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Statistical Decision Theory
F. Gregory Ashbya and Michael J. Wengerb

7.1 Introduction

In 2002, Estes referred to signal detection theory (SDT) as “the most tower-

ing achievement of basic psychological research in the last half century” (p.

15). SDT is, by far, the most dominant model in psychophysics, and its mul-

tidimensional generalization has become the default approach for defining

and studying perceptual interactions. The name “signal detection theory”

refers to applications of the theory to tasks in which only one stimulus di-

mension is relevant, and the most common version requires participants to

detect a signal embedded in noise. Tasks that require attention to more

than one stimulus dimension typically require a decision more complex than

simple detection – for example, the participant may be required to identify

the presented stimulus uniquely, or assign it to a predetermined category.

In such cases, the same statistical model is more appropriately called gen-

eral recognition theory (GRT). We refer to both approaches by the term

statistical decision theory.

This chapter reviews statistical decision theory, beginning with its origins,

laying out its foundations in one dimension and its extension to two or

more dimensions. We describe applications of the theory to identification

and classification tasks, to the perception of configurality and holism, to

the modeling of response times (RTs), and finally we consider extensions to

neuroscience. An overarching theme of this chapter is that statistical decision

theory provides a consistently evolving, general and powerful approach to

modeling decision processes involved in sensation, perception, and cognition.

a University of California, Santa Barbara, USA
b University of Oklahoma, USA
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7.2 Historical Precedents

Statistical decision theory emerged when two simple propositions were ap-

plied to a new experimental paradigm that eventually formed the foundation

of psychophysics and much of experimental psychology. The first of these is

the proposition that one can experience the qualia of a known stimulus (such

as light) even in the absence of that stimulus. Perhaps the most famous ex-

ample of this is the Helmholtz (1867) thought experiment on phosphenes:

mechanical pressure on the eye causes the subjective experience of patterns

of light even in a dark room.1 Similarly, one can fail to experience the qualia

of a known stimulus even when that stimulus is present (e.g., a light is on,

but may be too dim to see). It appears that thinking about such possibilities

was at the root of the classic two-alternative forced-choice design, and that

thoughts about these possibilities are evident in work by both Fechner and

Thurstone (Fechner, 1860; Link, 1994; Wixted, 2020).

The second of the two simple propositions is the idea that encoded psy-

chological information may be a combination of a fixed value and random

error. The formal notion of this possibility in human measurement can be

traced at least to the work of Gauss (Dunnington, Gray, & Dohse, 2004), and

the general notion of random variation in subjective human experience dates

at least to the work of Cattell (Fullerton & Cattell, 1892) and Thurstone

(Thurstone, 1927a, 1927b). However, the formal treatment of randomness

in support of decision-making, as it has come to be expressed in statistical

decision theory, emerged from the (at times contentious) debates that Fisher

had with Neyman and Pearson (Fisher, 1955; Neyman & Pearson, 1933). In

particular, Neyman and Pearson’s distinction between Type I and Type II

errors – corresponding to false alarms and misses, respectively – was offered

as a refinement to Fisher’s notion of a p-value, which itself had originally

been proposed as an objective, though informal index of the level of trust

in a null hypothesis (Lenhard, 2006).

The initial linking of these two simple propositions occurred in early work

on radar and sonar and other areas of electronics and electrical engineering.

It appears that the basic vocabulary of SDT – hits, misses, false alarms,

and correct rejections – emerged from the World War II need, for exam-

ple, to determine whether to drop a bomb or a depth charge on a possible

enemy submarine (Marcum, 1947). Likewise, as noted by Wixted (2020),

the idea that the probabilistic behavior of photographic film and television

tubes might provide a model for the human visual system had already been

1 Curiosity about phosphenes predates Helmholtz, as sketches of phosphenes can be found in
Newton’s notes (http://cudl.lib.cam.ac.uk/view/MS-ADD-0397).
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considered in electrical engineering (Rose, 1942, 1948). The explicit merging

of these ideas and their application to the analysis of both human behav-

ior and the performance of engineered systems appears to have occurred at

about the same time at MIT and the University of Michigan (Creelman,

2015; Peterson, Birdsall, & Fox, 1954; Peterson & Birdsall, 1953; Van Meter

& Middleton, 1954).

In each of these contexts, the canonical experiment includes trials in which

a stimulus or signal is or is not present and the observer or system is required

to respond that the signal is present or absent. This task inspired the name

signal detection theory, and almost all modern applications of SDT are either

to this task or to the logically equivalent two-stimulus identification task,

which we consider in detail in the next section. In fact, Link (1994) rightly

noted that the use of this canonical task goes back at least to Fechner’s

foundational work on psychophysics. As we will see, this simple experiment

provides a powerful and general framework for understanding how signals

are processed – either by biological or engineered systems.

To illustrate the power and generality of this accomplishment (and to re-

flect on Estes’ evaluation), we obtained rough estimates of the number of

publications that used SDT in audition and vision, in five-year increments

between 1955 and early 2020.2 We contrasted these data with the number

of Ph.D.s awarded in experimental, cognitive, and human factors psychol-

ogy, along with the number of Ph.D.s awarded in electrical, electronics, and

communications engineering for that same range of years.3

Figure 7.1a plots the cumulative number of publications in audition and

vision that include SDT, along with the number of Ph.D.s awarded in psy-

chology and engineering. This presentation is somewhat misleading, so Fig-

ure 7.1b plots the same data in terms of relative cumulative number (i.e.,

dividing the value of each data series at time t by the value at the starting

point, 1960). It becomes apparent that the increase in the use of SDT is not

simply due to an increase in the number of scientists who could potentially

use SDT. This powerfully underscores Estes’ estimate of SDT as a tower-

ing achievement. With this historical context in mind, we now consider the

details.

2 Searches were performed using Google Scholar. The search for publications in audition was
performed using “auditory OR audition OR perception ”signal detection theory” -vision
-visual” and the search in vision was performed using “vision OR visual OR perception
”signal detection theory” -auditory -audition.”

3 National Science Foundation, National Center for Science and Engineering Statistics, Survey
of Earned Doctorates.
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Figure 7.1 (a) Cumulative publications citing signal detection theory in au-
dition and vision, relative to cumulative PhDs awarded in sub-disciplines
of psychology and engineering, 1960-2020. (b) Relative increase in publi-
cations citing signal detection theory in audition and vision, and relative
increase in PhDs awarded in sub-disciplines of psychology and engineering,
1960-2020.

7.3 One Dimension: Signal Detection Theory

The most common application of SDT is to a two-stimulus identification task

– that is, a task with two stimuli and two uniquely identifying responses.4

On each trial, the observer’s task is to identify the single presented stimu-

lus by emitting the appropriate response. In the original applications, the

two stimuli were pure noise (N) and a signal of some type embedded in

4 See Macmillan and Creelman (2005) for an excellent comprehensive treatment of the
practicalities of using signal detection theory.
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Figure 7.2 The normal, equal-variance, SDT model.

noise (SN). The observer’s task was to indicate whether or not a signal was

presented by responding YES or NO.

The standard SDT model for this YES-NO detection task is illustrated

in Figure 7.2. The model assumes that performance in this task is based on

a single sensory value, denoted by X. As described earlier, a fundamental

assumption is that all sensations are inherently noisy, and thus X is a ran-

dom variable. In the YES-NO detection task where the stimuli are N and

SN, X represents sensory magnitude – for example, loudness with auditory

stimuli, or brightness with visual stimuli. The probability density function

(pdf) describing the distribution of sensory values on N trials is denoted

by fN(x) and fSN(x) describes this distribution on SN trials. In Figure 7.2,

both of these distributions are normal with the same variance. This normal,

equal-variance model is the most commonly used model in signal detection

analysis, but any distributions are possible.

Another fundamental assumption of SDT is that there is no fixed thresh-

old on sensation that determines whether or not an observer will detect a

signal. Instead the observer is assumed to set a criterion value, denoted by

XC, and then use the following decision rule:

Respond YES if X > XC; Otherwise respond NO. (7.1)

Unlike the classical notion of a fixed threshold, the SDT criterion is under

the observer’s control. The observer is assumed to choose the value of XC in

a way that is typically assumed to depend on the costs of the two types of

errors (i.e., misses and false alarms), the benefits of the two types of correct

responses (i.e., hits and correct rejections), and on the N and SN base rates.
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Thus, in SDT, control of the criterion is relegated to decision processes,

whereas the classical account assumed a fixed threshold for sensation that

was a feature of sensory systems.

The response accuracy data are typically reported in a confusion matrix

that includes a row for every stimulus and a column for each response. The

entry in row i and column j is the number of stimulus i trials for which the

observer responded j. When there are only two stimuli and two responses,

then the confusion matrix is 2× 2. The entries in row i add to the number

of stimulus i trials in the experiment, and therefore do not depend on the

data. As a result, each row includes only one degree of freedom (i.e., only

one independent data value), so no information is lost if only one entry in

each row is reported. The standard is to report the entries in the column

associated with the YES response. These are used to estimate the probability

of a false alarm (i.e., responding YES on N trials) and the probability of a

hit (responding YES on SN trials). From Figure 7.2 it is easily seen that

P (FA) = 1− FN(XC), (7.2)

where FN(XC) is the cumulative distribution function of the N distribution,

evaluated at XC. Similarly,

P (H) = 1− FSN(XC). (7.3)

In any two-stimulus identification task, the data have two degrees of free-

dom [e.g., P (H) and P (FA)]. The SDT model shown in Figure 7.2 has two

free parameters – the location of the response criterion, denoted by XC,

and the distance between the means of the N and SN distributions in stan-

dard deviation units, denoted by d′. If the normal, equal-variance model is

assumed then XC and d′ can be estimated by inverting Eqs. 7.2 and 7.3.

Specifically, XC is estimated by inverting inverting Eq. 7.2 to produce

X̂C = Φ−1
[
1− P̂ (FA)

]
, (7.4)

where Φ−1 is the inverse-Z transformation (i.e., Φ−1(p) is the Z value that

has area to the left equal to p) and P̂ (FA) is the observed proportion of false

alarms. Note from Figure 7.2 that d′ equals the standardized distance from

the mean of the N distribution to XC (i.e., XC) plus the distance from XC

to the mean of the SN distribution. Therefore,

d̂′ = X̂C − Φ−1
[
1− P̂ (H)

]
. (7.5)

Note also that d′ is the standardized distance between the means (i.e., the

mean difference divided by the common standard deviation). As a result,
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the common variance is not identifiable, in the sense that any combination

of mean differences and standard deviations that combine to produce the

same d′ will make identical predictions. As a result, we can set the common

standard deviation to 1 without loss of generality.

