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When humans simultaneously execute multiple tasks, performance on individual tasks suffers.
Complementing existing theories, this article poses a novel question to investigate interactions
between memory systems supporting multi-tasking performance: When a primary and dual
task both recruit declarative learning and memory systems, does simultaneous performance
of both tasks impair primary-task performance because learning in the declarative system is
reduced, or because control of the primary task is passed to slower procedural systems? To
address this question, participants were trained on either a perceptual categorization task be-
lieved to rely on procedural learning or one of three different categorization tasks believed to
rely on declarative learning. Task performance was examined with and without a simultaneous
dual task thought to recruit working memory and executive attention. To test whether the
categories were learned procedurally or declaratively, the response keys were switched after
a learning criterion had been reached. Large impairments in performance after switching the
response keys are taken to indicate procedural learning, and small impairments are taken to
indicate declarative learning. Our results suggest that the declarative memory categorization
tasks (regardless of task difficulty) were learned by declarative systems, regardless of whether
they were learned under dual-task conditions.

Introduction

Interest in why performance degrades when people try to
perform two activities simultaneously dates back at least to
William James (James, 1890). Many theories have been pro-
posed. For example, one class of models assumes that mul-
tiple tasks must compete for the same set of limited mental
resources (Kahneman, 1973; Navon & Gopher, 1979). An-
other class assumes that cognitive operations must be per-
formed serially and therefore performance is degraded when
two tasks are performed simultaneously because of rapid
switching back and forth between the tasks (Pashler, 1994).
After these theories were developed, the field of cognitive
neuroscience proposed and largely embraced the view that
humans have multiple memory systems (Eichenbaum & Co-
hen, 2001; Squire, 2004). Researchers in many other fields
are now also debating whether multiple systems might me-
diate what previously was thought to be a unitary cognitive
process. Included in this list are category learning (Ashby,
Alfonso-Reese, et al., 1998; Erickson & Kruschke, 1998),
recognition memory (Yonelinas, 2002), and logical reason-
ing (Sloman, 1996). The evidence for multiple systems raises
an intriguing question about the origins of dual-task interfer-
ence: Is dual-task interference mediated within a single sys-
tem, or by the interaction of multiple systems? More specif-
ically, if a behavior and a dual task are both typically me-

diated by system A when performed alone, does that same
behavior remain under the control of system A under dual-
task conditions, or might it instead be transferred to a less
efficient system B? This article tests this hypothesis within
the framework of perceptual categorization.

Within the categorization literature, research has focused
on two possible learning systems: a declarative system that
underlies explicit reasoning and cognitive flexibility, and a
procedural system that underlies classic motor skills such as
riding a bicycle or tying a tie (Eichenbaum & Cohen, 2001;
Squire, 2004). Procedural learning is qualitatively different
from declarative learning in a number of important ways.
Specifically, procedural learning is slow and incremental,
requires immediate and consistent feedback (Willingham,
1998), is strongly tied to motor goals (Willingham, Nissen, &
Bullemer, 1989), and is not typically available to conscious
recollection or awareness.

The evidence for multiple memory systems comes from
a wide variety of sources including behavioral, neuroimag-
ing, neuropsychological, and pharmacological studies. To
date, the category-learning literature possesses a rich and ro-
bust demonstration of behavioral dissociations between tasks
thought to recruit procedural versus declarative memory sys-
tems (Ashby & Maddox, 2005, 2010). This work has been
derived almost entirely from investigations of rule-based
(RB) versus information-integration (II) category-learning
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tasks. In their most typical form, participants in each task
are shown one stimulus per trial (drawn at random from a
large set of category exemplars) and must guess whether it
belongs to category ‘A’ or ‘B.’ Category labels are learned
slowly through trial and error. The key difference is that the
optimal strategy in RB tasks is a verbalizable rule that can be
discovered via logical reasoning, whereas in II tasks category
assignments are made in a way that defies explicit reasoning.
II tasks are thought to recruit procedural learning and require
dopamine-dependent reinforcement learning, and RB tasks
are thought rely on declarative mechanisms including work-
ing memory and logical reasoning.

