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1. Introduction

Categorization is the process of assigning an object or event to a class or group –
typically one that is behaviorally relevant. It is a vitally important skill that is required of
all animals, because it allows nutrients and prey to be approached and poisons and preda-
tors to be avoided. Interest in how humans categorize dates back at least to Aristotle. For
almost all of this long history, theorizing was dominated by purely cognitive approaches.
The past few decades however, have seen an explosion of new results that collectively are
beginning to paint a detailed picture of the neural mechanisms and pathways that mediate
human categorization. These results come from a wide variety of sources, including human
behavioral experiments, animal lesion studies, single-cell recordings, neuroimaging exper-
iments, and neuropsychological patient studies. Lagging somewhat behind this avalanche
of new data has been the development of new theories that can account for the traditional
cognitive results as well as for these newer neuroscience results. Even so, a number of such
theories have been proposed. This chapter reviews those theories.

2. Multiple Learning Systems

An enormous literature suggests that humans have multiple learning and memory
systems. For example, a Google Scholar search of publications using the terms "memory
systems" returns almost a million articles. Since, by definition, learning requires that some
trace of previous training episodes must exist, one obvious hypothesis is that there are
as many learning systems as there are memory systems (Ashby & O’Brien, 2005). This
complicates any review of categorization models because different researchers have proposed
models of different category-learning systems. This can be confusing to an outsider because
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the models might share little in common, including the neural structures and pathways that
they claim mediates category learning.

One way to discriminate among models is by attending to what type of category-
learning task they focus on, because different types of tasks are thought to recruit different
learning systems. And different learning systems are mediated by very different neural
networks. Thus, models focusing on different systems will bear little similarity to each
other. On the other hand, different neuroscience-based models of the same learning system
should be highly similar because all such models are constrained by the same neuroanatomy.
For example, an enormous body of evidence implicates the basal ganglia in procedural
learning. As a result, any model of procedural-learning-based categorization must assign a
prominent role to the basal ganglia, and since the gross neuroanatomy of the basal ganglia
is well known, all such models must have a similar architecture. The primary difference
among models of the same learning system will likely be that some will include more detail
about some neural regions than others. Some of the more popular category-learning tasks
are briefly described in the remainder of this section (for more details, see e.g., Ashby &
Valentin, 2018).

2.1. Tasks that depend on declarative memory

A number of different category-learning tasks depend on declarative memory. In-
cluded in this list are rule-based (RB) tasks in which the optimal strategy is some simple
rule that can be described as a Boolean expression of the stimulus values on a few stimulus
dimensions. In the simplest example, only one dimension is relevant but in more complex
RB tasks, the optimal strategy might be a logical conjunction – for example, the optimal
rule might be to give one response if the stimulus is large on two dimensions, and otherwise
to give the contrasting response.

The most widely known example of an RB categorization task is the Wisconsin Card
Sorting Test (WCST; Heaton, 1981), which is a popular clinical measure that is used to
detect frontal dysfunction. The test uses a deck of cards that differ in the shape, number,
and color of displayed figures. On each trial, the participant is shown a card and asked to
assign it to one of two unknown categories. Feedback is given after each response and the
correct categorization strategy is always a simple rule that depends on only one stimulus
dimension. After 10 consecutive correct categorizations, the relevant dimension is changed
(without telling the participants).

Considerable evidence suggests that RB category learning depends on working mem-
ory and selective attention (Ashby, Alfonso-Reese, Turken, & Waldron, 1998; Maddox, Filo-
teo, Hejl, et al., 2004; Waldron & Ashby, 2001; Zeithamova & Maddox, 2006) – skills that
are both thought to depend heavily on prefrontal cortex (PFC; e.g., Braver et al., 1997;
Curtis & D’Esposito, 2003; Miller & Cohen, 2001). As a result, models of RB category
learning will assign a prominent role to the PFC.

Categorization tasks in which the categories have some coherent structure, but in
which one or more categories include a small number of exceptions also seem to recruit
declarative memory (e.g., Davis, Love, & Preston, 2011).
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2.2. Information-integration tasks

Information-integration (II) tasks are those in which accuracy is maximized only if
information from two or more incommensurable stimulus dimensions is integrated at some
pre-decisional stage (Ashby & Gott, 1988). In II tasks, similar stimuli tend to be in the same
category, but the optimal strategy has no Boolean analogue. Evidence suggests that success
in II tasks depends on procedural learning that is mediated largely within the striatum
(Ashby & Ennis, 2006; Filoteo, Maddox, Salmon, & Song, 2005; Knowlton, Mangels, &
Squire, 1996; Nomura et al., 2007; Seger & Miller, 2010). As a result, neuroscientific
models of II learning will assign a prominent role to the basal ganglia.

2.3. Prototype-distortion tasks

In prototype-distortion tasks, the exemplars of each category are created by randomly
distorting a single category prototype. The most widely known example uses a constellation
of 7 or 9 dots as the category prototype, and the other category members are created by
randomly perturbing the spatial location of each dot (Posner & Keele, 1968). Sometimes
the dots are connected by line segments to create polygon-like images.

Two different types of prototype distortion tasks are common – (A, B) and (A, not
A). In (A, B) tasks, two different prototype patterns are distorted to create two coherent
categories. In (A, not A) tasks, which are more popular, there is only one prototype pattern
that is distorted to create the exemplars of Category A. In contrast, every member of the ’not
A’ category is generated independently (and randomly). Thus, all Category A exemplars
are similar to the prototype, and therefore also to each other, whereas the ’not A’ stimuli
have no coherent structure. A variety of evidence supports the hypothesis that learning in
(A, not A) prototype-distortion tasks is mediated primarily within visual cortex, via the
perceptual representation memory system (e.g., Aizenstein et al., 2000; Casale & Ashby,
2008; Reber & Squire, 1999; Reber, Stark, & Squire, 1998). The idea is that accurate
responding can be based solely on a feeling of visual familiarity, which should be high on A
trials and low on not-A trials.

