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Abstract 10 

Narrative comprehension is inherently context-sensitive, yet the brain and cognitive 11 

mechanisms by which brief contextual priming shapes story interpretation remain unclear. Using 12 

hidden Markov modeling (HMM) of fMRI data, we identified dynamic brain states as 13 

participants listened to an ambiguous spoken story under two distinct narrative contexts (affair 14 

vs. paranoia). We identified recurrent states involving auditory, language, and default mode 15 

network (DMN) regions that were expressed across both groups, as well as additional states 16 

characterized by recruitment of multiple-demand network (MDN) systems, including control, 17 

dorsal attention, and salience networks. Bayesian mixed-effects modeling revealed that 18 

contextual framing modulated how specific linguistic and character-related features influenced 19 

the probability of occupying these states. Complementary behavioral data showed parallel 20 

context-sensitive modulation of participants’ moment-to-moment interpretive judgments. 21 

Together, these findings suggest that contextual priming influences narrative comprehension 22 

through subtle, feature-dependent adjustments in the engagement of DMN- and MDN-related 23 

brain states during naturalistic story listening. 24 
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 28 

Introduction 29 

Narrative comprehension involves complex interactions among prior knowledge, 30 

immediate contextual expectations, and the content (Botch & Finn, 2024; Mar & Oatley, 2008; 31 
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Nastase et al., 2021; Willems et al., 2020). Recent neuroimaging research demonstrates 32 

significant variability in how individuals process identical narrative stimuli, primarily driven by 33 

stable personal traits such as empathy, political beliefs, and cognitive abilities. This variability 34 

results in distinct patterns of brain activity and synchronization (Coderre & Cohn, 2023; de Bruin 35 

et al., 2023; Johns et al., 2018; Nijhof & Willems, 2015). In addition to these stable individual 36 

differences, transient manipulations of expectations or interpretation profoundly impact how 37 

narrative content is processed, highlighting the brain's sensitivity to context (Yeshurun et al., 38 

2017). 39 

Research in psychology and linguistics highlights the crucial role of context in 40 

understanding narratives. Contextual cues, such as background knowledge or primed 41 

information, help people construct coherent mental representations, improve comprehension, and 42 

enhance recall of narrative details (Bransford & Johnson, 1972; van Kesteren et al., 2013; Zwaan 43 

& Radvansky, 1998). These longer narratives allow context to accumulate gradually, shaping 44 

interpretation as the story progresses and enabling the construction of shared mental models 45 

across listeners. 46 

Neuroimaging studies have shown that naturalistic narratives (e.g., audiostories or 47 

movies), which unfold over time, recruit default mode network regions that are typically less 48 

engaged by highly controlled lab stimuli that are shorter and decontextualized (Baldassano et al., 49 

2017; Ben-Yakov et al., 2012; Geerligs et al., 2022; Lerner et al., 2011; Yeshurun et al., 2021). 50 

Recent theoretical work proposes that the DMN supports the construction and maintenance of 51 

mental models more generally, summarizing high-dimensional experiences into lower-52 

dimensional, situation-level representations (Barnett & Bellana, 2025). Converging network-53 

level evidence suggests that externally presented narratives are processed hierarchically along 54 

the cortical gradient, from primary sensory cortices (e.g., auditory) to the language network and 55 

ultimately to the DMN (Gordon et al., 2020). Through this hierarchical progression, auditory, 56 

language, and DMN regions collectively support the integration of incoming speech into a 57 

coherent situation model, forming a dominant processing mode that sustains narrative 58 

comprehension over extended timescales. 59 

When individuals receive similar contextual information, whether through common prior 60 

knowledge or priming, their cognitive and emotional responses tend to align, producing 61 

synchronized activity across brains (de Bruin et al., 2023; Lahnakoski et al., 2014; Nguyen et al., 62 
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2019). Conversely, when people are primed differently or bring distinct prior experiences to the 63 

same narrative, they may interpret it in diverging ways, resulting in idiosyncratic patterns of 64 

brain activity (Jacoby & Fedorenko, 2020; Yeshurun et al., 2017). These interpretive processes 65 

rely on integrating incoming information with existing mental models and are thought to emerge 66 

from coordinated activity across multiple large-scale brain networks, rather than being localized 67 

to any single region (Barrett, 2022; McIntosh, 2004; Song et al., 2023).  68 

These processes often require updating mental models in response to shifts in narrative 69 

content, which increases cognitive demands on the system (Yang et al., 2023). Such effortful 70 

updating and ambiguity resolution reliably recruit the multiple-demand network (MDN), which 71 

involves a set of frontoparietal, dorsal attention, and salience networks engaged by a wide range 72 

of cognitively demanding tasks (Cole et al., 2013; Duncan, 2010; Hermans et al., 2014; Uddin, 73 

2015). During narrative comprehension, these MDN components support functions such as 74 

maintaining or revising interpretive hypotheses, reorienting attention to salient cues, detecting 75 

conflict between contextual expectations and incoming information, and guiding top-down 76 

control over narrative interpretation. 77 

Narrative comprehension is therefore not a unitary process but a dynamic interplay 78 

between multiple neural systems. Unlike traditional laboratory tasks that isolate a single 79 

function, naturalistic stories require listeners to continually shift between perceiving speech, 80 

integrating semantic information, retrieving relevant knowledge, monitoring contextual cues, and 81 

making inferences about characters and events. These shifting demands naturally recruit different 82 

large-scale networks at different times, including transitions between DMN-dominated 83 

integrative processing and MDN-dominated evaluative or attention-driven processing. 84 

Contextual priming can bias which of these processing modes is engaged at particular moments, 85 

yet the mechanisms through which such external framing shapes these evolving neural patterns 86 

remain poorly understood. 87 

In this study, we examine how the integration of narrative input with initial contextual 88 

priming is reflected in dynamic patterns of brain activity, using the concept of “brain states.” 89 

Brain states refer to recurring patterns of coordinated activity across distributed brain regions 90 

(Liu et al., 2025; Song et al., 2021), analogous to distinct musical motifs formed by different 91 

instruments in an orchestra. Because naturalistic narratives engage different functional systems at 92 

different moments, a brain-state framework allows us to capture both the states themselves and 93 
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the transitions between them, providing a window into how the brain alternates between 94 

competing or complementary processing modes over time (Shine et al., 2019; Vidaurre et al., 95 

2017). By identifying and characterizing these recurrent states, we can assess how contextual 96 

framing influences not only which large-scale networks are engaged, but also how the brain 97 

traverses between integrative DMN-related processing and more effortful MDN-related 98 

evaluative modes as the story unfolds.  99 

Another critical gap remains in understanding how contextual priming interacts with 100 

specific narrative features, such as character identity and other linguistic structures. During story 101 

listening, character identity is often conveyed and reinforced through character speech, 102 

especially when direct quotations are attributed to particular speakers. These attributions 103 

fundamentally shape comprehension by guiding attention, emotional engagement, and social 104 

inference (Gerrig, 1993; Jacoby & Fedorenko, 2020; Mar & Oatley, 2008). Psycholinguistic 105 

evidence consistently underscores the central role of character speech in maintaining narrative 106 

coherence, supporting mental simulation, and enabling theory-of-mind reasoning (Nieuwland & 107 

Van Berkum, 2006; Zwaan & Radvansky, 1998). Thus, character speech serves as a theoretically 108 

meaningful and empirically tractable feature for investigating how contextual priming influences 109 

narrative processing. 110 

To investigate how narrative context shapes brain state dynamics during story 111 

comprehension, we used a naturalistic fMRI paradigm in which two participant groups listened 112 

to the same story but were primed differently beforehand (Yeshurun et al., 2017). We applied 113 

hidden Markov models (HMMs) to identify recurrent brain states, defined as temporally 114 

evolving patterns of network-level activity, across the full duration of story listening (Quinn et 115 

al., 2018; Shine et al., 2019; Taghia et al., 2018; Vidaurre et al., 2017). Based on work 116 

demonstrating that naturalistic narratives engage both DMN-supported semantic integration and 117 

