

Context modulates brain state dynamics and behavioral responses during narrative comprehension

Yibei Chen^{1*}, Zaid Zada², Samuel A. Nastase², F. Gregory Ashby³, Satrajit S. Ghosh¹

4 ¹McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge,
5 MA, 02139, USA

6 ²Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, USA

7 ³ Department of Psychological & Brain Sciences, University of California, Santa Barbara, Santa
8 Barbara, CA, 93106, USA

9 *For correspondence: yibei@mit.edu

Abstract

11 Narrative comprehension is inherently context-sensitive, yet the brain and cognitive
12 mechanisms by which brief contextual priming shapes story interpretation remain unclear. Using
13 hidden Markov modeling (HMM) of fMRI data, we identified dynamic brain states as
14 participants listened to an ambiguous spoken story under two distinct narrative contexts (affair
15 vs. paranoia). We identified recurrent states involving auditory, language, and default mode
16 network (DMN) regions that were expressed across both groups, as well as additional states
17 characterized by recruitment of multiple-demand network (MDN) systems, including control,
18 dorsal attention, and salience networks. Bayesian mixed-effects modeling revealed that
19 contextual framing modulated how specific linguistic and character-related features influenced
20 the probability of occupying these states. Complementary behavioral data showed parallel
21 context-sensitive modulation of participants' moment-to-moment interpretive judgments.
22 Together, these findings suggest that contextual priming influences narrative comprehension
23 through subtle, feature-dependent adjustments in the engagement of DMN- and MDN-related
24 brain states during naturalistic story listening.

26 **Keywords:** narrative comprehension, context modulation, brain state dynamics, hidden Markov
27 models, Bayesian mixed-effects modeling, naturalistic paradigm, fMRI

29 **Introduction**

30 Narrative comprehension involves complex interactions among prior knowledge,
31 immediate contextual expectations, and the content (Botch & Finn, 2024; Mar & Oatley, 2008;)

32 Nastase et al., 2021; Willems et al., 2020). Recent neuroimaging research demonstrates
33 significant variability in how individuals process identical narrative stimuli, primarily driven by
34 stable personal traits such as empathy, political beliefs, and cognitive abilities. This variability
35 results in distinct patterns of brain activity and synchronization (Coderre & Cohn, 2023; de Bruin
36 et al., 2023; Johns et al., 2018; Nijhof & Willems, 2015). In addition to these stable individual
37 differences, transient manipulations of expectations or interpretation profoundly impact how
38 narrative content is processed, highlighting the brain's sensitivity to context (Yeshurun et al.,
39 2017).

40 Research in psychology and linguistics highlights the crucial role of context in
41 understanding narratives. Contextual cues, such as background knowledge or primed
42 information, help people construct coherent mental representations, improve comprehension, and
43 enhance recall of narrative details (Bransford & Johnson, 1972; van Kesteren et al., 2013; Zwaan
44 & Radvansky, 1998). These longer narratives allow context to accumulate gradually, shaping
45 interpretation as the story progresses and enabling the construction of shared mental models
46 across listeners.

47 Neuroimaging studies have shown that naturalistic narratives (e.g., audiostories or
48 movies), which unfold over time, recruit default mode network regions that are typically less
49 engaged by highly controlled lab stimuli that are shorter and decontextualized (Baldassano et al.,
50 2017; Ben-Yakov et al., 2012; Geerligs et al., 2022; Lerner et al., 2011; Yeshurun et al., 2021).
51 Recent theoretical work proposes that the DMN supports the construction and maintenance of
52 mental models more generally, summarizing high-dimensional experiences into lower-
53 dimensional, situation-level representations (Barnett & Bellana, 2025). Converging network-
54 level evidence suggests that externally presented narratives are processed hierarchically along
55 the cortical gradient, from primary sensory cortices (e.g., auditory) to the language network and
56 ultimately to the DMN (Gordon et al., 2020). Through this hierarchical progression, auditory,
57 language, and DMN regions collectively support the integration of incoming speech into a
58 coherent situation model, forming a dominant processing mode that sustains narrative
59 comprehension over extended timescales.

60 When individuals receive similar contextual information, whether through common prior
61 knowledge or priming, their cognitive and emotional responses tend to align, producing
62 synchronized activity across brains (de Bruin et al., 2023; Lahnakoski et al., 2014; Nguyen et al.,

63 2019). Conversely, when people are primed differently or bring distinct prior experiences to the
64 same narrative, they may interpret it in diverging ways, resulting in idiosyncratic patterns of
65 brain activity (Jacoby & Fedorenko, 2020; Yeshurun et al., 2017). These interpretive processes
66 rely on integrating incoming information with existing mental models and are thought to emerge
67 from coordinated activity across multiple large-scale brain networks, rather than being localized
68 to any single region (Barrett, 2022; McIntosh, 2004; Song et al., 2023).

69 These processes often require updating mental models in response to shifts in narrative
70 content, which increases cognitive demands on the system (Yang et al., 2023). Such effortful
71 updating and ambiguity resolution reliably recruit the multiple-demand network (MDN), which
72 involves a set of frontoparietal, dorsal attention, and salience networks engaged by a wide range
73 of cognitively demanding tasks (Cole et al., 2013; Duncan, 2010; Hermans et al., 2014; Uddin,
74 2015). During narrative comprehension, these MDN components support functions such as
75 maintaining or revising interpretive hypotheses, reorienting attention to salient cues, detecting
76 conflict between contextual expectations and incoming information, and guiding top-down
77 control over narrative interpretation.

78 Narrative comprehension is therefore not a unitary process but a dynamic interplay
79 between multiple neural systems. Unlike traditional laboratory tasks that isolate a single
80 function, naturalistic stories require listeners to continually shift between perceiving speech,
81 integrating semantic information, retrieving relevant knowledge, monitoring contextual cues, and
82 making inferences about characters and events. These shifting demands naturally recruit different
83 large-scale networks at different times, including transitions between DMN-dominated
84 integrative processing and MDN-dominated evaluative or attention-driven processing.
85 Contextual priming can bias which of these processing modes is engaged at particular moments,
86 yet the mechanisms through which such external framing shapes these evolving neural patterns
87 remain poorly understood.

88 In this study, we examine how the integration of narrative input with initial contextual
89 priming is reflected in dynamic patterns of brain activity, using the concept of “brain states.”
90 Brain states refer to recurring patterns of coordinated activity across distributed brain regions
91 (Liu et al., 2025; Song et al., 2021), analogous to distinct musical motifs formed by different
92 instruments in an orchestra. Because naturalistic narratives engage different functional systems at
93 different moments, a brain-state framework allows us to capture both the states themselves and

94 the transitions between them, providing a window into how the brain alternates between
95 competing or complementary processing modes over time (Shine et al., 2019; Vidaurre et al.,
96 2017). By identifying and characterizing these recurrent states, we can assess how contextual
97 framing influences not only which large-scale networks are engaged, but also how the brain
98 traverses between integrative DMN-related processing and more effortful MDN-related
99 evaluative modes as the story unfolds.

100 Another critical gap remains in understanding how contextual priming interacts with
101 specific narrative features, such as character identity and other linguistic structures. During story
102 listening, character identity is often conveyed and reinforced through character speech,
103 especially when direct quotations are attributed to particular speakers. These attributions
104 fundamentally shape comprehension by guiding attention, emotional engagement, and social
105 inference (Gerrig, 1993; Jacoby & Fedorenko, 2020; Mar & Oatley, 2008). Psycholinguistic
106 evidence consistently underscores the central role of character speech in maintaining narrative
107 coherence, supporting mental simulation, and enabling theory-of-mind reasoning (Nieuwland &
108 Van Berkum, 2006; Zwaan & Radvansky, 1998). Thus, character speech serves as a theoretically
109 meaningful and empirically tractable feature for investigating how contextual priming influences
110 narrative processing.

111 To investigate how narrative context shapes brain state dynamics during story
112 comprehension, we used a naturalistic fMRI paradigm in which two participant groups listened
113 to the same story but were primed differently beforehand (Yeshurun et al., 2017). We applied
114 hidden Markov models (HMMs) to identify recurrent brain states, defined as temporally
115 evolving patterns of network-level activity, across the full duration of story listening (Quinn et
116 al., 2018; Shine et al., 2019; Taghia et al., 2018; Vidaurre et al., 2017). Based on work
117 demonstrating that naturalistic narratives engage both DMN-supported semantic integration and
118 MDN-supported evaluative or attention-driven processing, we expect that narrative
119 comprehension would elicit at least two broad classes of brain states: (i) integration states
120 reflecting coordinated activity among auditory, language, and default mode networks, and (ii)
121 evaluative states involving control, dorsal attention, and salience networks that support
122 ambiguity resolution and situation updating. Building on prior work showing brain sensitivity to
123 character-level features (Alderson-Day et al., 2020; Jacoby & Fedorenko, 2020; Yarkoni et al.,
124 2008), we further predicted that brain state dynamics would differ based on speaker identity.

125 We added a complementary behavioral experiment to better understand how primed
126 context influences moment-to-moment interpretation. Our goal was to capture when listeners
127 subjectively recognized elements of the story as aligning with their assigned context. Two
128 separate groups of participants received the same context instructions and listened to the same
129 story as those in the fMRI study. They were asked to press a key whenever they perceived
130 information consistent with their contextual framing. These responses provide a time-resolved
131 behavioral index of interpretive alignment, offering an external marker of how context interacts
132 with narrative features over time.

133

134 **Methods**

135 **fMRI dataset**

136 We utilized the “prettymouth” dataset (Figure 1) (Yeshurun et al., 2017), which includes
137 40 participants drawn from the Narratives data collection (Nastase et al., 2021). Participants were
138 divided into two groups (initially $N = 20$ per group), with both groups exposed to an adapted
139 version of J. D. Salinger’s short story, “Pretty Mouth and Green My Eyes.” The adapted version
140 was shorter than the original and included several sentences not present in the original text. A
141 professional actor provided the narration, resulting in a recording of 11 minutes and 32 seconds.
142 Functional MRI data were acquired with a repetition time (TR) of 1.5 seconds. The story was
143 preceded by 18 seconds of neutral music and 3 seconds of silence, followed by an additional 15
144 seconds. These segments of music and silence were excluded from all analyses.

145 The narrative describes a phone conversation between two friends, Arthur and Lee.
146 Arthur, who has just returned home from a party after losing track of his wife Joanie, calls Lee to
147 express his concerns about her whereabouts. Lee is at home with a woman beside him, whose
148 identity remains ambiguous: she may or may not be Joanie. Before listening to the story, each
149 participant group received one of two different contextual prompts: one group was informed that
150 Arthur was paranoid and his suspicions were unfounded (“paranoia” context), while the other
151 group was told that the woman was indeed Joanie, Arthur’s wife, and that Lee and Joanie had
152 been involved in an ongoing affair for over a year (“affair” context). Yeshurun et al. (2017) and
153 Nastase et al. (2021) describe the experimental paradigm and fMRI data acquisition parameters.

154 **fMRI data processing**

155 fMRI data preprocessing was conducted using fMRIPrep (version 24.0.1) (Esteban et al.,
156 2019) via the BIDS App Bootstrap (Zhao et al., 2024), with detailed processing steps provided in
157 the supplementary material. Custom post-processing steps optimized for narrative listening
158 analyses were applied after initial preprocessing. Specifically, we implemented spatial smoothing
159 (6 mm full-width half-maximum) to balance noise reduction and preservation of spatial
160 activation patterns, performed detrending to mitigate scanner drift, standardized (z-scored) the
161 time-series signals across time points within each voxel within each subject, and regressed out
162 nuisance signals related to head motion and physiological noise using motion parameters and
163 anatomical CompCor regressors. All post-processing steps were carried out using Nilearn; more
164 details are provided in the supplementary material and our GitHub repository (see the Code
165 Availability section). Post-processed data were further extracted using the Schaefer et al. (2018)
166 parcellation (1000 parcels) with 17 networks (Kong et al., 2021). Following recommendations by
167 Nastase et al. (2021), two participants were excluded from further analysis due to data quality
168 concerns, resulting in a final sample size of $N = 19$ per group.

A stimulus and conditions

Context manipulation

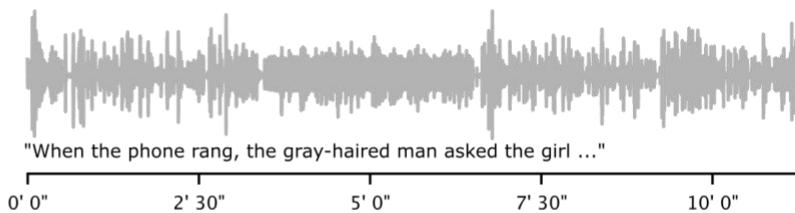
affair

"... Joanie was flirting with everybody ..."

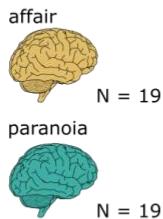
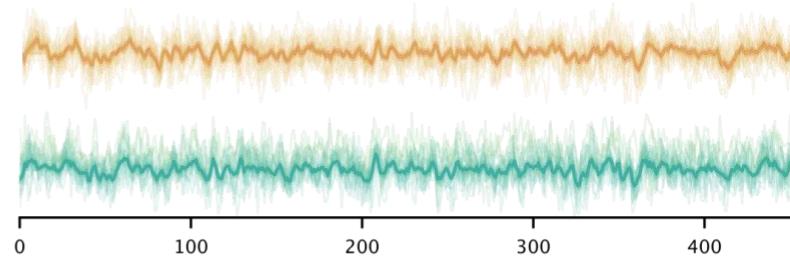
paranoia

"... Arthur is paranoid, worrying that ..."

