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in Perceptual Category Learning
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Feedback is highly contingent on behavior if it eventually becomes easy to predict, and weakly
contingent on behavior if it remains difficult or impossible to predict even after learning is
complete. Many studies have demonstrated that humans and nonhuman animals are highly
sensitive to feedback contingency, but no known studies have examined how feedback con-
tingency affects category learning, and current theories assign little or no importance to this
variable. Two experiments examined the effects of contingency degradation on rule-based and
information-integration category learning. In rule-based tasks, optimal accuracy is possible
with a simple explicit rule, whereas optimal accuracy in information-integration tasks requires
integrating information from two or more incommensurable perceptual dimensions. In both
experiments, participants each learned rule-based or information-integration categories under
either high or low levels of feedback contingency. The exact same stimuli were used in all four
conditions and optimal accuracy was identical in every condition. Learning was good in both
high-contingency conditions, but most participants showed little or no evidence of learning in
either low-contingency condition. Possible causes of these effects are discussed, as well as
their theoretical implications.

Introduction

Many studies have examined the role of feedback in cat-
egory learning. This article describes the results of two ex-
periments that examine one aspect of feedback that, to our
knowledge, has never before been directly investigated –
namely, the importance of the contingency of the feedback
on the learner’s behavior. Contingency is high if the valence
of the feedback (i.e., whether it is positive or negative) even-
tually becomes predictable and low when it remains difficult
or impossible to predict even after learning is complete. Al-
though current theories assign little or no importance to this
variable, our results suggest that a high level of feedback con-
tingency is critical for category learning.

To make this discussion more concrete, consider Figure 1.
The bottom two panels illustrate two different sets of overlap-
ping categories. Each symbol denotes a different stimulus.
The circles denote exemplars in category A and the plus signs
denote exemplars in category B. Sample stimuli are shown in
the top panel. Note that each stimulus is a circular, sine-wave
grating and that the stimuli vary across trials on two stimulus
dimensions – the width and orientation of the dark and light
bars. The diagonal lines denote the optimal categorization
strategy. In particular, in both of the lower two panels, ac-
curacy is maximized at 80% if the participant responds A to
any stimulus with coordinates above the diagonal line and B
to any stimulus with coordinates below the line.

The stimuli in the middle panel of Figure 1 were selected
by randomly sampling from two bivariate normal distribu-

tions – one that defines each category (Ashby & Gott, 1988).
Note that the density of the 20% of B stimuli that fall above
the diagonal bound decreases with distance from this bound.
In other words, within the A response region, there are many
B stimuli near the category bound and few far from the
bound. Accuracy is typically higher for stimuli far from the
bound, as is response confidence. Thus, a participant using
the optimal strategy is much more likely to receive positive
feedback on trials when accuracy and response confidence
are high than on trials when accuracy and confidence are low.
As a result, despite the overlap, feedback contingency is high
– as the participant’s accuracy improves, so does his or her
ability to predict whether the feedback will be positive or
negative. We call this the high-contingency condition.

The stimuli in the bottom panel of Figure 1 were selected
in a three-step procedure. Step 1 was to generate the ex-
act same stimuli as in the middle panel – that is, by using
the same random sample from the same two bivariate normal
distributions used in the middle panel. Step 2 was to assign
all stimuli above and left of the diagonal bound to Category
A and all stimuli below and right of the bound to Category
B, regardless of their Step 1 category affiliation. Finally, in
Step 3, 20% of the Category A stimuli were randomly se-
lected and assigned to Category B, and 20% of the Category
B stimuli were randomly selected and assigned to Category
A. Thus, the critical point to note is that, in the bottom panel,
the density of the 20% of B stimuli falling above the bound
does not change with distance from the bound. As a result,
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in the bottom panel condition, a participant using the optimal
strategy is just as likely to receive negative feedback when
response confidence and accuracy are high as when response
confidence and accuracy are low. In other words, even when
accuracy is high, the valence of the feedback is difficult to
predict. We call this the low-contingency condition.

In summary, the stimuli and optimal strategies in the low-
and high-contingency conditions shown in Figure 1 are iden-
tical, and optimal accuracy is 80% correct in both conditions.
One key difference however, is that response confidence (and
accuracy) and the probability of receiving positive feedback
are more highly correlated in the high-contingency condition
than in the low-contingency condition. The critical question
addressed in this article is whether (and how) this difference
affects learning.

Feedback Contingency and Probabilistic Categorization

The study of feedback contingency has a long history –
dating back at least to Skinner (1948) (for reviews see, e.g.,
Hammond, 1980; Beckers, De Houwer, & Matute, 2007).
Many studies have conclusively demonstrated that humans
and nonhuman animals are both extremely sensitive to feed-
back contingency (Alloy & Abramson, 1979; Chatlosh, Ne-
unaber, & Wasserman, 1985; Rescorla, 1968). For example,
in instrumental conditioning tasks, extinction can be induced
simply by suddenly making the time of reward noncontingent
on the behavior (Balleine & Dickinson, 1998; Boakes, 1973;
Nakajima, Urushihara, & Masaki, 2002; Rescorla & Skucy,
1969; Woods & Bouton, 2007).

Almost all of this work used tasks with a single response
option in which the participant had a choice to either respond
or not respond at any time (e.g., by pressing a lever or a but-
ton; Alloy & Abramson, 1979; Dickinson & Mulatero, 1989;
Corbit & Balleine, 2003; Dias-Ferreira et al., 2009; Shanks
& Dickinson, 1991). Feedback (or reward) contingency was
typically manipulated in one of three ways. One method
was to vary the probability that reward was delivered follow-
ing each response (e.g., Rescorla, 1968; Alloy & Abramson,
1979; Dickinson & Charnock, 1985). However, with a single
response alternative, reducing this probability from one to a
lower value is equivalent to changing from continuous rein-
forcement to partial reinforcement. Because of this equiva-
lence, other methods for studying the effects of contingency
degradation are also popular. A second method is to manip-
ulate the temporal relationship between the behavior and re-
ward (e.g., Elsner & Hommel, 2004; Wasserman, Chatlosh,
& Neunaber, 1983). So for example, if the rewards are tem-
porally noncontingent on the behavior, then rewards are still
delivered, but the times when the rewards are given are un-
correlated with the times when the behaviors are emitted. In
probabilistic categorization tasks like those shown in Figure
1, feedback contingency is degraded, relative to deterministic
tasks, but the contingency is not temporal because feedback
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Low Contingency

Figure 1. Stimuli and two sets of overlapping categories.
The top panel shows six sample stimuli from the categories
shown in the bottom two panels. The middle panel shows
category structures in which feedback contingency is high
and the bottom panel shows category structures in which
feedback contingency is low. In both cases, optimal accuracy
is 80% correct.
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is delivered immediately after every response. The degraded
contingency is between the state of the feedback and the par-
ticipant’s behavior. We refer to this as state-feedback con-
tingency to emphasize the difference between this manipu-
lation and temporal-feedback contingency. A third method
is to degrade contingency by giving animals free access to
the reward (e.g., Dickinson & Mulatero, 1989). Note though
that free access to the reward reduces temporal feedback con-
tingency, not state feedback contingency because the time of
reward becomes dissociated from lever pressing, but the state
of the reward stays the same.