MDN-supported evaluative or attention-driven processing, we expect that narrative 118 

comprehension would elicit at least two broad classes of brain states: (i) integration states 119 

reflecting coordinated activity among auditory, language, and default mode networks, and (ii) 120 

evaluative states involving control, dorsal attention, and salience networks that support 121 

ambiguity resolution and situation updating. Building on prior work showing brain sensitivity to 122 

character-level features (Alderson-Day et al., 2020; Jacoby & Fedorenko, 2020; Yarkoni et al., 123 

2008), we further predicted that brain state dynamics would differ based on speaker identity.  124 
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We added a complementary behavioral experiment to better understand how primed 125 

context influences moment-to-moment interpretation. Our goal was to capture when listeners 126 

subjectively recognized elements of the story as aligning with their assigned context. Two 127 

separate groups of participants received the same context instructions and listened to the same 128 

story as those in the fMRI study. They were asked to press a key whenever they perceived 129 

information consistent with their contextual framing. These responses provide a time-resolved 130 

behavioral index of interpretive alignment, offering an external marker of how context interacts 131 

with narrative features over time.  132 

 133 

Methods 134 

fMRI dataset 135 

We utilized the “prettymouth” dataset (Figure 1) (Yeshurun et al., 2017), which includes 136 

40 participants drawn from the Narratives data collection (Nastase et al., 2021). Participants were 137 

divided into two groups (initially N = 20 per group), with both groups exposed to an adapted 138 

version of J. D. Salinger's short story, "Pretty Mouth and Green My Eyes." The adapted version 139 

was shorter than the original and included several sentences not present in the original text. A 140 

professional actor provided the narration, resulting in a recording of 11 minutes and 32 seconds. 141 

Functional MRI data were acquired with a repetition time (TR) of 1.5 seconds. The story was 142 

preceded by 18 seconds of neutral music and 3 seconds of silence, followed by an additional 15 143 

seconds. These segments of music and silence were excluded from all analyses. 144 

The narrative describes a phone conversation between two friends, Arthur and Lee. 145 

Arthur, who has just returned home from a party after losing track of his wife Joanie, calls Lee to 146 

express his concerns about her whereabouts. Lee is at home with a woman beside him, whose 147 

identity remains ambiguous: she may or may not be Joanie. Before listening to the story, each 148 

participant group received one of two different contextual prompts: one group was informed that 149 

Arthur was paranoid and his suspicions were unfounded (“paranoia” context), while the other 150 

group was told that the woman was indeed Joanie, Arthur’s wife, and that Lee and Joanie had 151 

been involved in an ongoing affair for over a year (“affair” context). Yeshurun et al. (2017) and 152 

Nastase et al. (2021) describe the experimental paradigm and fMRI data acquisition parameters. 153 

fMRI data processing 154 
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fMRI data preprocessing was conducted using fMRIPrep (version 24.0.1) (Esteban et al., 155 

2019) via the BIDS App Bootstrap (Zhao et al., 2024), with detailed processing steps provided in 156 

the supplementary material. Custom post-processing steps optimized for narrative listening 157 

analyses were applied after initial preprocessing. Specifically, we implemented spatial smoothing 158 

(6 mm full-width half-maximum) to balance noise reduction and preservation of spatial 159 

activation patterns, performed detrending to mitigate scanner drift, standardized (z-scored) the 160 

time-series signals across time points within each voxel within each subject, and regressed out 161 

nuisance signals related to head motion and physiological noise using motion parameters and 162 

anatomical CompCor regressors. All post-processing steps were carried out using Nilearn; more 163 

details are provided in the supplementary material and our GitHub repository (see the Code 164 

Availability section). Post-processed data were further extracted using the Schaefer et al. (2018) 165 

parcellation (1000 parcels) with 17 networks (Kong et al., 2021). Following recommendations by 166 

Nastase et al. (2021), two participants were excluded from further analysis due to data quality 167 

concerns, resulting in a final sample size of N = 19 per group. 168 
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 169 

Figure 1. Experimental design, neuroimaging acquisition, and behavioral evidence. 170 

(A) Participants were randomly assigned to one of two context conditions—affair (gold) or 171 

paranoia (teal)—and read a brief prompt before listening to an 11-minute spoken story (Pretty 172 

Mouth and Green My Eyes by J.D. Salinger). This context manipulation was consistent across 173 

both neuroimaging and behavioral experiments. (B) The fMRI study included data from 19 174 

participants in each context group in the final analysis. The schematic plot illustrates average 175 

fMRI time courses for each group (affair in gold, paranoia in teal), with the x-axis representing 176 

time in TRs. (C) In the behavioral study, we recruited two new groups of participants and asked 177 

them to press the spacebar whenever they perceived evidence supporting one interpretation or 178 

the other (affair N = 63, paranoia N = 59). The line plots depict the average frequency of button 179 

presses over time within each group (i.e., agreement across all participants), with peaks 180 

corresponding to moments of perceived narrative support for each interpretation. 181 

 182 
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Behavioral data 183 

We collected an additional behavioral dataset under two different tasks to assess the 184 

evidence in the stimulus supporting each narrative context over time. Behavioral data were 185 

collected from 128 participants recruited via Prolific (www.prolific.com). Participants were 186 

classified into two experimental groups: an affair group (n = 63) and a paranoia group (n = 59). 187 

Demographic details indicated the sample comprised 62 males, 57 females, and three individuals 188 

identifying as non-binary or third gender. The age distribution included participants aged 18–24 189 

years (n = 18), 25–34 years (n = 46), 35–44 years (n = 29), 45–54 years (n = 12), 55–64 years (n 190 

= 14), and 65 years or older (n = 3). These participants are a separate sample from those included 191 

in the fMRI experiment. 192 

Data were collected through an online experiment developed using PsychoJS scripts 193 

derived from the PsychoPy builder (PsychoPy3, version 2023.2.0), hosted on Pavlovia 194 

(https://pavlovia.org/). Participants initially provided informed consent via Qualtrics 195 

(https://www.qualtrics.com/) before being randomly assigned to one of two context conditions 196 

(affair versus paranoia). Participants in each group received the same prompts presented to the 197 

fMRI participants prior to listening to the auditory story. Participants were asked to identify 198 

moments in the narrative where they perceived evidence for their assigned interpretation (Lee 199 

and Joanie are having an affair, or Arthur is being paranoid) by pressing the spacebar on their 200 

keyboards. Immediate visual feedback was provided, indicated by a brief green dot appearing at 201 

the center of the screen, confirming each response. After completing the task, participants were 202 

redirected to Qualtrics to complete a post-experiment questionnaire. Data from four participants 203 

were excluded from subsequent analyses due to incomplete records, resulting in a final dataset of 204 

122 participants (Figure 1C). More detailed instructions can be found in the supplementary 205 

material. 206 

This study was approved by the Princeton University Institutional Review Board (IRB 207 

12201). In accordance with institutional ethical guidelines, all participants provided informed 208 

consent electronically before participation. Participants received monetary compensation 209 

consistent with university policy. All data were anonymized to ensure participant confidentiality. 210 

 211 
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Hidden Markov model (HMM) analysis 212 

To characterize the temporal dynamics of brain states during story listening, we 213 

employed hidden Markov models (HMMs, Figure 2A), which identify recurring patterns of brain 214 

network activity and their transitions over time (Baldassano et al., 2018; Meer et al., 2020; 215 

Vidaurre et al., 2017; Yang et al., 2023). HMMs explicitly model temporal dependencies and 216 

sequential state transitions, aligning closely with our objective of understanding how prior 217 

contextual information modulates the temporal evolution of brain states.  218 

To account for hemodynamic delay, the BOLD signal was shifted backward by three TRs 219 

(~4.5 s) relative to the timing of the stimulus features (Yeshurun et al., 2017). Non-story 220 

segments (background music/silence, 24 TRs at scan onset and offset) were excluded, yielding 221 

451 TRs for analysis. Time series were extracted from 17 functionally defined networks by first 222 

averaging voxel-wise signals within each parcel, then averaging across all parcels assigned to the 223 

same network. Each participant’s data was z-scored to normalize signal amplitudes. 224 

