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The long history of categorization experiments indicates that many important design choices
can critically affect the quality of the resulting data. Unfortunately, the optimal choices depend
on the goals of the experiment, so there is no single template that a new researcher can follow.
This chapter describes methods needed to design effective categorization experiments, and spe-
cialized methods for analyzing the resulting data. First, a number of important experimental
design choices are discussed, including: 1) whether a categorization or identification experi-
ment is more appropriate, 2) what type of category structure should be used, 3) how to choose
the stimuli, 4) how to construct the categories so they have optimal statistical properties, 5) how
to present feedback following each response, and 5) design choices that make it easy to assess
participant performance. Second, several specialized methods for analyzing categorization data
are described, including forward and backward learning curves, and a statistical procedure for
strategy analysis that can identify participants who were guessing, using a single-cue explicit
rule, or using some multi-cue similarity-based strategy.
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Introduction

Categorization is the act of responding the same to all
members of one stimulus class and differently to members
of other classes. It is a key skill required of every organ-
ism because, for example, it allows prey and nutrients to
be approached and predators and toxins to be avoided. Not
surprisingly, categorization experiments are quite popular
within the broad field of cognitive science.

Although on the surface it may seem like a simple mat-
ter to design a categorization experiment, in reality, decades
of research has revealed that many important design choices
must be made that can critically affect the quality of the re-
sulting data. Furthermore, the optimal choices depend on
the goals of the experiment, so there is no single template
or recipe that a new researcher can automatically follow. In
addition, specialized methods have been developed for an-
alyzing categorization data that are not typically described,
for example, in statistics textbooks. Thus, there is a fairly
substantial, yet arcane set of knowledge necessary to design
and run a successful categorization experiment. Even so, we
know of no single currently available source that describes
this knowledge. The goal of this chapter is to address this
limitation. Specifically, we describe the methods needed to
design effective categorization experiments, and we also de-
scribe the most popular specialized methods for analyzing
the resulting data.

The chapter is organized as follows. First, we describe a
number of important design choices the experimenter must
consider. These include: 1) whether a categorization or
identification experiment is more appropriate, 2) what type
of category structure to use, 3) how to choose the stimuli
– for example, whether the stimuli are real-world or artifi-
cial, constructed from binary or continuous dimensions, con-
structed from dimensions that are perceptually separable or
integral, and how many stimulus dimensions should be al-
lowed to vary across trials, 4) how to construct the categories
so they have optimal statistical properties, 5) how to present
feedback following each response – specifically whether any
feedback should be provided at all, and if training is pro-
vided, whether it should be observational or feedback-based,
when the feedback is best to present, and whether to make
the feedback deterministic or probabilistic, and 5) design
choices that make it easy to assess participant performance.
Second, we describe several specialized methods for analyz-
ing categorization data. This includes discussions of forward
and backward learning curves and of a statistical procedure
for strategy analysis that can be used for example, to decide
whether a particular participant was randomly guessing, re-
sponding based on some simple single-cue explicit rule, or
using some multi-cue similarity-based strategy. Finally, we
close with some conclusions.
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Categorization versus Identification

Technically, any task with a many-to-one stimulus-to-
response mapping requires categorization. Tasks with a one-
to-one stimulus-to-response mapping require identification.
For example, we might categorize people as men or women,
but we identify only one person as our biological mother.
When run in laboratory settings, conditions are typically ar-
ranged so that errors are common, whether the task is cate-
gorization or identification. Perfect accuracy conveys little
information – literally, because it requires few bits of infor-
mation to describe, but also psychologically, because in most
cases, it can be produced, at least theoretically, by many dif-
ferent psychological processes.

Most categorization experiments use at least 7 or 8 stimuli,
and it is not uncommon to use hundreds. These are most typi-
cally assigned to 2 categories (and therefore 2 responses), but
3 or 4 categories are also common. The most common choice
in identification experiments is to include only 4 stimuli and
responses, but much larger stimulus sets have also been stud-
ied (Townsend, 1971). In both types of experiment, the most
widely studied dependent measure is accuracy. The various
accuracy values estimated in a categorization or identifica-
tion experiment are collected in a confusion matrix, which
contains a row for every stimulus and a column for every
response. The entry in row i and column j lists the number
of trials on which stimulus S i was presented and the partic-
ipant gave response R j. In categorization experiments the
confusion matrix will always have more rows than columns,
whereas in an identification experiment, the confusion matrix
is always square.

For example, consider experiments where the stimuli are
photographs of 10 different faces. A categorization task
might ask participants to determine the gender of each face,
in which case the confusion matrix will have 10 rows and
2 columns. The 2 entries in row 5, for example, will be
the frequencies that the participant responded “Female” and
“Male” when presented with face #5. An identification task
with these same stimuli would require participants to respond
with the name of the person whose face was shown on each
trial. Now the confusion matrix is 10 × 10 and the entries in
row 5 will be the frequencies that the participant responded
with each of the 10 different names when face #5 was shown.
Note that in both experiments, one column in each row gives
the frequency of each correct response and the other entries
describe the various errors (or confusions). So if face #5 be-
longs to a female named “Hannah” then in the categoriza-
tion experiment the entry in row 5 and the column labeled
“female” would contain the frequency of correct responses
to face #5, whereas in the identification experiment the entry
in row 5 and the column labeled “Hannah” would contain the
frequency of correct responses to face #5. Note also that each
row sum equals the total number of stimulus presentations of
that type. So if each stimulus is presented 100 times then the

sum of all entries in each row will equal 100. This means
that there is one constraint per row, so an n × m confusion
matrix will have n× (m− 1) degrees of freedom available for
data analysis.