Many different empirical dissociations have been reported
between RB and II task performance (for reviews, see Ashby
& Maddox, 2005, 2010). Two of these are especially im-
portant to this article. First, switching the response keys of
the categories after learning has occurred interferes with II
much more than RB categorization (Ashby, Ell, & Waldron,
2003; Maddox, Bohil, & Ing, 2004; Maddox, Glass, O’Brien,
Filoteo, & Ashby, 2010; Spiering & Ashby, 2008). Sensi-
tivity to this type of response remapping has been used as
a signature of procedural learning and control (Crossley &
Ashby, in press; Crossley, Madsen, & Ashby, 2012; Will-
ingham, Wells, Farrell, & Stemwedel, 2000). This line of
reasoning appeals to the observation that procedural learning
should be strongly tied to response-based processes. Second,
a dual task thought to recruit working memory and executive
function impairs category learning much more in RB than in
II tasks (Waldron & Ashby, 2001a; Zeithamova & Maddox,
2006).

There is, however, a logical ambiguity in the interpreta-
tion of this latter result: Does a concurrent dual-task impair
RB performance simply by reducing the learning rate in the
declarative system? Or is RB performance impaired because
the RB categories are learned procedurally in the presence
of the dual task? This latter hypothesis seems plausible be-
cause it is thought that the procedural system can learn al-
most any type of category structure1 (given immediate and
reliable feedback). This article addresses these questions by
first training participants on either II or one of three different
RB categories either with or without a simultaneous dual task
known to recruit working memory and executive attention.
After the categories are learned, we then switch the response
keys to test whether the RB categories were learned using a
declarative or procedural strategy. We take large impairments
in performance after switching the response keys as indica-
tive of procedural learning and small impairments as indica-
tive of declarative learning. Our results suggest that, with or
without the dual task, the declarative memory categorization
tasks were learned by declarative systems (regardless of task
difficulty).

The Nuance in Multiple Systems

Our experimental question is framed by the hypothesis
that humans have multiple category-learning systems. How-
ever, some researchers question this assumption (Newell,
Dunn, & Kalish, 2011; Newell, Moore, Wills, & Milton,
2013; Nosofsky, Stanton, & Zaki, 2005; Stanton & Nosof-
sky, 2007; for a counter, see Ashby, 2014). For example,
Nosofsky et al. (2005) proposed that the RB versus II button-
switch dissociation was due to cognitive complexity differ-
ences between the tasks, Stanton and Nosofsky (2007) pro-
posed that the RB versus II feedback processing dissocia-
tion reported by Maddox, Ashby, Ing, and Pickering (2004)
was due to perceptual discriminability differences between
the tasks, and Newell et al. (2013) argued that the RB versus
II dissociation reported by Filoteo, Lauritzen, and Maddox
(2010) was because of feedback processing time differences
between the tasks. Obviously, no single study can test all
these different hypotheses. The present study however, fo-
cuses on the RB versus II button-switch dissociation, and our
design does allow a strong test of the only existing single-
system alternative account of this dissociation – namely that
it is driven by differences in task complexity.

Thus, even if one is skeptical of the multiple systems
claim, the present experiment makes a valuable contribution
because it provides a rigorous test of the cognitive complex-
ity hypothesis. In particular, another view of our experiment
is that it examines the effects of a button switch under eight
different conditions that vary widely on cognitive complex-
ity. The cognitive complexity hypothesis therefore predicts
that the magnitude of the button-switch interference should
be ordered across our conditions in a very specific way. As
we will see, the results strongly disconfirm this prediction.
Thus, although this article does not attempt to test between
one versus multiple category-learning systems, our results do
provide a strong test of one prominent alternative hypothesis
that has been used to argue for a single category-learning sys-
tem.

On the other hand, it seems unlikely that procedural and
declarative memory systems - and therefore the associated
category-learning mechanisms - are completely independent.
In fact, the current multiple-systems view of category learn-
ing leaves ample room for rich system interactions. For
instance, recent work has shown that the procedural sys-
tem learns perfectly well even when the declarative system
completely controls behavior (Crossley & Ashby, in press).
Flushing out the nuance of these interactions is well beyond
the scope of the present article.