"Pretty Mouth and Green My Eyes"
J.D. Salinger

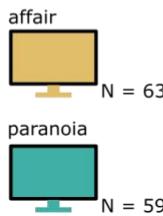


B neuroimaging acquisition



C behavioral evidence

Instructions:
Press "space" when
you find evidence for...



169

170 **Figure 1. Experimental design, neuroimaging acquisition, and behavioral evidence.**

171 (A) Participants were randomly assigned to one of two context conditions—affair (gold) or
172 paranoia (teal)—and read a brief prompt before listening to an 11-minute spoken story (Pretty
173 Mouth and Green My Eyes by J.D. Salinger). This context manipulation was consistent across
174 both neuroimaging and behavioral experiments. (B) The fMRI study included data from 19
175 participants in each context group in the final analysis. The schematic plot illustrates average
176 fMRI time courses for each group (affair in gold, paranoia in teal), with the x-axis representing
177 time in TRs. (C) In the behavioral study, we recruited two new groups of participants and asked
178 them to press the spacebar whenever they perceived evidence supporting one interpretation or
179 the other (affair N = 63, paranoia N = 59). The line plots depict the average frequency of button
180 presses over time within each group (i.e., agreement across all participants), with peaks
181 corresponding to moments of perceived narrative support for each interpretation.

182

183 **Behavioral data**

184 We collected an additional behavioral dataset under two different tasks to assess the
185 evidence in the stimulus supporting each narrative context over time. Behavioral data were
186 collected from 128 participants recruited via Prolific (www.prolific.com). Participants were
187 classified into two experimental groups: an affair group (n = 63) and a paranoia group (n = 59).
188 Demographic details indicated the sample comprised 62 males, 57 females, and three individuals
189 identifying as non-binary or third gender. The age distribution included participants aged 18–24
190 years (n = 18), 25–34 years (n = 46), 35–44 years (n = 29), 45–54 years (n = 12), 55–64 years (n
191 = 14), and 65 years or older (n = 3). These participants are a separate sample from those included
192 in the fMRI experiment.

193 Data were collected through an online experiment developed using PsychoJS scripts
194 derived from the PsychoPy builder (PsychoPy3, version 2023.2.0), hosted on Pavlovia
195 (<https://pavlovia.org/>). Participants initially provided informed consent via Qualtrics
196 (<https://www.qualtrics.com/>) before being randomly assigned to one of two context conditions
197 (affair versus paranoia). Participants in each group received the same prompts presented to the
198 fMRI participants prior to listening to the auditory story. Participants were asked to identify
199 moments in the narrative where they perceived evidence for their assigned interpretation (Lee
200 and Joanie are having an affair, or Arthur is being paranoid) by pressing the spacebar on their
201 keyboards. Immediate visual feedback was provided, indicated by a brief green dot appearing at
202 the center of the screen, confirming each response. After completing the task, participants were
203 redirected to Qualtrics to complete a post-experiment questionnaire. Data from four participants
204 were excluded from subsequent analyses due to incomplete records, resulting in a final dataset of
205 122 participants (Figure 1C). More detailed instructions can be found in the supplementary
206 material.

207 This study was approved by the Princeton University Institutional Review Board (IRB
208 12201). In accordance with institutional ethical guidelines, all participants provided informed
209 consent electronically before participation. Participants received monetary compensation
210 consistent with university policy. All data were anonymized to ensure participant confidentiality.
211

212 **Hidden Markov model (HMM) analysis**

213 To characterize the temporal dynamics of brain states during story listening, we
214 employed hidden Markov models (HMMs, Figure 2A), which identify recurring patterns of brain
215 network activity and their transitions over time (Baldassano et al., 2018; Meer et al., 2020;
216 Vidaurre et al., 2017; Yang et al., 2023). HMMs explicitly model temporal dependencies and
217 sequential state transitions, aligning closely with our objective of understanding how prior
218 contextual information modulates the temporal evolution of brain states.

219 To account for hemodynamic delay, the BOLD signal was shifted backward by three TRs
220 (~4.5 s) relative to the timing of the stimulus features (Yeshurun et al., 2017). Non-story
221 segments (background music/silence, 24 TRs at scan onset and offset) were excluded, yielding
222 451 TRs for analysis. Time series were extracted from 17 functionally defined networks by first
223 averaging voxel-wise signals within each parcel, then averaging across all parcels assigned to the
224 same network. Each participant’s data was z-scored to normalize signal amplitudes.

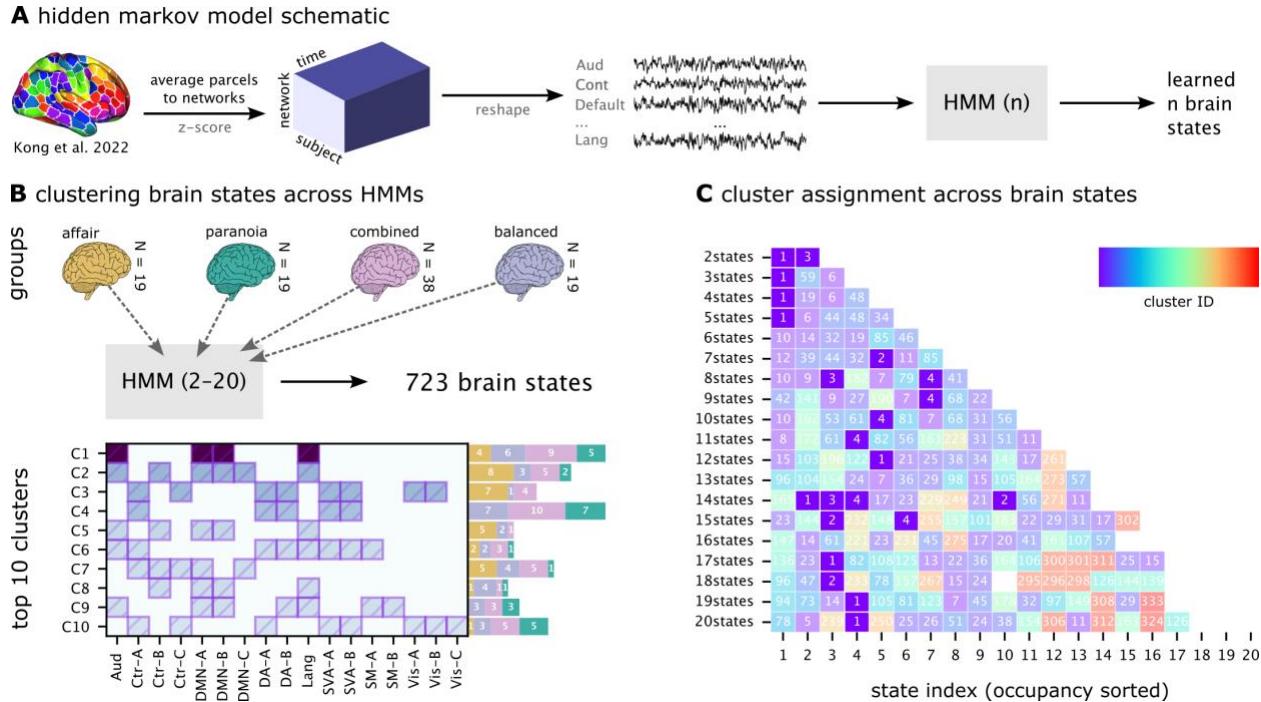
225 We implemented Gaussian observation HMMs using the *hmmlearn* Python package,
226 modeling brain states as multivariate Gaussian distributions with state-specific means and
227 covariances. Transition probabilities were initialized to favor an expected dwell time of
228 approximately 7 seconds (~4–5 TRs). This provided a weak prior consistent with evidence that
229 large-scale brain states during naturalistic cognition typically persist on the order of several
230 seconds, with higher-order regions such as the default mode network exhibiting longer durations
231 and sensory regions (e.g., auditory cortex) switching more rapidly (Vidaurre et al., 2017;
232 Baldassano et al., 2017). The prior served to prevent implausibly fast state-switching at
233 initialization, but transition probabilities were re-estimated during expectation–maximization, so
234 final dwell times were determined by the data rather than fixed to 7 seconds.

235 To improve robustness against local optima during model fitting, we performed five
236 independent initialization attempts per model (i.e., with the same number of states but different
237 random seeds). For each attempt, state means were initialized by random draws from a standard
238 normal distribution ($\mathcal{N}(0, 1)$), ensuring broad coverage of the feature space. Covariance matrices
239 were initialized as identity matrices with a small diagonal ridge term ($\epsilon = 10^{-6}$) to maintain
240 positive definiteness and numerical stability during optimization. Start probabilities were
241 initialized uniformly across states, and transition priors followed the weak dwell-time prior
242 described above. Across the five attempts, random seeds influenced both the initialization of

243 means and the stochastic path of the EM algorithm, while covariances, start probabilities, and
244 transition priors were held constant. The solution with the highest log-likelihood was selected for
245 downstream analysis.

246 Model generalizability and stability were assessed through leave-one-subject-out cross-
247 validation (LOOCV). For each fold, a group-level model was trained on all but one subject and
248 evaluated on the held-out subject's data. We quantified model fit using the average cross-
249 validated log-likelihood across folds. State reliability across folds was evaluated via spatial
250 correlations, with optimal state matching determined using the Hungarian algorithm (Kuhn,
251 1955). Pattern similarity scores were averaged across all fold pairs to yield a summary measure
252 of cross-validated pattern reliability. We also provided the model selection result from LOOCV
253 in Supplementary Figure 1.

254 HMM analyses were conducted on two experimental groups—the affair context group
255 (n=19) and paranoia context group (n=19)—and two constructed groups—a combined group
256 comprising all participants (n=38) and a balanced group (n=19), to match the contextual groups,
257 consisting of random subset of participants (9 from the affair context and 10 from the paranoia
258 context). The balanced group was created to preserve the contextual heterogeneity of the
259 combined group while matching the sample size of the individual context groups. This approach
260 enabled both the investigation of context-specific brain state dynamics and generalizable patterns
261 across contexts. Brain states were characterized by spatial patterns, temporal sequence (i.e.,
262 occurrence), and inter-subject consistency. All analyses were implemented using Python
263 (hmmlearn, NumPy, SciPy).



264

265 **Figure 2. Hidden Markov models (HMMs) and clustering of brain states.**

266 (A) Analysis pipeline. Parcel-level fMRI time series were averaged within networks, z-scored
 267 across time, and concatenated across participants. HMMs with 2–20 states were estimated
 268 separately for four groups: *affair*, *paranoia*, *combined*, and *balanced*. (B) Cluster profiles and
 269 provenance. Brain states that passed quality filters (activation > 0.1, bootstrap CI width < 0.3,
 270 split-half reliability > 0.5) were pooled across models and clustered by spatial similarity (Jaccard
 271 distance, hierarchical clustering). The left panel shows the average activation profile of each
 272 resulting cluster across canonical functional networks, with shading intensity indicating the mean
 273 activation level. The bar plots to the right show the number of states from each group (affair,
 274 paranoia, combined, balanced) contributing to each cluster, illustrating cluster provenance. (C)
 275 Cluster assignments across model granularities. This panel visualizes how the unified cross-
 276 group clustering solution maps onto the *combined-group* HMMs. Each row corresponds to one
 277 HMM solution (2–20 states), and each column to a state within that model, ordered by state
 278 occupancy. Colors and overlaid numbers indicate the cluster assignment (1–4) of each state.
 279 Missing cells indicate states that did not pass the filtering criteria and were therefore excluded
 280 from clustering. This panel demonstrates how states from different HMM solutions converge
 281 onto a consistent set of four clusters.

282 **State pattern similarity analysis**

283 Traditional methods for analyzing hidden Markov models usually depend on model
284 selection criteria to pinpoint a single optimal model, often overlooking valuable insights from
285 alternative solutions (Quinn et al., 2018; Vidaurre, Hunt, et al., 2018). To overcome this
286 limitation, we created a pattern similarity analysis framework that utilizes information from
287 various model parameterizations and experimental conditions. Our approach builds on the
288 neurobiological observation that increasing the number of states in an HMM often results in
289 meaningful subdivisions of broader brain state processes rather than entirely spurious patterns
290 (Baker et al., 2014). For example, a language processing state in a simpler model might
291 subdivide into different states for different semantic domains in more complex models,
292 representing valid phenomena at different levels of granularity.