The two degrees of freedom in the data can be used to estimate XC and

d′, but then there are no data left to test the model’s goodness-of-fit. Given

that the model can perfectly fit any observed values of P (H) and P (FA),

then an obvious question is why fit this model to two-stimulus identification

data? The most common reason, which has been confirmed in thousands of

applications, is that SDT is highly successful at separating perceptual and

decisional effects. In particular, manipulations that should only affect sen-

sory magnitude – such as increasing or decreasing signal intensity – mostly

cause d′ to change but not XC, whereas manipulations that should only af-

fect the observer’s decision about how to act on their sensory experience –

such as changing the costs and benefits associated with the various possible

outcomes – mostly cause XC to change but not d′. In contrast, any of these

changes are likely to cause accuracy to change, so without SDT, it is gen-

erally impossible to know whether a change in accuracy is due to a change

in perception or a change in decision strategy. SDT offers a highly effective

method for solving this problem.

7.3.1 The receiver operating characteristic

A standard way to summarize the results of a YES-NO detection experiment

is via the receiver operating characteristic (ROC), which plots P (H) (on the

ordinate) against the probability of a false alarm P (FA) (on the abscissa).

The standard approach is to plot data from a variety of conditions that cause

XC to change, but not d′. Examples are shown in Figure 7.3. Because each

point on any one curve is associated with a different value of XC but the

same value of d′, these are iso-sensitivity contours. Technically, other kinds of

curves could be plotted in the same space (e.g., iso-bias curves), but because

iso-sensitivity contours are so common, this is almost always what is meant

by an ROC curve. For any positive value of d′, the iso-sensitivity curve must

fall completely in the upper left half of the plot. The main diagonal, in

which P (H) = P (FA) (denoted by the dotted line) corresponds to d′ = 0.

Any curve (or point) below this diagonal indicates a negative d′. Since pure

guessing should produce d′ = 0, a (significantly) negative d′ should only

occur because of participant deception or because the observer is using a

highly suboptimal decision rule.

There are several popular experimental designs that are used to estimate
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Figure 7.3 An ROC showing iso-sensitivity contours for three different val-
ues of d′.

iso-sensitivity curves. One approach is to include a variety of conditions

in which the stimulus characteristics remain fixed, but different payoffs are

used to encourage participants to change their criterion for responding YES.

Another approach, which uses the same N and SN trials but is experimen-

tally more efficient, is to ask observers to rate the intensity of the signal on

each trial. Given an r-point rating scale, r − 1 points on an iso-sensitivity

curve can be estimated by assuming that observers construct r − 1 crite-

ria, denoted by X1, X2, ..., Xr−1, and respond with rating i if and only if

Xi−1 < X ≤ Xi, where X0 = −∞ and Xr =∞. The ith point on the curve

is then estimated via

P̂ (FAi) = P̂ (R > i|N) (7.6)

and

P̂ (Hi) = P̂ (R > i|SN), (7.7)

where R is the observer’s rating.

The optimal decision strategy in any two-stimulus identification task de-
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pends on the likelihood ratio

L(x) =
fSN(x)

fN(x)
. (7.8)

In particular, if the goal is to maximize the probability of a correct decision,

then the optimal decision rule is to

Respond YES if L(X) >
P (N)

P (SN)
; Otherwise respond NO, (7.9)

where P (N) and P (SN) are the probabilities that N and SN, respectively

are presented on each trial (i.e., the stimulus base rates). Thus, if SN and N

are equally likely, then the optimal strategy is to respond YES if the current

sensory magnitude is more likely to be a sample from the SN distribution

than from the N distribution. If the sample is more likely from the N distri-

bution, then the NO response should be given. This is the scenario in Figure

7.2. If there are more N trials than SN trials, then the Eq. 7.9 decision rule

indicates that stronger evidence is required before responding YES.

In some applications, the different types of errors may incur different

penalties and the different types of correct decisions may bring different

benefits. Let VI,J denote the value (either positive or negative) of responding

J (e.g., YES or NO) on trials when stimulus I was presented (e.g., SN or

N). Then the decision rule that maximizes value is (e.g., Green and Swets

1966)

Respond YES if L(X) >
(VN,NO + VN,YES)P (N)

(VSN,YES + VSN,NO)P (SN)
; Otherwise respond NO.

(7.10)

Note that according to this rule, if the only change in the outcomes is to

increase the reward for a correct rejection – that is to increase the (positive)

value of VN,NO – then the observer should increase the criterion, since this

will ensure more NO responses. In contrast, if the only change is to increase

the penalty for a false alarm – that is to decrease the (negative) value of

VN,YES – then the observer should decrease the criterion, since this will

ensure fewer YES responses.

Because of the important role that the likelihood ratio plays in optimal

responding, the Eq. 7.1 decision rule is sometimes reformulated in terms of

the likelihood ratio:

Respond YES if L(X) > β; Otherwise respond NO. (7.11)

In this version of the theory, β can be interpreted as the value of the likeli-
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hood ratio at the criterion XC – that is,

β = L(XC) =
fSN(XC)

fN(XC)
. (7.12)

As with XC, the criterion β is assumed to be under the observer’s control.

Setting β = P (N)/P (SN) maximizes accuracy (i.e., see Eq. 7.9), but the

observer is free to set β at some other value. For example, the optimal value

of β must be learned, and during this learning process, suboptimal values of

β are to be expected.

Note that the Eq. 7.1 and 7.11 decision rules are equivalent if the likelihood

ratio increases monotonically with X. The Eq. 7.1 decision rule responds NO

to any X < XC and YES to any X > XC, but if the likelihood ratio increases

monotonically with X, then the likelihood ratio is less than β for any X <

XC and greater than β for any X > XC, so under these conditions, the two

decision rules always give the same response. This raises the obvious question

of how one could tell from empirical data whether the likelihood ratio of the

SN and N sensory distributions is or is not monotonically increasing with

sensory magnitude. The key to answering this question is provided by the

following result.

Theorem 7.1 For any differentiable ROC curve, the likelihood ratio

L(x) =
fSN(x)

fN(x)
(7.13)

is a monotonically increasing function of x (i.e., sensory magnitude) if and

only if the ROC is concave down.

Proof By definition, a differentiable function is concave down if and only

if its slope is monotonically decreasing. The slope of the ROC curve is

dP (H)

dP (FA)
=
d[1− FSN(x)]

d[1− FN(x)]
=
fSN(x)

fN(x)
= L(x). (7.14)

Therefore, the slope of the ROC curve equals the likelihood ratio, which

proves the theorem.

If the likelihood ratio increases monotonically with sensory magnitude,

then the more intense the sensation, the greater the confidence that a signal

was presented (i.e., SN). This makes sense, so we would expect empirical

ROCs to be concave down, and in fact, the evidence strongly supports this

prediction (Green & Swets, 1966). In other words, the empirical evidence

supports the assumption that the likelihood ratio of the SN and N sensory
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distributions increases monotonically with sensory magnitude. These data

rule out many alternative models of the N and SN distributions in which the

likelihood ratio is not monotonic. Perhaps the best-known model in this class

is the normal, unequal-variance model, which is illustrated in Figure 7.4. The

top panel shows a N distribution with small variance and two alternative SN

distributions, both with larger variances. The bottom panel shows the ROC

curves predicted by this model under the assumption that the observer uses

the Eq. 7.1 decision rule.

Figure 7.4 displays several features worth noting. First, the likelihood ratio

is not monotonically increasing. Note that, as expected, the SN distribution

has higher likelihood for large sensory magnitudes, but nonintuitively, it

also has higher likelihood for small magnitudes (i.e., magnitudes below the

mean of the N distribution). Therefore, as sensory magnitude increases,

the likelihood ratio is initially large (i.e., greater than 1), is then small

(less than 1), and finally becomes large again (greater than 1). Because of

this non-monotonicity, the Eq. 7.1 decision rule is not optimal. Instead, the

optimal strategy (i.e., described by Eq. 7.11) is to respond YES to small and

large sensory magnitudes (when L(X) > 1) and NO only for magnitudes of

intermediate value (when L(X) < 1).

Second, note that the ROC curves shown in Figure 7.4B are not con-

cave down. Instead, the upper right portion of both curves displays a pro-

nounced violation of concavity. Furthermore, note that both ROCs dip below

the main diagonal, which as mentioned earlier, reflects suboptimal decision

making. This is because the predicted ROC curves shown in Figure 7.4 were

generated under the assumption that the observer is using the Eq. 7.1 deci-

sion rule, which is highly suboptimal for small sensory magnitudes.

Third, neither ROC curve in Figure 7.4B is symmetric around the negative

diagonal. In fact, many empirical ROCs, albeit concave down, are skewed in

this same manner (Green & Swets, 1966), and this is the main reason that

the normal, unequal-variance model is popular. In other words, this model

accounts for the many reports that empirical ROC curves are skewed, but it

is inconsistent with the ubiquitous finding that empirical ROCs are concave

down.

Finally, note that the standard measure of sensitivity, namely d′, is not

defined in this model. Traditionally, d′ is defined as the distance between

the N and SN means divided by the common standard deviation. In the

normal, unequal-variance model, however, there is no common standard de-

viation, so the traditional d′ is undefined. This is also a common problem

with multivariate extensions of SDT.

In summary, empirical ROC curves are concave down and are either ap-
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Figure 7.4 (A) The normal, unequal-variance model of SDT. The N distri-
bution is normal with mean 0 and variance 1. Two alternative SN distri-
butions are shown. The pdf in black is normal with mean 1.5 and standard
deviation 2, whereas the pdf in gray is normal with mean 1 and standard
deviation 3. (B) The ROC showing the iso-sensitivity contours predicted
by the two models shown in panel A. Both curves assume the N distribu-
tion is normal with mean 0 and variance 1. The black curve assumes the
SN distribution has mean 1.5 and standard deviation 2, whereas the gray
curve assumes the SN distribution has mean 1 and standard deviation 3.

proximately symmetric about the negative diagonal or skewed in the direc-

tion shown in Figure 7.4. The normal, equal-variance model accounts for

symmetric ROCs that are concave down, but as it turns out, so do many
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other models. Killeen and Taylor (2004) describe the necessary conditions on

the N and SN distributions for a SDT model to predict symmetric ROCs.5

In addition, many SDT models account for skewed ROCs that are concave

down. Included in this list, for example, are models in which the N and SN

distributions are both exponential or Rayleigh distributions.

7.3.2 Application to other tasks

Although the original applications of SDT in psychology were to YES-NO

detection tasks, the theory has also been applied to a variety of other tasks.