We implemented Gaussian observation HMMs using the hmmlearn Python package, 225 

modeling brain states as multivariate Gaussian distributions with state-specific means and 226 

covariances. Transition probabilities were initialized to favor an expected dwell time of 227 

approximately 7 seconds (~4–5 TRs). This provided a weak prior consistent with evidence that 228 

large-scale brain states during naturalistic cognition typically persist on the order of several 229 

seconds, with higher-order regions such as the default mode network exhibiting longer durations 230 

and sensory regions (e.g., auditory cortex) switching more rapidly (Vidaurre et al., 2017; 231 

Baldassano et al., 2017). The prior served to prevent implausibly fast state-switching at 232 

initialization, but transition probabilities were re-estimated during expectation–maximization, so 233 

final dwell times were determined by the data rather than fixed to 7 seconds. 234 

To improve robustness against local optima during model fitting, we performed five 235 

independent initialization attempts per model (i.e., with the same number of states but different 236 

random seeds). For each attempt, state means were initialized by random draws from a standard 237 

normal distribution ( ), ensuring broad coverage of the feature space. Covariance matrices 238 

were initialized as identity matrices with a small diagonal ridge term ( ) to maintain 239 

positive definiteness and numerical stability during optimization. Start probabilities were 240 

initialized uniformly across states, and transition priors followed the weak dwell-time prior 241 

described above. Across the five attempts, random seeds influenced both the initialization of 242 
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means and the stochastic path of the EM algorithm, while covariances, start probabilities, and 243 

transition priors were held constant. The solution with the highest log-likelihood was selected for 244 

downstream analysis. 245 

Model generalizability and stability were assessed through leave-one-subject-out cross-246 

validation (LOOCV). For each fold, a group-level model was trained on all but one subject and 247 

evaluated on the held-out subject’s data. We quantified model fit using the average cross-248 

validated log-likelihood across folds. State reliability across folds was evaluated via spatial 249 

correlations, with optimal state matching determined using the Hungarian algorithm (Kuhn, 250 

1955).  Pattern similarity scores were averaged across all fold pairs to yield a summary measure 251 

of cross-validated pattern reliability. We also provided the model selection result from LOOCV 252 

in Supplementary Figure 1. 253 

HMM analyses were conducted on two experimental groups—the affair context group 254 

(n=19) and paranoia context group (n=19)—and two constructed groups—a combined group 255 

comprising all participants (n=38) and a balanced group (n=19), to match the contextual groups, 256 

consisting of random subset of participants (9 from the affair context and 10 from the paranoia 257 

context). The balanced group was created to preserve the contextual heterogeneity of the 258 

combined group while matching the sample size of the individual context groups. This approach 259 

enabled both the investigation of context-specific brain state dynamics and generalizable patterns 260 

across contexts. Brain states were characterized by spatial patterns, temporal sequence (i.e., 261 

occurrence), and inter-subject consistency. All analyses were implemented using Python 262 

(hmmlearn, NumPy, SciPy). 263 
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 264 

Figure 2. Hidden Markov models (HMMs) and clustering of brain states. 265 

(A) Analysis pipeline. Parcel-level fMRI time series were averaged within networks, z-scored 266 

across time, and concatenated across participants. HMMs with 2–20 states were estimated 267 

separately for four groups: affair, paranoia, combined, and balanced. (B) Cluster profiles and 268 

provenance. Brain states that passed quality filters (activation > 0.1, bootstrap CI width < 0.3, 269 

split-half reliability > 0.5) were pooled across models and clustered by spatial similarity (Jaccard 270 

distance, hierarchical clustering). The left panel shows the average activation profile of each 271 

resulting cluster across canonical functional networks, with shading intensity indicating the mean 272 

activation level. The bar plots to the right show the number of states from each group (affair, 273 

paranoia, combined, balanced) contributing to each cluster, illustrating cluster provenance. (C) 274 

Cluster assignments across model granularities. This panel visualizes how the unified cross-275 

group clustering solution maps onto the combined-group HMMs. Each row corresponds to one 276 

HMM solution (2–20 states), and each column to a state within that model, ordered by state 277 

occupancy. Colors and overlaid numbers indicate the cluster assignment (1–4) of each state. 278 

Missing cells indicate states that did not pass the filtering criteria and were therefore excluded 279 

from clustering. This panel demonstrates how states from different HMM solutions converge 280 

onto a consistent set of four clusters. 281 
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State pattern similarity analysis 282 

Traditional methods for analyzing hidden Markov models usually depend on model 283 

selection criteria to pinpoint a single optimal model, often overlooking valuable insights from 284 

alternative solutions (Quinn et al., 2018; Vidaurre, Hunt, et al., 2018). To overcome this 285 

limitation, we created a pattern similarity analysis framework that utilizes information from 286 

various model parameterizations and experimental conditions. Our approach builds on the 287 

neurobiological observation that increasing the number of states in an HMM often results in 288 

meaningful subdivisions of broader brain state processes rather than entirely spurious patterns 289 

(Baker et al., 2014). For example, a language processing state in a simpler model might 290 

subdivide into different states for different semantic domains in more complex models, 291 

representing valid phenomena at different levels of granularity. 292 

Reliable state patterns from all HMM solutions across the experimental (affair, paranoia) 293 

and constructed groups (combined, balanced) were extracted using stringent criteria designed to 294 

filter out unstable or noisy states. First, we required a minimum activation threshold (>0.1), 295 

meaning that at least one network’s mean parameter in the HMM had to deviate from baseline by 296 

more than 0.1 (in standardized units of the z-scored input time series). This ensured that states 297 

reflected meaningful network engagement rather than near-zero fluctuations. Second, we 298 

assessed the stability of each state’s mean activation pattern using bootstrap resampling: for each 299 

network, we generated 95% confidence intervals around its mean activation value and retained 300 

only states with narrow intervals (width < 0.3), indicating low estimation uncertainty. Third, we 301 

evaluated within-state reliability using a split-half procedure: timepoints assigned to each state 302 

were divided into two halves, mean activation patterns were estimated separately, and their 303 

correlation was computed; only states with correlations > 0.5 were retained. For each retained 304 

state, we recorded fractional occupancy to standardize comparisons across models, along with 305 

full provenance information (group, model specification, original state index, normalized index). 306 

We then clustered the state mean activation patterns across groups (Figure 2B), focusing 307 

on the average co-activation profile of the 17 networks for each state. Pairwise similarity was 308 

computed using Jaccard distance, which quantifies dissimilarity based on the proportion of non-309 

overlapping active networks. This metric emphasizes the spatial layout of co-active brain 310 

networks while reducing sensitivity to overall activation magnitude. All states were compared 311 

pairwise, and agglomerative hierarchical clustering with average linkage was applied to group 312 
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them. We evaluated clustering solutions across merging similarity thresholds from 0.6 to 0.9 and 313 

found that the top four clusters were highly stable across this range (Supplementary Figure 3).  314 

For each consecutive pair of thresholds, we compared the consensus patterns of the top 315 

five largest clusters using Jaccard similarity (Supplementary Table 2). The analysis revealed a 316 

high degree of stability, with an average Jaccard similarity of 0.89 for the best-matching clusters 317 

across all transitions. Furthermore, 83% of these top clusters maintained a high similarity (≥ 0.7) 318 

with a cluster from the preceding threshold. This high consistency confirms that the primary state 319 

patterns are a stable feature of the data, not an artifact of parameter selection. Based on this 320 

confirmed robustness, particularly in the 0.75-0.90 range, we selected a final similarity threshold 321 

of 0.8 for all subsequent analyses. 322 

As part of the cross-group clustering procedure, clusters were reordered by total 323 

fractional occupancy, defined as the sum of the occupancies of all states assigned to each cluster 324 

across models. This ensured that cluster IDs reflected the most frequently expressed patterns 325 

rather than simply the largest number of constituent states. The occupancy-based reordering 326 

occurred immediately after hierarchical clustering, integrated within the clustering step. For each 327 

cluster, we computed a consensus pattern identifying networks that were significantly active in at 328 

least 50% of the constituent states.  329 

Finally, clusters were labeled as either context-general or context-specific based on their 330 

provenance. Clusters containing states from both affair and paranoia models (and appearing in 331 

the combined/balanced models) were considered context-general, whereas clusters dominated by 332 

states from only one context group were considered context-specific. To evaluate the similarity 333 

structure among brain state clusters, we computed Spearman rank correlations of their activation 334 

patterns across the 17 networks. We conducted the analysis using both consensus patterns 335 