2.4. Category Learning versus Automatic Categorization

Most categorization decisions made by adults are automatic. When we sit in a chair,
pick up a cup of coffee, or swerve to avoid a pothole, our actions are almost always auto-
matic. And there is now considerable evidence that categorization decisions are mediated
differently during initial learning and automaticity (Ashby & Crossley, 2012). To note
just one example, categorization decisions that depend on working memory and executive
attention during early learning are immune to dual-task interference after extended prac-
tice (Hélie, Waldschmidt, & Ashby, 2010; Schneider & Shiffrin, 1977). For this reason,
different models and theories are needed to account for category learning and automatic
categorization behaviors.

3. Neuroscience-Based Models of Category Learning

Currently, there are no neuroscience-based theories or models that attempt to account
simultaneously for all types of categorization. In fact, the majority of models are designed
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to account for categorization in only one type of task. Even so, there are a few exceptions.
One is provided by the COVIS theory of category learning (Ashby et al., 1998; Ashby &
Crossley, 2011; Ashby, Ennis, & Spiering, 2007; Ashby & Waldron, 1999; Cantwell, Crossley,
& Ashby, 2015). Briefly, COVIS postulates two systems that compete throughout learn-
ing – a frontal-based system that learns explicit rules and depends on declarative memory
systems and a basal ganglia-mediated procedural-learning system. The procedural system
is phylogenetically older. It can learn a wide variety of category structures, but it learns
in a slow incremental fashion and is highly dependent on reliable and immediate feedback.
In contrast, the declarative rule-learning system can learn a fairly small set of category
structures quickly – specifically, those structures in which the contrasting categories can be
separated by simple explicit rules. Thus, COVIS assumes that performance improvements
in RB tasks are mediated by an explicit, rule-learning system, whereas performance im-
provements in II tasks are mediated by a procedural-learning system. In addition, COVIS
has been extended to account for automatic categorization behaviors that were acquired
initially via procedural learning (Ashby et al., 2007). On the other hand, COVIS is almost
certainly incomplete because it ignores all other types of category learning. For example,
it provides no account of the kind of perceptual learning thought to mediate performance
improvements in (A, not A) prototype-distortion tasks.

Another model that attempts to account for diverse cognitive functions, including
categorization, within a single unified framework is called Leabra (O’Reilly, Hazy, & Herd,
2016). Leabra was designed to account for tasks under executive control, so it provides
accounts of RB learning, and also perhaps, prototype-distortion learning. But it makes no
attempt to account for procedural learning of the type thought to dominate in II tasks.
Leabra uses the same set of computational features, including recurrent connections, error-
driven Hebbian learning, within-layer inhibitory competition, and sparse distributed repre-
sentations, for modeling activation within different cortical regions, including visual cortex
(O’Reilly, Wyatte, Herd, Mingus, & Jilk, 2013), the medial temporal lobes (Norman &
O’Reilly, 2003), and PFC (Rougier & O’Reilly, 2002; O’Reilly, Noelle, Braver, & Cohen,
2002). Among the multiple tasks simulated by Leabra, the most relevant for this review
are the WCST and visual object categorization, which will be discussed in later sections.

3.1. Declarative-memory-based models of categorization

3.1.1. COVIS. As mentioned earlier, COVIS assumes that performance in RB
tasks is dominated by a rule-learning system that uses declarative memory. The idea is
that this system generates and tests alternative categorization rules until satisfactory per-
formance is achieved, or until the participant gives up and decides that no acceptable rule
exists. For example, the initial rule may be to “respond A if the object is large, and B if
it is small.” This candidate rule is then held in working memory while it is being tested. If
feedback signals that this rule is incorrect, then an alternative rule is selected, and executive
attention must be switched from the old to the new rule.

Figure 1 shows the neural structures that mediate performance in the COVIS rule-
learning system during a trial of an RB task. The key structures in the model are the
anterior cingulate (ACC), the prefrontal cortex (PFC), the head of the caudate nucleus,
the medial dorsal nucleus of the thalamus (MDN), and the hippocampus. There are three
separate subnetworks in this model – one that maintains candidate rules in working memory,
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Figure 1 . The COVIS declarative system (black lines = excitatory projections, green lines
= inhibitory projections, teal line = dopminergic projection, VTA = ventral tegmental area,
SN = substantia nigra pars compacta, CD = caudate nucleus, GP = internal segment of the
globus pallidus, MDN = medial dorsal nucleus of the thalamus, PFC = prefrontal cortex,
ACC = anterior cingulate cortex, HC = hippocampus).

tests those rules, and mediates the switch from one rule to another, one that generates or
selects new candidate rules, and a third that consolidates memories of this selection and
testing process in a long-term store. Currently, there is no computational model of the
entire network. There is a biologically detailed computational model of the working memory
maintenance and rule-switching network that was built from spiking neuron units like those
described in Equations 2 – 5 below (Ashby, Ell, Valentin, & Casale, 2005). In contrast, the
model of rule selection and rule implementation is more abstract (Ashby, Paul, & Maddox,
2011), whereas currently there is no computational model of the consolidation process.