First, applications to any two-stimulus, identification task are identical ex-

cept for re-labeling of the stimuli and responses. For example, suppose the

stimuli are “A” and “B” and their identifying responses are “a” and “b”. If

A and B are different stimuli then they must differ in some way. If they differ

on some quantitative (i.e., prothetic) dimension, then associate the stimulus

with the smaller value with N and its associated response with NO. If they

differ on some qualitative (i.e., metathetic) dimension, then the association

of A and B to N and SN is arbitrary. Either way, once the associations are

complete, the SDT model is identical to the model for the YES-NO detection

task.

In addition, SDT has been applied to a variety of different types of exper-

iments that include multiple stimuli. The most widely used is probably the

two sample, two-alternative forced-choice task. On each trial, two stimuli

are presented – one N and one SN (or one A and one B), and the observer’s

task is to identify which one is SN (or e.g., B). SDT assumes that exposure

to the two stimuli produces two sensory magnitudes – one that is a random

sample from the N distribution and one randomly sampled from the SN dis-

tribution – and that the observer identifies the larger of these as SN. A well

known result, described in the following proposition is that the probability

correct in this task equals the area under the ROC that results from the

YES-NO detection task (Green, 1964; Green & Swets, 1966).

Theorem 7.2 SDT predicts that the area under the ROC curve (AUC)

equals the probability correct in a two-sample, two-alternative forced-choice

task.

Proof If we let w = P (FA) and define the function g such that g(w) = P (H)

5 Specifically, the ROC is symmetric if the SN cumulative distribution function is generated by
applying a strictly decreasing involution to the survivor function of the N distribution
(Killeen & Taylor, 2004). An involution is a transformation that is its own inverse. So for
example, if T is an involution then T{T [1− F (x)]} = 1− F (x).
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then

AUC =

∫ 1

0
g(w)dw

=

∫ 1

0
[1− FSN(XC)] d [1− FN(XC)]

=

∫ −∞
+∞

[1− FSN(XC)]
d [1− FN(XC)]

dXC
dXC (7.15)

=

∫ −∞
+∞

[1− FSN(XC)] [−fN (XC)] dXC

=

∫ +∞

−∞
fN (XC) [1− FSN(XC)] dXC (7.16)

= P (XSN > XN).

The limits in Eq. 7.15 are from +∞ to −∞ because P (FA) = 0 when

XC = +∞ and P (FA) = 1 when XC = −∞. The last equality holds because

the integrand in Eq. 7.16 gives the likelihood that the sample from the N

distribution equals XC and the sample from the SN distribution is greater

than this value.

AUC is a widely used measure of bias-free classifier performance. For

example, compared to d′, it has a number of distinct advantages. Perhaps

the most important is that AUC is a nonparametric measure that makes no

assumptions about the underlying N and SN distributions. In contrast, d′ is

unambiguously defined only when the N and SN distributions have variances

that are equal.

The two-sample, two-alternative forced-choice task is closely related to

multiple-look experiments, in which the observer is presented with r inde-

pendent samples of either N or SN on each trial (e.g., Green and Swets

1966). As in the YES-NO detection task, the observer’s task is to respond

YES or NO, depending on whether the r samples were all SNs or Ns. An-

other well-known result relates the performance of an ideal observer in the

multiple-look experiment to performance in the YES-NO detection task.

Theorem 7.3 Suppose an ideal observer with perfect memory participates

in a multiple-look experiment in which r independent samples of N or SN

are presented on each trial. Denote the d′ of this observer in the YES-NO

detection task as d′YN and the d′ in the multiple-look experiment as d′r. Then
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the normal, equal-variance model predicts that

d′r =
√
r d′YN. (7.17)

Proof In the multiple-look experiment, each of the r N or SN samples

generates its own sensory value. Denote the ith of these by xi, and the col-

lection of all r by the vector x′ = [x1, x2, ..., xr]. Under the assumptions of

the proposition, note that on N trials, x has an r-dimensional multivari-

ate Z distribution, and on SN trials it has an r-dimensional multivariate

normal distribution with mean vector µ′ = [d′YN, d
′
YN, ..., d

′
YN] and variance-

covariance matrix equal to the identity. Since the variance equals 1 in all

directions, the standardized distance between the N and SN means equals

d′r =
√

(d′YN − 0)2 + (d′YN − 0)2 + ...+ (d′YN − 0)2

=
√
r d′ 2YN

=
√
r d′YN.

Estimation of d′r for human observers shows that it increases with r, but

more slowly than predicted by Eq. 7.17 (Green & Swets, 1966). The most

likely reason is that human observers do not have perfect memory, and thus

are unable to take full advantage of all r stimulus samples.

7.3.3 Extensions

Marr (1982) famously proposed the hierarchical classification of mathemat-

ical models as computational, algorithmic, or implementational. In mathe-

matical psychology, Marr’s algorithmic-level models are often referred to as

process models. SDT provides a computational-level description of decision

making, since it makes no attempt to describe the underlying algorithms or

perceptual or cognitive processes that mediate decision making. During the

1970’s, great efforts were devoted to developing process models of decision

making, and currently there are several different process interpretations of

SDT. Perhaps the most popular is provided by the drift-diffusion model

(Link & Heath, 1975; Ratcliff, 1978), which is illustrated in Figure 7.5. The

idea is that instead of representing the sensory effects of the stimulus on

each trial with a single random sample from the N or SN distributions, as in

classical SDT, the observer is assumed to repeatedly sample the presented
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Figure 7.5 (a) The normal, equal-variance model in which d′ = 1. (b) A
drift-diffusion model in which the drift is determined by random sampling
from the N or SN distribution. Samples larger than XC push the drift up,
whereas samples smaller than XC push it down. Sample paths are shown
for six hypothetical trials – three SN trials (in black) and three N trials (in
gray).

stimulus as long as it is available. Each sample X is compared to the cri-

terion XC by computing the difference X − XC, and these differences are

accumulated. The sampling and accumulating processes continue until the

resulting sum (or integral) first exceeds an upper criterion A or falls below

a lower criterion -B (i.e., see Figure 7.5b). Sampling terminates with a YES

response in the former case, and with a NO response in the latter case.

This version of the drift-diffusion model includes the d′ andXC parameters

of SDT plus the response criteria A and B. However, in addition to predicting

accuracy data, the diffusion model also predicts RTs because closed-form

expressions exist for first passage times (i.e., time when the process first



18 Statistical Decision Theory

crosses a response threshold). As a result, there are more data to fit, and

therefore more degrees of freedom available for parameter estimation. Several

computer packages are available that automate this parameter estimation

process (Vandekerckhove & Tuerlinckx, 2007; Wiecki, Sofer, & Frank, 2013).

Note that the drift-diffusion model can represent a response bias in two

different ways. One is to place XC at some point where the likelihood ra-

tio is different from 1 (assuming equal base rates and payoffs), and another

is to set A 6= B. Of course, the classical SDT model can account for bias

only by adjusting XC. Consider a condition in which the observer adopts a

conservative criterion and therefore is biased towards responding NO. Thus,

according to SDT, XC is set at some point where the likelihood ratio is

greater than 1 (i.e, β > 1). Now consider trials in that condition where the

sensory value falls at some point where the likelihood ratio is greater than

1 but less than β. According to SDT, the observer will respond NO on this

trial, even though the evidence objectively favors a YES response (because

the likelihood ratio is greater than 1). Balakrishnan (1999) presented evi-

dence against this prediction. In particular, he described results of several

experiments that suggested that observers always respond with the alterna-

tive that is most likely to be correct, even if they are biased towards one

response and against the other. Unfortunately, there is no way to represent

this state of affairs in classical SDT. In contrast, the drift-diffusion model

offers an elegant resolution to this apparent paradox. Balakrishnan’s results

suggest that XC is set at the point for which β = 1 in all applications (e.g.,

as in Figure 7.5). A bias towards a NO response can then be implemented

by setting A > B. Thus, according to this account, the evidence is always

judged objectively. Evidence that objectively favors SN always makes a YES

response more likely and evidence that favors N always makes a NO response

more likely. Therefore, a bias towards responding NO does not color the ob-

server’s view of the world. Instead, the observer is simply willing to stop

and respond NO on the basis of less overall evidence then they are willing

to stop and respond YES. This more reasonable view of response bias is

among the greatest advantages that the drift-diffusion model provides over

and above classical SDT.

7.4 Two or More Dimensions: General Recognition Theory

SDT is useful for understanding behavior in any task in which the observer’s

decision is based on a single sensory dimension. Most real-world stimuli vary

on multiple dimensions, however, and many perceptual decisions require

attention to more than one dimension. For example, there is no single sensory
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dimension that allows accurate face identification. For this reason, there is

obvious value in extending SDT to multiple stimulus dimensions.

At first glance, this seems like a straightforward exercise. An obvious

place to begin is by replacing the unidimensional probability distributions

that are used to represent the sensory effects of a stimulus in SDT with

multivariate probability distributions. But complications quickly arise even

in the case of two sensory dimensions. First, some sensory dimensions inter-

act, and the perceptual literature includes a bewildering number of terms

that have been proposed to describe these interactions, including perceptual

independence, separability, integrality, holism, configurality, sampling inde-

pendence, dimensional orthogonality, and performance parity. How should

these different types of sensory interactions be modeled? And how are they

all related to each other? Second, how should the decision process be mod-

eled? In SDT, the sensory space is a line, and in two-alternative tasks, the

observer is typically assumed to divide the line into two regions – one as-

sociated with each response alternative. Fortunately, there are only a few

ways to do this. In fact, a standard lecture in courses on SDT is to show

that almost any decision strategy is equivalent to the Eq. 7.1 decision rule.

However, if there are two sensory dimensions, then the sensory space is a

plane, and there are an infinite number of qualitatively different ways to

divide a plane into two regions.

Not surprisingly, the first attempt to generalize SDT to multiple stimulus

dimensions, by Tanner in 1956, ignored most of these issues. Specifically,

Tanner (1956) allowed for only one simple type of perceptual interaction

and he assumed that observers always use an optimal decision rule. Despite

these simplifying assumptions, Tanner’s contribution was significant because

he was the first to consider multiple sensory dimensions. Even so, it was an-

other 30 years before a more useful multidimensional version of SDT was

developed. During the late 1980s, a flurry of articles significantly generalized

Tanner’s approach. The title of Tanner’s (1956) article was “Theory of recog-

nition.” To pay homage to his contributions, Ashby and Townsend (1986)

called their more general approach, general recognition theory (GRT). GRT

quickly developed: Ashby and Townsend (1986) proposed a GRT-based the-

ory of perceptual interactions, Ashby and Gott (1988) studied decision rules

in multidimensional perceptual spaces, and Ashby and Perrin (1988) used

GRT to develop a unified theory of similarity and identification.
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7.4.1 Identification versus categorization

GRT has been applied to a wide variety of tasks. But two tasks – identifi-

cation and categorization – have emerged as the most popular, and which

one is used depends on the goals of the research. In particular, identifica-

tion tasks are used if the primary goal is to study perceptual representations,

whereas categorization tasks are used if the primary goal is to study decision

processes.