1For example, pigeons, which are thought to lack a significant
explicit reasoning system, learn RB and II categories equally well
and at exactly the same rate using strategies that appear qualitatively
identical to human procedural strategies (Smith et al., 2011)
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Materials &Methods

Participants & Conditions

Our experiment included four conditions: The II condition
included 30 participants, the RB 4D condition included 16
participants, the RB 6D condition included 36 participants,
and the RB Biconditional condition included 32 participants.
Every participant served in only one of the four conditions
in which they were assigned. Participants in the II, RB 4D,
and RB 6D conditions were randomly assigned. Participants
in the RB Biconditional condition were run during a separate
quarter as a separate study. Sample sizes were determined
based on previous research (e.g., Ashby et al., 2003). The RB
6D, RB Biconditional, and II conditions required larger sam-
ple sizes than the RB 4D condition because they were more
difficult and therefore led to more subjects being excluded
from analysis (see the exclusion criteria section of the results
section). All participants were undergraduate students from
the University of California, Santa Barbara (UCSB) who
reported normal or corrected-to-normal vision and received
partial course credit in exchange for participation. Each par-
ticipant completed an approximately 60-minute session.

Stimuli and Apparatus

The categorization stimuli were colored geometric figures
presented on a colored background. The stimuli used in
the RB 4D, RB Biconditional, and II conditions varied on
four binary-valued dimensions: background color (blue or
yellow), embedded symbol color (red or green), number of
symbols (1 or 2), and symbol shape (square or circle). This
yields a total of 16 possible stimuli in each condition. The
stimuli used in the RB 6D condition varied on six binary-
valued dimensions. Four of these were the same as in the
RB 4D and II conditions. To create six dimensional stim-
uli, two dimensions were added: 1) rotation - each stimulus
was presented as in the RB 4D or II conditions or slightly
rotated in a clockwise direction, and 2) background texture
(smooth or granular). An example stimulus with each new
value (rotated and granular texture) appears in Figure 1. The
addition of two dimensions increased the number of stimuli
in the RB 6D condition to 64 and the number of possible
one-dimensional rules to 6.

Each stimulus rectangle was 253x253 pixels in size and
was presented on a dark gray background using Matlab and
functions from Brainard’s (1997) Psychophysics Toolbox.
Responses were made with the ‘D’ and ‘K’ keys on a key-
board; the stimuli were shown on a 19" LCD monitor with a
resolution of 1680x1050. In the RB 4D, RB Biconditional,
and II conditions, each of the 16 stimuli was repeated 27
times for a total of 432 stimulus presentations. In the RB
6D condition, each stimulus was repeated 7 times for a total
of 448 stimulus presentations. In all conditions, the presen-
tation order of the stimuli was completely randomized for

Figure 1. Top: Example 1 dimensional rule-based categories.
The optimal strategy can be verbalized, ‘blue shapes belong
to category A, and yellow shapes belong to category B’. Mid-
dle: Example Biconditional rule-based categories. The opti-
mal strategy can be verbalized, ‘large blue and small yellow
shapes belong to category A, and small blue and large yellow
shapes belong to category B.’ Bottom: Example information-
integration categories. The optimal classification strategy
cannot be simply and concisely verbalized.
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Figure 2. A stimulus from the six-dimensional RB task.

every participant.
To create the RB 4D and 6D category structures, one di-

mension was randomly selected to be relevant. The two val-
ues on that dimension were then randomly assigned to the
two contrasting categories. To create II category structures,
one dimension was randomly selected to be irrelevant. Next,
one level on each relevant dimension was arbitrarily assigned
a numerical value of 1 and the other level was assigned a
value of 0. The category assignments were then determined
by the following rule: The stimulus belongs to Category A if
the sum of values on the relevant dimensions is greater than
1.5; otherwise it belongs to Category B.

Finally, for the biconditional RB categories, two dimen-
sions were randomly selected as relevant, and the two pos-
sible values on each dimension arbitrarily assigned numeric
values of 0 and 1. The categories were defined such that if the
sum of the values on the two relevant dimensions was either
0 or 2, the stimulus belonged to Category A; otherwise, it
belonged to Category B. This way of defining the categories
requires participants to identify both relevant dimensions and
to make a conjoint judgment on both dimensions to catego-
rize the stimulus. Examples of possible RB and II category
structures using these stimuli are illustrated in Figure 2.

The dual-task was the same numerical Stroop task used by
(Waldron & Ashby, 2001b). In this task, two different digits
are randomly chosen on every trial (ranging from 2 to 8), and
displayed on each side of the fixation point during the cate-
gorization experiment (6.5 cm from the fixation point). One
of the digits was displayed in a larger font and occupied 3.3
degrees of visual angle. The size of the other digit occupied

Figure 3. Sequence of events on a single-task trial (left) and
a dual-task trial (right).