The extensive literature on feedback contingency provides
compelling justification for the present studies. Humans are
highly sensitive to feedback contingency, so an obvious and
important question to ask is how feedback contingency af-
fects learning, not of the contingencies themselves, but of
some other cognitive behavior in which performance im-
provements are feedback dependent. As mentioned, to our
knowledge, this question has not been previously addressed.
Furthermore, this research goal is sufficiently novel that it is
difficult to make specific predictions about our experiments
from the extensive literature on feedback contingency. This
problem is exacerbated by the fact that the single-response-
option tasks used in previous studies of feedback contin-
gency differ fundamentally from the categorization task used
here. For example, error feedback is delivered in both Figure
1 conditions, whereas negative feedback is never delivered
in most single-response-option tasks (e.g., as when partial
reinforcement is given in an operant-conditioning task).

Perhaps more relevant to the present research is the exten-
sive literature on probabilistic categorization. During prob-
abilistic category learning, some stimuli have probabilistic
associations with the contrasting categories. A response that
assigns a stimulus to category A might be rewarded with pos-
itive feedback on one trial and punished with negative feed-
back on another. Obviously, in such tasks, perfect perfor-
mance is impossible. For example, in the probabilistic tasks
illustrated in Figure 1, optimal accuracy is 80%. While stud-
ies of deterministic category learning are more common, re-
search on probabilistic category learning also has a long his-
tory (Ashby & Gott, 1988; Ashby & Maddox, 1990, 1992;
Estes, Campbell, Hatsopoulos, & Hurwitz, 1989; Gluck &
Bower, 1988; Kubovy & Healy, 1977; Medin & Schaffer,
1978; Estes, 1986; Gluck & Bower, 1988).

Almost all probabilistic category-learning experiments are
of one of two types. One approach uses stimuli that vary on
binary-valued dimensions (Estes, 1986; Estes et al., 1989;
Gluck & Bower, 1988; Medin & Schaffer, 1978). A common
example uses the weather prediction task (Knowlton, Squire,
& Gluck, 1994), in which one, two, or three of four possi-
ble tarot cards are shown to the participant, whose task is to
indicate whether the presented constellation signals rain or
sun. Each card is labeled with a unique, and highly discrim-

inable, geometric pattern. Fourteen of the 16 possible card
combinations are used (the zero- and four-card combinations
are excluded) and each combination is probabilistically as-
sociated with the two outcomes. In the original version of
the task, the highest possible accuracy was 76% (Knowlton
et al., 1994). A second popular approach uses stimuli that
vary on continuous dimensions and defines a category as a
bivariate normal distribution. Probabilistic category assign-
ments are created by using categories defined by overlapping
distributions (Ashby & Gott, 1988; Ashby & Maddox, 1990,
1992; Ell & Ashby, 2006), exactly as in the high-contingency
condition of Figure 1.

Besides the use of binary- versus continuous-valued stim-
ulus dimensions, there is another fundamental difference
between these two types of probabilistic category-learning
tasks. With overlapping normal distributions feedback con-
tingency is high because a participant using the optimal strat-
egy will receive frequent error feedback for stimuli near the
boundary and almost never receive error feedback for stimuli
far from the boundary. In contrast, with binary-valued di-
mensions there are few stimuli that are each presented many
times. The probability that a participant using the optimal
strategy receives positive feedback on each stimulus is iden-
tical on every trial. Thus, if the participant’s response con-
fidence varies at all across repeated stimulus presentations,
then the probability of receiving positive feedback will be
relatively uncorrelated with response confidence. Thus, feed-
back contingency should be lower with binary-valued stim-
ulus dimensions than with overlapping normal distributions.
So to study the effects of feedback contingency on category
learning one might compare performance in probabilistic cat-
egorization tasks that used binary-valued stimulus dimen-
sions with performance in tasks that used continuous-valued
stimulus dimensions and categories defined as overlapping
normal distributions. No such comparisons have been at-
tempted for good reason. There are simply too many differ-
ences between such tasks to make any comparison meaning-
ful. Of course, the stimuli must necessarily be different, but
in addition, there is no obvious way to equate such impor-
tant variables as category separation. As a result, it would
be impossible to attribute any performance difference to a
difference in feedback contingency rather than to some other
variable that could affect task difficulty.

A study of how state-feedback contingency affects learn-
ing is theoretically important because standard models of re-
inforcement learning seem to predict that degrading feed-
back contingency should either facilitate learning or at least
have no detrimental effects – which sharply contradicts the
results reported below. This is because standard reinforce-
ment learning models assume that the amount of learning that
occurs on each trial is proportional to the reward prediction
error (RPE; Sutton & Barto, 1998), which is defined as the
value of the obtained reward minus the value of the predicted
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reward. The idea is that when RPE = 0, the outcome was
exactly as predicted, in which case there is nothing more to
learn. However, an RPE that deviates from zero is a sig-
nal that an unexpected outcome occurred, and therefore that
more learning is required.

When state-feedback contingency is high, positive and
negative feedback are easy to predict, so extreme values of
RPE will be rare. In contrast, when state-feedback contin-
gency is low, positive and negative feedback become more
difficult to predict, so the fluctuations in RPE will increase.
There will be more unexpected errors, but also more unex-
pected correct feedbacks. For example, a B stimulus in the
A response region will generate a larger RPE in the low-
contingency condition of Figure 1 and therefore cause more
unlearning of the correct A response on that trial. But these
discrepant stimuli occur on only 20% of the trials. On the
other 80% of trials, the stimuli are not discrepant. So for
example, an A stimulus in the A response region will also
generate a larger RPE in the low-contingency condition and
therefore cause more (or better) learning of the correct A
response on that trial1. By definition, predicted reward is
computed before stimulus presentation, so any RPE model
that predicts larger RPEs to discrepant stimuli in our low-
contingency condition must necessarily also predict larger
RPEs to nondiscrepant stimuli. Since nondiscrepant stimuli
outnumber discrepant stimuli in the Figure 1 tasks by 4-to-1,
RPE models predict that for an ideal observer, on 4 out of
5 trials there will be more strengthening of the correct asso-
ciations in the low-contingency condition, whereas on 1 out
of 5 trials there will be more strengthening of the incorrect
associations. All else being equal, this should cause better
learning in the low-contingency condition. Even so, it might
be possible to build an RPE model in which the detrimental
effects of the 20% of discrepant stimuli outweighs the bene-
ficial effects of the 80% of nondiscrepant stimuli2. Unfortu-
nately, investigating this possibility is well beyond the scope
of the present article.

Rule-Based Versus Information-Integration Category-
Learning Tasks

There is now abundant evidence that declarative and pro-
cedural memory both contribute to perceptual category learn-
ing (e.g., Ashby & Maddox, 2005, 2010; Eichenbaum & Co-
hen, 2001; Poldrack et al., 2001; Poldrack & Packard, 2003;
Squire, 2004). Furthermore, many studies have reported
evidence that the role of feedback is very different during
declarative-memory mediated category learning than during
procedural-memory mediated category learning (Ashby &
O’Brien, 2007; Dunn, Newell, & Kalish, 2012; Filoteo, Lau-
ritzen, & Maddox, 2010; Maddox, Ashby, & Bohil, 2003;
Maddox, Ashby, Ing, & Pickering, 2004; Maddox & Ing,
2005; Maddox, Love, Glass, & Filoteo, 2008; Smith et al.,
2014; Zeithamova & Maddox, 2007). These results call into

question whether these differences might also extend to feed-
back contingency. As a result, the experiments described
below examine the effects of degrading state-feedback con-
tingency separately for tasks that recruit declarative versus
procedural memory.