The working memory maintenance and attentional switching network includes all
structures in Figure 1, except the ACC and hippocampus. The idea is that the long-term
representation of each possible salient rule is encoded in some neural network in sensory
association cortex. These cortical units send excitatory signals to working memory units
in lateral PFC, which send recurrent excitatory signals back to the same cortical units,
thereby forming a reverberating loop. At the same time, the PFC is part of a second ex-
citatory reverberating loop through the MDN (Alexander, DeLong, & Strick, 1986). These
double reverberating loops maintain activation in the PFC working memory units during
the rule testing procedure. However, the high spontaneous activity that is characteristic of
the GABAergic neurons in the globus pallidus tonically inhibit the MDN, which prevents
the closing of this cortical-thalamic loop, leading to the loss of information from working
memory. To counteract this inhibition, the PFC excites medium spiny neurons in the head
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of the caudate nucleus (Bennett & Wilson, 2000), which in turn inhibit the pallidal neurons
(since medium spiny neurons are GABAergic) that are inhibiting the thalamus. Reduc-
ing the pallidal inhibition of the thalamus allows reverberation in cortical-thalamic loops,
and thereby facilitates working memory maintenance. The computational version of this
model successfully accounts for many behavioral and single-neuron working memory-related
phenomena (Ashby et al., 2005).

When feedback convinces the learner that the current categorization rule is incorrect,
then a new rule must be selected and executive attention must be switched from the old
rule to the new rule. In COVIS, these selection and switching operations are mediated
by separate neural processes. In the computational version of the model, the ACC selects
among alternative rules by enhancing the activity of the specific PFC working memory unit
that represents a particular rule (Ashby et al., 2011). This is accomplished via the following
algorithm.

Denote the set of all possible explicit rules by R = {R1, R2, ..., Rm}. Suppose rule Ri

is used on trial n. If the response on trial n was correct, then rule Ri is used again on trial
n + 1 with probability 1. If the response on trial n was incorrect, then the probability of
selecting rule Rk from the set R for use on trial n+ 1 equals

Pn+1(Rk) = Yn(Rk)
m∑

i=1
Yn(Rm)

, (1)

where Yn(Rk) represents the current weight of rule Rk, which depends on its initial salience,
its reinforcement history, and whether or not is was used on trial n. The decision criteria
associated with each rule are learned via gradient descent. The model has 6 free param-
eters: 1) the variance of perceptual and criterial noise associated with rule application;
2) a parameter γ that increases with the tendency of the learner to perseverate following
negative feedback (i.e., and continue with the same unsuccessful rule); 3) a parameter λ
that measures creativity during rule selection (i.e., as λ increases, lower salience rules are
more likely to be selected); 4) ∆C equals the increase in weight of the current rule following
positive feedback; 5) ∆E equals the decrease in weight of the current rule following negative
feedback; and 6) the gradient-descent learning rate (i.e., δ). As brain dopamine levels rise,
the perseveration parameter γ is assumed to decrease and the selection parameter λ is as-
sumed to increase. This model has successfully accounted for learning in RB tasks, under a
variety of experimental conditions, including for example, with and without a simultaneous
dual task (Ashby et al., 2011)), and under normal or positive affect (Hélie, Paul, & Ashby,
2012b), and also in a variety of different neuropsychological patient populations, including
Parkinson’s disease (Hélie, Paul, & Ashby, 2012a) and anorexia nervosa (Filoteo et al.,
2014). For a complete description of the model, see Ashby et al. (2011).

To perform well in RB tasks, participants must remember which rules they have
already tested and rejected, in order to avoid revisiting these failed rules. As in many
other models, COVIS assumes that the consolidation from working memory to long-term
declarative memory representations is mediated by projections from the PFC to the hip-
pocampus (e.g., Eichenbaum & Cohen, 2001). If the task is simple enough, then working
memory might be sufficient to avoid these errors. Thus, COVIS predicts normal learning
by medial temporal lobe amnesiacs in simple RB tasks in which the correct rule can be
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discovered before the list of rejected hypotheses is lost from working memory. In more
difficult RB tasks (e.g., with many alternative rules), the search for the correct rule will
exceed working memory capacity, so COVIS predicts that in these cases medial temporal
lobe amnesiacs will be impaired. Much evidence supports the former prediction (Janowsky,
Shimamura, Kritchevsky, & Squire, 1989; Leng & Parkin, 1988), but to our knowledge the
latter prediction has not been rigorously tested. Even so, several studies have reported
normal performance by amnesiacs on the first 50 trials of a difficult task, but impaired per-
formance later on (Hopkins, Myers, Shohamy, Grossman, & Gluck, 2004; Knowlton et al.,
1996). Temporal cortex has also been shown to interact with PFC when rules are retrieved
from long-term storage (for a review, see Bunge, 2004).

In conclusion, the COVIS declarative system includes multiple subprocesses, such as
selecting a rule, focusing attention of the selected rule, storing the rule in long-term memory,
switching between rules, and adjusting the salience of rules depending on the nature of the
feedback. Neuroimaging and neuropsychological results have provided evidence for such
multiple, distinct processes in RB category learning, (Kehagia, Cools, Barker, & Robbins,
2009; Monchi, Petrides, Petre, Worsley, & Dagher, 2001; Price, Filoteo, & Maddox, 2009;
Tachibana et al., 2009). Furthermore, it is known that dopamine influences many of these
subprocesses (Ashby & Casale, 2003; Cools, 2006; Cools, Lewis, Clark, Barker, & Robbins,
2007; Frank & O’Reilly, 2006; Monchi et al., 2004; Moustafa & Gluck, 2011; Price et al.,
2009; Seamans & Yang, 2004).

3.1.2. Models of the WCST. A number of models have been developed to ac-
count for results of experiments with the WCST. Within this set, the more neurobiologically
detailed models were developed specifically to account for the impaired WCST performance
of a number of different special neuropsychological patient groups – including schizophren-
ics, Parkinson’s disease patients, and patients with Huntington’s disease. In general, these
models are similar to the rule-learning submodel of COVIS, except typically with more
biological detail in certain brain regions.