To ensure errors in identification experiments, the stim-
uli are all typically selected to be highly confusable. This
could be done by choosing perceptually similar stimuli, or
by limiting exposure duration. Regardless of the method,
errors are most often made because of these perceptual con-
fusions. As a result, an identification experiment is a good
choice if one is interested in studying the sensory and percep-
tual processes that cause such confusions. In categorization
experiments, perceptual confusions are also often inevitable.
Even so, most errors are not caused by such confusions, but
rather by the application of a suboptimal decision strategy.
For example, any confusion in an identification experiment
causes an error, whereas two types of confusions are possi-
ble in categorization experiments. In a within-category con-
fusion, the participant mistakes one stimulus for another in
the same category, whereas in a between-category confusion,
the presented stimulus is mistaken for a stimulus belonging
to some other category. Within-category confusions do not
cause errors and in experiments in which categories are de-
fined perceptually (i.e., so that all category exemplars share
similar perceptual features), within-category confusions are
often more common than between-category confusions. For
this reason, categorization experiments are more useful for
studying decision processes than for studying sensory and
perceptual processes.

Category Structure

Perhaps the first choice an experimenter must make when
designing a categorization experiment is to choose the cat-
egory structures that the participants will be asked to learn.
Although there are, of course, an infinite number of possibil-
ities, many of these can be classified into one of four types.
These are described in this section. Which of these differ-
ent tasks is best will depend on the research goals. This is
because the evidence is good that the different types of task
tend to rely on qualitatively different types of learning and
memory.

Rule-Based Category-Learning Tasks

Rule-based (RB) category-learning tasks are those in
which the category structures can be learned via some ex-
plicit reasoning process. Frequently, the rule that maximizes
accuracy (i.e., the optimal rule) is easy to describe verbally
(Ashby, Alfonso-Reese, Turken, & Waldron, 1998). In the
most common applications, only one stimulus dimension is
relevant, and the observer’s task is to discover this relevant
dimension and then to map the different dimensional values
to the relevant categories. Even so, RB tasks can require at-
tention to multiple stimulus dimensions. For example, any



CATEGORIZATION METHODS 3

task where the optimal strategy is to apply a logical conjunc-
tion or disjunction is rule based – as is the XOR problem
(i.e., exclusive or). The key requirement is that optimal accu-
racy can be achieved by making independent decisions about
single stimulus dimensions and that these decisions can be
combined in ways that follow the rules of Boolean algebra.
For example, the conjunction rule: “Respond A if the stim-
ulus has small values on the X and Y dimensions” requires
independent decisions about whether the value on dimension
X is small or large and whether the value on dimension Y is
small or large and then the outcomes of these decisions are
checked to see if both were judged small.

RB category-learning tasks have a long history, dating
back at least to Hull (1920). During the next 50 years or
so, RB category learning was referred to as ‘concept identifi-
cation’ or ‘concept formation.’ Many empirical studies were
reported (e.g., Bower & Trabasso, 1964; Kendler, 1961), and
a variety of different theories and mathematical models were
proposed (e.g., Bourne Jr & Restle, 1959; Cotton, 1971; Fal-
magne, 1970). Shepard, Hovland, and Jenkins (1961) stud-
ied the learning of six different types of category structures.
Their type I category structure was a one-dimensional RB
task, and their type II structure was an exclusive-or task.

RB tasks are also widely used during neuropsycholog-
ical assessment. Specifically, the well-known Wisconsin
Card Sorting Test (Heaton, Chelune, Talley, Kay, & Cur-
tiss, 1993), which requires participants to learn a series of
one-dimensional RB tasks is among the most widely used
assessments of frontal-lobe dysfunction (Milner, 1963). RB
tasks are sensitive to frontal dysfunction because consider-
able evidence suggests that RB category learning depends on
working memory and selective attention (Ashby et al., 1998;
Maddox, Ashby, Ing, & Pickering, 2004; Waldron & Ashby,
2001; Zeithamova & Maddox, 2006) – skills that are both
thought to depend heavily on prefrontal cortex (e.g., Braver
et al., 1997; Curtis & D’Esposito, 2003; Kane & Engle,
2002; Miller & Cohen, 2001). Thus, an RB task is a good
choice if the research goals are to study some aspect of exec-
utive function.

Information-Integration Category-Learning Tasks

Information-integration (II) tasks are those in which ac-
curacy is maximized only if information from two or more
stimulus components (or dimensions) is integrated at some
pre-decisional stage (Ashby & Gott, 1988). Perceptual inte-
gration could take many forms – from treating the stimulus as
a Gestalt to computing a weighted linear combination of the
dimensional values. The result is often called a similarity-
based strategy. Typically, the optimal strategy in II tasks
is difficult or impossible to describe verbally (Ashby et al.,
1998). Explicit-rule strategies can be applied in II tasks, but
they generally lead to sub-optimal levels of accuracy because
explicit-rule strategies make separate decisions about each

stimulus component, rather than integrating this information.

Examples of RB and II tasks constructed from the same
stimuli are shown in Figure 1. Note that each stimulus is
a circular sine-wave grating and that the stimuli vary across
trials on two continuous-valued dimensions – bar width and
bar orientation. Note also that the A and B categories in the
two tasks are identical, except the II categories are rotated
45◦ counterclockwise in width-orientation space. Therefore,
the two tasks are exactly matched on all category separation
statistics. The key difference is that the optimal strategy in
the II task can not be discovered or described by any decision
strategy that makes independent decisions on each stimulus
dimension. In both Figure 1 tasks, the categories are defined
by drawing random samples from bivariate normal distribu-
tions. This is the ‘randomization technique’ introduced by
Ashby and Gott (1988). This method of constructing cate-
gories is described in detail in a later section.