Much of the evidence that declarative and procedural
memory both contribute to category learning comes from
rule-based (RB) and information-integration (II) category-
learning tasks. In RB tasks, the categories can be learned
via some explicit reasoning process (Ashby, Alfonso-Reese,
Turken, & Waldron, 1998). In the most common appli-
cations, only one stimulus dimension is relevant, and the
participant’s task is to discover this relevant dimension and
then to map the different dimensional values to the relevant
categories. A variety of evidence suggests that success in
RB tasks depends on declarative memory and especially on
working memory and executive attention (Ashby et al., 1998;
Maddox et al., 2004; Waldron & Ashby, 2001; Zeithamova
& Maddox, 2006). In II category-learning tasks, accuracy is
maximized only if information from two or more incommen-
surable stimulus components is integrated at some predeci-
sional stage (Ashby & Gott, 1988; Ashby et al., 1998). Ev-
idence suggests that success in II tasks depends on procedu-
ral memory that depends on striatal-mediated reinforcement
learning (Ashby & Ennis, 2006; Filoteo, Maddox, Salmon, &
Song, 2005; Knowlton, Mangels, & Squire, 1996; Nomura et
al., 2007).

Figure 1 shows examples of II category-learning tasks be-
cause bar width and orientation both carry useful but insuffi-
cient category information, and the optimal strategy requires
integrating information from both dimensions in a way that
is impossible to describe verbally. To create RB category-
learning tasks, we simply rotated the II stimulus space in
each condition 45◦ counterclockwise (and therefore all of
the stimulus coordinates were also rotated). Note that this
rotation converts the diagonal category bound to a vertical
bound. Thus, following the rotation, the optimal categoriza-
tion strategy is to use the explicit verbal rule “Respond A if
the bars are narrow and B if the bars are wide.”

In summary, this article reports the results of what to our
knowledge are the first experiments that examine the impor-
tance of feedback contingency on human category learning.
As we will see, the results are striking. Degrading state-

1The standard model of this is that dopamine release is propor-
tional to RPE (Schultz, 2002), and that synaptic plasticity increases
with the amount by which dopamine levels deviate from baseline.

2One challenge for such models is to account for initial learning
in the high-contingency condition. At the beginning of the session,
error feedback occurs on half the trials (because accuracy is ini-
tially at chance). If the effect of each error feedback is more than
four times greater than the effect of each correct feedback then it is
not clear how the correct synpatic weights will ever grow enough to
permit learning.
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feedback contingency appears to abolish learning in most
participants in two qualitatively different kinds of category-
learning tasks.

Experiment 1

Experiment 1 directly examines the effects of feedback
contingency on category learning. Four conditions are in-
cluded: RB high contingency, RB low contingency, II high
contingency, and II low contingency. The II conditions were
exactly as shown in Figure 1. As mentioned, to create the
RB conditions, we simply rotated the stimulus space from
the two II conditions by 45◦ counterclockwise. Note that
using this method, the RB and II categories are equivalent
on all category separation statistics (e.g., optimal accuracy is
80% correct in all four conditions).

To our knowledge, no current theory makes a strong pre-
diction about whether contingency degradation should have
greater effects on RB or II learning. Even so, there are sev-
eral reasons to expect a larger effect in our RB conditions.
First, probabilistic category learning is thought to defeat the
explicit learning strategies that succeed in deterministic RB
tasks and instead to favor striatal-mediated procedural learn-
ing (Knowlton et al., 1996). This hypothesis seems to pre-
dict that the greater randomness of the feedback in the low-
contingency conditions will disrupt RB learning more than II
learning3. Second, II learning is thought to depend on a form
of reinforcement learning (within the striatum), and since re-
ducing feedback contingency increases RPEs, reinforcement
learning models seem to predict better learning, or at least
no disruption of learning in our II low-contingency condition
than in our II high-contingency condition.

Methods

Participants and Design. Eighty participants were re-
cruited from the University of California, Santa Barbara stu-
dent community. There were a total of four experimental
conditions: RB high contingency, RB low contingency, II
high contingency and II low contingency. Twenty people
each participated in only one of the four conditions, and they
each received course credit for their participation. A pri-
ori power calculations using G*Power 3.1.9 (Faul, Erdfelder,
Lang, & Buchner, 2007) suggest that with this sample size,
power is greater than 0.8 for a moderate effect size ( f = 0.25)
with α = 0.05 and a between-measure correlation of 0.25.
Each session was approximately 45 minutes in duration and
included 6 blocks of 100 trials each.

Stimuli and Apparatus. The stimuli were circular sine-
wave gratings presented on 21-inch monitors (1280 × 1024
resolution). All stimuli had the same size, shape and contrast,
and differed only in bar width (as measured by cycles per de-
gree of visual angle or cpd) and bar orientation (measured
in degrees counterclockwise rotation from horizontal). The

stimuli from the II high-contingency condition were gener-
ated first. The stimuli defining the A and B categories in this
condition were generated as follows: 1) 300 random samples
were drawn from the bivariate normal distribution that de-
fined the category [means were (40, 60) and (60, 40) for cate-
gories A and B, respectively; all standard deviations were 17,
and both covariances were 0]; 2) the samples were linearly
transformed so that the sample statistics (means, variances,
covariances) exactly matched the population parameters that
defined the distributions; 3) each resulting sample value, de-
noted by the ordered pair (x1, x2), was used to generate a
stimulus with bar width equal to x∗1 = x1

30 + 0.25 cpd and bar
orientation equal to x∗2 = π

200 x2 + π
9 degrees counterclockwise

rotation from horizontal.
The procedure for creating the II low-contingency stimuli

was exactly as described in the Introduction. Specifically, the
same stimuli were used as in the II high-contingency condi-
tion. Next, all stimuli in both categories above and to the
left of the optimal decision bound (x2 = x1) were assigned
to category A and all stimuli below and to the right of the
optimal bound were assigned to category B. Finally, 20%
of the stimuli in each category were selected randomly (all
with the same probability) and re-assigned to the contrasting
category.

The stimuli for the RB high-contingency condition were
created by rotating the II high-contingency (x1, x2) stimu-
lus space (and therefore all of the stimulus coordinates) 45◦

counterclockwise. The stimuli for the RB low-contingency
condition were created by rotating the II low-contingency
stimulus space 45◦ counterclockwise. Thus, the optimal
strategy in both RB conditions was to respond A if the disk
had thin bars and B if the disk had thick bars.

The stimuli were generated and presented using the Psy-
chophysics Toolbox (Brainard, 1997) in the MATLAB soft-
ware environment, and subtended an approximate visual an-
gle of 5◦. The order in which the stimuli were presented was
randomized across participants and sessions.

Procedure. Participants were told that there were two
equally likely categories, that on each trial they would see
a single stimulus, and that they were to use the feedback to
learn the correct category assignment for each of the pre-
sented stimuli. Within each condition, all participants saw
the same 600 stimuli, but the presentation order was random-
ized across participants.