In identification tasks, there are M stimuli and M unique identifying

responses. On each trial, one of the stimuli is presented, and the observer’s

task is to identify the stimulus by emitting the appropriate response. The

data are collected in an M ×M confusion matrix, in which the entry in row

i and column j is the frequency with which the observer gave response j

on trials when stimulus i was presented. Because the number of stimulus

presentations is known, there is one constraint on each row of the confusion

matrix. As a result, every confusion matrix has M × (M − 1) degrees of

freedom. Note that the YES-NO detection task is a special case of this

identification task in which M = 2 and the two stimuli to be identified are

N and SN.

The most useful information in identification tasks is in the confusions that

observers make, so experimental conditions are selected to guarantee errors.

This is usually accomplished by using highly similar stimuli, but sometimes

brief exposure durations or noise masks are used instead. Anytime one stim-

ulus is confused for another, an error occurs. Therefore, misidentifications

are most commonly made because of errors in perception, rather than be-

cause of a suboptimal decision strategy. As a result, identification tasks are a

good choice if the goal is to study perceptual representations. Of course, ob-

servers can also make errors if they fail to remember which response button

is associated with which stimulus. Therefore, feedback is usually provided to

help observers learn these associations, and some training trials are included

that are excluded from the data analysis.

In the most widely used identification tasks, the stimuli are constructed

by factorially combining a small number of discrete values on two sensory

dimensions. The most common choice is to factorially combine two values

on two dimensions to create a total of four stimuli. Each confusion matrix

collected from such a 2 × 2 factorial design includes 12 degrees of freedom

(4×3) for parameter estimation and model testing. If we call the two stimulus

dimensions A and B, then we can denote the stimulus in which dimension

or component A is at level i and component B is at level j by AiBj , and the

corresponding response by aibj .
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Categorization experiments are identical to identification experiments, ex-

cept they include fewer response alternatives than stimuli. In a categoriza-

tion experiment, one ofN stimuli is presented on each trial and the observer’s

task is to assign it to one of M categories, where M < N . The confusion ma-

trix is therefore N×M , and it contains N×(M−1) degrees of freedom. The

most common choice is M = 2. Note that in this case, the data include N

degrees of freedom. In most cases the categories are novel, in the sense that

they were created specifically to use in the experiment. As a result, accurate

responding requires the observer to learn the structure of these categories,

most commonly via trial-by-trial feedback provided by the experimenter.

Errors are most likely to occur because the observer is using a suboptimal

strategy to assign stimuli to categories. Misperceptions are just as likely as

in identification experiments, but they tend to have little effect on accuracy.

For example, confusing one stimulus with another in the same category does

not change the response, and therefore has no observable effect on behavior.

For these reasons, categorization experiments are a good choice if the goal

is to study decision processes.

7.4.2 Modeling perceptual and decisional interactions

One of the foundational motivations for the generalization of SDT to mul-

tiple dimensions was to model perceptual interactions in a theoretically rig-

orous way (Ashby & Townsend, 1986). For much of the middle portion of

the twentieth century, this issue was addressed almost completely in terms

of operational definitions (e.g., Garner and Felfoldy 1970; Garner, Hake,

and Eriksen 1956; Garner and Morton 1969).6 Ashby and Townsend (1986)

created GRT principally as a theoretical structure to define perceptual inde-

pendence, perceptual separability, and decisional separability. These defini-

tions are now standard in the field. They also showed how these theoretical

primitives relate to a variety of other independence-related terms that were

popular in the literature.

A GRT model of the 2× 2 factorial identification experiment is shown in

Figure 7.6. The ellipses denote the contours of equal likelihood for the four

bivariate perceptual distributions, where fij(x1, x2) denotes the perceptual

distribution associated with stimulus AiBj . Note that the marginal distri-

butions associated with this stimulus are denoted by gij(x1) and gij(x2) for

dimensions x1 and x2, respectively. Also shown are the decision bounds that

divide the perceptual plane into four response regions.

6 Use of the term operational is not to be confused here with the logic of operationism or
converging operations (Bridgman, 1945; Von Der Heide, Wenger, Bittner, & Fitousi, 2018).
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Figure 7.6 A GRT model of the 2 × 2 factorial identification experiment.
The ellipses denote the contours of equal likelihood for the four bivariate
perceptual distributions.

According to GRT, stimulus components A and B satisfy perceptual inde-

pendence in stimulus AiBj if and only if the perceived value of component A

is statistically independent of the perceived value of component B on trials

when stimulus AiBj is presented. More specifically, perceptual independence

of components A and B holds in stimulus AiBj if and only if

fij(x1, x2) = gij(x1)gij(x2), (7.18)

for all values of x1 and x2. If perceptual independence is violated, then

components A and B are perceived dependently.

Note that perceptual independence is a property of a single stimulus, in the

sense, for example, that perceptual independence could hold for one stimulus

and be violated for all others. In the Figure 7.6 example, the distributions are

all bivariate normal, so independence is equivalent to zero correlation. Note

that perceptual independence appears to be satisfied in all stimuli except
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A2B1, which displays a positive correlation between perceived values of the

A and B stimulus components.

Component A is perceptually separable from component B if the observer’s

perception of A does not change when the level of B is varied. In other words,

if components A and B are perceptually separable, then it is easy to attend

to one and ignore the other. If this is impossible – that is, if the perception of

A changes when B changes, then component A is perceptually integral with

component B. Classic separable dimensions are color and shape, whereas

classic integral dimensions are the saturation and brightness of a color patch.

In GRT, all information about the perception of component A on trials when

stimulus AiBj is presented is contained in the marginal distribution gij(x1).

Therefore, component A is perceptually separable from B if and only if

g11(x1) = g12(x1), and g21(x1) = g22(x1), for all values of x1. (7.19)

Equation 7.19 guarantees that the perception of component A1 is the same

regardless of whether it appears with B1 or B2, and that the same invariance

holds for component A2. In the Figure 7.6 example, note that component

A is perceptually separable from component B, but component B is not

perceptually separable from A. In particular, changing the level of B does

not change the perception of A, but increasing the level of A from A1 to A2

increases the perceived value of component B. Note that unlike perceptual

independence, perceptual separability is a property of multiple stimuli (i.e.,

all that share a common value on one stimulus dimension).

Finally, decisional seprability holds on dimension x1 if the decision about

whether component A is at level 1 or level 2 does not depend on the perceived

value of component B. Mathematically, this condition holds if and only if the

observer uses the following decision rule to determine the level of component

A:

The level of component A is 1 if X1 ≤ X1; Otherwise the level is 2,

(7.20)

for some constant criterion X1. This decision rule is equivalent to using a

decision bound on dimension x1 that is parallel to the x2 axis (and therefore

orthogonal to the x1 axis). In the Figure 7.6 example, note that decisional

separability holds on dimension x1, but not on dimension x2.

GRT has also been used successfully to formalize and study the notion

of holistic or configural perception or processing (e.g., see discussions in

Piepers and Robbins 2012; Richler and Gauthier 2014). GRT was first used

to model the potential perceptual and decisional interactions that constitute

holistic or configural perception by O’Toole, Wenger, and Townsend (2001),
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and it was first applied to the holistic or configural perception of faces by

Wenger and Ingvalson (2002, 2003). More recently, Townsend and Wenger

(2015) used GRT to propose a set of working axioms for holistic or configural

perception.

As an example of how GRT has been used to study holistic processing,

consider face perception, and more specifically, the composite face effect

(Young, Hellawell, & Hay, 1987), which is frequently cited as a hallmark

of holistic perception (Murphy, Gray, & Cook, 2017). The composite face

illusion occurs in tasks where observers are presented with an image of a

face, divided into top and bottom portions roughly at the nose. Observers

are asked to identify either the top or bottom half while ignoring the other

half. The top and bottom portions can be drawn from either the same or

different faces, the faces can be either familiar (e.g., famous) or unfamiliar,

and the two halves can be either aligned or misaligned. The composite face

effect is that identification of one half is impaired when the top and bottom

halves are from different faces, and this impairment is greatest when the two

halves are from different familiar identities.

The first step in modeling the composite face effect with GRT is to rep-

resent the space of perceptual evidence supporting identification of the two

halves. For simplicity, consider the simplest case in which the top and bot-

tom halves are always aligned. Let component A denote the top half face

and component B denote the bottom half, with the subscript denoting the

identity of the face. So in stimuli A1B1 and A2B2, the top and bottom halves

are from the same face, whereas in stimuli A1B2 and A2B1, the two halves

are from different faces.

The next step is to construct a null model that does not display any type

of holism or configurality. We do this by assuming perceptual independence

for all stimuli, perceptual and decisional separability on both dimensions,

and that all variances are equal. In this model, which is illustrated in Figure

7.7a, the identity of the top half of the stimulus does not affect the perceptual

representation or the decision made about the bottom half.

The final step is to build a model that assumes holistic perception when

the top and bottom halves are from the same face, but not when they mis-

match. There are several ways to do this. One is to assume a positive per-

ceptual dependence when the two halves match and a negative dependence

when they mismatch. This model, which is illustrated in Figure 7.7b, cor-

responds to the type of within-stimulus relationships that are implied in

the vernacular use of holism, configurality, or Gestalt (O’Toole et al., 2001;

Townsend & Wenger, 2015). A second way is to change the marginal means

of the distributions such that confusability increases when the bottom and
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Figure 7.7 Alternative GRT models of the holism or configurality thought
to underlie the composite face effect: (a) lack of holism or configurality,
(b) positive perceptual dependencies when the halves match and negative
perceptual dependencies when they mismatch, (c) shifting the perceptual
means to model increased accuracy when the halves match and decreased
accuracy when they mismatch, (d) accounting for increased accuracy when
the halves match by shifting the decision bounds.

top are mismatched and decreases when they are matched (Figure 7.7c). The

same effect could be obtained by the third possible way of modeling holism:

by shifting the decision bounds (Figure 7.7d). Of course, these possibilities

could also be combined in a variety of ways.