Many II tasks use binary-valued stimulus dimensions. An
example is shown in Figure 2, which also shows RB cat-
egories constructed from the same stimuli. Note that the
stimuli vary on four binary-valued dimensions (background
color, symbol color, symbol shape, and symbol number).
For the RB categories, the optimal rule is obvious – if the
background is blue the stimulus is in category A, whereas
a yellow background means the stimulus is in category B.
To create the II categories, one of the four dimensions was
randomly selected to be irrelevant. In Figure 2 the irrelevant
dimension is symbol shape. Next, for the three relevant di-
mensions, one level was randomly selected and assigned a
numerical value of +1, whereas the other value was assigned
a value of 0. In Figure 2, blue background, red symbol, and
two symbols were all assigned a value of +1. Finally, the rule
that perfectly assigns each stimulus to its correct category is
the following: ‘Respond A if the sum of the values on the
relevant dimensions exceeds 1.5; otherwise respond B.’ Not
surprisingly, participants do not discover this rule – at least
not explicitly. Even so, they reliably learn II categories of
this nature, and the evidence suggests that the learning that
occurs is similar to the type of learning that occurs with the
very different Figure 1 II categories (Ashby, Noble, Filoteo,
Waldron, & Ell, 2003; Crossley, Paul, Roeder, & Ashby, in
press; Waldron & Ashby, 2001).

One advantage of binary-valued stimulus dimensions is
that learning is usually fairly quick, due to the small num-
ber of stimuli. For example, typical participants can learn
the Figure 2 categories in around 80-100 trials, compared to
the 500 or 600 trials that are usually required to learn the II
categories shown in Figure 1. On the other hand, one poten-
tial weakness of binary-valued dimensions is that there will
always be several strategies that are equivalent to the opti-
mal information-integration strategy. For example, in Figure
2 the following logical rule works perfectly for the II cate-
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Figure 1. Examples of rule-based (RB) and information-
integration (II) category structures. Each stimulus is a sine-
wave disk that varies across trials in bar width and bar ori-
entation. For each task, three illustrative Category A and
B stimuli are shown. The small rectangles and open circles
denote the specific values of all stimuli used in each task.
In the RB task, only bar orientation carries diagnostic cate-
gory information, so the optimal strategy is to respond with a
one-dimensional bar-orientation rule (steep versus shallow).
In the II task, both bar width and orientation carry useful
but insufficient category information. The optimal strategy
requires integrating information from both dimensions in a
way that is impossible to describe verbally.

gories1: “Respond A if the background is blue and there are
two symbols or the background is blue and the symbols are
red or the background is yellow and there are two symbols;
otherwise respond B.” Another strategy that will always be
available with binary-valued stimulus dimensions is to mem-
orize the response associated with each stimulus. Although
these strategies may seem unlikely, their existence can some-
times complicate interpretation of the resulting data. Note
that with the Figure 1 II categories, such alternative strategies
are not possible.

A popular II task that uses categories similar to those
shown in Figure 2 is known as the weather-prediction task
(Knowlton, Squire, & Gluck, 1994). In the original version,
one, two, or three of four possible tarot cards are shown to the
participant, whose task is to indicate whether the presented
constellation signals rain or sun. Each card is labeled with
a unique, and highly discriminable, geometric pattern. Four-
teen of the 16 possible card combinations are used (the zero-
and four-card combinations are excluded) and the optimal
strategy requires using all available cues. The greatest dif-
ference between the weather-prediction task and the II task
shown in Figure 2, is that the weather-prediction task uses
probabilistic feedback. For example, in the Figure 2 II task, if
the participant responds A to the blue box containing a single
red circle then the feedback is always that the response was
correct. With probabilistic feedback of the type used in the
weather-prediction task, a participant who responds A to this
stimulus might be told ‘Correct’ with probability 0.8 (for ex-
ample) and ‘Incorrect’ with probability 0.2. Because of this
probabilistic feedback, in the original version of the task the
highest possible accuracy was 76% correct (Knowlton et al.,
1994). The choice of whether to use deterministic or prob-
abilistic feedback is discussed in detail in the section below
entitled “Feedback Choices.”

Another popular II categorization task that is closely re-
lated to the II categories illustrated in Figure 2 is known as
the 5/4 categorization task because it assigns 5 stimuli to Cat-
egory A and 4 to Category B. An example is shown in Figure
3, where the two categories were constructed from the same
stimuli used to create the RB and II categories in Figure 2.
Note that the 5/4 categories use only 9 of the 16 possible
stimuli that can be created from these 4 binary-valued dimen-
sions. The 7 missing stimuli are frequently used as follow-up
transfer stimuli to assess the nature of learning. The 5/4 task
was created by Medin and Schaffer (1978) and has been used
in more than 30 studies – frequently to test predictions of
exemplar theories of categorization.

Evidence suggests that success in II tasks depends on pro-

1Technically these are not II categories, since an optimal strat-
egy can be described verbally. Even so, this verbal rule is so com-
plex that we expect it to be discovered by few participants. Thus, the
categories in the bottom panel of Figure 2 can serve as an effective
substitute for true II categories.
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Figure 2. Examples of rule-based (RB) and information-
integration (II) category structures constructed from stimuli
that vary on four binary-valued dimensions.

Figure 3. Examples of the 5/4 category structure popularized
by Medin and Schaffer (1978).

cedural learning that is mediated largely within the striatum
(Ashby & Ennis, 2006; Filoteo, Maddox, Salmon, & Song,
2005; Knowlton, Mangels, & Squire, 1996; Nomura et al.,
2007). For example, one feature of traditional procedural-
learning tasks is that switching the locations of the response
keys interferes with performance (e.g., Willingham, Wells,
Farrell, & Stemwedel, 2000). In agreement with this result,
switching the locations of the response keys interferes with
II performance but not with RB performance (Ashby, Ell, &
Waldron, 2003; Maddox, Bohil, & Ing, 2004; Spiering &
Ashby, 2008). Thus, the nature of learning appears to be dif-
ferent in RB and II tasks. In RB tasks, evidence suggests that
participants learn to decide whether each stimulus is a mem-
ber of an abstract ‘A’ or ‘B’ category, whereas in II tasks,
participants appear to learn to associate a motor goal with
each stimulus (e.g., press the button on the left or press the
button on the right). For these reasons, an II task is a good
choice if the goal is to study procedural learning.