1.9 degrees of visual angle. On ‘congruent’ trials, the digit
with the larger numerical value was displayed in a larger font,
whereas on ‘incongruent’ trials the digit with the smaller nu-
merical value was displayed in the larger font. The response
keys and feedback for the numerical Stroop task were the
same as for the categorization task. The ‘D’ key was used
to indicate left, and the ‘K’ key was used to indicate right
(matching their locations on a regular keyboard).

Procedure

The experiment was divided into two phases. In the first
phase, participants performed the category-learning task only
(i.e., no dual-task). One possible category structure (there
were 4 possible structures in the RB 4D, RB Biconditional,
and II conditions, and 6 possible structures in the 6D RB
condition) was randomly selected without replacement, and
participants performed this task until reaching the learning
criterion of 12 consecutive correct responses. The category
labels ‘A’ and ‘B’ were displayed above the corresponding
response keys with every stimulus presentation. After re-
sponding to a stimulus, ‘correct’ in green or ‘incorrect’ in
red was printed on the screen. The left side of Figure 3 shows
the trial structure and timing for phase 1 of the experiment.
Once the learning criterion was met, the participant was in-
formed that the response key locations would switch and that
they were required to achieve the learning criterion again on
exactly the same category structures. The on-screen category
labels shown with each stimulus were reversed to remind par-
ticipants that the buttons switched.

During phase two, participants performed both the
category-learning task as well as the numerical Stroop task.
One of the remaining category structures was randomly se-
lected, and participants were required to achieve the learning
criterion. The participants were told that the categorization
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problem would change, and that they would have to perform
both the learning and memory (Stroop) tasks simultaneously.
Participants were instructed to try their hardest to do well
on the memory task, and to do the categorization task with
‘whatever was left’. During this phase, participants were
first briefly flashed two numbers, which were then masked
with white boxes. Next, the categorization stimulus appeared
(again, with labels on-screen). After responding to the stim-
ulus, feedback was given and then a cue indicating either
‘Size’ or ‘Value’ appeared indicating whether to respond to
the physically or numerically larger number. Feedback was
then given to the Stroop response. The right side of Figure 3
shows the trial structure and timing for phase 2 of the exper-
iment. Upon achieving criterion, participants were again in-
formed that the response key locations would switch (with re-
versed on-screen labels) but not the category structures, and
they would have to continue performing the same category-
learning and memory tasks again until reaching criterion.

Phases 1 and 2 were alternated until all 432 stimuli were
seen in the case of the RB 4D, RB Biconditional, and II con-
ditions, and until all 448 stimuli were seen in the case of the
RB 6D condition. If a participant exhausted all four cate-
gory structures, the categories were randomly sampled with
replacement at the beginning of each phase thereafter. Prior
to performing the experiment, participants watched a brief,
self-paced demonstration stepping through a single trial of
the experiment with both the Stroop and categorization tasks
(e.g., a phase 2 trial) and also performed a 10-trial-long prac-
tice session structured like phase 2 of the experiment.

Results

Exclusion Criteria

Concurrent performance of a Stroop task and a categoriza-
tion task is very challenging and many participants failed to
learn one or both components of the task. Moreover, since
each participant may complete a different number of prob-
lems, the participants that perform the best might contribute
more data points than those who perform more poorly. This
raises many questions regarding the most appropriate sub-
set of participants to include in our analysis. For example,
should we exclude participants that never made it to the but-
ton switch phase while under dual-task conditions? Should
we consider only one problem of each type per participant,
or should we include all problems from each included partic-
ipant? Should participants be excluded based on their Stroop
task performance? Ultimately, there may be no clear right or
wrong answer to these questions, and so our approach is to
present the results from a wide variety of exclusion criteria
in the supplemental material, while focusing on a single set
of exclusion criteria in the body of this article. As is demon-
strated at length in the supplement, the qualitative pattern of
our results is completely independent of exclusion criteria.

Figure 4. The number of participants in each condition that
solved at least 1, 2, 3, or 4 category problems.

For the main article, we employed two exclusion criteria.
First, we excluded any participant who failed to solve at least
one problem. Since these participants failed to learn a sin-
gle category problem in more than 400 trials, it seems likely
that this exclusion criterion only eliminated participants who
were exceptionally unmotivated or confused. Second, we
excluded any participant who failed to achieve an average
Stroop accuracy of at least 70%. This exclusion criterion
is essential since sound inferences about category learning
performance between conditions cannot be made if Stroop
performance between conditions also varies. Altogether, this
criterion excluded 6 participants from the II condition, 2
from the RB 4D condition, 10 from the 6D RB condition,
and 15 from the Biconditional RB condition. Figure 4, which
shows the number of participants that solved 1, 2, 3, or 4
problems in each condition, makes it clear that the majority
of exclusions in the RB 6D and RB Biconditional conditions
were derived from inadequate Stroop performance.