293 Reliable state patterns from all HMM solutions across the experimental (affair, paranoia)
294 and constructed groups (combined, balanced) were extracted using stringent criteria designed to
295 filter out unstable or noisy states. First, we required a minimum activation threshold (>0.1),
296 meaning that at least one network's mean parameter in the HMM had to deviate from baseline by
297 more than 0.1 (in standardized units of the z-scored input time series). This ensured that states
298 reflected meaningful network engagement rather than near-zero fluctuations. Second, we
299 assessed the stability of each state's mean activation pattern using bootstrap resampling: for each
300 network, we generated 95% confidence intervals around its mean activation value and retained
301 only states with narrow intervals (width < 0.3), indicating low estimation uncertainty. Third, we
302 evaluated within-state reliability using a split-half procedure: timepoints assigned to each state
303 were divided into two halves, mean activation patterns were estimated separately, and their
304 correlation was computed; only states with correlations > 0.5 were retained. For each retained
305 state, we recorded fractional occupancy to standardize comparisons across models, along with
306 full provenance information (group, model specification, original state index, normalized index).

307 We then clustered the state mean activation patterns across groups (Figure 2B), focusing
308 on the average co-activation profile of the 17 networks for each state. Pairwise similarity was
309 computed using Jaccard distance, which quantifies dissimilarity based on the proportion of non-
310 overlapping active networks. This metric emphasizes the spatial layout of co-active brain
311 networks while reducing sensitivity to overall activation magnitude. All states were compared
312 pairwise, and agglomerative hierarchical clustering with average linkage was applied to group

313 them. We evaluated clustering solutions across merging similarity thresholds from 0.6 to 0.9 and
314 found that the top four clusters were highly stable across this range (Supplementary Figure 3).

315 For each consecutive pair of thresholds, we compared the consensus patterns of the top
316 five largest clusters using Jaccard similarity (Supplementary Table 2). The analysis revealed a
317 high degree of stability, with an average Jaccard similarity of 0.89 for the best-matching clusters
318 across all transitions. Furthermore, 83% of these top clusters maintained a high similarity (≥ 0.7)
319 with a cluster from the preceding threshold. This high consistency confirms that the primary state
320 patterns are a stable feature of the data, not an artifact of parameter selection. Based on this
321 confirmed robustness, particularly in the 0.75-0.90 range, we selected a final similarity threshold
322 of 0.8 for all subsequent analyses.

323 As part of the cross-group clustering procedure, clusters were reordered by total
324 fractional occupancy, defined as the sum of the occupancies of all states assigned to each cluster
325 across models. This ensured that cluster IDs reflected the most frequently expressed patterns
326 rather than simply the largest number of constituent states. The occupancy-based reordering
327 occurred immediately after hierarchical clustering, integrated within the clustering step. For each
328 cluster, we computed a consensus pattern identifying networks that were significantly active in at
329 least 50% of the constituent states.

330 Finally, clusters were labeled as either context-general or context-specific based on their
331 provenance. Clusters containing states from both affair and paranoia models (and appearing in
332 the combined/balanced models) were considered context-general, whereas clusters dominated by
333 states from only one context group were considered context-specific. To evaluate the similarity
334 structure among brain state clusters, we computed Spearman rank correlations of their activation
335 patterns across the 17 networks. We conducted the analysis using both consensus patterns
336 (averaged across all member states) and representative patterns (from the combined-group
337 models), which yielded convergent results. Here we report the correlations based on
338 representative patterns; full results from both approaches are provided in Supplementary Figure
339 8.

340 **Story feature annotation**

341 To examine how narrative content influenced brain state dynamics, we annotated the
342 stimulus with key linguistic and narrative features at the temporal resolution of the fMRI data
343 (one annotation per TR).

344 **Character and interaction features:** As the narrative was delivered by a single narrator
345 but featured multiple characters, we identified character-specific speech and interactions per TR.
346 The annotations included: (1) Arthur, Lee, and Girl speaking: Identify the intended speaking
347 character at each time point. (2) Lee and the girl together: Identify when Lee and the girl
348 appeared concurrently, regardless of dialogue.

349 **Linguistic features:** Story were tagged for grammatical parts of speech, including verbs,
350 nouns, adjectives, and adverbs, indicating their presence in each TR.

351 **Thematically relevant combined features:** We further derived composite features to
352 reflect interactions between character presence and linguistic structure: (1) Lee-Girl Verb (Lee &
353 Girl Together \times Verb Presence): Captured shared actions or relational dynamics relevant to the
354 affair group's expected sensitivity to relational events. (2) Arthur Adjective (Arthur Speaking \times
355 Adjective Presence): Highlighted descriptive attributes linked to Arthur, informed by findings
356 that heightened attention to character traits is characteristic of paranoid cognition (M. J. Green &
357 Phillips, 2004).

358 These structured annotations enabled the systematic evaluation of how different narrative
359 elements influenced cognitive engagement, providing an essential foundation to investigate the
360 hypothesized cognitive biases associated with each group.

361 **Bayesian generalized linear mixed models**

362 To investigate the temporal dynamics of brain state patterns and corresponding
363 behavioral responses, and to clarify how contextual information modulates the impact of
364 narrative content features, we implemented Bayesian generalized linear mixed models
365 (GLMMs). Separate GLMM analyses with identical structures were applied to characterize
366 brain-context-content and behavior-context-content relationships, providing consistent modeling
367 frameworks for brain and behavioral dynamics. The schematic overview of the full pipeline,
368 from HMM to GLMM, is in Supplementary Figure 2.

369 **GLMM for brain state and content analysis**

370 While the clustering analysis identified spatial configurations of brain states, the temporal
371 dynamics necessitated identifying representative state occurrences. A representative brain state
372 was chosen for each cluster's first occurrence within the combined group HMMs, as these
373 models included all participants. Subsequently, we extracted each participant's state sequence

374 (on/off) data corresponding to these representative states at each time point. We fit a logistic
 375 GLMM separately for each identified cluster with the following structure:

$$376 \text{logit}(P(\text{State}_{it} = 1)) = \beta_0 + \beta_g \cdot \text{Group}_i + \sum_{j=1}^J \beta_j \cdot \text{Feature}_{jt} + \sum_{j=1}^J \beta_{gj} \cdot \text{Group}_i \cdot \text{Feature}_{jt} + \sum_{k=1}^2 \gamma_k \cdot \text{State}_{i,t-k} + u_i$$

377 Where State_{it} is a binary variable indicating whether the target brain state was active (1)
 378 or inactive (0) for subject i at timepoint t . Feature_{jt} represents narrative annotations (e.g.,
 379 character presence, linguistic elements). The interaction terms $\text{Group}_i \cdot \text{Feature}_{jt}$ assess
 380 whether content features affect brain state dynamics differently between groups. Autoregressive
 381 terms $\text{State}_{i,t-k}$ account for temporal dependencies in state occupancy, and u_i represents
 382 subject-specific random intercepts that capture individual variability in state prevalence.

383 Model parameters were estimated using maximum a posteriori (MAP) estimation,
 384 applying deviation coding for group identity (+1 for affair, -1 for paranoia) and incorporating
 385 default Bayesian priors: normal priors with a mean of 0 for fixed effects and inverse gamma
 386 priors for random effects variance components. These priors provide implicit regularization,
 387 which is advantageous given our moderate sample size and binary outcomes. We calculated
 388 posterior probabilities instead of frequentist p-values for inference, quantifying evidence for
 389 effects as the probability mass supporting a specific direction of influence. This Bayesian
 390 approach allows for a more intuitive interpretation of uncertainty in our parameter estimates.

391 To address multiple comparisons, we implemented a Bayesian False Discovery Rate
 392 (FDR) procedure that controls the expected proportion of false discoveries among claimed
 393 discoveries. Features were considered to have credible effects when their FDR-adjusted posterior
 394 probabilities exceeded 0.95.

395 Coefficient estimates were converted from log-odds to odds ratios (OR) to enhance
 396 interpretability, indicating how narrative features influenced primary brain state activation odds.
 397 Group-specific effects were calculated to clarify how content features differentially affected
 398 brain state dynamics in each context condition. All analyses were performed using custom
 399 Python with the *statsmodels* package.

400 **GLMM for behavioral response and content analysis**

401 We applied a generalized linear mixed model (GLMM), analogous to those used in the
 402 brain state analyses, to examine the relationship between narrative content features and
 403 behavioral responses in a separate participant sample. The dependent variable was a binary

404 indicator reflecting whether a button press occurred at each fMRI time point (TR), signaling that
 405 the participant perceived evidence in the narrative consistent with their assigned contextual
 406 prompt. Originally recorded continuously (seconds), behavioral responses were aligned to the
 407 nearest TR to ensure temporal correspondence with stimulus features and brain-state estimates. If
 408 multiple button presses occurred within a single TR for a given participant, they were counted as
 409 a single response to avoid overrepresenting clustered inputs.

410 The behavioral GLMM followed this structure:

$$411 \text{logit}(P(\text{Response}_{it} = 1)) = \beta_0 + \beta_g \cdot \text{Group}_i + \sum_{j=1}^J \beta_j \cdot \text{Feature}_{jt} + \sum_{j=1}^J \beta_{gj} \cdot \text{Group}_i \cdot \text{Feature}_{jt} + \sum_{k=1}^2 \gamma_k \cdot \text{Response}_{i,t-k} + u_i$$

412 Where Response_{it} is a binary variable indicating whether subject i pressed the button at
 413 timepoint t . Feature_{jt} represents narrative annotations (e.g., character presence, linguistic
 414 elements). Interaction terms $\text{Group}_i \cdot \text{Feature}_{jt}$ assess whether content features differentially
 415 affect behavioral responses across groups. Autoregressive terms $\text{Response}_{i,t-k}$ account for
 416 temporal dependencies in response patterns, and u_i represents subject-specific random intercepts.

417 For parameter estimation, we utilized Maximum A Posteriori (MAP) estimation with
 418 Bayesian priors to stabilize the estimates, which is particularly important for binary outcomes
 419 with temporal dependencies. Similar to the brain-content analyses, we applied deviation coding
 420 for group identity (+1 for affair, -1 for paranoia), ensuring that the parameter estimates were
 421 balanced around the overall mean. Random intercepts at the subject level accounted for
 422 variability in individual response tendencies. Effects were deemed credible when their FDR-
 423 adjusted posterior probabilities surpassed 0.95.

424

425 Results

426 Brain state clustering identifies shared and context-specific cortical network patterns

427 The clustering analysis of brain state patterns across all models identified both context-
 428 specific and context-invariant brain states. Models derived from individual experimental
 429 conditions (affair or paranoia) produced more context-specific state patterns, as indicated by
 430 higher cluster IDs corresponding to smaller clusters, particularly when the number of states
 431 increased. Conversely, combined and constructed groups exhibited more generalized state
 432 patterns, represented by lower cluster IDs indicating larger clusters (Supplementary Figures 4-7).
 433 Brain states extracted from the combined group were more consistent than those extracted from

434 the constructed balanced group, likely due to differences in sample sizes. Broad states that
435 dominate at low model complexities (e.g., Cluster 1 in 2 to 5 state models) can fractionate into
436 multiple, lower-occupancy sub-states at higher model complexities, which explains their
437 apparent “disappearance” in some intermediate state solutions. This likely reflects state
438 fractionation, a fundamental property of hierarchical brain state organization (Li et al., 2023).

439 Moreover, each consensus cluster represents the core defining features of each brain state
440 pattern while accommodating natural variation within each cluster; individual states may exhibit
441 additional network activations beyond the consensus, reflecting context-specific or model-
442 specific nuances. For example, Cluster 2’s consensus includes auditory, control network B (Ctr-
443 B), default mode (DMN-A/B/C), and language networks, which appear in 78–100% of its
444 member states (Supplementary Figure 11). Some individual states within this cluster additionally
445 recruit control network A (Ctr-A), though this occurs in only 11% of cases and thus does not
446 define the cluster’s core identity.

447 The four most prominent clusters (Figure 2C), identified based on the total fractional
448 occupancy of their constituent brain states, displayed distinct spatial configurations. Cluster 1,
449 which had the highest total occupancy (sum=6.288), featured a representative brain state
450 involving the Auditory, DMN-A, DMN-B, and Language networks. Cluster 2 included a
451 representative brain state encompassing Auditory, Control-B, DMN-A, DMN-B, DMN-C, and
452 Language networks.

453 Clusters 3 and 4 displayed distinct context-specific characteristics. Cluster 3 primarily
454 comprised brain states derived from the affair context models and was largely absent in the
455 paranoia context models. Its representative state pattern included Control-A, Control-C, Dorsal
456 Attention-A, Dorsal Attention-B, Salience/Ventral Attention-A, Salience/Ventral Attention-B,
457 Visual-A, and Visual-B networks. In contrast, Cluster 4 was predominantly composed of brain
458 states from paranoia context models and was absent in the affair context models. The
459 representative pattern of this cluster involved Control-A, Salience/Ventral Attention-A, and
460 Salience/Ventral Attention-B networks. Details of the regions within each network can be found
461 in Table S1.

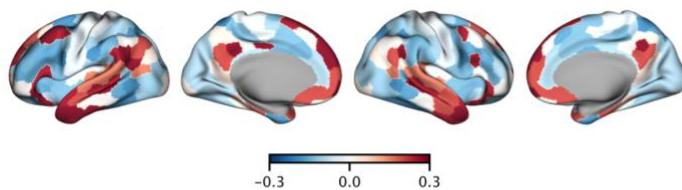
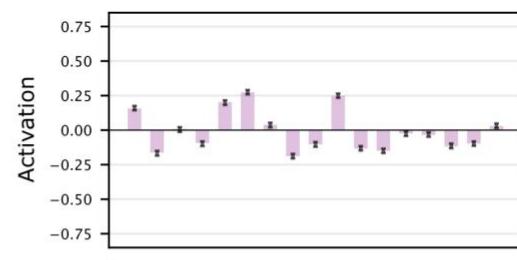
462 Spearman’s rank correlations revealed positive associations between Clusters 1 and 2
463 ($\rho = 0.583$) and between Clusters 3 and 4 ($\rho = 0.627$), while Clusters 1/2 versus Clusters 3/4
464 were negatively correlated. Full correlation results are shown in Supplementary Figure 8.