(averaged across all member states) and representative patterns (from the combined-group 336 

models), which yielded convergent results. Here we report the correlations based on 337 

representative patterns; full results from both approaches are provided in Supplementary Figure 338 

8. 339 

Story feature annotation 340 

To examine how narrative content influenced brain state dynamics, we annotated the 341 

stimulus with key linguistic and narrative features at the temporal resolution of the fMRI data 342 

(one annotation per TR).  343 
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Character and interaction features: As the narrative was delivered by a single narrator 344 

but featured multiple characters, we identified character-specific speech and interactions per TR. 345 

The annotations included: (1) Arthur, Lee, and Girl speaking: Identify the intended speaking 346 

character at each time point. (2) Lee and the girl together: Identify when Lee and the girl 347 

appeared concurrently, regardless of dialogue. 348 

Linguistic features: Story were tagged for grammatical parts of speech, including verbs, 349 

nouns, adjectives, and adverbs, indicating their presence in each TR. 350 

Thematically relevant combined features: We further derived composite features to 351 

reflect interactions between character presence and linguistic structure: (1) Lee-Girl Verb (Lee & 352 

Girl Together × Verb Presence): Captured shared actions or relational dynamics relevant to the 353 

affair group's expected sensitivity to relational events. (2) Arthur Adjective (Arthur Speaking × 354 

Adjective Presence): Highlighted descriptive attributes linked to Arthur, informed by findings 355 

that heightened attention to character traits is characteristic of paranoid cognition (M. J. Green & 356 

Phillips, 2004).  357 

These structured annotations enabled the systematic evaluation of how different narrative 358 

elements influenced cognitive engagement, providing an essential foundation to investigate the 359 

hypothesized cognitive biases associated with each group. 360 

Bayesian generalized linear mixed models 361 

To investigate the temporal dynamics of brain state patterns and corresponding 362 

behavioral responses, and to clarify how contextual information modulates the impact of 363 

narrative content features, we implemented Bayesian generalized linear mixed models 364 

(GLMMs). Separate GLMM analyses with identical structures were applied to characterize 365 

brain-context-content and behavior-context-content relationships, providing consistent modeling 366 

frameworks for brain and behavioral dynamics. The schematic overview of the full pipeline, 367 

from HMM to GLMM, is in Supplementary Figure 2. 368 

GLMM for brain state and content analysis 369 

While the clustering analysis identified spatial configurations of brain states, the temporal 370 

dynamics necessitated identifying representative state occurrences. A representative brain state 371 

was chosen for each cluster's first occurrence within the combined group HMMs, as these 372 

models included all participants. Subsequently, we extracted each participant's state sequence 373 
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(on/off) data corresponding to these representative states at each time point. We fit a logistic 374 

GLMM separately for each identified cluster with the following structure: 375 

 376 

Where  is a binary variable indicating whether the target brain state was active (1) 377 

or inactive (0) for subject  at timepoint .  represents narrative annotations (e.g., 378 

character presence, linguistic elements). The interaction terms  assess 379 

whether content features affect brain state dynamics differently between groups. Autoregressive 380 

terms  account for temporal dependencies in state occupancy, and  represents 381 

subject-specific random intercepts that capture individual variability in state prevalence. 382 

Model parameters were estimated using maximum a posteriori (MAP) estimation, 383 

applying deviation coding for group identity (+1 for affair, -1 for paranoia) and incorporating 384 

default Bayesian priors: normal priors with a mean of 0 for fixed effects and inverse gamma 385 

priors for random effects variance components. These priors provide implicit regularization, 386 

which is advantageous given our moderate sample size and binary outcomes. We calculated 387 

posterior probabilities instead of frequentist p-values for inference, quantifying evidence for 388 

effects as the probability mass supporting a specific direction of influence. This Bayesian 389 

approach allows for a more intuitive interpretation of uncertainty in our parameter estimates. 390 

To address multiple comparisons, we implemented a Bayesian False Discovery Rate 391 

(FDR) procedure that controls the expected proportion of false discoveries among claimed 392 

discoveries. Features were considered to have credible effects when their FDR-adjusted posterior 393 

probabilities exceeded 0.95. 394 

Coefficient estimates were converted from log-odds to odds ratios (OR) to enhance 395 

interpretability, indicating how narrative features influenced primary brain state activation odds. 396 

Group-specific effects were calculated to clarify how content features differentially affected 397 

brain state dynamics in each context condition. All analyses were performed using custom 398 

Python with the statsmodels package. 399 

GLMM for behavioral response and content analysis 400 

We applied a generalized linear mixed model (GLMM), analogous to those used in the 401 

brain state analyses, to examine the relationship between narrative content features and 402 

behavioral responses in a separate participant sample. The dependent variable was a binary 403 
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indicator reflecting whether a button press occurred at each fMRI time point (TR), signaling that 404 

the participant perceived evidence in the narrative consistent with their assigned contextual 405 

prompt. Originally recorded continuously (seconds), behavioral responses were aligned to the 406 

nearest TR to ensure temporal correspondence with stimulus features and brain-state estimates. If 407 

multiple button presses occurred within a single TR for a given participant, they were counted as 408 

a single response to avoid overrepresenting clustered inputs. 409 

The behavioral GLMM followed this structure: 410 

 411 

Where  is a binary variable indicating whether subject  pressed the button at 412 

timepoint .  represents narrative annotations (e.g., character presence, linguistic 413 

elements). Interaction terms  assess whether content features differentially 414 

affect behavioral responses across groups. Autoregressive terms  account for 415 

temporal dependencies in response patterns, and  represents subject-specific random intercepts. 416 

For parameter estimation, we utilized Maximum A Posteriori (MAP) estimation with 417 

Bayesian priors to stabilize the estimates, which is particularly important for binary outcomes 418 

with temporal dependencies. Similar to the brain-content analyses, we applied deviation coding 419 

for group identity (+1 for affair, -1 for paranoia), ensuring that the parameter estimates were 420 

balanced around the overall mean. Random intercepts at the subject level accounted for 421 

variability in individual response tendencies. Effects were deemed credible when their FDR-422 

adjusted posterior probabilities surpassed 0.95. 423 

 424 

Results 425 

Brain state clustering identifies shared and context-specific cortical network patterns 426 

The clustering analysis of brain state patterns across all models identified both context-427 

specific and context-invariant brain states. Models derived from individual experimental 428 

conditions (affair or paranoia) produced more context-specific state patterns, as indicated by 429 

higher cluster IDs corresponding to smaller clusters, particularly when the number of states 430 

increased. Conversely, combined and constructed groups exhibited more generalized state 431 

patterns, represented by lower cluster IDs indicating larger clusters (Supplementary Figures 4-7). 432 

Brain states extracted from the combined group were more consistent than those extracted from 433 
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the constructed balanced group, likely due to differences in sample sizes. Broad states that 434 

dominate at low model complexities (e.g., Cluster 1 in 2 to 5 state models) can fractionate into 435 

multiple, lower-occupancy sub-states at higher model complexities, which explains their 436 

apparent “disappearance” in some intermediate state solutions. This likely reflects state 437 

fractionation, a fundamental property of hierarchical brain state organization (Li et al., 2023). 438 

Moreover, each consensus cluster represents the core defining features of each brain state 439 

pattern while accommodating natural variation within each cluster; individual states may exhibit 440 

additional network activations beyond the consensus, reflecting context-specific or model-441 

specific nuances. For example, Cluster 2’s consensus includes auditory, control network B (Ctr-442 