Monchi, Taylor, and Dagher (2000) proposed a COVIS-like model that includes an
extra reward-processing circuit in which reward-related signals from the amygdala project
to the nucleus accumbens (NAcc). The goal of this work was to explain how dopamine im-
balences cause suboptimal WCST performance in Parkinson’s patients and schizophrenics.
Monchi et al. (2000) simulated impaired performance in schizophrenic patients by reducing
the gains in the NAcc, which caused rule-selection deficits within an ACC/basal ganglia
circuit, which in turn reduced PFC activation. In contrast, the suboptimal performance of
Parkinson’s patients was simulated by reducing the synaptic strengths between PFC and
the caudate nucleus, and between the caudate and the internal segment of the globus pal-
lidus. These decreases reduced the cortical activity and impaired the encoding of features
in working memory.

Amos (2000) attempted to explain how perseverative and random errors in the WCST
might be caused by dopamine imbalances in the PFC and basal ganglia of Parkinson’s,
schizophrenic, and Huntington’s disease patients. His model included a reward/punishment
unit (presumably in the ventral tegmental area) that projected to inhibitory units in PFC,
which were reciprocally connected to the PFC rule units. By changing the simulated gains
in PFC and basal ganglia, Amos (2000) inferred that perseverative errors were more likely
to be PFC dependent, whereas random errors were more likely basal ganglia dependent.
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Moustafa and Gluck (2011) developed a similar model with the goal of accounting
for on- and off-medication performance of Parkinson’s patients in a task that was similar
to the WCST, in the sense that it also required attentional switches to a new stimulus
dimension after a rule is learned. In this model, dopamine neurons in the substantia nigra
pars compacta and ventral tegmental area (i.e., the critic) influenced activity in the PFC
and striatum by altering two types of dopamine input: tonic dopamine, which affected the
gain on activity, and phasic dopamine, which dynamically affected changes in connection
weights. They assumed that Parkinson’s disease reduces phasic and tonic dopamine levels
in PFC and the basal ganglia, and that the primary effect of medication is to increase tonic
dopamine levels, but that this increase actually reduces the phasic dopamine signal.

All models considered so far assume that a representation of the stimulus is compared
to a representation of the current rule in PFC. In contrast to this, Leabra assumes that
the relevant perceptual representations are maintained in posterior cortex, and that these
representations are modulated by PFC (Rougier & O’Reilly, 2002; O’Reilly et al., 2002).
This view of PFC function is supported by some recent studies suggesting that the PFC
plays a mostly modulatory role in working memory maintenance (see e.g., Sreenivasan,
Curtis, & D’Esposito, 2014 for a review). In Leabra, the mapping from stimulus to response
is mediated directly via weight-based associations between posterior cortex and response
output units, which receive top-down bias from PFC along the selected dimension. The
ventral tegmental area acts as a critic by sending reward-prediction-error signals to the
PFC, which have the effect of stabilizing or destabilizing current PFC activity patterns.

3.2. Models of categorization in II tasks

3.2.1. COVIS. The COVIS procedural-learning system incrementally learns arbi-
trary stimulus-response associations via dopamine-mediated reinforcement learning. Proce-
dural learning is typically associated with motor learning (e.g., Willingham, 1998; Willing-
ham, Nissen, & Bullemer, 1989), and accordingly, the COVIS procedural system assumes
that II learning includes a strong motor component.

Figure 2 shows the architecture of the COVIS procedural-learning system (Ashby et
al., 1998; Ashby & Waldron, 1999; Ashby & Crossley, 2011; Cantwell et al., 2015). The
key structure is the striatum, a major input region within the basal ganglia that includes
the caudate nucleus and the putamen. In primates, all of extrastriate visual cortex projects
directly to the striatum, with a cortical-striatal convergence ratio of approximately 10,000
to 1 (e.g., Wilson, 1995). The model assumes that, through a procedural learning process,
each striatal medium spiny neuron (MSN) associates an abstract motor program with a
large group of visual cortical neurons (i.e., all that project to it). Much evidence supports
the hypothesis that procedural learning is mediated within the basal ganglia, and especially
at cortical-striatal synapses, where synaptic plasticity is thought to follow reinforcement
learning rules (Ashby & Ennis, 2006; Houk, Adams, & Barto, 1995; Mishkin, Malamut, &
Bachevalier, 1984; Willingham, 1998). The COVIS procedural-learning system is a formal
instantiation of these ideas.

Note that the model includes two loops through the basal ganglia (Cantwell et al.,
2015). One loop projects from visual cortex through the body and tail of the caudate nucleus
and terminates in preSMA, and the second loop projects from preSMA through the putamen
and terminates in SMA. Because this second loop terminates in premotor cortex, COVIS
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Figure 2 . The neural architecture of the COVIS procedural category-learning system (SMA
= supplementary motor area, PreSMA = presupplementary motor area, VL = ventral
lateral nucleus of the thalamus, VA = ventral anterior nucleus of the thalamus, CMPf =
centromedian and parafascicular nuclei of the thalamus, GPi = internal segment of the
globus pallidus, TAN = tonically active neuron, SNPC = substantia nigra pars compacta,
MSN = medium spiny neuron of the striatum).

predicts that the associations that are learned are between stimuli and abstract motor goals
(e.g., press the button on the left). Both loops rely on reinforcement learning at cortical-
striatal synapses. The first loop learns which stimuli are associated with the same response
and the second loop learns what motor response is associated with each of these stimulus
clusters. With novel categories, both types of learning are required. However, note that if
we train subjects to make accurate categorization responses and then switch the responses
associated with the two categories, then the category structures remain unchanged – only
the response mappings must be relearned. So COVIS predicts that reversing the locations of
the response keys will interfere with II performance, but that recovery from such a reversal
should be easier than learning novel categories – a prediction that has been supported in
several studies (Cantwell et al., 2015; Kruschke, 1996; Maddox, Glass, O’Brien, Filoteo, &
Ashby, 2010; Sanders, 1971; Wills, Noury, Moberly, & Newport, 2006).1