Two significant points have been made by applying GRT to the issue of

holism. The first is that, just as there are varieties of independence in per-
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ception (Ashby & Townsend, 1986), there are a variety of ways to obtain

patterns of data from which one can infer holism or configurality. The second

is that analysis of a task by way of GRT can provide important insights into

the extent to which the task is capable of testing a hypothesis. For exam-

ple, GRT simulations reported by Richler, Gauthier, Wenger, and Palmeri

(2008) demonstrated that the standard method of testing the composite face

effect (see discussions in Richler and Gauthier 2013; Rossion 2013) does not

provide data that would allow for testing the strong hypothesis that holism

is a within-stimulus effect.

7.4.3 Applications to categorization tasks

In principle, the application of GRT to categorization tasks is the same as

its application to identification. In both cases, the data are summarized in

a confusion matrix, and the primary focus is on the pattern of errors made

by observers. One important statistical difference however, is that, for the

same number of stimuli, categorization data have fewer degrees of freedom –

often far fewer. For example, the most common categorization experiments

include two categories. Therefore, withM stimuli, an identification confusion

matrix includes M × (M − 1) degrees of freedom and the corresponding

categorization confusion matrix includes only M degrees of freedom (i.e.,

since the confusion matrix has order M × 2). Because the data include

fewer degrees of freedom, GRT applications to categorization tasks include

simplifying assumptions that reduce the number of free parameters, relative

to GRT applications to identification data.

In fact, when applied to categorization data, the most common assumption

is that all perceptual representations are multivariate normally distributed

with known means and with variance-covariance matrix equal to σ2I, where

σ2 is the common noise variance on each dimension and I is the identity

matrix. Thus, only one free parameter is typically assigned to model all

perceptual representations (i.e., σ2), and all other parameters are used to

model decision bounds. This choice reflects the assumption that in catego-

rization experiments, errors are more likely caused by suboptimal decision

strategies than by faulty perception. Allocating the lion’s share of param-

eters to the decision bounds provides the best opportunity to characterize

these suboptimalities.

The mean of each perceptual distribution describes the mean perceived

value of each stimulus. In some cases, these could come from previous multi-

dimensional scaling or psychophysical modeling of the stimuli. For example,

in the case of sine-wave gratings (such as Gabor patches) that vary in spa-
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tial frequency and orientation, a psychophysical model that describes the

transformation from stimulus space to perceptual space was provided by

Treutwein, Rentschler, and Caelli (1989). Another possibility, especially for

dimensions that are perceptually separable, is to use Stevens’ exponent. For

example, the Stevens exponent for brightness is 0.33, so the mean bright-

ness of each stimulus could be computed from kI0.33, where I is the physical

intensity of the stimulus and k is an arbitrary constant that can be set for

convenience. When GRT models are fit to categorization data under these

assumptions about the perceptual representations, they are often referred to

as decision bound models. One advantage they have over GRT models with

more complex perceptual representations, which is illustrated in the next

result (due to Ashby and Maddox 1993), is that no numerical integration is

needed to fit any of the most common models.

Theorem 7.4 Consider a categorization task with two categories, A and B,

and a decision bound model with one linear boundary. Let the random vector

Xi denote the perceived value of stimulus Si. Assume that Xi has a multi-

variate normal distribution with known mean µ
i

and variance-covariance

matrix σ2I. Then the decision bound is the set of all points that satisfy

b′µ
i
+ c = 0, (7.21)

for some vector of constants b and constant c. This model, called the general

linear classifier, predicts that

P (A|Si) = Φ

(
b′µ

i
+ c

σ
√

b′b

)
, (7.22)

where Φ is the cumulative distribution function of a standard normal (i.e.,

Z) distribution.

Proof Under the conditions of the proposition, the decision rule of the

general linear classifier is “Respond A if h(Xi) > 0; otherwise respond B.”

Therefore,

P (A|Si) = P [h(Xi) > 0|Si] . (7.23)

Now Xi has a multivariate normal distribution with mean vector µ
i

and

variance-covariance matrix σ2I. As a result, h(Xi) has a univariate normal

distribution with mean b′µ
i
+ c and variance σ2b′b. The result follows im-

mediately from these observations.

Since the µ
i

are assumed to be known, the parameters of the model are
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the noise variance σ2 and the decision bound parameters b and c. If there

are r perceptual dimensions, then b has order r × 1. However, without loss

of generality, one entry in b can be set arbitrarily, so b has only r − 1

free parameters.7 Therefore, if the perceptual space is two dimensional, this

model has three free parameters (i.e., one slope parameter, the decision

bound intercept c, and the noise variance σ2).

Predictions for the decision bound model that assumes a quadratic deci-

sion bound, called the general quadratic classifier, were derived by Ashby

and Maddox (1993). Predictions for models that assume some form of de-

cisional separability can be found in Ashby and Valentin (2018). For these

models, the decision bound is compatible with an explicit rule that is easily

verbalized. For example, the rule: “Respond A if X1 > c1 and X2 > c2;

otherwise respond B” is equivalent to the conjunction rule “Respond A if

the stimulus is large on both dimensions; otherwise respond B.” Ashby and

Valentin (2018) also described predictions of models that assume the par-

ticipant guesses randomly on every trial.

Criterial noise can be added to decision bound models by assuming that

the decision rule is “Respond A if h(X) > εc; otherwise respond B,” where εc
is normally distributed with mean 0 and variances σ2

c . If the decision bound

is linear, then it is straightforward to show that perceptual and criterial

noise are not separately identifiable (Ashby & Maddox, 1993). Instead, only

the sum of the perceptual and criterial noise variances is estimable. For this

reason, it makes no difference whether we assume that the noise is perceptual

or decisional (or some combination of the two). Once predicted probabilities

are computed, the parameters can be estimated by finding the numerical

values that maximize the likilihood-related statistic L∗ in Eq. 7.33 below.

7.4.4 Applications to identification tasks

GRT has been used to analyze data from identification confusion matrices

in two different ways. One approach is to compute certain summary statis-

tics from the empirical confusion matrix and then to check whether these

satisfy conditions that are characteristic of perceptual independence, per-

ceptual separability, or decisional separability. The other approach is to fit

GRT models to the entire confusion matrix. To test various assumptions

7 For example, assume r = 2. Then note that at least one of b1 and b2 (i.e., the entries in b)
must be nonzero. Note that the decision rule ”Respond A if h(x) > 0” is unchanged if we
divide both sides by a positive constant. Therefore, without loss of generality, we can divide

both sides by
√

b21 + b22. Note that the sum of the squared entries in the revised b vector now

equals 1. As a result, we can always replace b2 with
√

1− b21.
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about perceptual and decisional processing – for example, to test whether

perceptual independence holds – a version of the model that assumes per-

ceptual independence is fit to the data as well as a version that makes no

assumptions about independence. This latter version contains the former

version as a special case (i.e., in which all covariance parameters are set

to zero), so it can never fit worse. After fitting these two models, we con-

clude that perceptual independence is violated if the more general model

fits significantly better than the more restricted model that assumes percep-

tual independence (Ashby & Perrin, 1988; Thomas, 2001).8 Because these

approaches are so different, we discuss each in turn.

It is important to note however, that regardless of which method is used,

there are certain nonidentifiabilities in GRT models that could limit the con-

clusions that are possible to draw from any such analyses (e.g., Menneer,

Wenger, and Blaha 2010; Silbert and Thomas 2013). The problems are most

severe when GRT is applied to identification data from 2×2 factorial designs

(i.e., with stimuli A1B1, A1B2, A2B1, and A2B2). For example, Silbert and

Thomas (2013) showed that in 2 × 2 applications where there are two in-

tersecting linear decision bounds that do not satisfy decisional separability,

there always exists an alternative model that makes the exact same empir-

ical predictions and satisfies decisional separability (and these two models

are related by a linear transformation). Thus, in standard applications of

GRT to identification experiments that use a 2 × 2 factorial design, deci-

sional separability is not testable, nor are the slopes of the decision bounds

uniquely estimable. It turns out however, that for a variety of reasons, these

nonidentifiabilities are not catastrophic.

First, there are no identifiability problems if the perceptual dimensions

are known. Obviously, the linear transformation that rotates intersecting

linear bounds so that one is vertical and one is horizontal also rotates the

perceptual dimensions. So although decisional separability holds in the new

model, the separability is with respect to novel dimensions. In other words,

one interpretation of the identifiability problem is that if the best-fitting

GRT model to some single confusion matrix collected in an experiment that

used a 2× 2 factorial design assumes intersecting linear bounds that violate

decisional separability, then there is always an alternative GRT model that

fits equally well and assumes that the observer made decisions by selectively

attending to some different perceptual dimensions. With complex stimuli,

such as faces, this will often be difficult to rule out. However, with many

8 Note that many of the statistical packages written for estimating GRT models provide
estimates of parameter variability and/or confidence intervals, allowing one to determine
whether (for example) a parameter estimate can be inferred to be reliably different from 0.
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simple stimuli, this possibility is straightforward to reject. For example, con-

sider sine-wave gratings (e.g., such as Gabor patches) that are created by

factorially combining two spatial frequencies (bar widths) and two (bar)

orientations. An enormous visual perception literature tells us that humans

treat these two dimensions as primary (e.g., DeValois and De Valois 1990).

So any conclusions about decisional separability drawn from a GRT analy-

sis should be immune to identifiability problems because the mathematically

equivalent model that makes different assumptions about decisional separa-

bility must assume that the observer perceived the stimuli in a way that is

incompatible with the visual perception literature.

Second, the problems do not generally exist with 3× 3 or larger factorial

designs (as used for example, by Ashby, Waldron, Lee, and Berkman 2001).

In the 3×3 case, the GRT model with linear bounds requires at least 4 deci-

sion bounds to divide the perceptual space into nine response regions (e.g.,

in a tic-tac-toe configuration). Typically, two will have a generally vertical

orientation in the two-dimensional perceptual space and two will have a gen-

erally horizontal orientation. Linear transformations will rotate the vertical-

tending bounds by the same amount, and the horizontal-tending bounds by

the same amount. Therefore, unless the two vertical-tending bounds are par-

allel and the two horizontal-tending bounds are parallel, there is no linear

transformation that guarantees decisional separability for all 4 bounds. For

example, if the two vertical-tending bounds are not parallel, then the linear

transformation that makes one perfectly vertical (guaranteeing decisional

separability) will leave the other oblique to the abscissa (causing a viola-

tion of decisional separability). Thus, in 3× 3 (or higher) designs, decisional

separability is typically identifiable and testable.

Third, there are simple experimental manipulations that can be added to

the basic 2 × 2 identification experiment to test for decisional separability.