3If people resort to procedural strategies in RB tasks when con-
tingency is degraded, then we would expect similar performance in
the RB and II low-contingency conditions. Even so, many studies
have shown that learning in II tasks is much slower than in one-
dimensional RB tasks (e.g., Ashby & Maddox, 2005), so similar
performance in the RB and II low-contingency conditions would
be evidence of a greater RB impairment – that is, the contingency
degradation would cause performance to drop more in the RB con-
ditions than in the II conditions.
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Figure 2. Accuracy for each block of trials in the RB condi-
tions of Experiment 1.

Stimulus presentation, feedback, response recording and
RT measurement were acquired and controlled using MAT-
LAB on a Macintosh computer. Responses were given on
a standard QWERTY keyboard; the “d” and “k” keys had
large “A” and “B” labels placed on them, respectively. Audi-
tory feedback was given for correct and incorrect responses
made within a 5-second time limit. Correct responses were
followed by a brief (1-sec) high-pitched (500 Hz) tone, and
incorrect responses were followed by a brief (1-sec) low-
pitched (200 Hz) tone. If a key was pressed that was not
one of the marked response keys, a distinct tone played and
the screen displayed the words “wrong key.” If the response
was made outside of the time limit, the words “too slow”
appeared on the screen. In both the wrong key and the too
slow cases, the trial was terminated with no category-related
feedback, and these trials were excluded from analysis.

Results

Accuracy-based Analyses. Figure 2 shows the propor-
tion of correct responses in each 30-trial block for the RB
conditions, and Figure 3 shows the same thing for the II
conditions. Visual inspection suggests that average accuracy
improved over the course of the experiment for both high-
contingency conditions, but hovered slightly above chance
(50%) with no improvement over the course of the experi-
ment for both low-contingency conditions.

To test these conclusions more rigorously and to exam-
ine whether there were any differences in how well partic-
ipants learned the category structures in each condition, a
two-factors repeated measures ANOVA (high contingency
versus low contingency × block) was performed separately
for the RB and II conditions. For the RB conditions,
there was a significant effect of condition, [F(1, 38) =

31.43, p < 0.001, η2 = .326], a significant effect of block
[F(19, 722) = 2.45, p < 0.001, η2 = .040], but no signifi-

Figure 3. Accuracy for each block of trials in the II condi-
tions of Experiment 1.

cant interaction between condition and block [F(19, 722) =

1.17, p = 0.276, η2 = .019]. This indicates that there was
a significant difference in performance between RB high-
contingency and RB low-contingency conditions. In the
II conditions, there was a significant effect of condition,
[F(1, 38) = 13.56, p < 0.001, η2 = .126], no significant ef-
fect of block [F(19, 722) = 1.170, p = .277, η2 = .025], and
a small significant interaction between condition and block
[F(19, 722) = 1.619, p = 0.046, η2 = .035]. Similar to the
RB results, this also indicates that there was a significant dif-
ference in performance between II high-contingency and II
low-contingency conditions.

As another test of learning, post hoc repeated measures t-
tests were performed to compare accuracy in the last block to
accuracy in the first block. The results showed a significant
increase in accuracy in both high-contingency conditions
[RB: t(19) = 4.286, p < 0.001; II: t(19) = 3.823, p = .001],
but not in either low-contingency condition [RB: t(19) =

0.1915, p = 0.85; t(19) = .434, p = 0.67]. This indicates
that there was significant learning in both high-contingency
conditions, but not in either of the low-contingency condi-
tions.

Model-based Analyses. Statistical analyses of the accu-
racy data suggested that participants performed significantly
better in both of the high-contingency conditions compared
to the low-contingency conditions. However, before inter-
preting these results it is important to determine the decision
strategies that participants adopted, and especially whether
participants in the high-contingency conditions were using
strategies of the optimal type.

To answer these questions, we fit decision bound mod-
els to the last 100 responses of each participant in the ex-
periment. Decision bound models assume that participants
partition the perceptual space into response regions (Maddox
& Ashby, 1993). On every trial, the participant determines



FEEDBACK CONTINGENCY 7

which region the percept is in and then gives the associated
response. Three different types of models were fit to each
participant’s responses: models assuming an explicit rule-
learning strategy, models assuming a procedural strategy,
and models that assume random guessing. The rule-learning
models assumed a one-dimensional rule and included two
free parameters (a decision criterion on the single relevant
dimension and perceptual noise variance). Although the op-
timal rule in the RB conditions was on bar width, we fit sep-
arate rule-learning models that assumed a rule on bar width
or on bar orientation in every condition. The procedural-
learning models, which assumed a decision bound of arbi-
trary slope and intercept, had three free parameters (slope
and intercept of the decision bound and perceptual noise vari-
ance). Two different guessing models were fit – one that as-
sumed the probability of responding A equaled 1

2 on every
trial (zero free parameters) and one that assumed the proba-
bility of responding A equaled p on every trial (where p was
a free parameter). This latter model was included to detect
participants who just responded A (or B) on almost every
trial.

All parameters were estimated using the method of maxi-
mum likelihood and the statistic used for model selection was
the Bayesian Information Criterion (BIC; Schwarz, 1978),
which is defined as

BIC = r ln N − 2 ln L, (1)

where r is the number of free parameters, N is the sample
size, and L is the likelihood of the data given the model. The
BIC statistic penalizes models for extra free parameters. To
determine the best-fitting model within a group of competing
models, the BIC statistic is computed for each model, and the
model with the smallest BIC value is the winning model.

Each participant was classified according to whether his
or her responses were best fit by a model that assumed a
decision strategy of the optimal type – hereafter referred to
as ‘optimal type’ participants – or whether those responses
were best fit by a model that assumed a suboptimal decision
strategy – hereafter referred to as ‘suboptimal type’ partici-
pants. Note that participants whose responses were best fit
by a guessing model were classified as suboptimal types in
all conditions. The results are shown in Figure 4. Note that
in both high-contingency conditions, most participants were
optimal types. These results are consistent with similar pre-
vious experiments (e.g., Ell & Ashby, 2006). In contrast,
in both low-contingency conditions, fewer participants were
optimal types and more participants resorted to guessing in
both the RB and II conditions.

Figure 5 shows the best-fitting decision bounds for each
participant in every condition, except for those participants
whose responses were best accounted for by a guessing strat-
egy (in these cases, there is no decision bound to plot). This
figure clearly shows that degrading feedback contingency in-

Figure 4. Number of participants whose responses were
best fit by a model that assumed a rule-learning, procedural-
learning, or guessing strategy in each of the four experimen-
tal conditions.

creased the number of participants who adopted suboptimal
bounds that are associated with lower overall accuracy. In
both the RB and II conditions, more participants had a best-
fitting decision bound near the optimal bound when feedback
contingency was high than when it was low. In fact, the fig-
ure underestimates this effect because it does not show par-
ticipants who responded as if they were guessing. Whereas
only one participant in each high-contingency condition was
classified as a guesser, there were at least 7 guessers in each
low-contingency condition.