B), default mode (DMN-A/B/C), and language networks, which appear in 78–100% of its 443 

member states (Supplementary Figure 11). Some individual states within this cluster additionally 444 

recruit control network A (Ctr-A), though this occurs in only 11% of cases and thus does not 445 

define the cluster’s core identity. 446 

The four most prominent clusters (Figure 2C), identified based on the total fractional 447 

occupancy of their constituent brain states, displayed distinct spatial configurations. Cluster 1, 448 

which had the highest total occupancy (sum=6.288), featured a representative brain state 449 

involving the Auditory, DMN-A, DMN-B, and Language networks. Cluster 2 included a 450 

representative brain state encompassing Auditory, Control-B, DMN-A, DMN-B, DMN-C, and 451 

Language networks. 452 

Clusters 3 and 4 displayed distinct context-specific characteristics. Cluster 3 primarily 453 

comprised brain states derived from the affair context models and was largely absent in the 454 

paranoia context models. Its representative state pattern included Control-A, Control-C, Dorsal 455 

Attention-A, Dorsal Attention-B, Salience/Ventral Attention-A, Salience/Ventral Attention-B, 456 

Visual-A, and Visual-B networks. In contrast, Cluster 4 was predominantly composed of brain 457 

states from paranoia context models and was absent in the affair context models. The 458 

representative pattern of this cluster involved Control-A, Salience/Ventral Attention-A, and 459 

Salience/Ventral Attention-B networks. Details of the regions within each network can be found 460 

in Table S1. 461 

Spearman’s rank correlations revealed positive associations between Clusters 1 and 2 462 

(⍴ = 0.583) and between Clusters 3 and 4 (⍴ = 0.627), while Clusters 1/2 versus Clusters 3/4 463 

were negatively correlated. Full correlation results are shown in Supplementary Figure 8. 464 
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Furthermore, Supplementary Figure 9 illustrates these relationships in low-dimensional space 465 

(PCA, MDS, t-SNE), demonstrating clear within-cluster similarity, across-cluster separation, and 466 

closer proximity between Clusters 1 and 2. 467 

Contextual modulation of brain state dynamics during story comprehension 468 

Representative brain states (Figure 3) for each identified cluster were selected based on 469 

their first occurrence in the combined group HMMs: Cluster 1 (first state from 2-states model), 470 

Cluster 2 (fifth state from 7-states model), Cluster 3 (second state from 2-states model), and 471 

Cluster 4 (third state from 6-states model). These states exemplify each cluster’s core consensus 472 

pattern while potentially including additional network activations that occur in subsets of the 473 

cluster's constituent states (Supplementary Figures 10-13). Bayesian GLMMs were then 474 

estimated separately for each cluster to determine how narrative features influenced brain state 475 

dynamics and whether these effects were modulated by context. 476 

 477 
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Figure 3. Brain activation patterns of representative brain states from the top four clusters. 478 

Each row shows a representative brain state from one of the top four clusters identified in the 479 

combined group HMMs. The left panel displays surface maps of average whole-brain activation, 480 

computed by averaging brain activity across all participants during timepoints when this state 481 

was active. Warm colors indicate above-average activation, and cool colors indicate below-482 

average activation (z-scored). The right panel shows network-level activation profiles, 483 

summarizing average activation within canonical functional networks. Error bars represent the 484 

standard error across states belonging to the same cluster. 485 

 486 

Character-specific speech modulated shared brain states 487 

Representative brain states of clusters 1 and 2 consistently presented across narrative 488 

contexts but showed different sensitivity to specific narrative features (Figure 4). In Cluster 1, 489 

Arthur speaking reliably increased the odds of Cluster 1 activation (OR=1.232, CI= [1.097, 490 

1.383]), as did the presence of verbs (OR=1.153, CI= [1.032, 1.288]). Adjective usage showed 491 

reliable context differences (OR=0.87, CI= [0.769, 0.985]), indicating a stronger negative effect 492 

in the affair context (OR=0.833, P(Effect>0) =0.021) compared to paranoia (OR=1.1, 493 

P(Effect>0) =0.858). State occupancy was higher in the affair context (0.618) than in paranoia 494 

(0.538). 495 

Cluster 2 similarly showed context interactions for Arthur-related adjectives (OR=0.797, 496 

CI= [0.594, 1.069]), with odds ratios indicating a slightly stronger negative effect in the affair 497 

context (OR=0.786, P(Effect>0) =0.128) than in paranoia (OR=0.809, P(Effect>0) =0.158). Lee 498 

and girl co-present (OR=2.42, CI=[1.817, 3.221]) and their actions (OR=1.515, CI=[1.066, 499 

2.153]) increased brain state activation odds substantially, whereas Arthur speaking (OR=0.715, 500 

CI=[0.612, 0.834]), and adverb usage (OR=0.762, CI=[0.644, 0.902]) were associated with 501 

decreases. State occupancy rate was similar in the affair context (0.121) than in paranoia (0.130). 502 
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 503 

Figure 4. Correspondence between brain state dynamics and story content. 504 

(A) Time series of cluster-wise brain state probabilities (gold: affair group; teal: paranoia group) 505 

for the top four HMM-derived clusters in the combined group, which was estimated using all 506 

participants. Because both groups share the same latent state definitions, these traces show how 507 

strongly each state is expressed over time in the shared model, rather than providing independent 508 

group-specific estimates. Accordingly, the curves in panel A are intended to illustrate the 509 

temporal structure of each state during the narrative; statistical group differences must be 510 

evaluated in panel B rather than inferred from visual differences in these time series. The bottom 511 

panel indicates annotated linguistic and narrative features aligned to the story timeline (x-axis 512 

represent time in TR unit), including character speech and presence, part-of-speech tags (verbs, 513 

nouns, adjectives, adverbs), and key character pairings (e.g., “Lee + Girl”). (B) Bayesian logistic 514 

regression analysis estimates the odds ratios (95% credible intervals) for the association between 515 

content features and brain state cluster expression. Each panel corresponds to one of the four 516 
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clusters. Points represent posterior means of the odds ratio for each content predictor; error bars 517 

show 95% credible intervals. Colored markers indicate predictors with context-dependent effects 518 

that survived FDR correction in the affair (gold) and paranoia (teal) groups. Gray markers 519 

indicate predictors without statistically reliable group differences (FDR ≥ 0.05). Odds ratios 520 

above 1 suggest an increased likelihood of brain state expression when the corresponding feature 521 

is present. Conversely, odds ratios below 1 indicate a decreased likelihood of brain state 522 

expression, meaning that the feature is associated with reduced engagement of that state. 523 

Context-specific brain states reveal diverse character influences 524 

Representative brain states of clusters 3 and 4 exhibited distinct patterns that indicate 525 

context-specific processing mechanisms (Figure 4). Cluster 3 showed context-dependent 526 

modulation: Arthur speaking was associated with reduced odds of state activation (OR=0.786, 527 

CI=[0.7, 0.882]), while the combined presence (lee_girl_together, OR=1.348, CI=[1.045, 1.739]) 528 

of Lee and the girl with verbs (lee_girl_verb, OR=1.456, CI=[1.094, 1.938]) increased activation 529 

odds. Adjective usage increased the odds of Cluster 3 activation overall (OR=1.149, 95% CI 530 

[1.016, 1.3]), with odds ratios indicating a positive effect in the affair context (OR=1.316, 531 

P(Effect>0) =0.999) but negligible effects in paranoia (OR=0.997, P(Effect>0) =0.486). State 532 

occupancy was lower in the affair context (0.382) than paranoia (0.462). 533 

Cluster 4 showed context interactions for Arthur speaking (OR=0.936, CI= [0.814, 534 

1.076]). Arthur speaking demonstrated a slightly stronger negative effect in the affair context 535 

(OR=0.692, P(Effect>0) =0) compared to paranoia (OR=0.79, P(Effect>0) =0.009). Overall state 536 

occupancy was slightly lower in the affair context (0.137) than paranoia (0.171). 537 

Multiple comparison analyses with Bayesian False Discovery Rate (FDR) corrections 538 

confirmed that the odds ratios for adjective usage (Clusters 1 and 3), Arthur-related adjectives 539 