Figure 4 also makes clear that II and RB tasks are learned
in qualitatively different ways. Specifically, every participant
in every RB condition that solved at least 1 problem, also
solved the subsequent button switch. Many of these partici-
pants (especially in the RB 6D and RB Biconditional) failed
to learn the following problem under dual-task conditions.
However, of those that did solve the first dual-task problem
all but one in each condition solved the subsequent dual-task
button-switch problem. The II condition, on the other hand,
was characterized by a much more graded decrement in the
number of participants solving 1, 2, 3, or 4 problems. Indeed,
this decrement was not significantly different from problem
to problem in the II condition [χ2(3) = 2.35, p = .50],
but was significantly different in all RB conditions [RB 4D:
χ2(3) = 9.44, p < .05; RB 6D: χ2(3) = 34.16, p < .001; RB
Biconditional: χ2(3) = 45.88, p < .001]

Stroop Task Performance

Participants performed the concurrent Stroop task with
a high degree of accuracy, achieving an overall average of
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85.6% correct. The differences among Stroop task accura-
cies on RB 4D (84.3%), RB 6D (86.5%), RB Biconditional
(85.4%) or II trials (86.6%) were not significant according
to a 4 condition x 2 phase (pre-button switch, post-button
switch) repeated measures ANOVA [F(3,114) = 0.41, p =

0.74]. Importantly, the button switch had no detrimental ef-
fect on Stroop performance, although there was a significant
effect of phase [F(1,93) = 15.76, p < 0.001]. Supplemen-
tary Figure s2 shows that this difference was driven by im-
provements in Stroop performance during the button switch
in the RB 4D condition. This suggests that after acquiring the
rule, participants were able to perform better on the Stroop
task and that the co-mingled interference between tasks was
reduced. In summary, participants performed the concur-
rent Stroop task with high accuracy regardless of category
structure and regardless of whether or not the response but-
tons were switched. These results were expected, given that
participants were instructed to perform the Stroop task per-
fectly and, ‘with what was left over’, to perform the category-
learning task.

Category-Learning Performance

We assessed the statistical significance of all reported ef-
fects by performing a 2 phases (initial learning versus button-
switch) x 2 cognitive loads (single-task versus dual-task)
x 4 structures (RB 4D, RB 6D, RB Biconditional, II) re-
peated measures mixed design ANOVA. The ANOVA as-
sumed type 3 sums of squares and used the Satterthwaite
approximation for degrees of freedom. The only significant
effect in the ANOVA was the phase x structure interaction
[F(1, 534) = 34.94, p < .001], which was driven by a vari-
ety of factors summarized in Table 1. The important points
are that there were no differences in initial learning between
the RB Biconditional and II conditions under either single-
task [t(53) = −.26, p = .80, d = .07] or dual-task conditions
[t(8) = .38, p = .71, d = .26]. Thus, task difficulty was
equated between the II and RB Biconditional conditions.

The more critical question is how the button switch af-
fected performance. To address this issue we computed a
button-switch cost, defined as the number of trials to crite-
rion minus 12. Recall that the response keys were switched
immediately after the participant reached the learning crite-
rion of 12 correct responses in a row. The participants were
informed of this switch and told to continue responding to
the same category structures they had just learned until the
criterion was reached again. Thus, if the button switch had
no effect, then participants would respond correctly on the
next 12 trials (i.e., as they had on the previous 12) and the
button-switch cost would be 0. The II condition took sig-
nificantly longer to recover from the button-switch than any
RB condition, including the Biconditional condition, under
both single-task [t(29) = −5.14, p < .001, d = 1.90] and
dual-task conditions [p(18) = −2.59, p < .02, d = 1.22].