So far our analyses indicate that a model assuming a de-
cision strategy of the optimal type provides the best account
of the responses of more participants in the high-contingency
conditions than in the low-contingency conditions. But these
analyses do not indicate how well or how consistently partic-
ipants use that strategy. In other words, for each participant,
we have goodness-of-fit values (i.e., BIC scores) for every
candidate model. If the best fit (i.e., lowest BIC value) is by
a model that assumes an optimal-type strategy then we know
that that model provides a better account of the participant’s
responses than any other model, but from this fact alone we
do not know whether the fit was good or bad. It is possible
that all models provided poor fits and the optimal-type model
just happened to provide the least poor fit. Unfortunately,
the numerical value of the raw BIC score does not help with
this problem because BIC scores increase with sample size,
regardless of the quality of fit (see Eq. 1).

Any model that assumes either a rule or procedural deci-
sion strategy will provide a poor fit to randomly generated
data. With random data, the guessing model will provide the
best fit. So one way to assess how well a decision bound
model (DBM; either rule or procedural) fits the data is to
compare its fit to the fit of the guessing model. Bayesian
statistics allows a method to make such comparisons (via the
so-called Bayes factor). If the prior probability that the DBM
model MDBM is correct is equal to the prior probability that



8 FEEDBACK CONTINGENCY

the guessing model MG is correct, then under certain techni-
cal conditions (e.g., Raftery, 1995), it can be shown that

P(MDBM|Data) .=
1

1 + exp
[
− 1

2 (BICG − BICDBM)
] , (2)

where P(MDBM|Data) is the probability that the DBM model
is correct, assuming that either the DBM or guessing model is
correct. Thus, for example, if the DBM model is favored over
the guessing model by a BIC difference of 2, the probability
that the DBM model is correct is approximately .73. In other
words, even though the DBM fits better than the guessing
model, the fit is not very good because there is better than 1
chance in 4 that the data were just generated by random coin
tossing. In contrast, if the BIC difference is 10, then the prob-
ability that the DBM model is correct is approximately .99,
which means that we can be very confident that this partici-
pant was consistently using a single decision strategy that is
well described by our DBM. In this case, the DBM provides
an excellent fit to the data.

Following this logic, we computed the Eq. 2 probabilities
for every participant in Experiment 1, where BICDBM was
the BIC score of the best-fitting DBM. In the RB conditions,
the mean value of P(MDBM|Data) (i.e., across participants)
was .951 in the high-contingency condition and .632 in the
low-contingency condition [t(38) = 2.73, p < .01]. So the
DBMs are fitting the data well when contingency is high and
poorly when contingency is low. In the II conditions, the
means were .952 in the high-contingency condition and .700
in the low-contingency condition [t(38) = 2.51, p < .01].
Again, the DBMs fit much better when contingency is high
than when it is low.

In summary, the modeling analysis reinforces the results
of the more traditional statistical analyses. Degrading feed-
back contingency dramatically reduced the ability of partic-
ipants to learn the category structures, and this reduction
was approximately equally large with RB and II category
structures. Furthermore, degrading feedback contingency
not only significantly reduced accuracy, but it also impaired
the ability of participants to discover a decision strategy of
the optimal type.

Discussion

The results of this experiment were striking. Although
exactly the same stimuli were used in the high- and low-
contingency conditions, and the same optimal accuracy was
possible, learning was good when feedback contingency was
high and we saw little or no evidence for any learning when
feedback contingency was low. This result was equally true
for both RB and II categories. In fact, note that the effects
of contingency degradation were so strong that they caused a
violation of the ubiquitous result that human performance is
far better in one-dimensional RB tasks than in II tasks (e.g.,

RB High II High

RB Low II Low

Figure 5. Best-fitting decision bounds for each participant in
every condition. The broken lines denote the optimal bound-
aries. Note that participants whose responses were best ac-
counted for by a guessing strategy are not represented in this
figure.

Ashby & Maddox, 2005) – specifically, Figures 2 and 3 show
that performance in the high-contingency II condition was
considerably better than in the low-contingency RB condi-
tion.

One somewhat puzzling aspect of Experiment 1, which
occurred in both the RB and II conditions, is that although
there was no evidence for any improvement in accuracy
across blocks in the low-contingency conditions, accuracy
was nevertheless above chance. Specifically, mean accu-
racy during the last 100 trials was .573 in the RB low-
contingency condition and .580 in the II low-contingency
condition, both of which are significantly above chance [RB:
t(19) = 3.05, p < .05; II: t(19) = 3.81, p < .05]. A closer
examination of the individual participant data somewhat clar-
ifies this apparent paradox.

In the RB condition, 4 of the 20 low-contingency par-
ticipants achieved an accuracy of better than 70% correct
during their last 100 trials. This is in contrast to 13 of 20
who met this criterion in the high-contingency condition.
If these 4 more accurate participants are removed from the
analysis, then the mean accuracy of the remaining 16 low-
contingency participants is not significantly above chance
[mean proportion correct = .533, t(15) = 1.718, p > .05].
So the fact that accuracy in the RB low-contingency condi-
tion was significantly above chance was completely driven
by these 4 participants. The modeling analysis suggested
that 3 of these 4 participants used a one-dimensional rule
and one used a procedural strategy. Figure 4 shows that 12
of the 20 RB low-contingency participants appeared to be
using a one-dimensional rule of the optimal type (as opposed
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to 19 of 20 in the high-contingency condition). However,
the rule users in the RB low-contingency condition were sig-
nificantly less accurate than the rule-users in the RB high-
contingency condition (high-contingency = 72.5% correct;
low-contingency = 60.5% correct; t(29) = 3.99, p < .05)
and the low-contingency participants used those rules signif-
icantly less reliably (mean Eq. 2 values: high-contingency =

1.0; low-contingency = .967; t(29) = 2.26, p < .05).
In the II low-contingency condition, only one participant

achieved an accuracy of 70% correct or higher during the last
100 trials (in contrast to 10 of 20 participants in the high-
contingency condition), but this participant’s responses were
best accounted for by a one-dimensional rule. In fact, 8 of
the 20 II low-contingency participants appeared to be using a
one-dimensional rule (see Figure 4), and these 8 participants
averaged 63% correct during the last 100 trials, in contrast to
an average of 54.6% for the other 12 participants. Of these
12 non-rule users, 8 appeared to be guessing (with a mean
accuracy of 50.1% correct) and 4 appeared to be using a pro-
cedural strategy. The accuracy of these latter 4 participants
over the last 100 trials averaged 63.8%, so 4 of our 20 partic-
ipants showed evidence of weak procedural learning. Even
so, these 4 procedural-strategy users were significantly less
accurate than the 12 procedural-strategy users in the II high-
contingency condition (high-contingency = 70.6% correct;
low-contingency = 63.8% correct; t(14) = 2.136, p < .05).

In summary, in the RB and II high-contingency condi-
tions, most participants successfully learned the categories,
in the sense that their last-block accuracy was significantly
above chance [RB: mean proportion correct = .733, t(19) =

13.511, p < .000; II: mean proportion correct = .681, t(19) =

8.678, p < .001] and they appeared to use a strategy of the
optimal type. In contrast, most participants in both low-
contingency conditions showed no evidence of learning. A
few participants in both low-contingency conditions did ap-
pear to learn. However, even these ‘successful’ participants
performed more poorly than their counterparts in the high-
contingency conditions. Thus, degrading feedback contin-
gency appeared to have a catastrophic effect on learning – in
both RB and II conditions. To our knowledge, this is the first
demonstration that state-feedback contingency plays such a
critical role in category learning.