Currently, more than 30 different qualitative differences have been identified

in the learning and performance of tasks in which observers use strategies

that satisfy versus violate decisional separability (for a review of most of

these, see Ashby and Valentin 2017). For example, switching the locations

of the response buttons interferes with performance if decisional separability

fails more than if decisional separability holds (Ashby, Ell, & Waldron, 2003;

Maddox, Bohil, & Ing, 2004), and delaying feedback by a few seconds has a

similar effect, but on learning, rather than performance (Crossley & Ashby,

2015; Dunn, Newell, & Kalish, 2012; Maddox, Ashby, & Bohil, 2003; Maddox

& David, 2005).

Fourth, one could analyze the 2 × 2 data using GRT-wIND (GRT with

INDividual differences; Soto, Vucovich, Musgrave, and Ashby 2015), which
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was inspired by the INDSCAL model of multidimensional scaling (Carroll

& Chang, 1970). Like INDSCAL, GRT-wIND is fit to the data from all indi-

viduals simultaneously. All observers are assumed to share the same group

perceptual distributions (see Silbert and Thomas 2017 for discussion of this

assumption), but different observers are allowed different linear bounds and

they are assumed to allocate different amounts of attention to each percep-

tual dimension. The model does not suffer from the identifiability problems

identified by Silbert and Thomas (2013), even in the 2×2 case, because with

different linear bounds for each observer, there is no linear transformation

that simultaneously makes all these bounds satisfy decisional separability.

Summary statistics approach

The first approach that used GRT to test perceptual and decisional assump-

tions was based on parametric and non-parametric summary statistics that

were derived from the identification-confusion matrix (see, e.g., Figure 11, p.

172, Ashby and Townsend 1986). This later evolved to an approach known

as multidimensional signal detection analysis (MSDA, Kadlec 1995; Kadlec

and Townsend 1992a, 1992b), which extended the concepts originally pre-

sented by Ashby and Townsend (1986) and combined those equalities with

tests of equalities on Gaussian SDT parameters. This was later both simpli-

fied and refined, as summarized by Silbert and Hawkins (2016), under the

strong assumption that decisional separability always holds (see also Silbert

and Thomas 2013).

The most popular summary statistics tests use measures called marginal

response invariance and report independence to draw inferences about per-

ceptual separability and perceptual independence. Marginal response invari-

ance holds at the ith level of the first dimension if the following equality

holds:

P (ai|AiB1) = P (aib1|AiB1) + P (aib2|AiB1)

= P (aib1|AiB2) + P (aib2|AiB2)

= P (ai|AiB2), (7.24)

where, as before, P (akbm|AiBj) is the probability that the participant re-

sponded akbm on trials when stimulus AiBj was presented. Marginal re-

sponse invariance provides information about perceptual separability so long

as decisional separability holds. If decisional separability does hold, then

a failure of marginal response invariance at any level of a given dimen-

sion implies that perceptual separability fails on that dimension (Ashby &
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Townsend, 1986). If the marginal d′s are also unequal on that dimension,

then our conclusion that perceptual separability fails is further bolstered.

Before GRT, the most popular method for assessing separability was via

a categorization task called the filtering task , which uses the same stimuli

as the 2 × 2 identification task, but asks observers to report the level of

component A or the level of component B, rather than identify the stimulus

uniquely. Ashby and Maddox (1994) proposed an RT version of marginal

response invariance for this task that they called marginal RT invariance.

Specifically, for i = 1 or 2, marginal RT invariance holds for component A if

P (RT ≤ t|AiB1, ai) = P (RT ≤ t|AiB2, ai), for all t > 0, (7.25)

where RT is the RT and ai indicates that the observer responded that

the level of component A was i. Ashby and Maddox (1994) showed that

if decisional separability holds and if RT decreases with the distance from

the percept to the decision bound – an assumption called the RT-distance

hypothesis – then perceptual separability holds if and only if marginal RT

invariance is satisfied for both correct and incorrect responses.

Ashby and Maddox (1994) only investigated tasks with two response al-

ternatives (i.e., the filtering and redundancy tasks popularized by Garner

1974). Townsend, Houpt, and Silbert (2012) applied a similar approach to

the 2× 2 identification task. They defined an RT invariance condition sim-

ilar to marginal RT invariance that they called timed marginal response

invariance. This condition holds in the 2× 2 identification task for level i of

component A if, for all t > 0

P (aib1,RT ≤ t|AiB1) + P (aib2,RT ≤ t|AiB1)

= P (aib1,RT ≤ t|AiB2) + P (aib2,RT ≤ t|AiB2).

(7.26)

Rather than assume the RT-distance hypothesis, Townsend et al. (2012)

investigated predictions of a general class of models that assumed process-

ing of the two stimulus components occurs in parallel. Within this class of

models, they showed that if perceptual and decisional separability hold then

timed marginal response invariance must also hold.9

The parallel models considered by Townsend et al. (2012) are grounded

on the assumptions of stochastic linear systems, in which the activation

in a channel is proportional to the magnitude of its input (Townsend &

Wenger, 2004; Wenger & Townsend, 2006). There is a channel for each level

of every stimulus component, and each channel accumulates evidence that

9 Note that this result is weaker than the if and only if result that is possible if the RT-distance
hypothesis is assumed to hold in the filtering task.
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the relevant stimulus component is at the level to which the channel is tuned.

In GRT and signal detection theory, if the likelihood ratio is monotonic,

then evidence increases with distance from boundary (or criterion). For this

reason, the parallel models considered by Townsend et al. (2012) are closely

related to the models that Ashby and Maddox (1994) considered, which

satisfy the RT-distance hypothesis.

Given this similarity, it is not surprising that marginal RT invariance and

timed marginal response invariance are closely related. First, note that

P (aib1,RT ≤ t|AiBj) + P (aib2,RT ≤ t|AiBj) = P (ai,RT ≤ t|AiBj).

(7.27)

Next note that marginal RT invariance is equivalent to assuming that for

all t > 0:

P (ai,RT ≤ t|AiB1)

P (ai|AiB1)
=
P (ai,RT ≤ t|AiB2)

P (ai|AiB2)
. (7.28)

Now Townsend et al. (2012) showed that if timed marginal response in-

variance holds then so does marginal response invariance (i.e., Eq. 7.24).

Therefore, if the joint probabilities in the numerators of Eq. 7.28 are equal

for all t, then the probabilties in the denominators are also equal. There-

fore, when applied to the filtering task, marginal RT invariance and timed

marginal response invariance are equivalent.

The summary statistics described so far are targeted at testing for percep-

tual separability. Another set of statistics targets perceptual independence.

Report independence (called sampling independence in the early literature)

is assessed for each individual stimulus and provides information about per-

ceptual independence, again assuming that decisional separability holds. Re-

port independence holds in the 2 × 2 identification task for stimulus AiBj

if:

P (aibj |AiBj) = P (ai|AiBj)× P (bj |AiBj)

= [P (aib1|AiBj) + P (aib2|AiBj)]

× [P (a1bj |AiBj) + P (a2bj |AiBj)] . (7.29)

Ashby and Townsend (1986) showed that if decisional separability holds,

then a failure of report independence implies a violation of perceptual inde-

pendence.

Townsend et al. (2012) also proposed an RT invariance condition that

is similar to report independence. Specifically, timed report independence
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holds for the response aibj with stimulus AkBm if for all times t > 0

P (RT ≤ t|AkBm, aibj)× P (RT ≤ t|AkBm)

= P (RT ≤ t|AkBm, ai)× P (RT ≤ t|AkBm,bj). (7.30)

Townsend et al. (2012) showed that, within the class of parallel models

they were considering, if decisional separability and perceptual independence

both hold then timed report independence must hold.

Summary statistics approaches are complemented by the model-fitting

approach described next. Indeed, since at least the work of Thomas (2001),

there has been a focus on combining summary statistics and Gaussian model-

fitting as complementary sources of converging evidence in supporting in-

ferences (Cornes, Donnelly, Godwin, & Wenger, 2011; Von Der Heide et al.,

2018; Wenger & Rhoten, 2020).

Fitting the Gaussian model to identification data

As mentioned earlier, a second approach for analyzing data from identifi-

cation experiments is to fit a variety of different GRT models to the con-

fusion matrices. Assumptions about perceptual interactions and decision

processes can be tested by comparing model fits of nested models in which

the restricted model makes some specific assumption, such as perceptual

separability, and the more general model does not (Ashby & Perrin, 1988;

Thomas, 2001). The primary advantage of this approach over the summary

statistics approach is that, although it is parametric, it makes fewer as-

sumptions about perceptual and decisional processes, and therefore should

be less prone to false conclusions. The trade-off though is that it is more

computationally intensive, since it often requires numerical integration.

This model-fitting approach is necessarily parametric since numerical pre-

dictions are possible only if a specific functional form is specified for the

perceptual distributions. All previous applications of this approach have

assumed that the perceptual distributions are multivariate normal. Further-

more, all applications have assumed that there are only two relevant sen-

sory dimensions. In principle, the fitting algorithms (described below) are

straightforward to extend to more than two dimensions, but such models

could include many more free parameters and therefore significantly in-

creased computation time. Thus, to date, applications that have fit GRT

models to identification confusion matrices have assumed that the sensory

distributions are bivariate normal pdfs, and the response regions are defined

on a plane. A variety of different assumptions about decision processes are

possible. Figure 7.8 illustrates six of these.

In an identification experiment with M stimuli, the resulting confusion
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Figure 7.8 Different types of decision bounds used in GRT modeling. (a)
Decisional separability is satisfied on both dimensions. (b) Decisional sep-
arability is satisfied on dimension 2, but not on dimension 1. (c) Decision
bounds of the minimum distance classifier. (d) Decision bounds of the gen-
eral linear classifier. (e) Decision bounds of the general quadratic classifier.
(f) Decision bounds of the optimal classifier.

matrix includes M × (M − 1) degrees freedom. As a result, this value fixes

the maximum number of parameters that can be estimated. A bivariate nor-

mal distribution has a maximum of 5 free parameters – a mean and variance

on both dimensions, and a covariance. Therefore, the smallest value of M

for which the most general possible GRT model can be estimated is M = 6.

In this case, the 6× 6 confusion matrix has 30 degrees of freedom, and the

6 perceptual distributions needed to model the perceptual effects of the 6

stimuli have 30 parameters. However, the origin and unit of measurement

on each perceptual dimension are arbitrary. Therefore, without loss of gen-
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erality, the means on both dimensions can be set to 0 in any one perceptual

distribution (to set the origin) and the variances in that distribution can

be set to 1 (to set the unit of measurement). This reduces the number of

free parameters to 26 (i.e., to 5M − 4), which leaves a maximum of four pa-

rameters to model the decision bounds and assess the validity of the model.