(Clusters 1 and 2), and Arthur speaking (Cluster 4) consistently differed from chance 540 

expectations (FDR < 0.05). These results provide credible evidence that narrative context 541 

strongly modulates the temporal dynamics of brain states, revealing distinct narrative feature 542 

influences across different contexts. 543 

Contextual modulation of behavioral responses during story comprehension 544 

Bayesian GLMMs showed that odds ratios for participants’ button presses differed 545 

systematically across contexts, indicating contextual modulation of behavioral responses. 546 
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 547 

Figure 5. Correspondence between behavioral responses and story content features. 548 

 (A) Time series of button press probabilities from participants in the affair (gold) and paranoia 549 

(teal) groups, reflecting the likelihood of detecting context-consistent narrative information over 550 

time. Dots represent individual button presses; smoothed lines indicate group-averaged response 551 

probabilities. The lower panel shows annotated story content features (identical to those in 552 

Figure 4A), including character speech, co-occurrence, and linguistic categories. (B) Bayesian 553 

logistic regression assessing the relationship between content features and button press behavior. 554 

Posterior means of odds ratios (±95% credible intervals) are plotted for each predictor. Gold and 555 

teal indicate predictors with context-dependent effects that survived FDR correction in the affair 556 

and paranoia groups, respectively. Gray indicates predictors without statistically reliable group 557 

differences (FDR ≥ 0.05). Odds ratios above 1 suggest an increased likelihood of brain state 558 

expression when the corresponding feature is present. Conversely, odds ratios below 1 indicate a 559 

decreased likelihood of brain state expression, meaning that the feature is associated with 560 

reduced engagement of that state. 561 

 562 

Context-dependent impact of character identity on behavioral responses 563 

Character-related narrative features showed strong overall influences on behavioral 564 

responses, with Arthur speaking (OR=2.743, CI= [2.286, 3.291]) and Lee speaking (OR=1.801, 565 

CI= [1.508, 2.150]) substantially increasing the probability of button presses. Critically, context 566 

strongly modulated these effects. Arthur speaking showed large context-dependent differences in 567 

odds (interaction OR=0.334, CI= [0.279, 0.401]), with substantially greater response likelihood 568 
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in the paranoia context (OR=8.205, P(Effect>0) =1.000) compared to minimal effects in the 569 

affair context (OR=0.917, P(Effect>0) =0.254). Similarly, Girl speaking was associated with 570 

higher odds in the affair context but lower odds in the paranoia context (interaction OR=2.864, 571 

CI=[1.189, 6.894]), positively influencing responses in the affair context (OR=1.559, 572 

P(Effect>0)=0.758) but strongly reducing responses in the paranoia context (OR=0.190, 573 

P(Effect>0)=0.004). Lee speaking also showed credible contextual modulation (interaction 574 

OR=0.813, CI= [0.681, 0.970]), with a stronger effect in the paranoia context (OR=2.216, 575 

P(Effect>0)>0.999) relative to the affair context (OR=1.463, P(Effect>0) =0.999). 576 

Context-specific effects of linguistic features 577 

Linguistic features displayed smaller credible context-dependent patterns in predicting 578 

behavioral responses. Noun usage increased the odds of button presses overall (OR=1.351, CI= 579 

[1.205, 1.515]), modulated by context (interaction OR=0.811, CI= [0.723, 0.909]). Nouns more 580 

strongly increased response probability in the paranoia context (OR=1.667, P(Effect>0)>0.999) 581 

than in the affair context (OR=1.095, P(Effect>0) =0.865). Similarly, adverb usage showed 582 

context-dependent modulation of odds (interaction OR=0.814, CI= [0.717, 0.924]), negatively 583 

influencing button presses in the affair context (OR=0.844, P(Effect>0) =0.032) but positively in 584 

paranoia (OR=1.275, P(Effect>0) =0.996). Verb usage had a modest positive main effect 585 

(OR=1.046, CI=[0.933, 1.172]) and credible context interaction (interaction OR=0.917, 586 

CI=[0.818, 1.027]), with stronger effects observed in paranoia (OR=1.141, P(Effect>0)=0.946) 587 

than in the affair context (OR=0.959, P(Effect>0)=0.303). 588 

Descriptive character features show contextual variation 589 

Arthur-related adjectives were associated with reduced odds of responses overall 590 

(OR=0.411, CI= [0.297, 0.570]), with credible contextual modulation (interaction OR=1.155, 591 

CI= [0.834, 1.599]). The negative effect was stronger in the affair context (OR=0.475, 592 

P(Effect>0) =0.001) compared to paranoia (OR=0.356, P(Effect>0) <0.001). The combined 593 

presence of Lee and girl characters negatively influenced responses (OR=0.445, CI= [0.168, 594 

1.175]), though this context modulation did not meet FDR criteria. The interaction of these 595 

characters with verbs showed no credible context-specific effects. Supplementary Materials 2.3 596 

confirms that the behavioral GLMM results replicate at 1-s resolution. 597 
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 598 

Discussion 599 

Our study investigated how narrative context modulates brain state dynamics and 600 

behavioral responses during story comprehension. We identified both shared and context-601 

specific brain states that spanned auditory, language, default mode, control, attention, and visual 602 

networks. By modeling the relationships between stimulus features, context, and brain states, we 603 

found credible evidence that context influences how narrative features, particularly speech or 604 

references to specific characters, impact the temporal dynamics of these brain states. Independent 605 

behavioral analyses revealed context-dependent differences in odds ratios for stimulus features, 606 

indicating selective modulation of behavioral responses by context. 607 

Shared brain states suggest convergent processing during story listening 608 

Clusters 1 and 2 reflected DMN-dominant narrative-integration states that appeared 609 

consistently across both context conditions, in line with our prediction that naturalistic story 610 

comprehension would elicit stable integration-focused brain states. Both clusters showed strong 611 

involvement of auditory and language networks, which support the processing of the unfolding 612 

speech signal, as well as DMN-A and DMN-B regions, including the medial prefrontal cortex 613 

(PFCm), posterior cingulate cortex (PCC), inferior parietal lobule (IPL), precuneus (pCun), and 614 

temporal and temporopolar cortices. These DMN subsystems have been widely implicated in 615 

long-timescale semantic integration, situation-model construction, and narrative coherence 616 

(Hasson et al., 2018; Jackson et al., 2023; Raichle et al., 2001; Simony et al., 2016). Together, 617 

these profiles suggest that Clusters 1 and 2 may capture a core processing mode through which 618 

incoming linguistic information is incrementally incorporated into a coherent representation of 619 

the evolving narrative. 620 

Cluster 2 slightly differed from Cluster 1 by additionally recruiting regions within control 621 

network-B, such as dorsolateral prefrontal cortex, inferior frontal gyrus, intraparietal sulcus, and 622 

orbitofrontal cortex, as well as posterior DMN-C regions including the 623 

retrosplenial/parahippocampal cortex and posterior precuneus. Control network-B is associated 624 

with adaptive cognitive control, strategic monitoring, and attentional modulation (Cole et al., 625 

2014; Dworetsky et al., 2024), while DMN-C has been linked to contextual updating, mental 626 

simulation, and scene construction (Ritchey & Cooper, 2020). These additional contributions 627 

suggest that Cluster 2 may reflect a more demanding substate of narrative integration in which 628 
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listeners must reorganize their situation model, integrate newly informative plot elements, or 629 

resolve referential ambiguity. The stronger activation amplitudes observed in Cluster 2 are 630 

therefore consistent with theories proposing that the DMN comprises multiple specialized 631 

subsystems that support both continuous integration (DMN-A/B) and event-level updating or 632 

simulation (DMN-C), and that transitions into control-network engagement mark moments of 633 

locally increased cognitive demand. In this view, Cluster 1 represents a dominant “baseline” 634 

integration mode, whereas Cluster 2 reflects brief but intensive episodes of narrative updating 635 

supported by coordinated engagement of control and higher-order DMN subsystems. 636 

Context-specific brain states index specialized processing demands 637 

Clusters 3 and 4 reflected MDN-dominant brain states that were differentially expressed 638 

across the two context conditions. This pattern is consistent with longstanding accounts of the 639 

multiple-demand system (MDN), which emphasize that interpretive effort dynamically recruits 640 

distinct subcomponents of control, dorsal attention, and salience networks depending on task 641 

demands (Duncan, 2010; Cole et al., 2013; Fedorenko et al., 2013; Uddin, 2015). Unlike the 642 