The units in the COVIS procedural-learning model are based on the Izhikevich (2003)
spiking-neuron model. Let Vi(t) and Vj(t) denote the intracellular voltages of a pre- and

1In contrast, COVIS also predicts that such reversals should not impair initial RB performance, since
the COVIS declarative system does not assign a prominent role to any premotor or motor regions of cortex
(see Figure 1). Many of these same studies also supported this prediction.
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postsynaptic neuron, respectively, at time t. Then the Izhikevich (2003) model assumes that
the intracellular voltage of the postsynaptic neuron on trial n is described by the following
differential equations:

dVj(t)
dt

= wij(n)f [Vi(t)] + β + γ [Vj(t)− Vr] [Vj(t)− Vt]− θUj(t),

dUj(t)
dt

= λ [Vj(t)− Vr]− ωUj(t), (2)

where β, γ, Vr, Vt, θ, λ, and ω are constants that are adjusted to produce dynamical behavior
that matches the neural population being modeled. Uj(t) is an abstract regulatory term
that is meant to describe slow recovery in the postsynaptic neuron after an action potential
is generated. Equation 2 produces the upstroke of an action potential via its own dynamics.
To produce the downstroke, Vj(t) is reset to Vreset when it reaches Vpeak, and at the same
time, Uj(t) is reset to Uj(t) + Ureset, where Vreset, Vpeak, and Ureset are free parameters.

The model has many free parameters and therefore can fit a wide variety of dynamical
behavior. Izhikevich (2003) identified different sets of parameter values that allow the model
to mimic the spiking behavior of approximately 20 different types of neurons. For example,
one set of parameter values allows the model to mimic the firing properties of the striatal
medium spiny neurons shown in Figure 2 (including, e.g., their up and down states), and
another set of values allows the model to mimic the regular spiking neurons that are common
in cortex. Furthermore, Ashby and Crossley (2011) modified the Izhikevich model to account
for the unusual dynamics of the striatal cholinergic interneurons known as TANs (which
produce a pronounced pause in their high tonic firing rate following excitatory input). In
all these cases, the parameters are fixed by fitting the model to single-unit recording data
from the neural population being modeled. Once set, the parameter values that define
the models of each individual neuron type then remain fixed throughout all applications.
Therefore, when testing the model against behavioral or neuroimaging data, the models of
each neuron type have zero free parameters.

The function f [Vi(t)] in Eq. 2 models the input from the presynaptic neuron i. In
particular, it uses a simple model called the alpha function to mimic the temporal delays
of spike propagation and the temporal smearing that occurs at the synapse (Rall, 1967).
Specifically, the alpha function assumes that every time the presynaptic neuron spikes, the
following input is delivered to the postsynaptic neuron (with spiking time t = 0):

α(t) = t

δ
exp

(
δ − t
δ

)
, (3)

where δ is a constant. This function has a maximum value of 1.0 and it decays to .01
at t = 7.64δ. Thus, δ can be chosen to model any desired temporal delay. Suppose the
presynaptic neuron i produces N spikes that occur at times t1, t2, ..., tN . Then the function
f in Eq. 2 equals

f [Vi(t)] =
N∑

k=1
[α(t− tk)]+ , (4)

where
[α(t− tk)]+ =

{
α(t− tk) if t > tk;
0 if t ≤ tk.

(5)
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COVIS assumes that the procedural learning in the striatum is facilitated by a
dopamine-mediated reward signal from the substantia nigra pars compacta (SNpc). There
is a large literature linking dopamine and reward, and many researchers have argued that
a primary function of dopamine is to serve as the reward signal in reward-mediated learn-
ing (e.g., Houk et al., 1995; Wickens, 1993). The well-accepted theory is that positive
feedback that follows successful behaviors increases phasic dopamine levels in the striatum,
which has the effect of strengthening recently active synapses, whereas negative feedback
causes dopamine levels to fall below baseline, which has the effect of weakening recently
active synapses (e.g., Arbuthnott, Ingham, & Wickens, 2000; Calabresi, Pisani, Mercuri,
& Bernardi, 1996; Reynolds & Wickens, 2002). In this way, the dopamine response to
feedback serves as a teaching signal that allows successful behaviors to increase in proba-
bility and unsuccessful behaviors to decrease in probability. These learning-related effects
are modeled by the wij(n) multiplier on f [Vi(t)] in Eq. 2. The value of this term is ad-
justed trial-by-trial according to standard models of dopamine-mediated synaptic plasticity
in the striatum. For a complete description of this type of mathematical modeling, called
computational cognitive neuroscience, see Ashby (2018).

According to this account, synaptic plasticity requires that the visual trace of the stim-
ulus and the post-synaptic effects of dopamine overlap in time. More specifically, synaptic
plasticity in the striatum is strongest when the intracellular signaling cascades driven by
NMDA receptor activation and dopamine D1 receptor activation coincide (Lisman, Schul-
man, & Cline, 2002; Rudy, 2014). The further apart in time these two cascades peak, the
less effect dopamine will have on synaptic plasticity. For example, Yagishita et al. (2014)
reported that synaptic plasticity was best (i.e., greatest increase in spine volume on striatal
MSNs) when dopamine neurons were stimulated 600 ms after MSNs. When the dopamine
neurons were stimulated before the MSNs or 5 s after the MSNs, then no evidence of any
plasticity was observed. Similar results have been reported in II category learning. First,
Worthy, Markman, and Maddox (2013) reported that II learning is best with feedback de-
lays of 500ms and slightly worse with delays of 0 or 1000ms. Second, several studies have
reported that feedback delays of 2.5 s or longer impair II learning, whereas delays as long
as 10 secs have no effect on RB category learning (Dunn, Newell, & Kalish, 2012; Maddox,
Ashby, & Bohil, 2003; Maddox & Ing, 2005). Valentin, Maddox, and Ashby (2014) showed
that the COVIS procedural-learning system can accurately account for the effects of all
these feedback delays.