Unstructured Category-Learning Tasks

Categories used in II tasks have high levels of percep-
tual similarity. In an unstructured category-learning task, the
stimuli are assigned to each contrasting category randomly,
and thus there is no rule- or similarity-based strategy for de-
termining category membership. Because similarity can not
be used to learn the categories, the stimuli are typically vi-
sually distinct (i.e., non-confusable) and low in number. For
example, each category generally includes 8 or fewer exem-
plars (and 4 is common).

Unstructured category-learning tasks are similar to high-
level categorization tasks that have been studied for decades
in the cognitive psychology literature. For example, Lakoff

(1987) famously motivated a whole book on a category in the
Australian aboriginal language Dyirbal that includes women,
fire, dangerous things, some birds that are not dangerous, and
the platypus. Similarly, Barsalou (1983) reported evidence
that ‘ad hoc’ categories such as “things to sell at a garage
sale” and “things to take on a camping trip” have similar
structure and are learned in similar ways to other ‘common’
categories.

Although intuition might suggest that unstructured cate-
gories are learned via explicit memorization, there is now
good evidence – from both behavioral and neuroimaging
experiments – that the feedback-based learning of unstruc-
tured categories is mediated by procedural memory. First,
several neuroimaging studies of unstructured category learn-
ing found task-related activation in the striatum, as one
would expect from a procedural-learning task, and not in
the hippocampus or other medial temporal lobe structures, as
would be expected if the task was explicit (Lopez-Paniagua
& Seger, 2011; Seger & Cincotta, 2005; Seger, Peterson,
Cincotta, Lopez-Paniagua, & Anderson, 2010). Second,
Crossley, Madsen, and Ashby (2012) reported behavioral ev-
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idence that unstructured category learning is procedural. As
mentioned previously, a hallmark of procedural learning is
that it includes a motor component, and Crossley et al. (2012)
showed that switching the locations of the response keys
interfered with unstructured categorization performance but
not with performance in an RB task that used the same stim-
uli. Thus, feedback-mediated unstructured category learning
seems to include a motor component, as do other procedural-
learning tasks.

For these reasons, the unstructured category-learning task,
like the II task, is a good choice if the goal is to study proce-
dural learning. However, the two tasks each have their own
advantages and disadvantages. II tasks constructed via the
randomization technique, such as the one illustrated in Figure
1, offer excellent observability of decision processes (i.e., via
the strategy analysis described in the section below entitled
“Decision Bound Modeling”), and they allow direct compar-
isons to RB tasks that are exactly equated on all category
separation statistics. The disadvantage however, it that learn-
ing is slow – typically requiring 600-800 trials. In contrast,
learning in unstructured tasks can occur much more quickly,
and the speed of learning is under direct experimenter control
via his or her choice as to the number of alternative stimuli.
The disadvantage though is that a strategy analysis is usually
impossible.

Prototype-Distortion Category-Learning Tasks

In prototype-distortion category-learning tasks, the cate-
gory exemplars are created by randomly distorting a single
category prototype. The most widely known example uses
a constellation of dots (often 7 or 9) as the category pro-
totype, and the other category members are created by ran-
domly perturbing the spatial location of each dot. Sometimes
the dots are connected by line segments to create polygon-
like images. Random dot and polygon stimuli and categories
have been used in dozens of studies (e.g., Homa, Rhoads, &
Chambliss, 1979; Homa, Sterling, & Trepel, 1981; Posner &
Keele, 1968; Shin & Nosofsky, 1992; Smith & Minda, 2002).

Two different types of prototype distortion tasks are com-
mon – (A, B) and (A, not A). In an (A, B) task, two pro-
totype patterns are created. The category A exemplars are
then constructed by randomly distorting one prototype and
the category B exemplars are constructed by randomly dis-
torting the other prototype. The task of the participant is to
respond with the correct category label on each trial (i.e., “A”
or “B”). An important feature of (A, B) tasks is therefore that
the stimuli associated with both responses each have a coher-
ent structure – that is, they each have a central prototypical
member around which the other category members cluster.
Thus, within-category similarity is equally high in both cat-
egories in (A, B) prototype-distortion tasks. In (A, not A)
tasks, on the other hand, there is a single central Category
A and participants are presented with stimuli that are either

exemplars from Category A or random patterns that do not
belong to Category A. The participant’s task is to respond
“Yes” or “No” depending on whether the presented stimu-
lus was or was not a member of Category A. In an (A, not
A) task, the Category A members have a coherent structure
since they were created from a single prototype, but the stim-
uli associated with the “not A” (or “No”) response do not.
Historically, prototype distortion tasks have been run in both
(A, B) and (A, not A) forms, although (A, not A) tasks are
more common.