The fact that only four degrees of freedom remain rules out some decision

models (e.g., the general quadratic classifier), but not all. For example, in

Figure 7.8, the minimum distance and optimal classifiers have no free de-

cision parameters, and the model that assumes decisional separability has

only two free parameters (i.e., the two intercepts).

As the order of the confusion matrix increases above six, the degrees of

freedom increases faster than the number of free parameters in the full GRT

model. As a result, the larger the matrix, the more extra degrees of freedom

there are to estimate decision bound parameters and to test the validity of

the model. For example, Ashby et al. (2001) fit the full model to a variety

of different 9×9 confusion matrices, which each have 72 degrees of freedom,

and with nine stimuli the full model has only 41 free perceptual parameters.

On the other hand, note that the 2 × 2 factorial design, which as pre-

viously mentioned is the most popular identification experiment, includes

only four stimuli. Therefore, the full model includes 16 free perceptual pa-

rameters (i.e, 5× 4− 4) and each confusion matrix includes only 12 degrees

of freedom (i.e, 4 × 3). As a result, the full GRT model is not estimable in

these experiments. So when GRT models are fit to single confusion matrices

from 2× 2 factorial designs, some assumptions must be made to reduce the

number of free parameters.

When fitting any GRT model to identification data, parameter estimation

is accomplished via the method of maximum likelihood. Denote the M stim-

uli by S1,S2, . . . ,SM and the corresponding M responses by R1,R2, . . . ,RM .

Let nij denote the entry in row i and column j of the confusion matrix –

that is, the frequency with which the observer responded Rj on trials when

stimulus Si was presented. Note that the nij are random variables, and the

entries in each row of the confusion matrix have a multinomial distribution.

In particular, if P (Rj |Si) is the true probability that response Rj is given on

trials when stimulus Si is presented, then the probability of observing the

response frequencies ni1, ni2, . . . , niM in row i equals

P (ni1,ni2, . . . , niM |Si)

=
Ni!

ni1! ni2! · · ·niM !
P (R1|Si)

ni1P (R2|Si)
ni2 · · ·P (RM |Si)

niM , (7.31)

where Ni is the total number of stimulus Si presentations (i.e., so Ni =
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j nij). The probability or likelihood of observing the entire confusion ma-

trix is the product of the probabilities of observing each row:

L =
M∏
i=1

P (ni1, ni2, . . . , niM |Si). (7.32)

In all Gaussian GRT models, P (Rj |Si) is computed by integrating a mul-

tivariate normal pdf over some response region, but different models make

different assumptions about the pdf and about the shape of the region. The

maximum likelihood parameter estimates are the numerical values of all

model parameters that maximize the likelihood L of Eq. 7.32.

Two simplifications are common. First, some of the P (Rj |Si)
nij could be

very small numbers, so it is common to find parameter values that maximize

logL rather than L. Since log is a monotonic transformation, the parameter

values that maximize L will also maximize logL. Second, note that the facto-

rial terms in Eq. 7.31 do not depend on the values of any model parameters,

and therefore they are typically excluded from the parameter estimation

process. Therefore, the common practice is to find the maximum likelihood

estimates of all parameters by maximizing the monotonically related term

L∗ =

M∑
i=1

M∑
j=1

nij logP (Rj |Si), (7.33)

where as already mentioned, the predicted probabilities P (Rj |Si) are com-

puted by integrating under the multivariate normal pdf that models the

sensory representation of stimulus Si over the Rj response region.

The difficulty of computing the integrals required to maximize L∗ depends

on the nature of the decision bounds assumed by the model. Decisional

separability simplifies things considerably because then the integral under

a bivariate normal pdf reduces to the integral under a univariate normal

marginal pdf. Under these conditions, Wickens (1992) derived the first and

second derivatives necessary to estimate parameters of the model quickly

using the Newton-Raphson method. In models that do not assume decisional

separability, the integrals are under the bivariate normal pdf over irregularly

shaped regions of the plane. As a result, numerical integration is required.

Ennis and Ashby (2003) proposed an efficient algorithm for evaluating

these integrals that can be used to estimate the parameters of virtually

any GRT model via standard minimization software. This algorithm was

described in detail by Ashby and Soto (2015). Briefly however, the algorithm,

which is described in Figure 7.9, includes the following 5 steps.

1) A set of D Z-values are preloaded into an array. Each Z-value is chosen
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Figure 7.9 Schematic illustration of how numerical integration is performed
in the multivariate normal GRT model via Cholesky factorization.

to be the center of an interval that has equal area under the Z distribution

(i.e., under the pdf of a normal distribution with mean 0 and variance 1).

The Cartesian product of this array with itself creates a grid of points in

multidimensional space that are each the center of a rectangle (or hyperrect-

angle) that all have equal volumes under the multidimensional Z pdf (i.e.,

the gray points on the right side of Figure 7.9). If the GRT model assumes

r perceptual dimensions then after this step there will be Dr grid points.

For example, to fit two-dimensional GRT models, Ashby et al. (2001) set

D = 100, which creates a grid of 10,000 points in bivariate Z-space, each of

which is the center of a rectangle with volume .0001 (i.e., .012).

2) Note that GRT assumes that all entries in each row of a confusion

matrix are computed by integrating under the same perceptual distribu-

tion. Different columns are associated with different response regions. The

algorithm works row-by-row. The idea is to transform the perceptual dis-

tribution associated with the current row to a multivariate Z-distribution.

This can always be accomplished via an affine transformation in which the

linear transformation is based on the Cholesky factorization of the distribu-

tion’s variance-covariance matrix. The second step is to compute this affine

transformation.
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3) Apply this affine transformation to the decision bounds. Since affine

transformations preserve linearity, this step will convert linear bounds in

perceptual space to linear bounds in Z-space.

4) Step through all Dr grid points and for each one, identify its associated

response region. Each bound defines a discriminant function that assigns

positive values to all points on one side and negative values to all points on

the other side. With multiple bounds, each response region is characterized

by a unique set of positive and negative discriminant values. So the response

region of a point can be identified by examining its pattern of positive and

negative discriminant values of all decision bounds after they have been

transformed to Z-space.

5) Suppose the current grid point is identified as belonging to response

region J . The final step is to increment the integral associated with response

J by 1/Dr.

The problems caused by insufficient degrees of freedom in 2× 2 factorial

designs disappear if GRT-wIND (Soto et al., 2015) is used instead of the

traditional GRT model. GRT-wIND is fit simultaneously to the individual

confusion matrices of all observers. Soto, Zheng, Fonseca, and Ashby (2017)

developed an R package that fits this model using only a few commands.

GRT-wIND assumes that all observers share the same group perceptual rep-

resentation, which is described by the full GRT model, even in 2×2 factorial

designs. Thus, GRT-wIND assumes that basic perceptual properties, such

as perceptual separability and perceptual independence, or their violations,

are shared by all observers. The model assumes that different observers pro-

duce different confusion matrices for two reasons – they allocate different

amounts of attention to the two perceptual dimensions, and they use dif-

ferent decision bounds. Thus, fitting the model returns estimates of (1) the

group perceptual representation (i.e., the full GRT perceptual model), (2)

the proportion of attention allocated to the two perceptual dimensions by

each observer, and (3) unique decision bounds for each observer. Soto et al.

(2015) fit GRT-wIND to the confusion matrices of 24 different observers in

a face identification experiment that used a 2 × 2 factorial design in which

the 4 stimulus faces were created by crossing two facial identities with two

emotional expressions. The 24 matrices included a total of 288 degrees of

freedom (i.e., 24 × 12). The GRT-wIND model included an average of 6.67

free parameters for each individual confusion matrix, which is less than typ-

ical applications of traditional GRT models to 2 × 2 designs. GRT-wIND

accounted for 99.52% of the variance in the 24 confusion matrices. Even

more impressively, GRT-wIND provided a better fit than the best-fitting
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traditional GRT model to the data of 18 of the 24 participants.10 Further-

more, GRT-wIND suggested that in this group of 24 observers, emotional

expression was perceptually separable from facial identity, but identity was

not separable from expression. In contrast, a traditional GRT analysis could

only report how many of the individual participants showed this pattern.

GRT accounts of identification data have been spectacularly successful.

For most of the last four decades of the 20th century, the most successful

model of identification, by far, was the Luce-Shepard choice model (Luce,

1963; Shepard, 1957), which assumes that

P (Rj |Si) =
ηijβj∑M
k=1 ηikβk

, (7.34)

where ηij is the similarity between stimuli Si and Sj and βj is the bias

toward response Rj (without loss of generality, one can set ηii = 1 for all

values of i and
∑
βj = 1). To ensure that the model is testable, similarity

is assumed to be symmetric (i.e., so that ηij = ηji for all values of i and j).

The Luce-Shepard choice model was so successful that for many years, it was

the standard against which competing models were compared. For example,

in 1992, J. E. K. Smith summarized its performance by concluding that it

“has never had a serious competitor as a model of identification data. Even

when it has provided a poor model of such data, other models have done

even less well” (J. K. Smith 1992, p. 199). Even so, the model was never

considered completely satisfactory – primarily because a good fit provides

little insight into the psychological processes of the observer producing the

data. The model merely says that the probability of confusing stimulus Sj for

Si is proportional to the product of the similarity between the two stimuli

and the bias toward response Rj (the denominator in Eq. 7.34 is just a

normalizing constant). Also, note that the model makes no predictions about

how a decision is reached. It simply predicts the proportion of Rj responses

to expect over the course of a large number of Si trials.

GRT provided the first models that ended the dominance of the Luce-

Shepard choice model, at least for identification data collected from experi-

ments with stimuli that differed on only a couple of stimulus dimensions. In

virtually every such comparison, the GRT model provided a substantially

better fit than the Luce-Shepard choice model, in many cases with fewer free

parameters (Ashby et al., 2001). Even so, it is important to note that the

Luce-Shepard choice model is still valuable, especially in the case of identi-

10 This is because the full traditional-GRT model is not estimable in 2× 2 designs, but the full
GRT-wIND model is estimable.
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fication experiments in which the stimuli vary on many unknown stimulus

dimensions.

7.4.5 Extensions to response time

Like SDT, GRT was originally developed to account exclusively for accuracy

data. Even so, there have been a number of extensions of the theory that

attempt also to account for RTs. These are generally of two types. One

approach is to add assumptions to GRT that allow the theory to make RT

predictions but are not detailed enough to account for psychological process.

Thus, like the original version of GRT (and SDT), the resulting models are

descriptive, or in the language of Marr (1982), computational. The other

approach is to add enough structure to GRT to model psychological process

– thereby producing models that Marr identified as algorithmic. We briefly

review both types in turn.