Experiment 2

In all conditions of Experiment 1, an ideal observer would
respond incorrectly to 20% of the stimuli. We refer to these
as the discrepant stimuli. One possible confound with Ex-
periment 1 is that the high-contingency conditions included
more discrepant stimuli near the optimal decision bound than
the low-contingency conditions. Because of this, an ideal
observer operating in the presence of perceptual noise will
perform better in the high-contingency conditions than in
the low-contingency conditions. This is because noise is

more likely to move a discrepant stimulus to the opposite
side of the decision bound in the high-contingency condition
(since more discrepant stimuli are near the bound). Thus, the
ideal observer would respond correctly to more discrepant
stimuli in the high-contingency conditions than in the low-
contingency conditions. This effect is not large4. Without
noise, an ideal observer responds identically in the high- and
low-contingency conditions. As noise levels increase, the
ideal observer begins to show an accuracy advantage in the
high-contingency conditions, and this advantage increases to
a maximum value of about 4.4% at an unrealistically large
noise level (i.e., when the perceptual noise is about equal to
the variability within each category on the relevant dimen-
sion). As noise levels increase even higher, the accuracy ad-
vantage of the high-contingency conditions slowly decreases
to 0 (at infinite noise levels).

The human observer always operates in the presence of
perceptual noise (Ashby & Lee, 1993), although human per-
ceptual noise will be much less than the variability level at
which the ideal observer shows a maximum accuracy advan-
tage in the high-contingency conditions of Experiment 1. So
at human-like levels of perceptual noise, an ideal observer
will perform less than 4% better in the high-contingency con-
ditions than in the low-contingency conditions. Humans are
not ideal observers, so we expect the high-contingency ad-
vantage of the best human to be less than this and Figures
2 and 3 show that the observed human high-contingency
advantage is much larger than 4%. Therefore, this factor
alone does not account for our results. Even so, because the
ideal observer shows a small accuracy advantage in the high-
contingency conditions, it is difficult to determine how much
of the observed high-contingency accuracy advantage is due
to a contingency difference, rather than to this difference in
ideal observer performance.

Experiment 2 was designed to address this issue. Our so-
lution was simple. Basically, we replicated all four condi-
tions of Experiment 1, except we created a no-stimulus zone
on either side of the optimal decision bound simply by mov-
ing (i.e., translating) the coordinates of all stimuli away from
the bound by a fixed distance. This distance was chosen
to be about equal to the perceptual variability exhibited by
the Experiment 1 participants – that is, to the mean standard
deviation of perceptual noise from the best-fitting decision
bound models in Experiment 1. Figure 6 shows the resulting
stimuli for the II conditions. The stimuli in the RB condi-
tions were just 45◦ rotations of the II categories (as in Ex-
periment 1). Because of the no-stimulus zone on either side
of the optimal bound, an ideal observer displaying the same

4We investigated this issue via computer simulation. For each
of 41 different noise levels, we created separate high- and low-
contingency A and B categories that each contained 500,000 ex-
emplars. We then computed the accuracy of the ideal observer on
these 1,000,000 trials.
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High Contingency

Low Contingency

Figure 6. The high- and low-contingency II categories used
in Experiment 2.

amount of perceptual noise as the Experiment 1 participants
would perform identically5 in the high- and low-contingency
conditions of Experiment 2.

Methods

Participants and Design. Experiment 2 included 101
participants recruited from the University of California,
Santa Barbara student community divided as follows among
the same four experimental conditions as in Experiment 1
as follows: RB high contingency: 25 participants, RB low
contingency: 30 participants, II high contingency: 22 par-
ticipants, and II low contingency: 24 participants. A priori
power calculations using G*Power 3.1.9 (Faul et al., 2007)
suggest that with this sample size, power is again greater than
0.8 for a moderate effect size ( f = 0.25) with α = 0.05 and a
between-measure correlation of 0.25.

Stimuli and Apparatus. The stimuli were generated in
a two-step procedure. First, the stimuli from all conditions
were generated exactly as in Experiment 1. Second, in each
condition, a no-stimulus region was created on both sides of
the optimal decision bound by translating the coordinates of
every stimulus away from the bound 3.5 units in the direction
orthogonal to the bound. The resulting coordinates of every
stimulus were then used to created a stimulus disk following
the same procedures as in Experiment 1.

Procedures. All procedures were identical to Experi-
ment 1.

Results

Accuracy-based Analyses. Figure 7 shows the propor-
tion of correct responses in each 30-trial block for the RB
and II conditions. Visual inspection suggests that average
accuracy improved over the course of the experiment for the
RB high-contingency condition, improved slightly for the
II high-contingency condition, but hovered slightly above
chance (50%) with no improvement over the course of the
experiment for both low-contingency conditions.

To test these conclusions more rigorously and to examine
whether there were any differences in how well participants
learned the category structures in each condition, a two-
factors repeated measures ANOVA (high contingency versus
low contingency by block) was performed separately for the
RB and II conditions. For the RB conditions, there was a sig-
nificant effect of condition, [F(1, 53) = 28.53, p < .001, η2 =

.321], a significant effect of block, [F(19, 1007) = 2.442, p <

.001, η2 = .029], and no significant interaction between
block and condition [F(19, 1007) = 1.301, p = .173, η2 =

.016]. This indicates that there was a significant difference
in performance between RB high-contingency and RB low-
contingency conditions. In the II conditions, there was a sig-
nificant effect of condition, [F(1, 44) = 20.67, p < .001, η2 =

.140], no significant effect of block, [F(19, 836) = 0.785, p =

0.727, η2 = .014], and a significant interaction between block
and condition [F(19, 836) = 1.945, p < .01, η2 = .036].
Similar to the RB results, this also indicates that there was
a signiifcant difference in performance between the II high-
contingency and II low-contingency conditions.

As another test of learning, post hoc repeated measures t-
tests were performed to compare accuracy in the last block

5The no-stimulus zone also greatly reduces the high-
contingency advantage of the ideal observer that occurs when per-
ceptual noise is much larger than we expect in human observers.
Simulations identical to those described in footnote 4 showed that
the maximum accuracy advantage (percent correct in the high-
contingency condition minus percent correct in the low-contingency
condition) of the ideal observer in Experiment 2 was 1.6%, and
this occurred when the standard deviation of perceptual noise was
even greater than the standard deviation of the stimulus coordinates
within each category on the relevant dimension
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Figure 7. Accuracy for each block of trials in the RB (top
panel) and II (bottom panel) conditions of Experiment 2.

to accuracy in the first block. The results showed a signifi-
cant increase in the RB high-contingency condition [t(24) =

2.846, p < .01], but not in the other three conditions [RB:
t(29) = .310, p = .759; II high contingency: t(21) =

.816, p = .424; II low contingency: t(23) = −.175, p =

.863].