A variety of evidence supports the hypothesis that learn-
ing in (A, not A) prototype-distortion tasks is mediated
primarily by the perceptual representation memory system,
whereas (A, B) learning likely recruits other memory sys-
tems2. First, several neuropsychological patient groups that
are known to have widespread deficits in other types of
category-learning tasks show apparently normal (A, not A)
prototype-distortion learning. This includes patients with
Parkinson’s disease (Reber & Squire, 1999) or schizophre-
nia (Kéri, Kelemen, Benedek, & Janka, 2001). In addition,
several studies have reported that patients with amnesia show
normal (A, not A) prototype-distortion learning (Knowlton
& Squire, 1993; Squire & Knowlton, 1995), but impaired
performance in (A, B) tasks (Zaki, Nosofsky, Jessup, & Un-
verzagt, 2003). Second, Casale and Ashby (2008) reported
that, at least at low levels of distortion, (A, not A) learning
does not depend on feedback, whereas feedback is critical to
(A, B) learning. Third, neuroimaging studies of (A, not A)
prototype-distortion tasks have all reported categorization-
related changes within occipital cortex (Aizenstein et al.,
2000; Reber, Stark, & Squire, 1998a, 1998b). In the only
known neuroimaging study of the (A, B) prototype-distortion
task, Seger et al. (2000) also reported categorization-related
activation in occipital cortex, but they also found significant
learning-related changes in prefrontal and parietal cortices.
Occipital cortex deactivations are often seen in tasks that de-
pend on the perceptual representation memory system (e.g.,
Wiggs & Martin, 1998), and these neuroimaging results have
prompted proposals that the perceptual representation mem-
ory system is active in prototype distortion tasks (Reber &
Squire, 1999). For these reasons, the (A, not A) prototype-
distortion task is a good choice if a research goal is to study
some aspect of the perceptual representation memory sys-
tem.

2Here we are relying on the classic partitioning of nondeclar-
ative memory into procedural memory versus the perceptual rep-
resentation memory system (Schacter, 1990; Squire, 1992). Ac-
cording to this account, procedural learning includes a motor com-
ponent, requires extended practice with immediate feedback, and
depends heavily on the basal ganglia, whereas repetition priming
in the perceptual representation memory system includes no motor
component, can be observed after only a single stimulus repetition,
and depends primarily on visual areas of cortex.
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Stimulus Choices

After deciding what type of category structure to use, the
next choice is to select the stimuli. There are a number of
choices to make that will affect the nature of the experiment,
the type of data analyses that are possible, and the kinds of
inferences that might be made after data analysis is complete.
The relevant choices include whether the stimuli are real-
world or artificial, constructed from binary- or continuous-
valued stimulus dimensions, whether those dimensions are
perceptually separable or integral, and how many stimulus
dimensions will be allowed to vary across trials. This section
describes and discusses each of those choices.

Real-World versus Artificial Stimuli

The first stimulus choice is often whether to use real-
world or artificial stimuli. While it is tempting to use real-
world stimuli because of their greater ecological validity,
real-world stimuli bring baggage to most categorization ex-
periments that severely limit the strength of the inferences
that are possible after the experiment is complete. There are
two main concerns.

First, with many real-world stimuli participants will have
a life-time history of category learning that could affect how
they learn the categories constructed for the categorization
experiment. A more serious problem however, is that very
little is known about the perceptual representation of most
real-world stimuli. For example, what are the perceptual di-
mensions of outdoor scenes? Even more basic, how many
dimensions of outdoor scenes do participants attend to dur-
ing categorization? The fact that we know virtually noth-
ing about the answers to such questions greatly limits what
can be learned from running an experiment where partici-
pants categorize outdoor scenes. For example, without some
knowledge of the perceptual representations of the stimuli, it
is essentially impossible to 1) know whether any particular
categorization task is RB or II, 2) compute optimal accuracy
(especially in the presence of perceptual noise), 3) determine
the optimal categorization strategy, and 4) determine what
type of strategy any individual participant used. With artifi-
cial stimuli, answers to all these questions are often possible.

The one task where most of these limitations can be
avoided is the unstructured category-learning task. This is
because the category assignments of each stimulus are ran-
dom, and therefore these assignments do not depend in any
way on the underlying perceptual representation. As a re-
sult, it is reasonable to use real-world stimuli in unstructured
category-learning experiments. But two concerns are worth
noting. First is the problem of previously learned categories.
If two stimuli belong to the same previously learned category
then this prior learning could facilitate performance in tasks
where those two stimuli are randomly assigned to the same
category, but impair performance in tasks where the stim-

uli are randomly assigned to contrasting categories. Second,
without knowledge of the perceptual representations, there
is always the danger than some simple one-dimensional rule
correctly classifies all or most of the stimuli into the two ran-
domly chosen categories. Obviously, the probability of this is
greater the fewer exemplars in each category. One safeguard
against this problem is to randomize category assignments
across participants.

Binary- versus Continuous-Valued Stimulus Dimensions

Binary-valued stimulus dimensions are meant to mimic
real world features that are either present or absent – such
as whether a piece of fruit does or does not contain seeds, or
an animal does or does not lay eggs. Examples of artificial
stimuli constructed from binary-valued stimulus dimensions
are shown in Figures 2 and 3. Continuous-valued stimulus
dimensions are meant to mimic the magnitude of a feature,
or the degree to which it is present – such as the ripeness of
a piece of fruit, or the weight of an animal (see Figure 1 for
an artificial example).

There are several factors to consider when choosing be-
tween binary- and continuous-valued stimulus dimensions.
First, as mentioned previously, an advantage of binary-
valued dimensions is that learning is usually fairly quick,
due to the small number of stimuli. With continuous-valued
stimulus dimensions, an infinite number of unique stimuli
are theoretically possible, even if there is only one stimu-
lus dimension. With binary-valued dimensions however, the
maximum possible number of stimuli is 2r, where r is the
number of stimulus dimensions. So with 2 dimensions, there
are only 4 possible stimuli that must be divided into at least
2 categories. With 3 dimensions, 8 stimuli are possible, and
with 4 dimensions, as in Figures 2 and 3, there are 16 possi-
ble stimuli. All else being equal, it should take many fewer
trials to learn 2 categories of 8 stimuli each (as with the II
categories shown in Figure 2) than 2 categories where every
stimulus is novel (as with the II categories shown in Figure
1). Because of this learning-rate advantage, binary-valued
stimulus dimensions are often a good choice when partic-
ipants are from some special population where learning or
attention are compromised, relative to healthy university stu-
dents (e.g., young children or various special neuropsycho-
logical populations).