Computational-level accounts of RT

The principle example of this approach was to add an assumption called the

RT-distance hypothesis to GRT, which simply assumes that RT decreases

with the distance between the percept and the decision bound. This assump-

tion was first investigated in SDT (e.g., Murdock 1985). The idea is that if

decisions are made by comparing a percept to a decision bound or criterion,

then the greater the distance between the two, the easier, and hence the

faster the decision. This simple assumption has received considerable em-

pirical support (Ashby, Boynton, & Lee, 1994; Murdock, 1985). As noted

earlier, Ashby and Maddox (1994) showed that if the RT-distance hypothe-

sis holds then strong nonparametric RT tests of perceptual separability are

possible.

Process models of RT

This has been the more popular approach. Ashby (2000) generalized the

drift-diffusion model described earlier to multiple perceptual dimensions. In

this version, the perceptual representations are the same as in classical GRT.

Like the drift diffusion model, application was restricted to tasks with two

response alternatives. On each trial, the observer’s experience with the stim-

ulus was assumed to produce repeated samples from the relevant perceptual

distribution. Each sample is compared to the decision bound and a signed

distance is computed, which equals distance-to-bound if the percept is in the

A region and minus distance-to-bound if it is in the B region. At this point,
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the model is identical to the drift diffusion model – that is, the signed dis-

tances are cumulated, and sampling continues until the sum crosses an upper

or lower barrier (exactly as in Figure 7.5, except with an ”A” response re-

placing ”YES” and a ”B” response replacing ”NO”). Ashby (2000) showed

that this model includes the static version of GRT as a special case, and

showed that the variance-covariance matrices estimated in classical applica-

tions of GRT are corrupted by decisional influences. For example, consider

two conditions in which the task is identical but participants are pressed

to respond more quickly in one than the other. In general, we expect more

errors in the condition with speed stress. Fitting the static GRT model to

these data would suggest that perceptual noise increases with speed stress.

In contrast, the stochastic version of GRT accounts for these data by reduc-

ing the distance to the response barriers in the speeded condition (i.e., the

numerical values of A and B in Figure 7.5), but not changing perceptual

noise.

More recently, P. L. Smith (2019) proposed a similar model, except based

on a circular diffusion process. The model can be applied to a variety of

different tasks, but consider its application to the 2× 2 factorial identifica-

tion experiment with stimuli A1B1, A1B2, A2B1, and A2B2. As mentioned

earlier, in static GRT models of this task, the origin of the perceptual space

is arbitrary. Suppose we define the origin as the center point of the 4 per-

ceptual means (i.e., the mean of the means), and the drift is determined

by cumulating random samples from the perceptual distribution associated

with the presented stimulus (e.g., scaled by some multiplicative constant).

Then the drift will generally be outwards and in the direction of the per-

ceptual mean of the stimulus. P. L. Smith (2019) assumed a single circular

absorbing barrier that is divided into 4 quadrants – one associated with each

response alternative. The accumulation process continues until absorption

occurs, at which point the associated response is given. A response bias to-

ward or against a particular response can be implemented by setting the

angle of the response quadrant associated with that response to be greater

or less than 90◦, respectively. Because this task includes more than two re-

sponse alternatives, the stochastic GRT model proposed by Ashby (2000) is

not even defined in this case. So in this sense, Smith’s model has a consider-

able advantage over the model proposed by Ashby. On the other hand, the

circular-diffusion model does not include decision bounds, so it is unclear

how the model would account for performance differences that arise, for ex-

ample, when the participant switches to or away from bounds that satisfy

decisional separability.

As noted earlier, Townsend and colleagues (Townsend et al., 2012; Townsend
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& Wenger, 2004; Wenger & Townsend, 2006) interpreted GRT within the

framework of stochastic linear dynamical systems. These models assume the

stimulus dimensions or components are processed by parallel channels that

are potentially interactive (Townsend, Liu, Zhang, & Wenger, 2020). Acti-

vation in each channel is accumulated until it reaches a criterion level, and

the outputs of the different channels are then passed to decisional operators

(e.g., Boolean AND or OR gates). Like the drift-diffusion interpretations of

GRT, these models make simultaneous accuracy and RT predictions. They

have also been used to model configurality (Wenger & Townsend, 2006) and

to derive new RT summary statistics that can be used to test for perceptual

separability and perceptual independence.

7.4.6 Extensions to neuroscience

GRT was developed before the cognitive neuroscience revolution that began

in the 1990s. As a result, for its first several decades of existence, GRT was a

purely perceptual and cognitive theory. But during the past several decades

there has been progress on two fronts. First, much has been learned about

the architecture and functioning of the neural circuits that implement the

perceptual and decision processes hypothesized by GRT. And second, GRT

analyses have recently been extended to neuroscience data, in particular

to data from neuroimaging experiments. This section briefly reviews these

trends. For more details, see Ashby and Soto (2016) and Soto, Vucovich,

and Ashby (2018).

There is now overwhelming evidence that humans have multiple learning

systems that for the most part are neuroanatomically and functionally dis-

tinct (e.g., Ashby and Maddox 2005; Eichenbaum and Cohen 2001; Squire

2004). The most complete description of two of the most important learning

systems is arguably provided by the COVIS theory (Ashby, Alfonso-Reese,

Turken, & Waldron, 1998; Ashby & Valentin, 2017). COVIS assumes sep-

arate explicit-reasoning and procedural-learning systems that compete for

access to response production. The explicit-reasoning system uses executive

attention and working memory to learn explicit rules, and is mediated by

a broad neural network that includes the prefrontal cortex, anterior cin-

gulate, head of the caudate nucleus, and the hippocampus. In contrast, the

procedural system uses dopamine-mediated reinforcement learning when the

optimal strategy is difficult or impossible to describe verbally, and key struc-

tures include the striatum and premotor cortex.

Knowing which learning system participants are using can facilitate a

subsequent GRT analysis because the explicit system is constrained to use
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bounds that satisfy decisional separability (at least locally), whereas the pro-

cedural system is not. The explicit system learns and applies explicit rules

that can be described using Boolean algebra. More specifically, it makes in-

dependent decisions about the level of the stimulus (e.g., high versus low) on

one or more dimensions and then combines the outcomes of these separate

decisions using simple logical operators, such as “and” to produce conjunc-

tion rules and “or” to produce disjunctions. When translated into decision

bounds, the resulting response regions can always be separated by piecewise

linear bounds, in which each piece is a vertical or horizontal line segment.

Thus, each piece satisfies decisional separability. In contrast, the procedural

system implements less constrained decision strategies that are compatible

with any of the decision bounds that are used when fitting GRT models.

For these reasons, if decisional separability is assumed, then it is vital to

select experimental conditions that favor explicit reasoning over procedural

learning.

Soto et al. (2018) extended GRT analysis to neuroimaging data in the

context of a study examining the relationship between facial identity and

perceived emotion. When a visual stimulus is presented to an observer, it

causes activation in many areas within the visual system. The perceptual

representation modeled in GRT likely depends on activation in some higher-

level visual area. If this representation violates perceptual separability (or

perceptual independence), then an obvious and important question is when

and where separability (or independence) was first violated within the pro-

cessing stream? To address this question, Soto et al. (2018) first defined the

concepts of encoding separability and encoding independence. If a stimulus

dimension is encoded in some brain region of interest in exactly the same

way when an irrelevant dimension is varied, then the former shows encoding

separability from the latter. Similarly, if the neural representations of two

stimulus dimensions are statistically independent in some region of interest,

then they satisfy encoding independence. Next, Soto et al. (2018) proposed

empirical tests of these constructs that are based on summary statistics de-

rived from applying pattern classifiers to fMRI data. For example, the first

step might be to construct a support vector machine that classifies the level

of stimulus dimension A in some brain region of interest as 1 or 2 (following

methods described e.g., by Ashby 2019). Decoding separability holds if the

distributions of decoded values of dimension A are invariant across changes

in a second, irrelevant dimension B.11

11 Operationally, this can be tested in the following way. Consider an identification experiment
with stimuli A1B1, A1B2, A2B1, and A2B2. First, compute the distance of each activity
vector to the classifier hyperplane. Second, estimate the distributions of the A1 and A2



7.5 Concluding Remarks 45

Similarly, Wenger and Rhoten (2020) demonstrated that it was possi-

ble to use the timing of a feature in EEG data to draw inferences regard-

ing independence and separability in a study of visual perceptual learning.

Specifically, they used the onset time of the lateralized readiness potential

(LRP). The LRP is a negative-going waveform, measured in central elec-

trodes contralateral to the motor response that it precedes, and is inter-

preted as indicating that sufficient processing has been completed in order

to program the motor response. The onset time of the LRP was shown to

be strongly correlated with observable RT. Consequently, when those onset

times were analyzed with respect to timed marginal response invariance and

timed report independence (see the subsection entitled “Summary statistics

approach”), they were found to support inferences that were consistent with

the inferences drawn from the response frequencies.

7.5 Concluding Remarks

The power and generality of statistical decision theory – SDT in one dimen-

sion and GRT in multiple dimensions – should confirm Estes’ evaluation that

SDT is “... the most towering achievement of basic psychological research in

the last half century” (Estes 2002, p. 15). One would be hard-pressed to name

a sub-discipline of the behavioral sciences (cognitive neuroscience included)

that do not concern themselves with aspects of identification and catego-

rization (classification). This fact, along with the fact that SDT “scales” to

dealing with neurophysiological data, perhaps reinforces Wixted’s opinion

that “. . . it should not be possible to earn a Ph.D. in experimental psychol-

ogy without having some degree of proficiency in signal detection theory”

(Wixted 2020, p. 225). Along with these kinds of advances, we should note

that a critical strength of the community of researchers associated with SDT

and GRT is the unflinching willingness to tackle difficult problems, such as

the identifiability issues discussed here. Investigators have added and con-

tinue to develop novel and improved methods for framing hypotheses and

connecting theory and data.

7.6 Related Literature

Link (1994) and Wixted (2020) provide excellent historical overviews of the

antecedents to SDT and to its early years. The original classic text on SDT

distances separately when B is at level 1 and at level 2. Finally, compare the A1 distributions
when B is at level 1 and at level 2, and also compare the A2 distributions when B is at level 1
and level 2.
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was by Green and Swets (1966). It remains relevant today, especially for its

treatment of ideal observer theory. For more recent texts, see Macmillan and

Creelman (2005) or Wickens (2002).

There is no text on GRT, although this topic is briefly covered by Macmil-

lan and Creelman (2005). Even so, there are a few recent GRT tutorials,

including by Ashby and Soto (2015) and Silbert and Hawkins (2016). For a

review of the mathematical foundations of GRT, see Fukunaga (2013).
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