Ashby and Crossley (2011) proposed that the striatal cholinergic interneurons known
as TANs (for tonically active neurons) serve as a context-sensitive gate between cortex
and the striatum (see also Crossley, Ashby, & Maddox, 2013, 2014; Crossley, Horvitz,
Balsam, & Ashby, 2016). The idea, which is supported by a wide variety of neuroscience
evidence, is that the TANs tonically inhibit cortical input to striatal output neurons (e.g.,
Apicella, Legallet, & Trouche, 1997; Matsumoto, Minamimoto, Graybiel, & Kimura, 2001;
Pakhotin & Bracci, 2007; Smith, Raju, Pare, & Sidibe, 2004). The TANs are driven by
neurons in the centremedian–parafascicular (CM-Pf) nuclei of the thalamus, which in turn
are broadly tuned to features of the environment. In rewarding environments, the TANs
learn to pause to stimuli that predict reward, which releases the cortical input to the
striatum from inhibition. This allows striatal output neurons to respond to excitatory
cortical input, thereby facilitating cortical-striatal plasticity. In this way, TAN pauses
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facilitate the learning and expression of striatal-dependent behaviors. When rewards are
no longer available, the TANs cease to pause, which prevents striatal-dependent responding
and protects striatal learning from decay.

Extending the COVIS procedural-learning system to include TANs allows the model
to account for many new phenomena – some of which have posed difficult challenges for
previous learning theories. One of these is that the reacquisition of an instrumental be-
havior after it has been extinguished is considerably faster than during original acquisition
(Ashby & Crossley, 2011). The model accounts for this ubiquitous phenomenon because
the withholding of rewards during the extinction period causes the TANs to stop pausing
to sensory cues in the conditioning environment (since they are no longer associated with
reward). This closes the gate between cortex and the striatum, which prevents further
weakening of the cortical-striatal synapses. When the rewards are reintroduced, the TANs
relearn to pause, and the behavior immediately reappears because of the preserved synaptic
strengths.

3.2.2. Exemplar models. Exemplar theory assumes that categorization is a pro-
cess of learning about the exemplars that belong to the category (Estes, 1986; Medin &
Schaffer, 1978; Nosofsky, 1986). When an unfamiliar stimulus is encountered, its similarity
is computed to the memory representation of every previously seen exemplar from each po-
tentially relevant category. Exemplar theory has been the most prominent cognitive theory
of categorization for more than 30 years, but despite this popularity, until recently, it has
never had a detailed neurobiological interpretation. Ashby and Rosedahl (2017) showed
that the exemplar model is mathematically equivalent to a simplified version of the COVIS
procedural-learning model (e.g., with only one loop through the basal ganglia). In this
neural version of exemplar theory, category learning is mediated by synaptic plasticity at
cortical-striatal synapses. The neural version makes identical quantitative predictions to
the cognitive version of exemplar theory, yet it can account for many empirical phenomena
that are either incompatible with or outside the scope of the cognitive version. The neural
version also reinterprets the psychological assumptions associated with exemplar theory.
The cognitive version assumes that for every categorization decision, people retrieve mem-
ory representations of every previously seen category exemplar and that they compute the
similarity of the presented stimulus to all these stored memories. Categorization decisions
are based on the sum of all these similarities. In contrast, the neural version assumes that
no memory representations are ever retrieved. Instead, the summed similarities are encoded
in the strength of synapses between sensory cortex and the striatum.

3.3. Models of categorization in prototype-distortion tasks

The prototype-distortion task was originally designed to study category learning
(Posner & Keele, 1968), but the idea that the brain abstracts a wide variety of percep-
tual information soon became a key component of many object recognition theories (e.g.,
see Logothetis & Sheinberg, 1996). Therefore, models that assume categorization depends
on the representation of prototypes are often tested with more complex stimuli, such as
abstract objects (Riesenhuber & Poggio, 1999), artificial creatures (Riesenhuber & Pog-
gio, 2002; Love & Gureckis, 2007), and real-world scenes (Serre, Oliva, & Poggio, 2007).
Prototype-based models assume that categorization decisions are based on the distances
between the representations of the stimulus and the prototypes of each category, and that
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categorization probability is inversely related to these distances. Thus, the stimulus is most
likely to be assigned to the category with the nearest prototype. If distance is measured
using the Euclidean metric, then this decision strategy always produces piece-wise linear
bounds and is equivalent to template matching (Ashby & Gott, 1988). The models differ
in how the prototypes are formed and represented in the network.

One way to approach this question is to start from neuroscientific observations. For
example, based on single-unit recording results in primates, Riesenhuber and Poggio (1999)
proposed a model called HMAX that describes visual processing in the ventral visual stream
from V1 up through inferotemporal cortex (see also, Serre et al., 2007). At each stage, the
level of abstraction is increased. This is done by converging the projections of many units
that respond to similar stimuli onto the same unit at the next higher level, and assuming
that the response of each unit equals the maximum activation of all input units. In this
way, each level of abstraction can be viewed as a kind of prototype. At a final stage,
the object-tuned neurons in inferotemporal cortex project to classification units in PFC,
where the output of each unit equals a linear combination of its inputs, with the coefficients
adjusted via a supervised learning process to maximize categorization accuracy (Serre et
al., 2007). The model is strictly feedforward, and has included as many as 10 million units.
Parameters of the units are set to match physiological data – for example, to create units
that match the physiological responses of simple and complex cells. Thus, in tests against
behavioral data, the model has no free parameters. The model has successfully accounted
for single-unit recording results in primates using categories constructed of abstract images
(Riesenhuber & Poggio, 1999) and creature-like images (Riesenhuber & Poggio, 2002), and
also for the performance of human observers classifying natural scenes (Serre et al., 2007).