Table 1
Posthoc Pairwise Comparisons
II and RB Biconditional take longer to learn than 4D and 6D RB conditions under
single-task conditions

Pair d f t p d
II-4D 34 -5.71 <0.001 1.95
II-6D 35 -5.00 <0.001 1.69
II-Bi 53 -0.26 0.80 0.07

4D-6D 130 3.05 <0.01 0.53
4D-Bi 22 6.48 <0.001 2.76
6D-Bi 23 5.61 <0.001 2.34

II and RB Biconditional take longer to learn than 4D and 6D RB conditions under
dual-task conditions

Pair d f t p d
II-4D 25 -4.49 <0.001 1.77
II-6D 41 -2.65 <0.05 0.82
II-Bi 8 0.38 0.71 0.26

4D-6D 69 2.12 <0.05 0.51
4D-Bi 6 2.50 <0.05 2.00
6D-Bi 7 1.77 0.12 1.32

II takes longer to recover from a button-switch than all RB conditions under single-
task conditions

Pair d f t p d
II-4D 27 -5.62 <0.001 2.15
II-6D 27 -5.63 <0.001 2.16
II-Bi 29 -5.14 <0.001 1.90

4D-6D 119 -0.08 0.94 0.01
4D-Bi 25 1.81 0.08 0.71
6D-Bi 24 1.88 0.07 0.76

II takes longer to recover from a button-switch than all RB conditions under dual-task
conditions

Pair d f t p d
II-4D 16.83 -2.39 <0.05 1.17
II-6D 15.10 -3.01 <0.05 1.55
II-Bi 18.04 -2.59 <0.05 1.22

4D-6D 55.60 -2.18 <0.05 0.59
4D-Bi 10.94 -0.66 0.52 0.40
6D-Bi 5.28 0.76 0.48 0.67

Finally, the recovery from the button switch in the Bicondi-
tional condition was not significantly different from in the
4D [single-task: t(25) = 1.81, p = .08, d = .71; dual-
task: t(10) = −.66, p = .52, d = .40] or in the 6D RB
[single-task: t(24) = 1.88, p = .07, d = .76; dual-task:
t(5) = .76, p = .48, d = .67] conditions.

In summary, the II and RB Biconditional conditions
were matched for difficulty under both single-task and dual-
task conditions, yet the button-switch cost was significantly
higher than in the other RB conditions only in the II condi-
tion. Finally, despite the increased difficulty of the RB Bi-
conditional task relative to the 4D and 6D tasks, the button-
switch cost was not significantly different between these RB
conditions. These results replicate previous demonstrations
that button-switch cost is increased in II relative to RB cate-
gory structures (Ashby et al., 2003; Maddox, Bohil, & Ing,
2004; Maddox et al., 2010; Spiering & Ashby, 2008). Our
novel result is that learning RB categories while perform-
ing a concurrent Stroop task, while substantially increasing
the difficulty of category learning, does not increase button
switch cost.
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Figure 5. Top: Trials to criterion during initial learning. Bot-
tom: Button-switch cost. Blue bars are single-task perfor-
mance, and red bars are dual-task performance. Error bars
are 95% confidence intervals, and horizontal lines indicate
significant pairwise comparisons.

Discussion

Many aspects of behavior are widely thought to be gov-
erned by learning and memory in qualitatively distinct neu-
robiological systems. Procedural learning and memory are
thought to proceed slowly and incrementally, require imme-
diate and consistent feedback, and be strongly tied to mo-
tor resources. Declarative learning is thought to be fast and
flexible, and rely on explicit reasoning. Behavior that is
thought to be under the domain of the declarative system has
long been known to suffer under increased cognitive load,
such as occurs in the presence of a concurrent Stroop task
(Pashler, 1994). This article asked a novel and fundamental
question regarding the nature of this impairment. Does im-
paired learning under increased cognitive load reflect the di-
minished resources available to declarative systems, or does
it instead reflect a switch of behavioral control to a proce-
dural system? Our results are summarized in the following
paragraph and are consistent with the former of these possi-
bilities.

We ran participants in one of four category-learning tasks.
One task could only be solved by recruiting procedural learn-
ing, while the other three were conducive to explicit strate-
gies. We examined whether learning in these tasks was im-
paired when the buttons used to make category judgments
were reversed. This was examined under single-task and
dual-task conditions. We found that participants struggled
to reverse their categorization strategy (i.e., to compensate
for a button switch) when their initial learning was hypothe-
sized to require procedural memory, but reversed their strat-
egy with ease when initial learning was hypothesized to be
declarative. This was true regardless of whether or not a
dual-task was present, and was independent of task difficulty.