465 Furthermore, Supplementary Figure 9 illustrates these relationships in low-dimensional space
 466 (PCA, MDS, t-SNE), demonstrating clear within-cluster similarity, across-cluster separation, and
 467 closer proximity between Clusters 1 and 2.

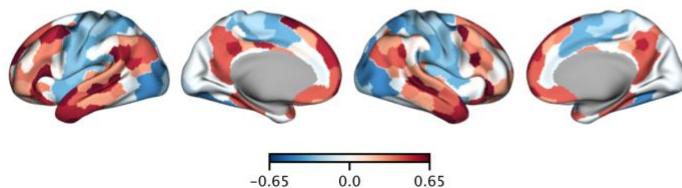
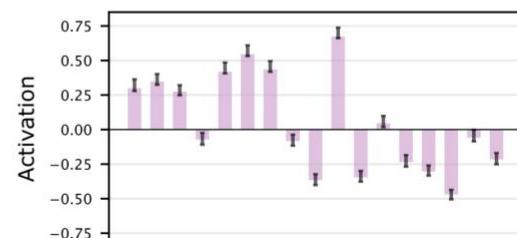
468 **Contextual modulation of brain state dynamics during story comprehension**

469 Representative brain states (Figure 3) for each identified cluster were selected based on
 470 their first occurrence in the combined group HMMs: Cluster 1 (first state from 2-states model),
 471 Cluster 2 (fifth state from 7-states model), Cluster 3 (second state from 2-states model), and
 472 Cluster 4 (third state from 6-states model). These states exemplify each cluster's core consensus
 473 pattern while potentially including additional network activations that occur in subsets of the
 474 cluster's constituent states (Supplementary Figures 10-13). Bayesian GLMMs were then
 475 estimated separately for each cluster to determine how narrative features influenced brain state
 476 dynamics and whether these effects were modulated by context.

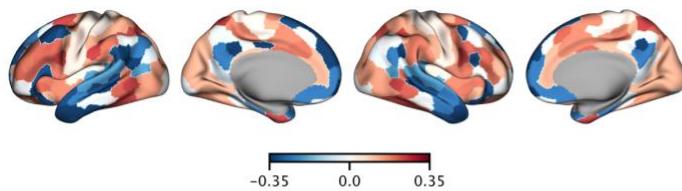
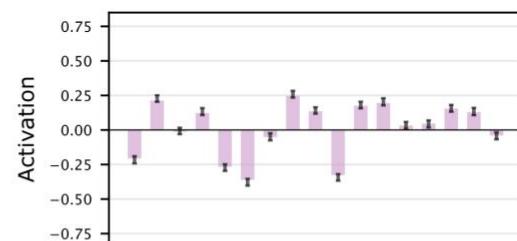
A cluster 1



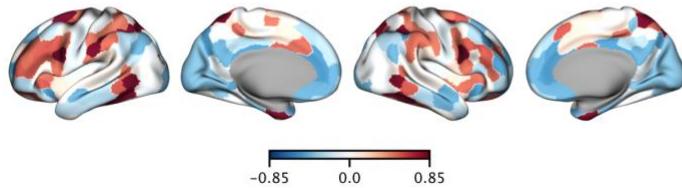
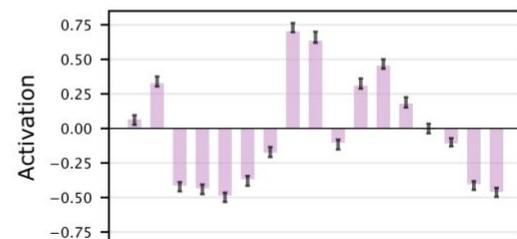
B cluster 2



C cluster 3



D cluster 4



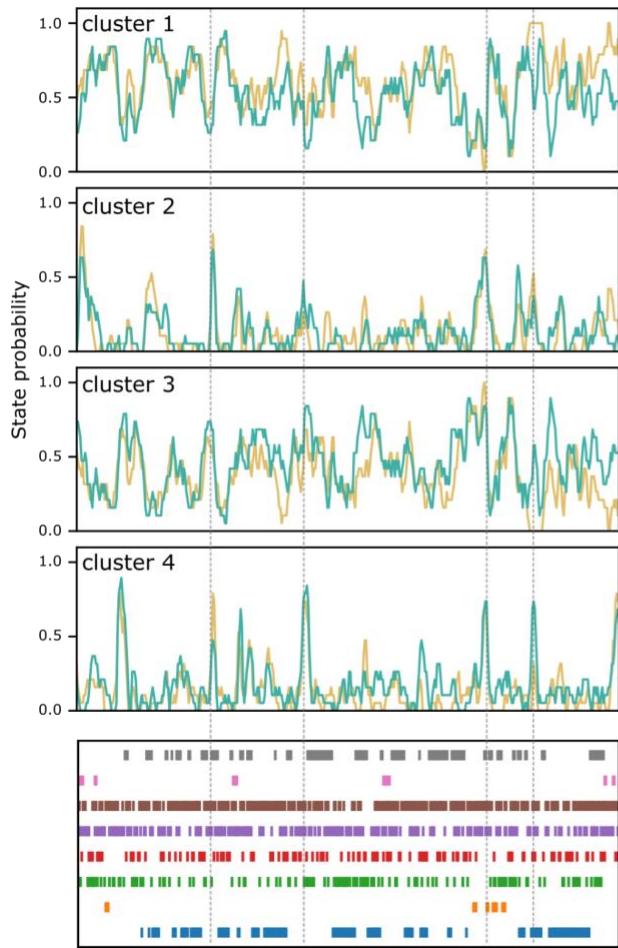
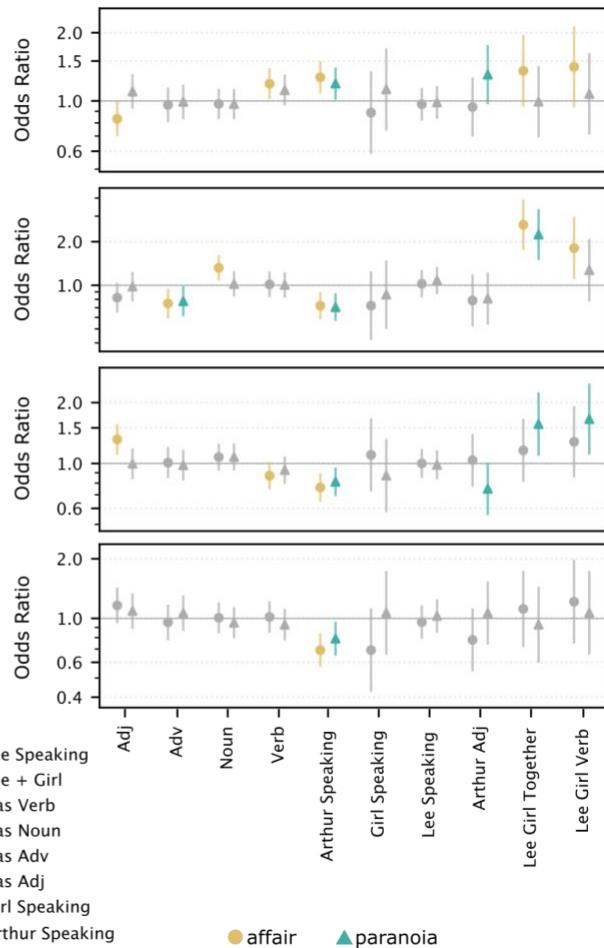
478 **Figure 3. Brain activation patterns of representative brain states from the top four clusters.**
 479 Each row shows a representative brain state from one of the top four clusters identified in the
 480 combined group HMMs. The left panel displays surface maps of average whole-brain activation,
 481 computed by averaging brain activity across all participants during timepoints when this state
 482 was active. Warm colors indicate above-average activation, and cool colors indicate below-
 483 average activation (z-scored). The right panel shows network-level activation profiles,
 484 summarizing average activation within canonical functional networks. Error bars represent the
 485 standard error across states belonging to the same cluster.

486

487 **Character-specific speech modulated shared brain states**

488 Representative brain states of clusters 1 and 2 consistently presented across narrative
 489 contexts but showed different sensitivity to specific narrative features (Figure 4). In Cluster 1,
 490 Arthur speaking reliably increased the odds of Cluster 1 activation (OR=1.232, CI= [1.097,
 491 1.383]), as did the presence of verbs (OR=1.153, CI= [1.032, 1.288]). Adjective usage showed
 492 reliable context differences (OR=0.87, CI= [0.769, 0.985]), indicating a stronger negative effect
 493 in the affair context (OR=0.833, P(Effect>0) =0.021) compared to paranoia (OR=1.1,
 494 P(Effect>0) =0.858). State occupancy was higher in the affair context (0.618) than in paranoia
 495 (0.538).

496 Cluster 2 similarly showed context interactions for Arthur-related adjectives (OR=0.797,
 497 CI= [0.594, 1.069]), with odds ratios indicating a slightly stronger negative effect in the affair
 498 context (OR=0.786, P(Effect>0) =0.128) than in paranoia (OR=0.809, P(Effect>0) =0.158). Lee
 499 and girl co-present (OR=2.42, CI=[1.817, 3.221]) and their actions (OR=1.515, CI=[1.066,
 500 2.153]) increased brain state activation odds substantially, whereas Arthur speaking (OR=0.715,
 501 CI=[0.612, 0.834]), and adverb usage (OR=0.762, CI=[0.644, 0.902]) were associated with
 502 decreases. State occupancy rate was similar in the affair context (0.121) than in paranoia (0.130).

A brain state and content correspondence**B** brain-content odds ratio

503

504 Figure 4. Correspondence between brain state dynamics and story content.

505 (A) Time series of cluster-wise brain state probabilities (gold: affair group; teal: paranoia group)
 506 for the top four HMM-derived clusters in the combined group, which was estimated using all
 507 participants. Because both groups share the same latent state definitions, these traces show how
 508 strongly each state is expressed over time in the shared model, rather than providing independent
 509 group-specific estimates. Accordingly, the curves in panel A are intended to illustrate the
 510 temporal structure of each state during the narrative; statistical group differences must be
 511 evaluated in panel B rather than inferred from visual differences in these time series. The bottom
 512 panel indicates annotated linguistic and narrative features aligned to the story timeline (x-axis
 513 represent time in TR unit), including character speech and presence, part-of-speech tags (verbs,
 514 nouns, adjectives, adverbs), and key character pairings (e.g., “Lee + Girl”). (B) Bayesian logistic
 515 regression analysis estimates the odds ratios (95% credible intervals) for the association between
 516 content features and brain state cluster expression. Each panel corresponds to one of the four

517 clusters. Points represent posterior means of the odds ratio for each content predictor; error bars
 518 show 95% credible intervals. Colored markers indicate predictors with context-dependent effects
 519 that survived FDR correction in the affair (gold) and paranoia (teal) groups. Gray markers
 520 indicate predictors without statistically reliable group differences ($FDR \geq 0.05$). Odds ratios
 521 above 1 suggest an increased likelihood of brain state expression when the corresponding feature
 522 is present. Conversely, odds ratios below 1 indicate a decreased likelihood of brain state
 523 expression, meaning that the feature is associated with reduced engagement of that state.