Although Leabra was not proposed as a model of learning in prototype-distortion
tasks, its visual layers (V1 to inferotemporal cortex) can be viewed as a simplified version of
HMAX. Specifically, like HMAX, Leabra also includes feedforward convergent projections
in which the response of each unit equals the maximum activation of all its input units
(O’Reilly et al., 2013). However, unlike HMAX, which is purely feedforward, Leabra also
includes recurrent projections from higher cortical regions, which help shape the response
of lower layers. Wyatte, Herd, Mingus, and O’Reilly (2012) argued that this property, along
with competitive inhibition, is especially important for forming robust representations for
ambiguous images, such as occluded objects. Despite these differences Leabra and HMAX
offer similar interpretations of prototype-distortion learning.

Another approach is to develop the model from behavioral observations, and then
map components of the model to brain regions. For example, SUSTAIN assumes that
each category is represented as collection of stimulus clusters (Love & Gureckis, 2007).
Each cluster begins initially as a single stimulus that was unexpected, either because it
was dissimilar to previously seen stimuli or because it was associated with a response that
feedback indicates was incorrect. New stimuli are added to an existing cluster if similarity
is high, or else they form a new cluster if they are unexpected. SUSTAIN is equivalent to a
prototype model if each category is defined by a single cluster, and to a multiple prototype
model if categories are defined by more than one cluster.
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3.4. Neuroscience-Based Models of Automatic Categorization

The COVIS procedural-learning model also accounts for how behaviors that are
learned procedurally can eventually come to be executed automatically (Ashby et al., 2007).2
A key role in this transition is played by the direct projections (shown in Figure 2) from vi-
sual cortex to SMA. Ashby et al. (2007) proposed that, by themselves, these projections are
incapable of category learning because synaptic plasticity in cortex follows Hebbian, rather
than reinforcement learning rules (Feldman, 2009). Although premotor cortex is a target
of midbrain dopamine neurons, unlike the basal ganglia, concentrations of dopamine active
transporter (DAT) are negligible in cortex (e.g., Varrone & Halldin, 2014). For this reason,
dopamine remains in cortical synapses much longer than in striatal synapses. As a result,
cortical dopamine levels are likely to remain above baseline during an entire training ses-
sion. This means that all active synapses in cortex will get strengthened, even those leading
to incorrect responses and negative feedback. Therefore, in the Figure 2 model, the basal
ganglia play the critical role of training cortex. The idea is that, via dopamine-mediated
reinforcement learning, the basal ganglia learn to activate the correct post-synaptic targets
in SMA, which allows the appropriate cortical-cortical synapses to be strengthened via Heb-
bian learning. Once the cortical-cortical synapses have been built, the basal ganglia are no
longer required to produce the automatic behavior.

This feature of the COVIS procedural system accounts for behavioral changes that
occur as automaticity develops (i.e., improvements in both accuracy and response time), but
it also accounts for a variety of neuroscience results that are problematic for other theories
of automaticity (Ashby et al., 2007). For example, it correctly predicts that inactivation of
the globus pallidus (which essentially prevents the basal ganglia from influencing the cortical
motor and premotor areas) does not disrupt the ability of monkeys to fluidly produce an
over-learned motor sequence (Desmurget & Turner, 2010), and that Parkinson’s disease
patients, who have significant striatal dysfunction and are impaired during early learning
in some RB and II tasks, are relatively normal in executing automatic behaviors (Asmus,
Huber, Gasser, & Schöls, 2008).

The data from many single-unit recording studies that examined neural responses
during categorization were collected after the animals were trained on the task for weeks or
months, and thus, after it is likely that automaticity had already developed. As a result,
the models proposed to account for these data typically focus on cortical activations and
do not address the neural changes that might have occurred as automaticity develops. For
example, the HMAX model does not specify the neural mechanisms that mediate feedback-
based learning in any regions of the model (Serre et al., 2007). As another example, Engel,
Chaisangmongkon, Freedman, and Wang (2015) proposed a purely cortical model of how
motion categories are learned that included areas MT and LIP. The model assumed that
plasticity in this circuit is mediated by a trial-by-trial reward-prediction-error (RPE) signal
that is encoded in the phasic activity of dopamine neurons. The low concentrations of DAT
in cortex however, suggest that changes in cortical dopamine concentrations are likely to
be too sluggish to track trial-by-trial RPEs (Varrone & Halldin, 2014). So one possibility

2This might be the only existing neuroscientific model of automatic categorization. On the other hand,
there are several, closely related neuroscience-based models of automatic sequence production (e.g., Chersi,
Mirolli, Pezzulo, & Baldassarre, 2013; Helie, Roeder, Vucovich, Rünger, & Ashby, 2015).
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is that the basal ganglia provide this cortical teaching signal, rather than the dopamine
neurons per se (e.g., as described by Ashby et al., 2007).

4. Discussion

Neuroscientific models of categorization are now entering their third decade of exis-
tence. They are still in their infancy, however, compared to cognitive models. Each ap-
proach has its own advantages. Cognitive models are typically more analytically tractable,
and therefore easier to fit to data. In contrast, neuroscientific models are usually analyti-
cally intractable, and therefore require extensive computer simulations to test. In addition,
cognitive models require less knowledge to formulate. They require specifying the cognitive
and perceptual processes that mediate categorization, but they require no knowledge of
the underlying neural mechanisms or processes. These advantages guarantee that cognitive
models of categorization will continue to make important contributions for the foreseeable
future.

Despite their computational complexity, and the greater knowledge they require to
build, neuroscientific models have their own advantages. First, of course, they have the
potential to account for a wide variety of data. In addition to traditional response ac-
curacy and response time data, neuroscientific models also can be tested against a wide
variety of neuroscience data, including single-unit recordings, fMRI BOLD responses, and
EEG recordings. In addition, they can make predictions about how transcranial magnetic
stimulation, neuropsychological disease, or pharmacological intervention affect behavior.