DMN-based integration states (Clusters 1 and 2), these MDN states showed minimal 643 

involvement of auditory, language, or core DMN regions, perhaps reflecting evaluative, 644 

attentionally demanding, and context-sensitive modes of narrative processing. 645 

Cluster 3, expressed predominantly in the affair group, engaged regions within control 646 

network-C, including the posterior cingulate cortex, precuneus, lateral prefrontal cortex, medial 647 

prefrontal cortex, and parahippocampal cortex, and precuneus, together with visual association 648 

areas in Visual Networks A and B. Although mean activation levels in this state were relatively 649 

low, the joint involvement of posterior midline control regions and visual cortices may implicate 650 

a visual suggests a simulation-oriented or imagery-based mode of narrative evaluation in an 651 

ambiguous narrative (Koide-Majima et al., 2024; Liu et al., 2022; Pearson, 2019). Cluster 4, in 652 

contrast, appeared primarily in the paranoia group and exhibited a strong, canonical MDN 653 

profile, with pronounced activation in control, dorsal attention, and salience networks (Duncan, 654 

2010; Cole et al., 2013). These networks support executive vigilance, uncertainty monitoring, 655 

and the detection of behaviorally relevant or potentially threatening cues (Hermans et al., 2014; 656 

Uddin, 2015). 657 

The correlation structure among clusters suggests that these four states can be understood 658 

along a single functional axis ranging from context-general to context-sensitive modes of 659 
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processing. This pattern aligns with prior work showing that low-dimensional decompositions of 660 

brain activity reveal recurrent state families that organize around stable, large-scale network 661 

configurations (Bolt et al., 2022; Song et al., 2023). In our case, Clusters 1 and 2 correspond to 662 

DMN-dominant integration states that appeared across both groups, supporting continuous 663 

processes such as semantic integration, situation-model construction, and the incorporation of 664 

incoming narrative information. In contrast, Clusters 3 and 4 represent distinct MDN-related 665 

evaluative states whose expression diverged across the primed contexts. These findings support 666 

our hypothesis that naturalistic story comprehension involves both stable DMN-supported 667 

integration states and context-sensitive MDN-supported evaluative states, with the latter varying 668 

systematically according to the interpretive demands elicited by the priming manipulation. 669 

Narrative context modulates the influence of story features on brain state dynamics 670 

Our Bayesian GLMM analyses revealed that several narrative features showed credible, 671 

feature-specific differences in their associations with brain state activation across the two context 672 

conditions (Figure 4). Across all clusters, state probabilities were reliably modulated by narrative 673 

content, consistent with prior work demonstrating that linguistic and narrative cues exert 674 

moment-to-moment influences on neural processing during story comprehension (Jacoby & 675 

Fedorenko, 2020; Yarkoni et al., 2008). However, the specific features exerting these effects, and 676 

the magnitude and direction of those effects, varied across clusters and contexts. 677 

For Clusters 1 and 2, which appeared across both narrative contexts, we observed modest 678 

but credible feature-specific interactions. In Cluster 1, Arthur speaking and verb usage increased 679 

activation probability, whereas adjective usage showed a negative context interaction, indicating 680 

a stronger decrease in the affair condition than in paranoia. Cluster 2 showed similar scattered 681 

interactions: Arthur-related adjectives exhibited weak context differences, while features related 682 

to the co-presence and actions of Lee and the girl strongly increased activation, and adverbs and 683 

Arthur speaking reduced it. These effects suggest that the DMN-dominant integration states 684 

remain broadly engaged across contexts but show subtle variations in their sensitivity to specific 685 

linguistic cues, consistent with accounts proposing that even stable integrative processes are 686 

modulated by moment-to-moment narrative content (Grall & Finn, 2022; Mar, 2011). 687 

Clusters 3 and 4 exhibited somewhat clearer context-dependent patterns, with several 688 

content features influencing state activation differently across the two groups. In Cluster 3, 689 

Arthur speaking reduced activation odds, while co-occurrence and action features related to Lee 690 
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and the girl increased activation, and adjectives showed a positive effect primarily in the affair 691 

condition. Cluster 4 showed credible context differences for Arthur speaking, with a stronger 692 

negative effect in the affair group. These findings indicate that, for these clusters, context 693 

influences how specific narrative cues shape the likelihood of entering a given state. However, 694 

the effects remain modest in magnitude, typical for naturalistic fMRI datasets, and do not reflect 695 

global shifts in state identity but rather differences in how particular narrative features drive 696 

transient shifts into states with distinct functional profiles. 697 

To assess whether these context-dependent patterns in the representative states could 698 

arise from arbitrary inter-individual variability, we conducted permutation analyses comparing 699 

observed group differences against a null distribution derived from 10,000 random participant 700 

splits (Supplementary Figure 14). For Clusters 1, 3, and 4, observed differences in temporal 701 

dynamics exceeded 95% of random splits (all p < .05), confirming that context-based grouping 702 

produces systematically different state engagement than would be expected from chance. Cluster 703 

2 did not show this effect (p = .249). Cluster 2 shares core DMN and language network 704 

involvement with Cluster 1 but additionally engages Control-B and DMN-C regions. One 705 

possibility is that this configuration supports narrative-tracking processes, such as updating 706 

situational details or monitoring discourse coherence, that proceed similarly regardless of the 707 

listener’s interpretive frame. However, we cannot rule out that the finer model granularity from 708 

which the representive Cluster 2 state derives (from the combined-group 7-state HMM) 709 

contributes to reduced sensitivity for detecting group differences. 710 

Taken together, these findings suggest a two-level architecture for context effects in 711 

narrative comprehension. At the level of state engagement, context biases which network 712 

configurations are preferentially recruited over time with Clusters 1, 3, and 4 showing temporal 713 

dynamics that systematically differ by interpretive frame. At the level of feature sensitivity, both 714 

groups show largely similar responses to narrative content, with selective divergence for features 715 

requiring evaluative inference (particularly adjectives). This pattern indicates that context does 716 

not dramatically or continuously restructure how the brain processes narrative content over time. 717 

Rather, context operates as a modulatory bias: it shapes the probability of engaging particular 718 

network configurations while much of the underlying content-processing architecture is 719 

preserved. The features that do show context-dependent modulation, such as descriptive 720 

language conveying character traits and evaluative information, are those for which prior 721 
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expectations should matter most, as their interpretation requires integration with the listener’s 722 

model of what happened or what the story “is about.” 723 

Contextual modulation of behavioral responses highlights selective engagement with 724 

narrative content 725 

Independent behavioral analyses reinforce our observation that narrative context 726 

selectively modulates which stimulus features influence responses. For example, odds ratios 727 

indicated that Arthur’s speaking substantially increased the likelihood of button presses in the 728 

paranoia context, but not in the affair context. This sensitivity to character speech aligns with 729 

established evidence from narrative psychology and psycholinguistics, showing heightened 730 

audience engagement with central narrative figures who guide interpretive frameworks and 731 

ensure story coherence (Eekhof et al., 2023; M. C. Green & Appel, 2024; Hartung et al., 2017). 732 

Likewise, Lee’s speaking elicited strong context-dependent behavioral responses, reflecting 733 

variations in perceived narrative relevance or emotional significance of different characters 734 

across contexts. 735 

Importantly, these character-driven effects in behavioral responses were stronger than 736 

those observed in brain-state analyses, suggesting distinct cognitive mechanisms underlying 737 

explicit versus implicit narrative processing. Explicit behavioral responses likely reflect 738 

deliberate inferential and evaluative processes, such as active narrative coherence assessments, 739 

conscious attribution of narrative significance, or explicit inference generation. These explicit 740 

processes may differ from the processes evoked by passive story listening. 741 

Linguistic features such as nouns and adverbs exhibited modest but reliable context-742 

dependent effects in behavioral analyses. These differences indicate that certain lexical 743 

categories may be differentially weighted or processed depending on the narrative context 744 