Second, because there are usually only a small number
of stimuli in experiments that use binary-valued stimulus di-
mensions, it is typically necessary to repeat each stimulus
many times. For example, 100 categorization trials typically
require no more than 10 minutes for participants to complete,
and if there are only 16 total stimuli, then it will be neces-
sary to present each stimulus, on average, more than 6 times
during each 100-trial block. This means that even with the
II categories shown in Figure 2, it could be difficult to rule
out the possibility that participants are learning via explicit
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memorization. On the other hand, with continuous-valued
stimulus dimensions, explicit memorization is usually a use-
less strategy (e.g., because it is easy to make every stimulus
unique). So for example, if one wants to study procedural
learning, continuous-valued stimulus dimensions are proba-
bly best.

Third, with binary-valued dimensions there are necessar-
ily large gaps between exemplars in contrasting categories.
Because of this, there are always an infinite number of
bounds that will perfectly separate the exemplars from any
two contrasting categories. As a result, it is impossible to
know with certainty what strategy a participant who achieved
perfect accuracy was using. With continuous-valued dimen-
sions however, the stimuli can be selected so that there are
no gaps between contrasting categories, and therefore only
one bound perfectly separates the exemplars from these cate-
gories. In this case, one can be certain that a participant who
achieves perfect accuracy must have been using a strategy
consistent with that single best bound. Thus, if an impor-
tant goal is to identify the decision strategies participants are
using, then continuous-valued stimulus dimensions are prob-
ably best.

Separable versus Integral Dimensions

Another important decision is whether to choose stimulus
dimensions that are perceptually separable or integral (Ashby
& Townsend, 1986; Garner, 1974; Lockhead, 1966; Maddox,
1992; Shepard, 1964). This is potentially relevant because
to apply a one-dimensional rule or to make independent de-
cisions about single stimulus dimensions, it is necessary to
attend selectively to single stimulus dimensions. By defini-
tion, when dimensions are separable, it is straightforward to
attend to one and ignore the others. With integral dimen-
sions, however, it is difficult or impossible to attend selec-
tively to a single dimension. Prototypical separable dimen-
sions are hue and shape, and prototypical integral dimen-
sions are saturation and brightness. This means that deci-
sions about the shape of an object are not typically affected
by its hue (or vice versa), but decisions about the bright-
ness of a color patch change when the saturation of the color
patch changes. Therefore, if a goal is to study some aspect of
explicit rule learning, stimuli constructed from perceptually
separable stimulus dimensions are recommended.

Number of Stimulus Dimensions

Another consideration is the number of stimulus dimen-
sions that are allowed to vary across trials. The main issues
here tend to derive from the fact that similarity differences
tend to decrease as dimensionality increases. To see why this
is true, consider the most popular distance metric in psychol-
ogy, namely the Minkowski metric, in which the distance be-
tween two points x = (x1, x2, ..., xr) and y = (y1, y2, ..., yr) is

defined by:

Dxy =

 r∑
i=1

|xi − yi|
a

1/a

, (1)

for a ≥ 1. When a = 2, Eq. (1) is called Euclidean distance
and when a = 1, Eq. (1) is called city-block distance.

Note that as dimensionality increases – that is, as r in-
creases – the sum in Eq. (1) includes more and more terms.
This means that there are more and more differences that con-
tribute to Dxy, and therefore more and more different ways
that a distance of any specific value could occur. One con-
sequence of this is that in one dimension, only two exem-
plars can be the nearest neighbors of a category prototype.
All other exemplars must be more dissimilar to the prototype
than these two. In two dimensions, however, five exemplars
can be the nearest neighbor of the prototype, because now
the exemplars can cluster around the prototype at all compass
points instead of simply falling to the left or right. As stim-
ulus dimensionality increases, this trend accelerates. For ex-
ample, with 8-dimensional stimuli, 240 different exemplars
can all be nearest neighbors of the prototype, and with stimuli
that vary on 24 dimensions, the number of possible nearest
neighbors of the prototype increases to 196,560 (Odlyzko &
Sloane, 1979). Thus, for example, random distortions of the
prototype of the type generated in the prototype distortion
task are likely to produce more exemplars highly similar to
the prototype when the stimuli vary on many stimulus dimen-
sions.

As another example of this phenomenon, under a broad
set of conditions, as the number of stimulus dimensions in-
creases, the distance from any stimulus to its nearest neigh-
bor and the distance to its furthest neighbor converge towards
the same value (Beyer, Goldstein, Ramakrishnan, & Shaft,
1999). Eventually, in infinite dimensional spaces, all points
are essentially equidistant from all other points. Further-
more, these effects can occur in as few as 10 – 15 dimensions
(Beyer et al., 1999). The 9-dot stimuli often used in proto-
type distortion tasks vary on 18 stimulus dimensions. As a
result, the similarity relations among stimuli typically used
in prototype distortion tasks are qualitatively very different
from the similarity relations among stimuli used say, in the
RB and II categories illustrated in Figure 1. Thus, if a re-
search goal is to study how changes in similarity affect cate-
gorization accuracy, then low-dimensional stimuli should be
used.

Constructing the Categories

RB and II Categories: The Randomization Technique

This section describes the methods required to construct
RB or II categories by random sampling from bivariate nor-
mal distributions. If the stimuli vary on two stimulus dimen-
sions, which we will denote by X1 and X2, then to say that
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a category of these stimuli has a bivariate normal distribu-
tion means that X1 and X2 are each normally distributed, and
the only possible relationship between X1 and X2 is linear.
The strength of this relationship is measured by the squared
Pearson correlation coefficient, ρ2.