Model-based Analyses. Statistical analyses of the ac-
curacy data suggested that participants performed signifi-
cantly better in both high-contingency conditions than in ei-
ther corresponding low-contingency condition. Furthermore,
we found no evidence of learning in either low-contingency
condition. However, before interpreting these results further,
it is important to determine the decision strategies that par-
ticipants adopted, and especially whether participants in the
high-contingency conditions were using strategies of the op-
timal type. To answer these questions, we fit decision bound
models to the last 100 responses of each participant in the
experiment. Just as in Experiment 1, three different types
of models were fit to each participant’s responses: models
assuming an explicit rule-learning strategy, models assum-
ing a procedural strategy, and models that assume random

Figure 8. Number of participants whose responses were
best fit by a model that assumed a rule-learning, procedural-
learning, or guessing strategy in each of the four experimen-
tal conditions of Experiment 2.

guessing.
The results are shown in Figure 8. Note that in both high-

contingency conditions, most participants used a strategy of
the optimal type. In contrast, in the low-contingency condi-
tions, 40% of the RB participants and half of the II partici-
pants resorted to guessing. Figure 9 shows the best-fitting de-
cision bounds for each participant in every condition, except
for those participants whose responses were best accounted
for by a guessing strategy (in these cases, there is no deci-
sion bound to plot). This figure clearly shows that degrad-
ing feedback contingency increased the number of partici-
pants who adopted suboptimal bounds. In both the RB and II
conditions, the decision strategies of more participants in the
high-contingency condition were closer to the optimal strat-
egy than in the low-contingency condition. As in Experiment
1, the figure underestimates this effect because it does not
show participants who responded as if they were guessing.
Whereas, there were no guessers in the RB high-contingency
condition and only 3 guessers in the II high-contingency con-
dition, there were 12 guessers in each low-contingency con-
dition.

As in Experiment 1, we also computed the Eq. 2 prob-
abilities for every participant to assess the quality of the
DBM fits. For both RB and II categories, the quality of the
DBM fit (relative to guessing) is significantly better when
contingency is high than when it is low [RB Eq. 2 means:
high-contingency = .998, low-contingency = .644, t(53) =

3.785, p < .01; II Eq. 2 means: high-contingency = .853,
low-contingency = .516, t(44) = 2.793, p < .01].

Discussion

The Experiment 2 results closely matched the results of
Experiment 1. Learning was good in both high-contingency
conditions, whereas the learning curves were essentially flat
in both low-contingency conditions with a mean accuracy
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RB High II High

RB Low II Low

Figure 9. Best-fitting decision bounds for each participant
in every condition of Experiment 2. The broken lines de-
note the optimal boundaries. Note that participants whose
responses were best accounted for by a guessing strategy are
not represented in this figure.

during each of the last three blocks of training below 60%
correct. Even so, for both RB and II categories, mean accu-
racy over the last 100 trials was significantly above chance
in the low-contingency conditions [RB: percent correct =

.574, t(29) = 2.877, p < .05; II: percent correct = .581,
t(23) = 4.802, p < .01]. To understand why, we need to
look more closely at the data of each individual participant.

In the case of RB categories, 5 of the 30 low-contingency
participants learned well. Their mean accuracy was 76.6%
correct, they all used the appropriate one-dimensional rule,
and they all used this rule reliably (Eq. 2 mean = 1). When
these 5 participants are removed from the low-contingency
analysis, the mean accuracy of the remaining 25 partici-
pants is 53.6% correct, which is not significantly different
from chance [t(24) = 1.47, p = .077]. So the story for the
RB low-contingency condition is fairly simple – 5 partici-
pants learned well and 25 participants showed no (statisti-
cal) evidence of any learning. In contrast, in the RB high-
contingency condition, 22 of 25 participants had an accu-
racy of 70% correct or better (and the accuracies of the other
three were all above 60%), and the mean accuracy of all par-
ticipants during the last block was significantly greater than
chance [mean proportion correct = .720, t(25) = 12.547, p <
.001].

In the II conditions, only 1 of 24 participants exceeded
70% correct during the last 100 trials in the low-contingency
condition, and this single participant only achieved an ac-
curacy of 72% correct. In contrast, 8 of the 22 high-

contingency participants exceeded 70% correct and the mean
accuracy of all high-contingency participants during the last
block was significantly greater than chance [mean propor-
tion correct = .679, t(22) = 9.626, p < .001]. Furthermore,
the responses of 6 of the 24 low-contingency participants
were best fit by a procedural strategy model, in contrast to
12 of the 22 high-contingency participants. The accuracy
of the low-contingency procedural strategy participants was
67.2% correct, which is considerably higher than the accu-
racy of the low-contingency rule users (58.9%) or guessers
(53.2%). So it appears that the most important reason that
the low-contingency accuracy was above chance is because
6 of the 24 participants exhibited some procedural learning.
Even so, it is important to note that the accuracy of the low-
contingency procedural strategy participants was marginally
lower than the accuracy of the high-contingency procedu-
ral strategy participants [high-contingency = 70.1% correct,
low-contingency = 67.2%, t(16) = 1.357, p = .097].

In summary, the results of Experiment 2 closely matched
the results of Experiment 1. Learning was good in both
high-contingency conditions, whereas most participants in
both low-contingency conditions showed no evidence of any
learning. On the other hand, a few participants did ap-
pear to learn in both low-contingency conditions, and in
general these few learners seemed to perform better than
the few learners found in Experiment 1. Much more im-
portant however, is that the results of Experiment 2 pro-
vide strong evidence that the poor performance of the Ex-
periment 1 low-contingency participants was not because
the high-contingency categories in Experiment 1 included
more discrepant stimuli near the category bound than the
low-contingency categories. Instead, the two experiments
together strongly support the hypothesis that contingency
degradation greatly impairs both RB and II learning.

General Discussion

The present article describes the first known investigation
of the effects of feedback contingency on human category
learning. The results were dramatic. In two different experi-
ments, and in both RB and II tasks, learning was good when
state-feedback contingency was high, but degrading feed-
back contingency seemed to abolish all learning in most par-
ticipants, even though our high- and low-contingency con-
ditions used exactly the same stimuli, had exactly the same
optimal strategies, and exactly the same optimal accuracies.

Whereas most low-contingency participants showed no
evidence of any learning, a small group (between 10% and
20%) of participants did show evidence of learning in ev-
ery low-contingency condition. In most cases, the par-
ticipants who did show evidence of learning in the low-
contingency conditions performed worse than their high-
contingency counterparts, so even in this group contingency
degradation seemed to impair learning. The exception was
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in the RB low-contingency condition of Experiment 2. Five
of the 30 participants in that condition performed as well as
the 25 participants in the Experiment 2 RB high-contingency
condition. Thus, at least with the levels of contingency
degradation studied here, it appears that normal RB learning
is possible in at least some participants.

The results of Experiments 1 and 2 are incompatible with
almost all current theories of learning. For example, as men-
tioned earlier, standard reinforcement learning models gen-
erally predict either better learning in the low-contingency
conditions, or at worst, no difference between the low- and
high-contingency conditions. By definition, noncontingent
rewards are unpredictable. As such, they generate large re-
ward prediction errors (RPEs) – in fact, for any given positive
feedback rate, noncontingent rewards induce the largest pos-
sible RPEs. Reinforcement learning models predict that the
amount of learning that occurs on each trial increases with
the RPE, and because the feedback reinforces the optimal re-
sponse on 80% of the trials in all conditions, the standard re-
inforcement learning model should predict better learning in
our low-contingency conditions – a prediction that is strongly
incompatible with our results.