There are several specific findings worth emphasizing
here that strongly imply that training under dual-task con-
ditions does not induce a system switch to procedural re-
sources. First, the button switch caused no significant impair-
ment after learning in RB categorization. Impressively, par-
ticipants largely demonstrated near instant recovery in per-
formance – reacquiring the categories in nearly the minimum
possible time (i.e., 12 trials), regardless of the presence of
the dual task. Second, performance on the dual task actually
improved slightly in the RB 4D condition during the button-
switch trials. This implies that the interference caused by the
dual task was much higher during initial rule acquisition, but
that once the rule was learned (i.e., after reaching criterion),
the interference decreased, allowing participants to improve
on the dual task.

One confound in our design is that participants always
completed single-task problems before they completed dual-
task problems. Thus, at the time of the first dual-task but-
ton switch, participants had already recovered from at least
one prior button switch, and this practice may have reduced
the dual-task button-switch cost. While the current data do
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not allow us to rule this possibility out, note that with the
II categories, the button-switch cost was significant under
both single- and dual-task conditions, and thus, if there was a
practice effect, it did not change the qualitative results in the
II condition.

Unfortunately, overall task difficulty when the dual task
was presented first was so great that it was impossible to ex-
amine initial learning under dual-task conditions. An exten-
sive pilot study showed that when the dual task was intro-
duced from the first trial, most participants failed to learn
any II categories or any of the more difficult RB categories.
The problem is that any novel category learning is extremely
difficult for participants in the presence of a dual task. There
are at least two reasons for this difficulty. First, at the be-
ginning of any new task, participants must acquire general
knowledge about the task (so-called metalearning). This in-
cludes learning what the stimuli look like, learning about the
timing and the response keys, and what the feedback means.
A simultaneous dual task could interfere with this metalearn-
ing, regardless of what memory systems are used to solve
the category-learning task. Second, people often begin with
declarative strategies, even in II tasks that require procedu-
ral learning for optimal performance. Thus, previous studies
have always found some dual-task interference in II tasks.
The important point is that this interference is always less
than in RB tasks, even when the RB task is considerably eas-
ier for participants to learn under single task conditions.

Another interesting design choice is that we ran this
study using a within-subjects design in which each partic-
ipant always learned category structures of the same type
in an attempt to minimize potential interference from one
categorization problem to the next. Prior research shows
that switching between declarative and procedural category-
learning systems is incredibly difficult (Ashby & Crossley,
2010). This prior work suggests that if we had asked partici-
pants to switch between RB and II category structures, many
would have failed. The most likely outcome is that many
participants would have used explicit strategies on all catego-
rization problems, even in the II condition. This is the reason
we decided on a within-subjects design. If future research
uncovers methods to reliably induce fluid switching between
categorization systems, we may return to examine a design
in which each participant is exposed to category structures of
all types.

Our results are broadly consistent with an ever growing
body of evidence linking RB category learning to declara-
tive systems, and II category learning to procedural systems.
Of particular relevance here are prior studies showing that
II category learning is impaired after a button switch much
more than RB learning (Ashby et al., 2003; Maddox, Bo-
hil, & Ing, 2004; Maddox et al., 2010; Spiering & Ashby,
2008), whereas RB category learning is impaired more under
dual-task conditions (Waldron & Ashby, 2001b; Zeithamova

& Maddox, 2006). On the other hand, the absence of a
large button-switch impairment in the Biconditional condi-
tion seems a failure to replicate Nosofsky et al. (2005), who
showed that RB categorization can incur a substantial button-
switch cost if the explicit strategy required in the RB task is
made difficult enough (i.e., a conjunction rule). However,
one potentially important difference between Nosofsky et al.
(2005) and the present work is that we showed the category
labels on the screen immediately above the response keys,
whereas Nosofsky et al. (2005) did not. Thus, in the Nosof-
sky et al. experiment, participants had to remember the new
locations of the response keys after the button switch and the
conjunction rule needed for optimal responding, whereas in
our experiment they only needed to remember the bicondi-
tional rule. So one possibility is that the button-switch in-
terference observed by Nosofsky et al. with a conjunction
rule was actually due to extra working memory demand. Al-
though we know of no direct tests of this hypothesis, there
is some supporting evidence (Maddox, Lauritzen, & Ing,
2007). Even so, more work is clearly needed on this issue.

Another important caveat is that our results are limited to
very early learning, and therefore do not address the question
of whether dual-task effects might be quite different follow-
ing more training. In fact, the evidence for such differences
is good. Helie, Waldschmidt, and Ashby (2010) showed that
after more than 11,000 trials of training, RB and II tasks both
exhibit similar button-switch costs and neither exhibits a sig-
nificant dual-task cost, presumably reflecting automaticity in
task performance.