Every bivariate normal distribution is characterized by 5
parameters – a mean on each dimension (denoted µ1 and
µ2), a variance on each dimension (denoted σ2

1 and σ2
2)

and the covariance between the two variables (denoted by
cov = ρσ1σ2). The parameters of any bivariate normal dis-
tribution are cataloged in two structures – a mean vector µ
and a variance-covariance matrix Σ, where

µ =

[
µ1
µ2

]
and Σ =

[
σ2

1 cov
cov σ2

2

]
. (2)

One nice consequence of defining categories as bivari-
ate normal distributions is that in the two-category case, the
optimal decision boundary (i.e., that maximizes categoriza-
tion accuracy) is always linear or quadratic (Ashby, 1992).
The optimal bound is linear if the two categories have equal
variance-covariance matrices. If the two category baserates
are equal, then the equation of that linear bound is given by

(µ
B
− µ

A
)′Σ−1x +

1
2

(µ′
A
Σ−1µ

A
− µ′

B
Σ−1µ

B
) = 0, (3)

where the ′ indicates matrix transpose3. The optimal bound
is quadratic if the variance-covariance matrices are unequal.
Any type of quadratic equation is possible (i.e., circle, el-
lipse, parabola, hyperbola). The equation of this quadratic
bound is given by

(x − µ
A
)′Σ−1

A (x − µ
A
) − (x − µ

B
)′Σ−1

B (x − µ
B
) + ln

(
|ΣA|

|ΣB|

)
= 0.

(4)

The remainder of this section describes the steps required
to generate random samples from two bivariate normal dis-
tributions for which the optimal boundary is linear and the
optimal strategy is equivalent to assigning each stimulus to
the category with the most similar prototype (i.e., with the
nearest mean). This is the most common application of the
randomization technique. For example, the following seven
steps could be used to produce the stimulus samples that de-
fine either the RB or II categories shown in Figure 1. Even so,
although the prototype rule always produces a linear bound,
not all linear bounds are equivalent to a prototype strategy
(Ashby & Gott, 1988). Thus, the methods described here are
valid for only a subset of all possible linear bounds. Con-
structing categories that have other types of optimal bounds
follows similar, but slightly more complex steps.

Step 1. Select the optimal bound and the category
means. The first step is to select the desired optimal bound.
For example, suppose we would like to create the categories

shown in Figure 4a. The bound depicted there has a slope
of +1 and an intercept of 0. Next we select the category
means. There are two constraints. First, both means must
lie on a line orthogonal to the category bound, which in our
case means they must fall on a line with slope -1. Second,
the two means must be equidistant from the optimal bound,
although the distance D between the means is arbitrary (see
Figure 4d). In other words, it is possible to follow all of the
remaining steps in this procedure for any numerical value of
D > 0. In practice, D should be chosen large enough so that
the two stimuli that correspond to the means are easily dis-
criminable. Otherwise learning may be impossible. On the
other hand, two problems arise if D is chosen to be too large.
First, it is likely that a one-dimensional rule will achieve high
accuracy. An enormous literature shows that people have a
strong preference for one-dimensional rules, so if the goal
is to study some aspect of procedural learning, it is impera-
tive that the best one-dimensional rule performs poorly in the
task. Second, a large D makes extreme samples more likely
and with many stimuli, extreme samples are physically unre-
alizable. For example, with the disks shown in Figure 1 there
is both an upper and lower limit on the bar widths that can
be shown on a computer screen. For these reasons, the best
choice for D is some intermediate value. Once D is selected,
some straightforward trigonometry can be used to identify
the coordinates of the two category means.

Step 2. Determine the entries in the variance-
covariance matrix. The next step is to determine the co-
variance and the two variances (since these are the same for
the two categories). The key is to notice that each scatterplot
of stimuli is elliptical in shape (see Figure 4b). The contours
of equal likelihood of bivariate normal distributions are al-
ways elliptical and always centered at the distribution mean.
The size of the ellipse is arbitrary, but all such ellipses from
the same distribution have the same shape and orientation,
which are determined by the variance-covariance matrix.

The key to identifying the variance-covariance matrix that
produces each of the ellipses shown in Figure 4b is to write
Σ in the following diagonal form (which is always possible):

Σ =

[
σ2

1 cov
cov σ2

2

]
=

[
r11 r12
r21 r22

] [
w2

1 0
0 w2

2

] [
r11 r12
r21 r22

]′
=

[
r1 r2

] [w2
1 0

0 w2
2

] [
r1 r2

]′
(5)

The 2 × 1 vectors r1 and r2 are the eigenvectors of Σ and w2
1

and w2
2 are the corresponding eigenvalues. Our approach will

be to determine the necessary numerical values of r1, r2,w
2
1,

and w2
2 and then insert these values into the right side of Eq.

(5) to compute Σ.

3If the baserates are unequal, then the bound is still linear, but
the intercept is shifted away from the category with the higher baser-
ate (see Ashby, 1992, for the exact equation).
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Figure 4. Panel a: Samples from two bivariate normal distributions. Panels b – e: Steps in the methods required to create the
distributions used in panel a.

Fortunately, the eigenvalues and eigenvectors of Σ have
a straightforward and highly useful geometric interpretation,
which is illustrated in Figure 4c. The eigenvectors of Σ are
parallel to the major and minor axes of the ellipses that define
the distribution’s contours of equal likelihood. The eigenvec-
tor corresponding to the larger eigenvalue is parallel to the
major axis and the eigenvector corresponding to the smaller
eigenvalue is parallel to the minor axis. In Figure 4a, the
bound has a slope of +1 and an intercept of 0, and note that
every point on the bound is equidistant to the two category
means. Ashby and Alfonso-Reese (1995) showed that under
these conditions, one of the eigenvectors of Σ must be or-
thogonal to the categorization decision bound. Because the
eigenvectors of Σ are always orthogonal to each other, this
means that the other eigenvector must be parallel to the deci-
sion bound.