(Tilmatine et al., 2024), though the specific mechanisms, whether semantic, evaluative, or 745 

otherwise, remain to be clarified. Descriptive adjectives showed more substantial negative 746 

effects in the affair context. This pattern is consistent with prior psycholinguistic findings 747 

suggesting that adjectives can modulate emotional tone and guide interpretive inferences, 748 

particularly in context-sensitive narratives (Lei et al., 2023). 749 

These findings demonstrate that prior contextual information systematically modulated 750 

behavioral responses to narrative content, with the strongest effects observed for speech 751 

attribution and more modest effects for specific linguistic features. The pattern suggests that 752 
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context does not uniformly enhance or suppress engagement with all content features but instead 753 

modulates behavioral responses in a selective, feature-dependent manner. 754 

A final consideration concerns the apparent misalignment between the fMRI and 755 

behavioral findings: whereas the behavioral analyses showed strong and directionally consistent 756 

context effects of linguistic and character features, the fMRI-derived brain state dynamics did not 757 

closely follow these behavioral directions, even though they showed statistically reliable 758 

modulation. This difference reflects the fact that the two paradigms, while based on the same 759 

narrative stimulus, are fundamentally different tasks. The fMRI experiment involved passive 760 

listening, followed by delayed comprehension questions, which captured implicit, distributed 761 

interpretive processes without discrete response markers. By contrast, the behavioral experiment 762 

required explicit evidence detection with overt button presses, producing stronger and more 763 

directional effects as participants actively relied on linguistic cues for decision-making. Because 764 

the tasks differ in both cognitive demands and data type (neural dynamics vs. behavioral reports), 765 

a one-to-one alignment of results is not expected. The behavioral task would be expected to 766 

engage decision- and motor-related systems not central to naturalistic comprehension. Taken 767 

together, the behavioral findings extend the fMRI results by showing how linguistic features 768 

guide explicit reasoning, while the brain-state analyses reveal implicit neural dynamics of 769 

narrative comprehension. 770 

 771 

Limitations and future directions 772 

Our study provides valuable insights into how narrative context modulates brain state 773 

dynamics and behavioral responses, yet several limitations point toward promising avenues for 774 

future research. First, our HMMs were conducted at the network level, averaging signals within 775 

the 17 predefined functional networks. This approach is well-motivated, given that large-scale 776 

networks are reliable units of naturalistic fMRI analysis, but it necessarily reduces spatial 777 

resolution. Finer-grained analyses (e.g., ROI-level or voxelwise HMMs; Vidaurre, Abeysuriya, 778 

et al., 2018) could reveal more heterogeneous dynamics within networks and provide stronger 779 

leverage for testing hypotheses about default mode (DMN) and multiple-demand (MDN) 780 

subsystem involvement; note that the 17 pre-defined functional networks used here were derived 781 

from resting-state parcellation and thus reflect intrinsic functional organization rather than task-782 

evoked subdivisions. At the same time, higher spatial granularity substantially increases model 783 
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dimensionality and can lead to unstable HMM estimation for naturalistic datasets of this length 784 

(451 TRs). Thus, the network-level approach represents a pragmatic and theoretically grounded 785 

compromise, with higher-resolution approaches remaining an important target for future work. 786 

Another limitation is that standard HMMs assume a geometric distribution of dwell 787 

times, which tends to bias results toward shorter state durations and more frequent switching 788 

between states. Hidden semi-Markov models (HSMMs) address this limitation by modeling 789 

dwell times explicitly, offering more accurate estimates of state persistence (Shappell et al., 790 

2019). Future work could also employ hierarchical nonparametric variants such as the 791 

hierarchical Dirichlet process HMM (HDP-HMM), which infers both the number of states and 792 

their duration properties directly from the data (Beal et al., 2002; Fox et al., 2011). These 793 

approaches would provide a more flexible framework for examining naturalistic brain dynamics 794 

beyond the assumptions of conventional HMMs. 795 

A further methodological limitation concerns model initialization. In this study, state 796 

means were initialized with random draws from a normal distribution rather than with more 797 

structured approaches such as k-means clustering, which can sometimes improve stability for 798 

high state counts. While our validation procedures (cross-validation, bootstrap uncertainty 799 

estimation, clustering across models) minimize the risk that results depend on any single 800 

initialization scheme, future work could compare alternative initialization strategies to assess 801 

their impact on reproducibility and model fit. 802 

In addition, aspects of our stimulus (e.g., its suspenseful narrative structure) and 803 

experimental design (e.g., contextual priming) introduce features that are unique to this study. 804 

Although the two broad categories of brain-state clusters we identified, DMN- and MDN-related, 805 

are likely to generalize across similar naturalistic story-listening paradigms, the finer-grained 806 

configuration of these states (e.g., relative activation amplitudes, involvement of sensory 807 

networks, or the emergence of sub-states) may vary across studies. Such variability likely 808 

reflects differences in narrative content, stimulus structure, and experimental design. Future work 809 

would benefit from a large-scale mega-analysis across existing story-listening fMRI datasets to 810 

characterize how DMN- and MDN-related brain states vary as a function of stimulus features 811 

and study design. 812 

Moreover, our neuroimaging and behavioral data were collected from separate participant 813 

samples. Although both datasets independently revealed context-sensitive effects, collecting 814 



31 

brain and behavioral responses from the same individuals would allow for tighter linkage 815 

between neural state dynamics and subjective narrative judgments, enabling more direct tests of 816 

brain–behavior relationships (Xu et al., 2025). We also note that the dependent variables in the 817 

brain and behavioral GLMMs differ: brain models use a binary indicator of state activation per 818 

subject at each timepoint, whereas behavioral models reflect the proportion of participants in 819 

each group who pressed a key at each moment. Because the scales and noise properties of these 820 

measures differ, brain–behavior comparisons should be interpreted as convergent rather than 821 

one-to-one correspondences. Furthermore, the binary nature of the brain dependent variable may 822 

limit sensitivity to detect graded context-dependent modulations; continuous measures of state 823 

expression could reveal subtler effects that discrete classification obscures. Future studies could 824 

address this by acquiring brain and behavioral data in the same individuals or by using 825 

hierarchical joint modeling with continuous state metrics. 826 

While we used part-of-speech (PoS) labels to characterize contextual differences in 827 

language input, these labels offer only a shallow approximation of meaning. PoS categories 828 

reflect syntactic structure rather than semantic content, and future work should incorporate richer 829 

linguistic features, such as word embeddings, semantic role labels, or discourse structure, to 830 

better capture the narrative elements that drive brain dynamics. 831 

Finally, using a single narrative stimulus may limit the generalizability of our findings to 832 

other narrative forms or genres. Future studies examining diverse narrative types, varying in 833 

emotional content, complexity, and modality, could test the breadth and boundaries of context 834 

effects on brain dynamics and behavioral engagement.  835 

Together, these extensions would refine our understanding of how context shapes neural 836 

and behavioral responses to narrative and support more general models of naturalistic cognition. 837 

 838 

Conclusion 839 

This study provides converging neural and behavioral evidence that contextual framing 840 

shapes how listeners process and interpret unfolding narrative information. Using brain-state 841 

modeling, we identified recurrent states that were expressed across both groups and engaged 842 

auditory, language, and default mode networks consistent with ongoing narrative integration, 843 

alongside additional states whose temporal expression varied with contextual priming and 844 

showed differentiated sensitivity to specific narrative features. These context-related differences 845 
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were modest in magnitude, as is typical for naturalistic fMRI data, but statistically credible and 846 

aligned with feature-dependent distinctions observed in the behavioral task. The behavioral 847 

findings similarly showed that character-related cues, particularly direct speech, influenced 848 

participants’ interpretive judgments in a context-dependent manner. Together, these results 849 

suggest that narrative context shapes comprehension not only retrospectively but also through 850 

subtle, moment-to-moment adjustments in how linguistic features influence large-scale brain 851 

dynamics. By integrating state-based neural modeling with time-resolved behavioral measures, 852 

this work provides an initial foundation for understanding how contextual framing interacts with 853 

narrative structure to guide ongoing cognitive processing. 854 

 855 

Data and Code Availability 856 

The Python code used for our analysis and visualization is available at 857 
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