524 **Context-specific brain states reveal diverse character influences**

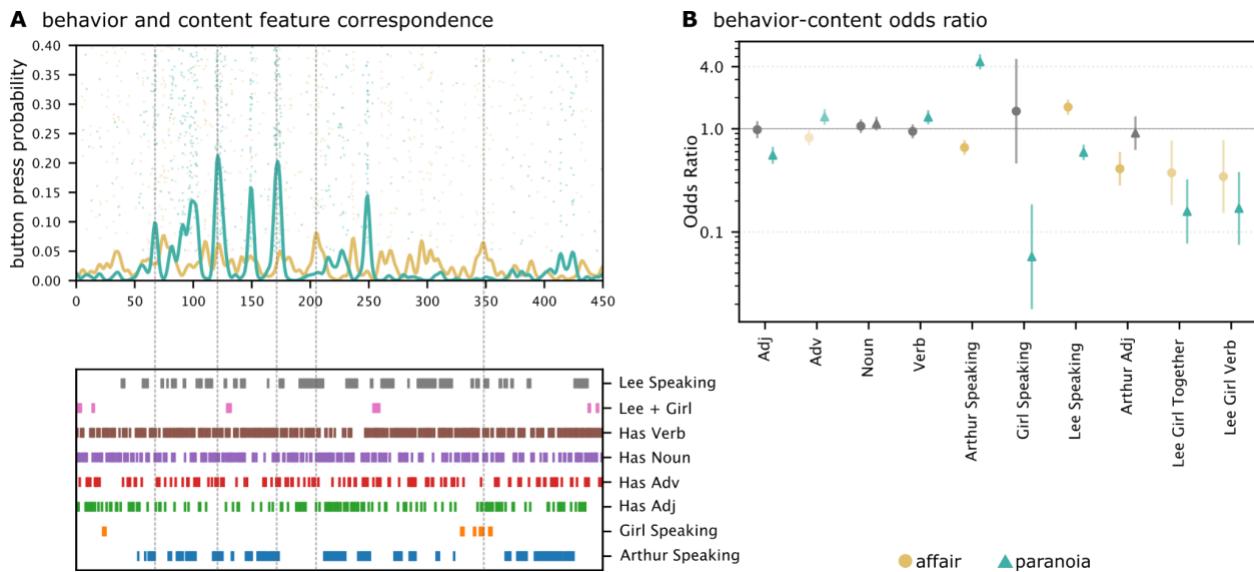
525 Representative brain states of clusters 3 and 4 exhibited distinct patterns that indicate
 526 context-specific processing mechanisms (Figure 4). Cluster 3 showed context-dependent
 527 modulation: Arthur speaking was associated with reduced odds of state activation ($OR=0.786$,
 528 $CI=[0.7, 0.882]$), while the combined presence (*lee_girl_together*, $OR=1.348$, $CI=[1.045, 1.739]$) increased activation
 529 of Lee and the girl with verbs (*lee_girl_verb*, $OR=1.456$, $CI=[1.094, 1.938]$) increased activation
 530 odds. Adjective usage increased the odds of Cluster 3 activation overall ($OR=1.149$, 95% CI
 531 $[1.016, 1.3]$), with odds ratios indicating a positive effect in the affair context ($OR=1.316$,
 532 $P(Effect>0) = 0.999$) but negligible effects in paranoia ($OR=0.997$, $P(Effect>0) = 0.486$). State
 533 occupancy was lower in the affair context (0.382) than paranoia (0.462).

534 Cluster 4 showed context interactions for Arthur speaking ($OR=0.936$, $CI= [0.814$,
 535 $1.076]$). Arthur speaking demonstrated a slightly stronger negative effect in the affair context
 536 ($OR=0.692$, $P(Effect>0) = 0$) compared to paranoia ($OR=0.79$, $P(Effect>0) = 0.009$). Overall state
 537 occupancy was slightly lower in the affair context (0.137) than paranoia (0.171).

538 Multiple comparison analyses with Bayesian False Discovery Rate (FDR) corrections
 539 confirmed that the odds ratios for adjective usage (Clusters 1 and 3), Arthur-related adjectives
 540 (Clusters 1 and 2), and Arthur speaking (Cluster 4) consistently differed from chance
 541 expectations ($FDR < 0.05$). These results provide credible evidence that narrative context
 542 strongly modulates the temporal dynamics of brain states, revealing distinct narrative feature
 543 influences across different contexts.

544 **Contextual modulation of behavioral responses during story comprehension**

545 Bayesian GLMMs showed that odds ratios for participants' button presses differed
 546 systematically across contexts, indicating contextual modulation of behavioral responses.



547

548 **Figure 5. Correspondence between behavioral responses and story content features.**

549 (A) Time series of button press probabilities from participants in the *affair* (gold) and *paranoia*
 550 (teal) groups, reflecting the likelihood of detecting context-consistent narrative information over
 551 time. Dots represent individual button presses; smoothed lines indicate group-averaged response
 552 probabilities. The lower panel shows annotated story content features (identical to those in
 553 Figure 4A), including character speech, co-occurrence, and linguistic categories. (B) Bayesian
 554 logistic regression assessing the relationship between content features and button press behavior.
 555 Posterior means of odds ratios ($\pm 95\%$ credible intervals) are plotted for each predictor. Gold and
 556 teal indicate predictors with context-dependent effects that survived FDR correction in the *affair*
 557 and *paranoia* groups, respectively. Gray indicates predictors without statistically reliable group
 558 differences (FDR ≥ 0.05). Odds ratios above 1 suggest an increased likelihood of brain state
 559 expression when the corresponding feature is present. Conversely, odds ratios below 1 indicate a
 560 decreased likelihood of brain state expression, meaning that the feature is associated with
 561 reduced engagement of that state.

562

563 **Context-dependent impact of character identity on behavioral responses**

564 Character-related narrative features showed strong overall influences on behavioral
 565 responses, with Arthur speaking ($OR=2.743, CI=[2.286, 3.291]$) and Lee speaking ($OR=1.801,$
 566 $CI=[1.508, 2.150]$) substantially increasing the probability of button presses. Critically, context
 567 strongly modulated these effects. Arthur speaking showed large context-dependent differences in
 568 odds (interaction $OR=0.334, CI=[0.279, 0.401]$), with substantially greater response likelihood

569 in the paranoia context (OR=8.205, P(Effect>0) =1.000) compared to minimal effects in the
 570 affair context (OR=0.917, P(Effect>0) =0.254). Similarly, Girl speaking was associated with
 571 higher odds in the affair context but lower odds in the paranoia context (interaction OR=2.864,
 572 CI=[1.189, 6.894]), positively influencing responses in the affair context (OR=1.559,
 573 P(Effect>0)=0.758) but strongly reducing responses in the paranoia context (OR=0.190,
 574 P(Effect>0)=0.004). Lee speaking also showed credible contextual modulation (interaction
 575 OR=0.813, CI= [0.681, 0.970]), with a stronger effect in the paranoia context (OR=2.216,
 576 P(Effect>0)>0.999) relative to the affair context (OR=1.463, P(Effect>0) =0.999).

577 **Context-specific effects of linguistic features**

578 Linguistic features displayed smaller credible context-dependent patterns in predicting
 579 behavioral responses. Noun usage increased the odds of button presses overall (OR=1.351, CI= [1.205, 1.515]), modulated by context (interaction OR=0.811, CI= [0.723, 0.909]). Nouns more
 580 strongly increased response probability in the paranoia context (OR=1.667, P(Effect>0)>0.999)
 581 than in the affair context (OR=1.095, P(Effect>0) =0.865). Similarly, adverb usage showed
 582 context-dependent modulation of odds (interaction OR=0.814, CI= [0.717, 0.924]), negatively
 583 influencing button presses in the affair context (OR=0.844, P(Effect>0) =0.032) but positively in
 584 paranoia (OR=1.275, P(Effect>0) =0.996). Verb usage had a modest positive main effect
 585 (OR=1.046, CI=[0.933, 1.172]) and credible context interaction (interaction OR=0.917,
 586 CI=[0.818, 1.027]), with stronger effects observed in paranoia (OR=1.141, P(Effect>0)=0.946)
 588 than in the affair context (OR=0.959, P(Effect>0)=0.303).

589 **Descriptive character features show contextual variation**

590 Arthur-related adjectives were associated with reduced odds of responses overall
 591 (OR=0.411, CI= [0.297, 0.570]), with credible contextual modulation (interaction OR=1.155,
 592 CI= [0.834, 1.599]). The negative effect was stronger in the affair context (OR=0.475,
 593 P(Effect>0) =0.001) compared to paranoia (OR=0.356, P(Effect>0) <0.001). The combined
 594 presence of Lee and girl characters negatively influenced responses (OR=0.445, CI= [0.168,
 595 1.175]), though this context modulation did not meet FDR criteria. The interaction of these
 596 characters with verbs showed no credible context-specific effects. Supplementary Materials 2.3
 597 confirms that the behavioral GLMM results replicate at 1-s resolution.

598

599 **Discussion**

600 Our study investigated how narrative context modulates brain state dynamics and
601 behavioral responses during story comprehension. We identified both shared and context-
602 specific brain states that spanned auditory, language, default mode, control, attention, and visual
603 networks. By modeling the relationships between stimulus features, context, and brain states, we
604 found credible evidence that context influences how narrative features, particularly speech or
605 references to specific characters, impact the temporal dynamics of these brain states. Independent
606 behavioral analyses revealed context-dependent differences in odds ratios for stimulus features,
607 indicating selective modulation of behavioral responses by context.

608 **Shared brain states suggest convergent processing during story listening**

609 Clusters 1 and 2 reflected DMN-dominant narrative-integration states that appeared
610 consistently across both context conditions, in line with our prediction that naturalistic story
611 comprehension would elicit stable integration-focused brain states. Both clusters showed strong
612 involvement of auditory and language networks, which support the processing of the unfolding
613 speech signal, as well as DMN-A and DMN-B regions, including the medial prefrontal cortex
614 (PFCm), posterior cingulate cortex (PCC), inferior parietal lobule (IPL), precuneus (pCun), and
615 temporal and temporopolar cortices. These DMN subsystems have been widely implicated in
616 long-timescale semantic integration, situation-model construction, and narrative coherence
617 (Hasson et al., 2018; Jackson et al., 2023; Raichle et al., 2001; Simony et al., 2016). Together,
618 these profiles suggest that Clusters 1 and 2 may capture a core processing mode through which
619 incoming linguistic information is incrementally incorporated into a coherent representation of
620 the evolving narrative.

621 Cluster 2 slightly differed from Cluster 1 by additionally recruiting regions within control
622 network-B, such as dorsolateral prefrontal cortex, inferior frontal gyrus, intraparietal sulcus, and
623 orbitofrontal cortex, as well as posterior DMN-C regions including the
624 retrosplenial/parahippocampal cortex and posterior precuneus. Control network-B is associated
625 with adaptive cognitive control, strategic monitoring, and attentional modulation (Cole et al.,
626 2014; Dworetzky et al., 2024), while DMN-C has been linked to contextual updating, mental
627 simulation, and scene construction (Ritchey & Cooper, 2020). These additional contributions
628 suggest that Cluster 2 may reflect a more demanding substate of narrative integration in which

629 listeners must reorganize their situation model, integrate newly informative plot elements, or
630 resolve referential ambiguity. The stronger activation amplitudes observed in Cluster 2 are
631 therefore consistent with theories proposing that the DMN comprises multiple specialized
632 subsystems that support both continuous integration (DMN-A/B) and event-level updating or
633 simulation (DMN-C), and that transitions into control-network engagement mark moments of
634 locally increased cognitive demand. In this view, Cluster 1 represents a dominant “baseline”
635 integration mode, whereas Cluster 2 reflects brief but intensive episodes of narrative updating
636 supported by coordinated engagement of control and higher-order DMN subsystems.

637 **Context-specific brain states index specialized processing demands**

638 Clusters 3 and 4 reflected MDN-dominant brain states that were differentially expressed
639 across the two context conditions. This pattern is consistent with longstanding accounts of the
640 multiple-demand system (MDN), which emphasize that interpretive effort dynamically recruits
641 distinct subcomponents of control, dorsal attention, and salience networks depending on task
642 demands (Duncan, 2010; Cole et al., 2013; Fedorenko et al., 2013; Uddin, 2015). Unlike the
643 DMN-based integration states (Clusters 1 and 2), these MDN states showed minimal
644 involvement of auditory, language, or core DMN regions, perhaps reflecting evaluative,
645 attentionally demanding, and context-sensitive modes of narrative processing.

646 Cluster 3, expressed predominantly in the affair group, engaged regions within control
647 network-C, including the posterior cingulate cortex, precuneus, lateral prefrontal cortex, medial
648 prefrontal cortex, and parahippocampal cortex, and precuneus, together with visual association
649 areas in Visual Networks A and B. Although mean activation levels in this state were relatively
650 low, the joint involvement of posterior midline control regions and visual cortices may implicate
651 a visual suggests a simulation-oriented or imagery-based mode of narrative evaluation in an
652 ambiguous narrative (Koide-Majima et al., 2024; Liu et al., 2022; Pearson, 2019). Cluster 4, in
653 contrast, appeared primarily in the paranoia group and exhibited a strong, canonical MDN
654 profile, with pronounced activation in control, dorsal attention, and salience networks (Duncan,
655 2010; Cole et al., 2013). These networks support executive vigilance, uncertainty monitoring,
656 and the detection of behaviorally relevant or potentially threatening cues (Hermans et al., 2014;
657 Uddin, 2015).

658 The correlation structure among clusters suggests that these four states can be understood
659 along a single functional axis ranging from context-general to context-sensitive modes of

660 processing. This pattern aligns with prior work showing that low-dimensional decompositions of
 661 brain activity reveal recurrent state families that organize around stable, large-scale network
 662 configurations (Bolt et al., 2022; Song et al., 2023). In our case, Clusters 1 and 2 correspond to
 663 DMN-dominant integration states that appeared across both groups, supporting continuous
 664 processes such as semantic integration, situation-model construction, and the incorporation of
 665 incoming narrative information. In contrast, Clusters 3 and 4 represent distinct MDN-related
 666 evaluative states whose expression diverged across the primed contexts. These findings support
 667 our hypothesis that naturalistic story comprehension involves both stable DMN-supported
 668 integration states and context-sensitive MDN-supported evaluative states, with the latter varying
 669 systematically according to the interpretive demands elicited by the priming manipulation.