Second, neuroscientific models are less mathematically flexible than their cognitive
counterparts (Ashby, 2018). Flexible models can compensate for incorrect psychological
or neurobiological assumptions by sheer mathematical force. The ability to bend a poor
model to fit some data makes it more difficult to reject, thereby slowing scientific progress.
In contrast, it is more difficult for rigid models that make incorrect assumptions to avoid
poor fits to data. As a result, their weaknesses are more quickly exposed, which hastens the
model development process. With descriptive models, like linear regression, the sole pur-
pose of adding a new parameter is almost always to fit more data. Therefore, it is almost
always true that every new parameter greatly increases mathematical flexibility. However,
in neuroscientific models, the goal is generally to model the hardware that mediates cate-
gorization decisions. In this case, new parameters are added to model structure – not new
data.

Furthermore, mathematical inflexibility is built into neuroscientific models via the
architectural and process constraints supplied by the relevant neuroscience literature. For
example, consider a model that includes cortical and striatal units. The equations describing
each unit will be characterized by a number of free parameters and there will be other
parameters that describe the strength of the cortical-striatal synapses. But because the
projection from cortex to striatum is excitatory and one way, changing the values of any of
these parameters can only have a very limited effect on the behavior of the model – namely,
any condition that causes cortical units to increase their firing rate will also cause striatal
units to increase their firing rate. This is the only data profile that the model can produce,
regardless of how many free parameters it contains, and regardless of the numerical values
of those parameters. In other words, this is a parameter-free a priori prediction of such
models – that is, that for all parameter values, increasing cortical activation can never
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reduce striatal activation. In fact, neuroscientific models typically make many such a priori
predictions, whereas more flexible models rarely make any. As one other example (among
many), Section 3.2.1 described how COVIS predicts that feedback delays of more than a
few seconds can never impair RB category learning more than II learning.

Another advantage of neuroscientific models is that many experiments were run to
test their a priori predictions. And because many such experiments were successful, they
enriched the field by bringing to light a large number of new behavioral phenomena that
characterize human category learning. For example, primarily because of a priori predic-
tions of neuroscientific models, we now know that feedback delays interfere with II learning
more than with RB learning, that a dual-task that recruits working memory interferes with
RB learning more than II learning, that switching the locations of the response buttons
after initial learning interferes with II performance more than RB performance, that lim-
iting time and attention for feedback processing interferes with RB learning more than II
learning, that unsupervised II learning is worse than unsupervised RB learning, and that
analogical transfer is much worse in II tasks than in RB tasks. All of the experiments that
discovered these results were run to test a priori predictions of COVIS, and these predictions
were all empirically supported in replicated experiments (for a review and a description of
many other examples, see Ashby & Valentin, 2017). Furthermore, it is likely that many of
these empirical phenomena might not yet be known without the neuroscientific models that
inspired these experiments.

Third, neuroscientific models can easily be extended by adding more structure and/or
biological detail. As an example, consider the COVIS procedural-learning model that is
described in Figure 2. The original version included only one loop through the striatum,
rather than the two loops shown in Figure 2, and it lacked cholinergic interneurons in the
striatum (i.e., the TANs) and cortical-cortical projections between visual and premotor
cortices. These features were all added in later applications. This was a seamless process
because each step in model development was true to the underlying neuroanatomy. For
this reason, adding new structure did not require changing the older, simpler version of the
model in any way. And adding these new structures allowed the model to account for an
enormous number of new empirical phenomena.

An obvious extension of this same principle is that if two different neuroscientific
models are both faithful to the known neuroanatomy, and the two models focus on dif-
ferent, but overlapping neural networks, then it should be possible to connect them in a
straightforward, plug-and-play fashion. Cantwell, Riesenhuber, Roeder, and Ashby (2017)
illustrated this principle. The COVIS procedural-learning model had always included a
grossly oversimplified model of visual cortex and the HMAX model of Riesenhuber and
Poggio (1999, 2002) had always oversimplified early category learning. To overcome both
of these limitations, Cantwell et al. (2017) replaced the COVIS model of visual cortex with
HMAX. HMAX uses bitmap images of the stimulus as input and outputs a 4,075 × 1 vector
that is presumed to model activation in visual area V2 or V4. Cantwell et al. (2017) simply
connected each of these outputs to a unique synapse on each striatal MSN of the CO-
VIS procedural-learning model. Except for some simple scaling of these outputs, no other
changes were made to either model. The new HMAX/COVIS model provided impressively
good fits to human category-learning data from two qualitatively different experiments that
used different types of category structures and different types of visual stimuli and it did
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this using bitmap images of the stimuli as inputs, rather than the abstract stimulus repre-
sentations used in previous applications of COVIS.

All of these advantages guarantee that the development of neuroscientific models of
categorization will only accelerate in the future. Furthermore, the field of neuroscience is
growing at an enormous pace, and many of the new discoveries about human brain function
will greatly facilitate this development. The result will almost surely be models that are
unprecedented in their breadth and predictive ability.

5. Conclusions

Before the 1990s, almost nothing was known about the neural networks and processes
that mediate human categorization. As a result, theories of categorization were dominated
by purely cognitive descriptions. The cognitive neuroscience revolution ushered in a new
era in which many results dramatically increased our understanding of the neural bases
of human categorization. As a result, models grounded in neuroscience are becoming in-
creasingly popular. Collectively, these models have already made profound contributions
to our understanding of human categorization – by widening the empirical domain of cat-
egorization research, and by motivating experiments that might not otherwise have been
run. Furthermore, this trend should increase in the future, as methods for studying the
functioning human brain improve and the neuroscience database grows.
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