memory and ex-
ecutive attention should interfere with the gate the normally
protects procedural learning during random feedback. This
should should consequently cause the random feedback to
strengthen random SR associations, thereby inducing true
unlearning of the original category structure. In our exper-
iments, behavioral signatures of this unlearning include: (1)
a slowed decrease in classification accuracy during interven-
tion, and (2) slower relearning of the categories relative to a
no dual-task control. Our results were consistent with both
of these predictions.

Dose Dependency and Intervention Onset

Our design allowed us to ask not just whether contingency
estimation relies on executive function, but also whether the
effects of disrupted contingency estimation are dose depen-
dent (i.e., whether effects increase with dual-task exposure).
We did not find dose effects – 150 trials of dual task were
just as effective as 350 trials of dual task. On the other hand,
intuition suggests that some dose effects must exist. Surely
a single dual-task trial, or even a few dual-task trials would
not have the same effect as 150 dual-task trials. If not, then
all the doses explored in this article were past the saturation
point at which all doses are equally effective. Testing this
hypothesis will require further experimentation.

Finally, our design also allowed us to ask whether it is im-
portant for the dual task to overlap with the transition from
acquisition to intervention. One possibility is that true un-
learning requires the increase in cognitive load to precede
the onset of the random feedback intervention. The idea is
that the gate that protects procedural learning during random
feedback may be sensitive to changes in feedback contin-
gency. Another possibility is that any disruption in feed-
back contingency estimation (at any time) can cause the gate
on learning to open. This possibility predicts that any in-
creased cognitive load during intervention, regardless where
it is placed should enable unlearning via random feedback.
We found no evidence that the overlap was important.

Category Learning as a Procedural Skill

A natural question for readers unfamiliar with the
category-learning literature is whether our behavioral
paradigm is a good choice for studying procedural behav-
iors. In other words, how can a task with such simple motor
demands (e.g., push a button) possibly recruit procedural net-
works that are strongly tied to motor processes? In fact, the
empirical evidence is strong that performance improvements
in the classification task used here are mediated via proce-
dural learning and memory (Ashby & Maddox, 2005, 2010;
Ashby & Valentin, in press). Nevertheless, a limitation of the
present study is that we did not directly probe the learning to
ensure that it was procedural in nature.

Therapeutic Relevance

The old adage of “it’s like riding a bike” is a surprisingly
accurate description of procedural knowledge, reflecting its
remarkable retention over years without practice. Paradigms
designed to study procedural learning in the lab have echoed
this adage, reporting savings in learning up to a year after
training (Romano, Howard, & Howard, 2010; Turner, 2012).
However, the stability of procedural memory comes at the
cost of remarkable inflexibility. For example, changing any
stimulus or response parameter that was present during train-
ing can prove catastrophic to performance (Rozanov, Keren,
& Karni, 2010; Dienes & Berry, 1997). While resilience
and inflexibility are desirable traits when a useful skill has
been sufficiently learned, they can also lead to persistent mal-
adaptive behaviors that have serious negative consequences,
and in some cases may prove detrimental to a person’s health
(e.g., drug abuse). Unfortunately, neither the potential for
modification of procedural knowledge, nor a method to do
so, are well understood.

Our previous research identified the interplay between
striatal cholinergic interneurons and the midbrain dopamine
system in controlling the eligibility of procedural knowledge
for modification (Ashby & Crossley, 2011; Crossley et al.,
2013). Directly targeting this network for improved inter-
ventions is unfortunately challenging, due to the difficulty of
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manipulating and measuring subcortical networks. Here, in-
sofar as increasing cognitive load via a dual-task taps into
prefrontal networks, we looked for more easily accessible
cortical substrates that may control the striatal mechanism.
Our results indicate that prefrontal networks likely do play
an important role in controlling the estimation of feedback
contingency, and therefore may provide an accessible corti-
cal target for electrical or magnetic intervention.
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