670 **Narrative context modulates the influence of story features on brain state dynamics**

671 Our Bayesian GLMM analyses revealed that several narrative features showed credible,
 672 feature-specific differences in their associations with brain state activation across the two context
 673 conditions (Figure 4). Across all clusters, state probabilities were reliably modulated by narrative
 674 content, consistent with prior work demonstrating that linguistic and narrative cues exert
 675 moment-to-moment influences on neural processing during story comprehension (Jacoby &
 676 Fedorenko, 2020; Yarkoni et al., 2008). However, the specific features exerting these effects, and
 677 the magnitude and direction of those effects, varied across clusters and contexts.

678 For Clusters 1 and 2, which appeared across both narrative contexts, we observed modest
 679 but credible feature-specific interactions. In Cluster 1, Arthur speaking and verb usage increased
 680 activation probability, whereas adjective usage showed a negative context interaction, indicating
 681 a stronger decrease in the affair condition than in paranoia. Cluster 2 showed similar scattered
 682 interactions: Arthur-related adjectives exhibited weak context differences, while features related
 683 to the co-presence and actions of Lee and the girl strongly increased activation, and adverbs and
 684 Arthur speaking reduced it. These effects suggest that the DMN-dominant integration states
 685 remain broadly engaged across contexts but show subtle variations in their sensitivity to specific
 686 linguistic cues, consistent with accounts proposing that even stable integrative processes are
 687 modulated by moment-to-moment narrative content (Grall & Finn, 2022; Mar, 2011).

688 Clusters 3 and 4 exhibited somewhat clearer context-dependent patterns, with several
 689 content features influencing state activation differently across the two groups. In Cluster 3,
 690 Arthur speaking reduced activation odds, while co-occurrence and action features related to Lee

691 and the girl increased activation, and adjectives showed a positive effect primarily in the affair
692 condition. Cluster 4 showed credible context differences for Arthur speaking, with a stronger
693 negative effect in the affair group. These findings indicate that, for these clusters, context
694 influences how specific narrative cues shape the likelihood of entering a given state. However,
695 the effects remain modest in magnitude, typical for naturalistic fMRI datasets, and do not reflect
696 global shifts in state identity but rather differences in how particular narrative features drive
697 transient shifts into states with distinct functional profiles.

698 To assess whether these context-dependent patterns in the representative states could
699 arise from arbitrary inter-individual variability, we conducted permutation analyses comparing
700 observed group differences against a null distribution derived from 10,000 random participant
701 splits (Supplementary Figure 14). For Clusters 1, 3, and 4, observed differences in temporal
702 dynamics exceeded 95% of random splits (all $p < .05$), confirming that context-based grouping
703 produces systematically different state engagement than would be expected from chance. Cluster
704 2 did not show this effect ($p = .249$). Cluster 2 shares core DMN and language network
705 involvement with Cluster 1 but additionally engages Control-B and DMN-C regions. One
706 possibility is that this configuration supports narrative-tracking processes, such as updating
707 situational details or monitoring discourse coherence, that proceed similarly regardless of the
708 listener's interpretive frame. However, we cannot rule out that the finer model granularity from
709 which the representative Cluster 2 state derives (from the combined-group 7-state HMM)
710 contributes to reduced sensitivity for detecting group differences.

711 Taken together, these findings suggest a two-level architecture for context effects in
712 narrative comprehension. At the level of state engagement, context biases which network
713 configurations are preferentially recruited over time with Clusters 1, 3, and 4 showing temporal
714 dynamics that systematically differ by interpretive frame. At the level of feature sensitivity, both
715 groups show largely similar responses to narrative content, with selective divergence for features
716 requiring evaluative inference (particularly adjectives). This pattern indicates that context does
717 not dramatically or continuously restructure how the brain processes narrative content over time.
718 Rather, context operates as a modulatory bias: it shapes the probability of engaging particular
719 network configurations while much of the underlying content-processing architecture is
720 preserved. The features that do show context-dependent modulation, such as descriptive
721 language conveying character traits and evaluative information, are those for which prior

722 expectations should matter most, as their interpretation requires integration with the listener's
723 model of what happened or what the story "is about."

724 **Contextual modulation of behavioral responses highlights selective engagement with
725 narrative content**

726 Independent behavioral analyses reinforce our observation that narrative context
727 selectively modulates which stimulus features influence responses. For example, odds ratios
728 indicated that Arthur's speaking substantially increased the likelihood of button presses in the
729 paranoia context, but not in the affair context. This sensitivity to character speech aligns with
730 established evidence from narrative psychology and psycholinguistics, showing heightened
731 audience engagement with central narrative figures who guide interpretive frameworks and
732 ensure story coherence (Eekhof et al., 2023; M. C. Green & Appel, 2024; Hartung et al., 2017).
733 Likewise, Lee's speaking elicited strong context-dependent behavioral responses, reflecting
734 variations in perceived narrative relevance or emotional significance of different characters
735 across contexts.

736 Importantly, these character-driven effects in behavioral responses were stronger than
737 those observed in brain-state analyses, suggesting distinct cognitive mechanisms underlying
738 explicit versus implicit narrative processing. Explicit behavioral responses likely reflect
739 deliberate inferential and evaluative processes, such as active narrative coherence assessments,
740 conscious attribution of narrative significance, or explicit inference generation. These explicit
741 processes may differ from the processes evoked by passive story listening.

742 Linguistic features such as nouns and adverbs exhibited modest but reliable context-
743 dependent effects in behavioral analyses. These differences indicate that certain lexical
744 categories may be differentially weighted or processed depending on the narrative context
745 (Tilmantine et al., 2024), though the specific mechanisms, whether semantic, evaluative, or
746 otherwise, remain to be clarified. Descriptive adjectives showed more substantial negative
747 effects in the affair context. This pattern is consistent with prior psycholinguistic findings
748 suggesting that adjectives can modulate emotional tone and guide interpretive inferences,
749 particularly in context-sensitive narratives (Lei et al., 2023).

750 These findings demonstrate that prior contextual information systematically modulated
751 behavioral responses to narrative content, with the strongest effects observed for speech
752 attribution and more modest effects for specific linguistic features. The pattern suggests that

753 context does not uniformly enhance or suppress engagement with all content features but instead
754 modulates behavioral responses in a selective, feature-dependent manner.

755 A final consideration concerns the apparent misalignment between the fMRI and
756 behavioral findings: whereas the behavioral analyses showed strong and directionally consistent
757 context effects of linguistic and character features, the fMRI-derived brain state dynamics did not
758 closely follow these behavioral directions, even though they showed statistically reliable
759 modulation. This difference reflects the fact that the two paradigms, while based on the same
760 narrative stimulus, are fundamentally different tasks. The fMRI experiment involved passive
761 listening, followed by delayed comprehension questions, which captured implicit, distributed
762 interpretive processes without discrete response markers. By contrast, the behavioral experiment
763 required explicit evidence detection with overt button presses, producing stronger and more
764 directional effects as participants actively relied on linguistic cues for decision-making. Because
765 the tasks differ in both cognitive demands and data type (neural dynamics vs. behavioral reports),
766 a one-to-one alignment of results is not expected. The behavioral task would be expected to
767 engage decision- and motor-related systems not central to naturalistic comprehension. Taken
768 together, the behavioral findings extend the fMRI results by showing how linguistic features
769 guide explicit reasoning, while the brain-state analyses reveal implicit neural dynamics of
770 narrative comprehension.

771

772 **Limitations and future directions**

773 Our study provides valuable insights into how narrative context modulates brain state
774 dynamics and behavioral responses, yet several limitations point toward promising avenues for
775 future research. First, our HMMs were conducted at the network level, averaging signals within
776 the 17 predefined functional networks. This approach is well-motivated, given that large-scale
777 networks are reliable units of naturalistic fMRI analysis, but it necessarily reduces spatial
778 resolution. Finer-grained analyses (e.g., ROI-level or voxelwise HMMs; Vidaurre, Abeysuriya,
779 et al., 2018) could reveal more heterogeneous dynamics within networks and provide stronger
780 leverage for testing hypotheses about default mode (DMN) and multiple-demand (MDN)
781 subsystem involvement; note that the 17 pre-defined functional networks used here were derived
782 from resting-state parcellation and thus reflect intrinsic functional organization rather than task-
783 evoked subdivisions. At the same time, higher spatial granularity substantially increases model

784 dimensionality and can lead to unstable HMM estimation for naturalistic datasets of this length
785 (451 TRs). Thus, the network-level approach represents a pragmatic and theoretically grounded
786 compromise, with higher-resolution approaches remaining an important target for future work.

787 Another limitation is that standard HMMs assume a geometric distribution of dwell
788 times, which tends to bias results toward shorter state durations and more frequent switching
789 between states. Hidden semi-Markov models (HSMMs) address this limitation by modeling
790 dwell times explicitly, offering more accurate estimates of state persistence (Shappell et al.,
791 2019). Future work could also employ hierarchical nonparametric variants such as the
792 hierarchical Dirichlet process HMM (HDP-HMM), which infers both the number of states and
793 their duration properties directly from the data (Beal et al., 2002; Fox et al., 2011). These
794 approaches would provide a more flexible framework for examining naturalistic brain dynamics
795 beyond the assumptions of conventional HMMs.

796 A further methodological limitation concerns model initialization. In this study, state
797 means were initialized with random draws from a normal distribution rather than with more
798 structured approaches such as k-means clustering, which can sometimes improve stability for
799 high state counts. While our validation procedures (cross-validation, bootstrap uncertainty
800 estimation, clustering across models) minimize the risk that results depend on any single
801 initialization scheme, future work could compare alternative initialization strategies to assess
802 their impact on reproducibility and model fit.

803 In addition, aspects of our stimulus (e.g., its suspenseful narrative structure) and
804 experimental design (e.g., contextual priming) introduce features that are unique to this study.
805 Although the two broad categories of brain-state clusters we identified, DMN- and MDN-related,
806 are likely to generalize across similar naturalistic story-listening paradigms, the finer-grained
807 configuration of these states (e.g., relative activation amplitudes, involvement of sensory
808 networks, or the emergence of sub-states) may vary across studies. Such variability likely
809 reflects differences in narrative content, stimulus structure, and experimental design. Future work
810 would benefit from a large-scale mega-analysis across existing story-listening fMRI datasets to
811 characterize how DMN- and MDN-related brain states vary as a function of stimulus features
812 and study design.

813 Moreover, our neuroimaging and behavioral data were collected from separate participant
814 samples. Although both datasets independently revealed context-sensitive effects, collecting

815 brain and behavioral responses from the same individuals would allow for tighter linkage
816 between neural state dynamics and subjective narrative judgments, enabling more direct tests of
817 brain–behavior relationships (Xu et al., 2025). We also note that the dependent variables in the
818 brain and behavioral GLMMs differ: brain models use a binary indicator of state activation per
819 subject at each timepoint, whereas behavioral models reflect the proportion of participants in
820 each group who pressed a key at each moment. Because the scales and noise properties of these
821 measures differ, brain–behavior comparisons should be interpreted as convergent rather than
822 one-to-one correspondences. Furthermore, the binary nature of the brain dependent variable may
823 limit sensitivity to detect graded context-dependent modulations; continuous measures of state
824 expression could reveal subtler effects that discrete classification obscures. Future studies could
825 address this by acquiring brain and behavioral data in the same individuals or by using
826 hierarchical joint modeling with continuous state metrics.

827 While we used part-of-speech (PoS) labels to characterize contextual differences in
828 language input, these labels offer only a shallow approximation of meaning. PoS categories
829 reflect syntactic structure rather than semantic content, and future work should incorporate richer
830 linguistic features, such as word embeddings, semantic role labels, or discourse structure, to
831 better capture the narrative elements that drive brain dynamics.

832 Finally, using a single narrative stimulus may limit the generalizability of our findings to
833 other narrative forms or genres. Future studies examining diverse narrative types, varying in
834 emotional content, complexity, and modality, could test the breadth and boundaries of context
835 effects on brain dynamics and behavioral engagement.

836 Together, these extensions would refine our understanding of how context shapes neural
837 and behavioral responses to narrative and support more general models of naturalistic cognition.
838

839 Conclusion

840 This study provides converging neural and behavioral evidence that contextual framing
841 shapes how listeners process and interpret unfolding narrative information. Using brain-state
842 modeling, we identified recurrent states that were expressed across both groups and engaged
843 auditory, language, and default mode networks consistent with ongoing narrative integration,
844 alongside additional states whose temporal expression varied with contextual priming and
845 showed differentiated sensitivity to specific narrative features. These context-related differences

846 were modest in magnitude, as is typical for naturalistic fMRI data, but statistically credible and
847 aligned with feature-dependent distinctions observed in the behavioral task. The behavioral
848 findings similarly showed that character-related cues, particularly direct speech, influenced
849 participants' interpretive judgments in a context-dependent manner. Together, these results
850 suggest that narrative context shapes comprehension not only retrospectively but also through
851 subtle, moment-to-moment adjustments in how linguistic features influence large-scale brain
852 dynamics. By integrating state-based neural modeling with time-resolved behavioral measures,
853 this work provides an initial foundation for understanding how contextual framing interacts with
854 narrative structure to guide ongoing cognitive processing.

855

856 **Data and Code Availability**

857 The Python code used for our analysis and visualization is available at
858 <https://github.com/yibeichan/prettymouth>

859

860 **Author Contributions**

861 YC: Conceptualization, Methodology, Software, Formal analysis, Investigation, Data Curation,
862 Visualization, Writing - Original Draft, Project administration. ZZ: Conceptualization,
863 Visualization, Resources, Writing - Review & Editing. SN: Conceptualization, Resources,
864 Writing - Review & Editing, Supervision. GA: Conceptualization, Writing - Review & Editing,
865 Supervision. SG: Funding acquisition, Resources, Writing - Review & Editing, Supervision.