Crossley, Ashby, and Maddox (2013) proposed a modi-
fication to the standard reinforcement learning model that
does correctly predict our II results. Specifically, they pro-
posed that II category learning is impaired when feedback
contingency is degraded because the amount of dopamine
release that occurs to an unexpected reward is modulated
by feedback contingency. Working within the framework of
the COVIS theory of category learning (Ashby et al., 1998),
they proposed that when rewards are contingent on behav-
ior, dopamine fluctuations with RPE are large, whereas if re-
wards are noncontingent on behavior, then dopamine fluctu-
ations will be low (regardless of the RPE). This hypothesis is
supported by functional magnetic resonance imaging studies
in humans that have identified activity in the dorsal striatum
that is correlated with RPE when feedback is contingent on
behavior, but not when feedback is independent of behav-
ior (Haruno & Kawato, 2006; O’Doherty et al., 2004). In
addition, Crossley et al. (2013) also presented behavioral
data that indirectly supported this hypothesis. An adaptive
justification for this assumption is that when rewards are not
contingent on behavior, then changing behavior cannot in-
crease the amount or probability of reward. As a result,
there is nothing of benefit to learn. If dopamine fluctuates
under such conditions, then reinforcement learning models
predict that learning will occur, but it will be of behaviors
that have no adaptive value. Thus, this hypothesis predicts
that the dopamine fluctuations that occur to feedback in the
low-contingency II condition will be smaller than the fluctu-
ations that occur in the high-contingency II condition, and as
a result, learning will be better with highly contingent feed-
back. Our results support this prediction of the Crossley et

al. (2013) hypothesis.
One interesting result that was observed both in Experi-

ments 1 and 2 was that the effects of degrading contingency
were similar in the RB and II conditions. This might be
considered somewhat of a surprise because, as mentioned
earlier, probabilistic category learning is thought to defeat
the explicit learning strategies that succeed in determinis-
tic RB tasks and instead to favor striatal-mediated procedu-
ral learning (Knowlton et al., 1996). Furthermore, our low-
contingency conditions are more like the probabilistic tasks
that motivated this hypothesis (which used binary-valued
stimulus dimensions) than our high-contingency conditions.
For this reason, one might have expected better performance
in the II low-contingency condition than in the RB low-
contingency condition.

Given that the RB and II results were so similar, one might
naturally ask whether the mechanism responsible for the fail-
ure of participants to learn in the low-contingency conditions
is the same in the RB and II tasks. As described earlier, there
are so many qualitative differences in the role of feedback
during RB and II learning and performance that a common
mechanism can not be assumed. Unfortunately, none of our
results speak to this question. Even so, there is theoretical
reason to expect that the failures are due to different underly-
ing causes.

The COVIS theory of category learning assumes sepa-
rate explicit reasoning and procedural-learning categoriza-
tion systems that compete for access to response production
(Ashby et al., 1998; Ashby, Paul, & Maddox, 2011). The ex-
plicit system uses executive attention and working memory
to select and test simple verbalizable hypotheses about cat-
egory membership. The procedural system uses dopamine-
mediated reinforcement learning to gradually associate cate-
gorization responses with regions of perceptual space. CO-
VIS assumes that the explicit system dominates in RB tasks
and the procedural system dominates in II tasks.

COVIS suggests that the impaired RB and II learning
we saw when contingency was degraded was likely due to
different causes. As mentioned earlier, the Crossley et al.
(2013) generalization of the COVIS procedural system pre-
dicts that learning was poor in the low-contingency II con-
dition because low state-feedback contingency dampens the
dopamine response to feedback. The COVIS explicit system
learns by constructing and testing explicit hypotheses about
category membership. If feedback indicates that the current
hypothesis is incorrect, then a new rule or hypothesis is se-
lected and attention is switched from the old rejected rule to
the newly selected rule. In the high-contingency condition, a
participant using the correct rule will receive negative feed-
back only for stimuli for which response confidence is low.
The correct rule in our RB task, was “Respond A if the bars
are thin and B if the bars are thick.” In the high-contingency
condition, a participant using this rule would receive negative
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feedback only (or almost only) when the presented stimulus
had bars of nearly equivocal width. A participant receiving
such negative feedback is likely to attribute the error to mis-
perceived bar width or the use of an inaccurate response cri-
terion, and is unlikely to conclude that the rule was wrong. In
the low-contingency condition however, negative feedback
would sometimes be received when the stimulus had bars of
an extreme width. In this case, the error is unlikely to be due
to misperception or a faulty criterion, so an obvious infer-
ence is that the rule was wrong. For these reasons, partici-
pants who generate and test explicit rules seem more likely
to switch away from the correct rule in the low-contingency
condition than in the high-contingency condition, leading to
impaired learning when contingency is degraded. The orig-
inal version of COVIS switched rules with equal probability
on all error trials. Thus, that model predicts no difference
between our RB low- and high-contingency conditions. But
an obvious modification, which would seemingly account for
our results, is that following negative feedback, the probabil-
ity of switching from the current rule to a new rule is in-
versely related to response confidence. An important goal
of future research should be to determine why learning is so
poor in RB and II tasks when feedback contingency is de-
graded.

Another important question raised by our results is why
have so many articles reported what appears to be good learn-
ing in probabilistic categorization tasks that used stimuli that
varied on binary-valued dimensions (e.g., Estes, 1986; Estes
et al., 1989; Gluck & Bower, 1988; Knowlton et al., 1994;
Medin & Schaffer, 1978)? Given that the use of binary-
valued stimuli should, in general, cause state-feedback con-
tingency to be lower than in our high-contingency conditions,
then an extrapolation of our results might lead one to ex-
pect poor learning of probabilistic categories when the stim-
uli vary on binary-valued dimensions. Our experiments were
not designed to answer this question. Nevertheless, some in-
teresting hypotheses come to mind. First, with binary-valued
dimensions there are only a few stimuli, so explicit mem-
orization strategies could succeed, whereas such strategies
are useless in our experiments since participants never saw
the same stimulus twice. Second, with binary-valued dimen-
sions, all stimuli are typically the same distance from the op-
timal categorization boundary, which means that all stimuli
are typically equally difficult to categorize. State-feedback
contingency is essentially a correlation – between response
confidence (i.e., the predictor) and feedback valence (i.e., the
outcome). A correlation can only be computed when there
are multiple values of the predictor. Perceptual noise could
cause participants to assume there are multiple predictors
in experiments with binary-valued stimuli, in which case a
low value of feedback contingency would be computed. But
it also seems possible that participants in such experiments
might realize that there are only two values on each stimu-

lus dimension, in which case state-feedback contingency is
impossible to compute. So another possibility could be that
with binary-valued stimulus dimensions, people are poor at
estimating state-feedback contingency. Obviously, more re-
search on this interesting issue is needed.

In summary, our results suggest that feedback contingency
is a critically important variable during category learning.
This novel finding has both important practical and theoret-
ical implications. On the practical side, our results suggest
that in any real-world feedback-based training, conditions
should always be arranged so that feedback contingency is
maximized. Theoretically, the Crossley et al. (2013) proposal
that reducing contingency reduces the gain on dopamine fluc-
tuations should be tested, and more theoretical proposals are
needed about other possible ways in which feedback contin-
gency can affect learning.
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