Another contribution of the present article is that it pro-
vides a strong test of the cognitive complexity hypothesis. As
mentioned earlier, the only single-system account of the RB
versus II button-switch dissociation is that a button-switch
interference occurs in the II task because it has greater cogni-
tive complexity than the (rotated) one-dimensional RB task
(Nosofsky et al., 2005). The present experiment provides
strong tests of this hypothesis because our various conditions
differ considerably on cognitive complexity. First, by any
definition of complexity, the Biconditional RB task is more
complex than the 6D RB task, which is more complex than
the 2D RB task. So the cognitive complexity hypothesis pre-
dicts that the button-switch costs should be similarly ordered.
In contrast to this prediction, no button-switch costs were
found in any of these conditions. Second, adding a dual task
clearly increases cognitive complexity, so the complexity hy-
pothesis predicts larger button-switch costs in each dual-task
condition than in the analogous single-task control. In con-
trast to this prediction, we found no effect of the dual task
on button-switch cost for any of our four category structures
– including the II categories. Thus, the complexity hypoth-
esis fails to account for any results described in this article.
Instead, the presence or absence of a button-switch cost was
perfectly predicted by the multiple systems hypothesis in ev-
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ery condition.
Because so many aspects of behavior are apparently gov-

erned by the interaction of multiple learning and memory
systems, it is reasonable to think that studying ways to bias
which of these systems controls learning might hold promise
for enhanced skill acquisition. However, our results reinforce
the conclusion of Ashby and Crossley (2010) that switching
control from one system to another appears to be more dif-
ficult than one might naively expect. In our experiment, it
seems that in the presence of a dual task it would be most ef-
ficient to divide the workload between declarative and proce-
dural memory systems – declarative systems could perform
the numerical Stroop task and procedural systems could per-
form the category learning. Despite the seeming appeal of
this policy, our results suggest that people instead persist in
using declarative systems for both tasks. Thus, this study
identifies a possible interesting suboptimality in human be-
havior.
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rization may be exclusively nonanalytic. Psychonomic Bulletin
& Review, 18(2), 414–421.

Spiering, B. J., & Ashby, F. G. (2008). Response processes
in information–integration category learning. Neurobiology of
Learning and Memory, 90(2), 330–338.

Squire, L. R. (2004). Memory systems of the brain: a brief history
and current perspective. Neurobiology of Learning and Memory,
82(3), 171–177.

Stanton, R. D., & Nosofsky, R. M. (2007). Feedback interfer-
ence and dissociations of classification: Evidence against the
multiple-learning-systems hypothesis. Memory & Cognition,
35(7), 1747–1758.



10 PSYCHONOMIC BULLETIN & REVIEW

Waldron, E. M., & Ashby, F. G. (2001a). The effects of concurrent
task interference on category learning: Evidence for multiple
category learning systems. Psychonomic Bulletin & Review, 8,
168-176.

Waldron, E. M., & Ashby, F. G. (2001b). The effects of concur-
rent task interference on category learning: Evidence for multi-
ple category learning systems. Psychonomic Bulletin & Review,
8(1), 168–176.

Willingham, D. B. (1998). A neuropsychological theory of motor
skill learning. Psychological Review, 105(3), 558.

Willingham, D. B., Nissen, M. J., & Bullemer, P. (1989). On the
development of procedural knowledge. Journal of Experimental
Psychology: Learning, Memory, and Cognition, 15(6), 1047.

Willingham, D. B., Wells, L. A., Farrell, J. M., & Stemwedel, M. E.
(2000). Implicit motor sequence learning is represented in re-
sponse locations. Memory & Cognition, 28(3), 366–375.

Yonelinas, A. P. (2002). The nature of recollection and familiar-
ity: A review of 30 years of research. Journal of Memory and
Language, 46(3), 441–517.

Zeithamova, D., & Maddox, W. T. (2006). Dual-task interference
in perceptual category learning. Memory & Cognition, 34(2),
387–398.

Author Notes

This research was supported in part by AFOSR grant
FA9550-12-1-0355, by NIH grant 2R01MH063760, and by
a grant from the U.S. Army Research Office through the
Institute for Collaborative Biotechnologies under Grant No.
W911NF-07-1-0072.