866

867 **Funding**

868 YC and SSG were partially supported by NIH P4 EB019936 and by the Lann and Chris Woehrle
869 Psychiatric Fund at the McGovern Institute for Brain Research at MIT.

870

871 **Acknowledgements**

872 We would like to thank William Menegas and the members of the Senseable Intelligence Group
873 for insightful discussions.

874

875 **Declaration of Competing Interest**

876 The authors declare that they have no known competing financial interests or personal
877 relationships that could have appeared to influence the work reported in this paper.

878

879 **Reference**

880 Alderson-Day, B., Moffatt, J., Bernini, M., Mitrenga, K., Yao, B., & Fernyhough, C. (2020).

881 Processing speech and thoughts during silent reading: Direct reference effects for speech
882 by fictional characters in voice-selective auditory cortex and a theory-of-mind network.

883 *Journal of Cognitive Neuroscience*, 32(9), 1637–1653.

884 https://doi.org/10.1162/jocn_a_01571

885 Baker, A. P., Brookes, M. J., Rezek, I. A., Smith, S. M., Behrens, T., Probert Smith, P. J., &
886 Woolrich, M. (2014). Fast transient networks in spontaneous human brain activity. *eLife*,
887 3, e01867. <https://doi.org/10.7554/eLife.01867>

888 Baldassano, C., Chen, J., Zadbood, A., Pillow, J. W., Hasson, U., & Norman, K. A. (2017).

889 Discovering event structure in continuous narrative perception and memory. *Neuron*,
890 95(3), 709-721.e5. <https://doi.org/10.1016/j.neuron.2017.06.041>

891 Baldassano, C., Hasson, U., & Norman, K. A. (2018). Representation of real-world event
892 schemas during narrative perception. *The Journal of Neuroscience: The Official Journal
893 of the Society for Neuroscience*, 38(45), 9689–9699.

894 <https://doi.org/10.1523/JNEUROSCI.0251-18.2018>

895 Barrett, L. F. (2022). Context reconsidered: Complex signal ensembles, relational meaning, and
896 population thinking in psychological science. *American Psychologist*, 77(8), 894–920.

897 <https://doi.org/10.1037/amp0001054>

898 Beal, M. J., Ghahramani, Z., & Rasmussen, C. E. (2002). The infinite hidden Markov model.

899 *Advances in Neural Information Processing Systems*, 14, 577–584.

900 Ben-Yakov, A., Honey, C. J., Lerner, Y., & Hasson, U. (2012). Loss of reliable temporal
901 structure in event-related averaging of naturalistic stimuli. *NeuroImage*, 63(1), 501–506.
902 <https://doi.org/10.1016/j.neuroimage.2012.07.008>

903 Bolt, T., Nomi, J. S., Bzdok, D., Salas, J. A., Chang, C., Thomas Yeo, B. T., ... & Keilholz, S. D.
904 (2022). A parsimonious description of global functional brain organization in three
905 spatiotemporal patterns. *Nature Neuroscience*, 25(8), 1093-1103.
906 <https://doi.org/10.1038/s41593-022-01118-1>

907 Botch, T. L., & Finn, E. S. (2024). Neural representations of concreteness and concrete concepts
908 are specific to the individual. *Journal of Neuroscience*, 44(45).
909 <https://doi.org/10.1523/JNEUROSCI.0288-24.2024>

910 Bransford, J. D., & Johnson, M. K. (1972). Contextual prerequisites for understanding: Some
911 investigations of comprehension and recall. *Journal of Verbal Learning and Verbal
912 Behavior*, 11(6), 717–726. [https://doi.org/10.1016/S0022-5371\(72\)80006-9](https://doi.org/10.1016/S0022-5371(72)80006-9)

913 Coderre, E. L., & Cohn, N. (2023). Individual differences in the neural dynamics of visual
914 narrative comprehension: The effects of proficiency and age of acquisition. *Psychonomic
915 Bulletin & Review*. <https://doi.org/10.3758/s13423-023-02334-x>

916 Cole, M. W., Bassett, D. S., Power, J. D., Braver, T. S., & Petersen, S. E. (2014). Intrinsic and
917 task-evoked network architectures of the human brain. *Neuron*, 83(1), 238–251.
918 <https://doi.org/10.1016/j.neuron.2014.05.014>

919 Cole, M. W., Reynolds, J. R., Power, J. D., Repovs, G., Anticevic, A., & Braver, T. S. (2013).
920 Multi-task connectivity reveals flexible hubs for adaptive task control. *Nature
921 Neuroscience*, 16(9), 1348–1355. <https://doi.org/10.1038/nn.3470>

922 de Bruin, D., van Baar, J. M., Rodríguez, P. L., & FeldmanHall, O. (2023). Shared neural

923 representations and temporal segmentation of political content predict ideological
924 similarity. *Science Advances*, 9(5), eabq5920. <https://doi.org/10.1126/sciadv.abq5920>

925 Dworetzky, A., Seitzman, B. A., Adeyemo, B., Nielsen, A. N., Hatoum, A. S., Smith, D. M.,
926 Nichols, T. E., Neta, M., Petersen, S. E., & Gratton, C. (2024). Two common and distinct
927 forms of variation in human functional brain networks. *Nature Neuroscience*, 27(6),
928 1187–1198. <https://doi.org/10.1038/s41593-024-01618-2>

929 Duncan, J. (2010). The multiple-demand (MD) system of the primate brain: mental programs for
930 intelligent behaviour. *Trends in cognitive sciences*, 14(4), 172-179.
931 <https://doi.org/10.1016/j.tics.2010.01.004>

932 Eekhof, L. S., Krieken, K. van, Sanders, J., & Willems, R. M. (2023). Engagement with narrative
933 characters: The role of social-cognitive abilities and linguistic viewpoint. *Discourse
934 Processes*. <https://www.tandfonline.com/doi/abs/10.1080/0163853X.2023.2206773>

935 Esteban, O., Markiewicz, C. J., Blair, R. W., Moodie, C. A., Isik, A. I., Erramuzpe, A., Kent, J.
936 D., Goncalves, M., DuPre, E., Snyder, M., Oya, H., Ghosh, S. S., Wright, J., Durnez, J.,
937 Poldrack, R. A., & Gorgolewski, K. J. (2019). fMRIPrep: A robust preprocessing pipeline
938 for functional MRI. *Nature Methods*, 16(1), Article 1. <https://doi.org/10.1038/s41592-018-0235-4>

940 Fedorenko, E., Duncan, J., & Kanwisher, N. (2013). Broad domain generality in focal regions of
941 frontal and parietal cortex. *Proceedings of the National Academy of Sciences*, 110(41),
942 16616-16621. <https://doi.org/10.1073/pnas.1315235110>

943 Fox, E. B., Sudderth, E. B., Jordan, M. I., & Willsky, A. S. (2011). A sticky HDP-HMM with
944 application to speaker diarization. *Annals of Applied Statistics*, 5(2A), 1020–1056.
945 <https://doi.org/10.1214/10-AOAS395>

946 Gordon, E. M., Laumann, T. O., Marek, S., Raut, R. V., Gratton, C., Newbold, D. J., ... &
947 Nelson, S. M. (2020). Default-mode network streams for coupling to language and
948 control systems. *Proceedings of the National Academy of Sciences*, 117(29), 17308-
949 17319. <https://doi.org/10.1073/pnas.2005238117>

950 Geerligs, L., Gözükara, D., Oetringer, D., Campbell, K. L., van Gerven, M., & Güçlü, U. (2022).
951 A partially nested cortical hierarchy of neural states underlies event segmentation in the
952 human brain. *eLife*, 11, e77430. <https://doi.org/10.7554/eLife.77430>

953 Gerrig, R. J. (1993). *Experiencing narrative worlds: On the psychological activities of reading*.
954 Routledge. <https://doi.org/10.4324/9780429500633>

955 Grall, C., & Finn, E. S. (2022). Leveraging the power of media to drive cognition: A media-
956 informed approach to naturalistic neuroscience. *Social Cognitive and Affective
957 Neuroscience*, nsac019. <https://doi.org/10.1093/scan/nsac019>

958 Green, M. C., & Appel, M. (2024). Chapter One - Narrative transportation: How stories shape
959 how we see ourselves and the world. In B. Gawronski (Ed.), *Advances in Experimental
960 Social Psychology* (Vol. 70, pp. 1–82). Academic Press.
961 <https://doi.org/10.1016/bs.aesp.2024.03.002>

962 Green, M. J., & Phillips, M. L. (2004). Social threat perception and the evolution of paranoia.
963 *Neuroscience & Biobehavioral Reviews*, 28(3), 333–342.
964 <https://doi.org/10.1016/j.neubiorev.2004.03.006>

965 Hartung, F., Withers, P., Hagoort, P., & Willems, R. M. (2017). When fiction is just as real as
966 fact: No differences in reading behavior between stories believed to be based on true or
967 fictional events. *Frontiers in Psychology*, 8. <https://doi.org/10.3389/fpsyg.2017.01618>

968 Hasson, U., Chen, J., & Honey, C. J. (2015). Hierarchical process memory: Memory as an

969 integral component of information processing. *Trends in Cognitive Sciences*, 19(6), 304–
970 313. <https://doi.org/10.1016/j.tics.2015.04.006>

971 Hasson, U., Egidi, G., Marelli, M., & Willems, R. M. (2018). Grounding the neurobiology of
972 language in first principles: The necessity of non-language-centric explanations for
973 language comprehension. *Cognition*, 180, 135–157.
974 <https://doi.org/10.1016/j.cognition.2018.06.018>

975 Hermans, E. J., Henckens, M. J. A. G., Joëls, M., & Fernández, G. (2014). Dynamic adaptation
976 of large-scale brain networks in response to acute stressors. *Trends in Neurosciences*,
977 37(6), 304–314. <https://doi.org/10.1016/j.tins.2014.03.006>

978 Jackson, R. L., Humphreys, G. F., Rice, G. E., Binney, R. J., & Lambon Ralph, M. A. (2023). A
979 network-level test of the role of the co-activated default mode network in episodic recall
980 and social cognition. *Cortex: A Journal Devoted to the Study of the Nervous System and*
981 *Behavior*, 165, 141–159. <https://doi.org/10.1016/j.cortex.2022.12.016>

982 Jacobs, A. M., & Willems, R. M. (2018). The fictive brain: Neurocognitive correlates of
983 engagement in literature. *Review of General Psychology*, 22(2), 147–160.
984 <https://doi.org/10.1037/gpr0000106>

985 Jacoby, N., & Fedorenko, E. (2020). Discourse-level comprehension engages medial frontal
986 Theory of Mind brain regions even for expository texts. *Language, Cognition and*
987 *Neuroscience*, 35(6), 780–796. <https://doi.org/10.1080/23273798.2018.1525494>

988 Johns, C. L., Jahn, A. A., Jones, H. R., Kush, D., Molfese, P. J., Van Dyke, J. A., Magnuson, J.
989 S., Tabor, W., Mencl, W. E., Shankweiler, D. P., & Braze, D. (2018). Individual
990 differences in decoding skill, print exposure, and cortical structure in young adults.
991 *Language, Cognition and Neuroscience*, 33(10), 1275–1295.

992 <https://doi.org/10.1080/23273798.2018.1476727>

993 Koide-Majima, N., Nishimoto, S., & Majima, K. (2024). Mental image reconstruction from
994 human brain activity: Neural decoding of mental imagery via deep neural network-based
995 Bayesian estimation. *Neural Networks*, 170, 349–363.

996 <https://doi.org/10.1016/j.neunet.2023.11.024>

997 Kong, R., Yang, Q., Gordon, E., Xue, A., Yan, X., Orban, C., Zuo, X.-N., Spreng, N., Ge, T.,
998 Holmes, A., Eickhoff, S., & Yeo, B. T. T. (2021). Individual-specific areal-level
999 parcellations improve functional connectivity prediction of behavior. *Cerebral Cortex*,
1000 31(10), 4477–4500. <https://doi.org/10.1093/cercor/bhab101>

1001 Kuhn, H. W. (1955). The Hungarian method for the assignment problem. *Naval Research
1002 Logistics Quarterly*, 2(1–2), 83–97. <https://doi.org/10.1002/nav.3800020109>

1003 Lahnakoski, J. M., Glerean, E., Jääskeläinen, I. P., Hyönä, J., Hari, R., Sams, M., &
1004 Nummenmaa, L. (2014). Synchronous brain activity across individuals underlies shared
1005 psychological perspectives. *NeuroImage*, 100, 316–324.

1006 <https://doi.org/10.1016/j.neuroimage.2014.06.022>

1007 Lei, A., Willems ,Roel M., & and Eekhof, L. S. (2023). Emotions, fast and slow: Processing of
1008 emotion words is affected by individual differences in need for affect and narrative
1009 absorption. *Cognition and Emotion*, 37(5), 997–1005.

1010 <https://doi.org/10.1080/02699931.2023.2216445>

1011 Lerner, Y., Honey, C. J., Silbert, L. J., & Hasson, U. (2011). Topographic mapping of a
1012 hierarchy of temporal receptive windows using a narrated story. *Journal of Neuroscience*,
1013 31(8), 2906–2915. <https://doi.org/10.1523/JNEUROSCI.3684-10.2011>

1014 Li, A., Liu, H., Lei, X., He, Y., Wu, Q., Yan, Y., ... & Liu, B. (2023). Hierarchical fluctuation

1015 shapes a dynamic flow linked to states of consciousness. *Nature communications*, 14(1),
1016 3238. <https://doi.org/10.1038/s41467-023-38972-x>

1017 Liu, J., Spagna, A., & Bartolomeo, P. (2022). Hemispheric asymmetries in visual mental
1018 imagery. *Brain Structure & Function*, 227(2), 697–708. <https://doi.org/10.1007/s00429-021-02277-w>

1020 Liu, L., Jiang, J., Li, H., & Ding, G. (2025). Tripartite organization of brain state dynamics
1021 underlying spoken narrative comprehension. *eLife*, 13.
1022 <https://doi.org/10.7554/eLife.99997.2>

1023 Lynch, C. J., Elbau, I. G., Ng, T., Ayaz, A., Zhu, S., Wolk, D., Manfredi, N., Johnson, M.,
1024 Chang, M., Chou, J., Summerville, I., Ho, C., Lueckel, M., Bukhari, H., Buchanan, D.,
1025 Victoria, L. W., Solomonov, N., Goldwaser, E., Moia, S., ... Liston, C. (2024).
1026 Frontostriatal salience network expansion in individuals in depression. *Nature*,
1027 633(8030), 624–633. <https://doi.org/10.1038/s41586-024-07805-2>

1028 Mar, R. A. (2011). The neural bases of social cognition and story comprehension. *Annual Review
1029 of Psychology*, 62(Volume 62, 2011), 103–134. <https://doi.org/10.1146/annurev-psych-120709-145406>

1031 Mar, R. A., & Oatley, K. (2008). The function of fiction is the abstraction and simulation of
1032 social experience. *Perspectives on Psychological Science*, 3(3), 173–192.
1033 <https://doi.org/10.1111/j.1745-6924.2008.00073.x>

1034 McIntosh, A. R. (2004). Contexts and catalysts. *Neuroinformatics*, 2(2), 175–181.
1035 <https://doi.org/10.1385/NI:2:2:175>

1036 Meer, J. N. van der, Breakspear, M., Chang, L. J., Sonkusare, S., & Cocchi, L. (2020). Movie
1037 viewing elicits rich and reliable brain state dynamics. *Nature Communications*, 11(1),

1038 Article 1. <https://doi.org/10.1038/s41467-020-18717-w>

1039 Nastase, S. A., Liu, Y.-F., Hillman, H., Zadbood, A., Hasenfratz, L., Keshavarzian, N., Chen, J.,
1040 Honey, C. J., Yeshurun, Y., Regev, M., Nguyen, M., Chang, C. H. C., Baldassano, C.,
1041 Lositsky, O., Simony, E., Chow, M. A., Leong, Y. C., Brooks, P. P., Micciche, E., ...
1042 Hasson, U. (2021). The “Narratives” fMRI dataset for evaluating models of naturalistic
1043 language comprehension. *Scientific Data*, 8(1), 250. <https://doi.org/10/gnpts8>

1044 Nguyen, M., Vanderwal, T., & Hasson, U. (2019). Shared understanding of narratives is
1045 correlated with shared neural responses. *NeuroImage*, 184, 161–170.
1046 <https://doi.org/10.1016/j.neuroimage.2018.09.010>

1047 Nieuwland, M. S., & Van Berkum, J. J. A. (2006). When peanuts fall in love: N400 evidence for
1048 the power of discourse. *Journal of Cognitive Neuroscience*, 18(7), 1098–1111.
1049 <https://doi.org/10.1162/jocn.2006.18.7.1098>

1050 Nijhof, A. D., & Willems, R. M. (2015). Simulating fiction: Individual differences in literature
1051 comprehension revealed with fMRI. *PLOS ONE*, 10(2), e0116492.
1052 <https://doi.org/10.1371/journal.pone.0116492>

1053 Pearson, J. (2019). The human imagination: The cognitive neuroscience of visual mental
1054 imagery. *Nature Reviews Neuroscience*, 20(10), 624–634.
1055 <https://doi.org/10.1038/s41583-019-0202-9>

1056 Quinn, A. J., Vidaurre, D., Abeysuriya, R., Becker, R., Nobre, A. C., & Woolrich, M. W. (2018).
1057 Task-evoked dynamic network analysis through hidden markov modeling. *Frontiers in
1058 Neuroscience*, 12, 603. <https://doi.org/10.3389/fnins.2018.00603>

1059 Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G.
1060 L. (2001). A default mode of brain function. *Proceedings of the National Academy of*

1061 *Sciences*, 98(2), 676–682. <https://doi.org/10.1073/pnas.98.2.676>

1062 Ritchey, M., & Cooper, R. A. (2020). Deconstructing the posterior medial episodic network.

1063 *Trends in Cognitive Sciences*, 24(6), 451–465. <https://doi.org/10.1016/j.tics.2020.03.006>

1064 Sap, M., Jafarpour, A., Choi, Y., Smith, N. A., Pennebaker, J. W., & Horvitz, E. (2022).

1065 Quantifying the narrative flow of imagined versus autobiographical stories. *Proceedings*
1066 *of the National Academy of Sciences*, 119(45), e2211715119.

1067 <https://doi.org/10.1073/pnas.2211715119>

1068 Sava-Segal, C., Grall, C., & Finn, E. S. (2025). *Narrative ‘twist’ shifts within-individual neural*
1069 *representations of dissociable story features* (p. 2025.01.13.632631). bioRxiv.

1070 <https://doi.org/10.1101/2025.01.13.632631>

1071 Schaefer, A., Kong, R., Gordon, E. M., Laumann, T. O., Zuo, X.-N., Holmes, A. J., Eickhoff, S.

1072 B., & Yeo, B. T. T. (2018). Local-global parcellation of the human cerebral cortex from

1073 intrinsic functional connectivity MRI. *Cerebral Cortex*, 28(9), 3095–3114.

1074 <https://doi.org/10.1093/cercor/bhx179>

1075 Shappell, H. M., Caffo, B. S., Pekar, J. J., & Lindquist, M. A. (2019). Improved state change

1076 estimation in dynamic functional connectivity using hidden semi-Markov models.

1077 *NeuroImage*, 191, 243–257. <https://doi.org/10.1016/j.neuroimage.2019.02.013>

1078 Shine, J. M., Breakspear, M., Bell, P. T., Ehgoetz Martens, K. A., Shine, R., Koyejo, O., Sporns,

1079 O., & Poldrack, R. A. (2019). Human cognition involves the dynamic integration of

1080 neural activity and neuromodulatory systems. *Nature Neuroscience*, 22(2), 289–296.

1081 <https://doi.org/10.1038/s41593-018-0312-0>

1082 Simony, E., Honey, C. J., Chen, J., Lositsky, O., Yeshurun, Y., Wiesel, A., & Hasson, U. (2016).

1083 Dynamic reconfiguration of the default mode network during narrative comprehension.

1084 *Nature Communications*, 7(1), 12141. <https://doi.org/10.1038/ncomms12141>

1085 Song, H., Park, B., Park, H., & Shim, W. M. (2021). Cognitive and neural state dynamics of
1086 narrative comprehension. *Journal of Neuroscience*, 41(43), 8972–8990.
1087 <https://doi.org/10.1523/JNEUROSCI.0037-21.2021>

1088 Song, H., Shim, W. M., & Rosenberg, M. D. (2023). Large-scale neural dynamics in a shared
1089 low-dimensional state space reflect cognitive and attentional dynamics. *eLife*, 12, e85487.
1090 <https://doi.org/10.7554/eLife.85487>

1091 Taghia, J., Cai, W., Ryali, S., Kochalka, J., Nicholas, J., Chen, T., & Menon, V. (2018).
1092 Uncovering hidden brain state dynamics that regulate performance and decision-making
1093 during cognition. *Nature Communications*, 9(1), 2505. <https://doi.org/10.1038/s41467-018-04723-6>

1095 Tilmantine, M., Lüdtke, J., & Jacobs, A. M. (2024). Predicting subjective ratings of affect and
1096 comprehensibility with text features: A reader response study of narrative poetry.
1097 *Frontiers in Psychology*, 15. <https://doi.org/10.3389/fpsyg.2024.1431764>

1098 Uddin, L. Q. (2015). Salience processing and insular cortical function and dysfunction. *Nature
1099 Reviews Neuroscience*, 16(1), 55–61. <https://doi.org/10.1038/nrn3857>

1100 van Kesteren, M. T. R., Beul, S. F., Takashima, A., Henson, R. N., Ruiter, D. J., & Fernández, G.
1101 (2013). Differential roles for medial prefrontal and medial temporal cortices in schema-
1102 dependent encoding: From congruent to incongruent. *Neuropsychologia*, 51(12), 2352–
1103 2359. <https://doi.org/10.1016/j.neuropsychologia.2013.05.027>

1104 Vidaurre, D., Abeysuriya, R., Becker, R., Quinn, A. J., Alfaro-Almagro, F., Smith, S. M., &
1105 Woolrich, M. W. (2018). Discovering dynamic brain networks from big data in rest and
1106 task. *Neuroimage*, 180(Pt B), 646–656. <https://doi.org/10.1016/j.neuroimage.2017.06.077>

1107 Vidaurre, D., Hunt, L. T., Quinn, A. J., Hunt, B. A. E., Brookes, M. J., Nobre, A. C., &
1108 Woolrich, M. W. (2018). Spontaneous cortical activity transiently organises into
1109 frequency specific phase-coupling networks. *Nature Communications*, 9(1), 2987.
1110 <https://doi.org/10.1038/s41467-018-05316-z>

1111 Vidaurre, D., Smith, S. M., & Woolrich, M. W. (2017). Brain network dynamics are
1112 hierarchically organized in time. *Proceedings of the National Academy of Sciences*,
1113 114(48), 12827–12832. <https://doi.org/10.1073/pnas.1705120114>

1114 Willems, R. M., Nastase, S. A., & Milivojevic, B. (2020). Narratives for neuroscience. *Trends in
1115 Neurosciences*, 43(5), 271–273. <https://doi.org/10.1016/j.tins.2020.03.003>

1116 Xu, T., Kiar, G., Zuo, X.-N., Vogelstein, J. T., & Milham, M. P. (2025). Challenges in measuring
1117 individual differences of brain function. *Imaging Neuroscience*, 3, imag_a_00430.
1118 https://doi.org/10.1162/imag_a_00430

1119 Yang, E., Milisav, F., Kopal, J., Holmes, A. J., Mitsis, G. D., Misic, B., Finn, E. S., & Bzdok, D.
1120 (2023). The default network dominates neural responses to evolving movie stories.
1121 *Nature Communications*, 14(1), 4197. <https://doi.org/10.1038/s41467-023-39862-y>

1122 Yang, X., Lin, N., & Wang, L. (2023). Situation updating during discourse comprehension
1123 recruits right posterior portion of the multiple-demand network. *Human Brain Mapping*,
1124 44(6), 2129-2141. <https://doi.org/10.1002/hbm.26198>

1125 Yarkoni, T., Speer, N. K., Balota, D. A., McAvoy, M. P., & Zacks, J. M. (2008). Pictures of a
1126 thousand words: Investigating the neural mechanisms of reading with extremely rapid
1127 event-related fMRI. *NeuroImage*, 42(2), 973–987.
1128 <https://doi.org/10.1016/j.neuroimage.2008.04.258>

1129 Yeshurun, Y., Nguyen, M., & Hasson, U. (2021). The default mode network: Where the

1130 idiosyncratic self meets the shared social world. *Nature Reviews Neuroscience*, 22(3),
1131 181–192. <https://doi.org/10.1038/s41583-020-00420-w>

1132 Yeshurun, Y., Swanson, S., Simony, E., Chen, J., Lazaridi, C., Honey, C. J., & Hasson, U.
1133 (2017). Same story, different story: The neural representation of interpretive frameworks.
1134 *Psychological Science*, 28(3), 307–319. <https://doi.org/10.1177/0956797616682029>

1135 Zhao, C., Jarecka, D., Covitz, S., Chen, Y., Eickhoff, S. B., Fair, D. A., Franco, A. R.,
1136 Halchenko, Y. O., Hendrickson, T. J., Hoffstaedter, F., Houghton, A., Kiar, G.,
1137 Macdonald, A., Mehta, K., Milham, M. P., Salo, T., Hanke, M., Ghosh, S. S., Cieslak,
1138 M., & Satterthwaite, T. D. (2024). A reproducible and generalizable software workflow
1139 for analysis of large-scale neuroimaging data collections using BIDS Apps. *Imaging*
1140 *Neuroscience*, 2, 1–19. https://doi.org/10.1162/imag_a_00074

1141 Zwaan, R. A., & Radvansky, G. A. (1998). Situation models in language comprehension and
1142 memory. *Psychological Bulletin*, 123(2), 162–185. <https://doi.org/10.1037/0033-2909.123.2.162>