This is enough information to identify r1 and r2. The en-
tries in any vector can be considered the endpoints of a di-
rected line segment that begins at the origin. The diagonal

representation shown in Eq. (5) requires that r1 and r2 each
must have a length of 1. Putting all this together means that

r1 =

 1
√

2
1
√

2

 and r2 =

− 1
√

2
1
√

2

 . (6)

The next two values to determine are the eigenvalues w2
1

and w2
2. It turns out that the eigenvalues of Σ equal the vari-

ances in the distribution along the directions specified by the
eigenvectors. So in Figure 4c, w2

1 is the variance along the
major axis (i.e., the r1 direction) and w2

2 is the variance along
the minor axis (i.e., the r2 direction). In the Figure 4 ex-
ample, w2

2 completely determines optimal accuracy and w2
1

determines the difference between optimal accuracy and the
accuracy of the most accurate one-dimensional rule.

First we compute w2
2. In the Figure 4 example, optimal ac-

curacy depends only on variability in the direction orthogo-
nal to the category bound (i.e., in the r2 direction). Variability
parallel to the boundary has no effect on accuracy. The key
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issues are illustrated in Figure 4d. Projecting the distribu-
tions onto the dimension orthogonal to the bound produces
two univariate normal distributions, both with variance w2

2.
The distance between the means is D, which is the same as
the distance between µ

A
and µ

B
. The optimal accuracy of the

Figure 4a task is inversely related to the amount of overlap
of these univariate normal distributions. More specifically,
denote this optimal accuracy by A. Then assuming equal cat-
egory baserates

A =
1
2

P
(
Z ≤

D/2
w2

)
+

1
2

P
(
Z >

D/2 − D
w2

)
= P

(
Z ≤

D/2
w2

)
, (7)

where Z has a standard normal distribution (i.e., mean = 0,
variance = 1). The first probability equals the probability cor-
rect on Category A trials and the second probability equals
the probability correct on Category B trials. So for example,
if we want optimal accuracy to be 90% (i.e., A = .90) we
simply use a Z-table to solve Eq. (7) for w2 (i.e., since D is
already known).

The next task is to determine a numerical value of w2
1.

Generally this value is selected to be as large as possible be-
cause the larger this value the greater the difference in op-
timal accuracy relative to the accuracy of the most accurate
one-dimensional rule. Even so, there are almost always up-
per limits on w2

1 because if this variance is too large then
some random samples will be physically unrealizable. So
generally w2

1 is set to near the physical upper limit. For ex-
ample, suppose that physical constraints require that all sam-
ples must fall inside the 100× 100 square shown in Figure 4.
With any normal distribution almost all samples fall within
3 standard deviations from the mean (samples outside this
range can be discarded). Therefore, it is important to ensure
that an interval of width 6w1 (i.e., ±3w1) along the major axis
of each ellipse and centered on the category mean includes
only stimulus values that are physically realizable. Once this
interval width is determined, then one can easily solve for
w1. After determining a numerical value for w1, all values on
the right side of Eq. (5) are known. Therefore, the next step
is to multiply the three matrices in that equation to determine
Σ.

Step 3. Compute the accuracy of the most accurate
one-dimensional rule. In II tasks, it is always important to
compute the accuracy of the most accurate one-dimensional
rule. As mentioned earlier, people have a strong preference
for one-dimensional rules, so if the goal is to study procedu-
ral learning, the category distributions should be constructed
so that the best one-dimensional rule performs poorly in the
task.

The calculations required to compute the accuracy of the
most accurate one-dimensional rule are illustrated in Figure
4e. The most accurate possible one-dimensional rule is il-

lustrated by the vertical bound4. The accuracy of this rule
only depends on variability along the horizontal dimension.
Thus, to compute the accuracy of this rule, we can project the
bivariate normal distributions onto the abscissa. This pro-
duces two (univariate) normal distributions, which are just
the marginal distributions of the bivariate normals on the first
dimension. Therefore, the A distribution has mean µA1 and
variance σ2

1 and the B distribution has mean µB1 and variance
σ2

1. By a calculation almost identical to Eq. (7) we can com-
pute the best one-dimensional accuracy, which we denote by
A1D, to be:

A1D =
1
2

P
Z ≤ µA1+µB1

2 − µA1

σ1

 +
1
2

P
Z >

µA1+µB1
2 − µA2

σ1


= P

Z ≤ µA1+µB1
2 − µA1

σ1


= P

(
Z ≤

µB1 − µA1

2σ1

)
. (8)

Increasing w2
1 will decrease this value.

Step 4. Generate the random samples that define each
category. The next step in the procedure is to generate ran-
dom samples from these distributions. Many software pack-
ages have routines that will generate samples from multivari-
ate normal distributions given numerical values for the mean
vector and variance-covariance matrix. For example, in Mat-
lab the command “mvnrnd(mu,Sigma)” will draw a random
sample from a multivariate normal distribution that has mean
‘mu’ and variance-covariance matrix ‘Sigma’. Some soft-
ware packages might only be able to generate samples from a
standard (univariate) normal distribution (i.e., a ‘Z’ distribu-
tion with mean 0 and variance 1). In this case, the first step is
to generate two random (and independent) samples and load
them into a vector we can call z. These values can then be
transformed into random samples x from a bivariate normal
distribution with mean µ and variance-covariance matrix Σ

by the linear transformation

x = Pz + µ, (9)

where

P =

σ1 0
cov
σ1

√
σ2

2 −
cov2

σ2
1

 . (10)

The matrix P is known as the Cholesky matrix (e.g., Ashby
& Soto, 2015). If the only available random number gen-
erator produces samples from a uniform [0,1] distribution,
then several different methods can be used to convert these
samples to samples that have an approximate Z distribution
(e.g., Ashby, 1992) and then Eq. (9) can be applied.

4In the special case illustrated in Figure 4, a one-dimensional
rule on either dimension will lead to the same accuracy. In both
cases, the bound will bisect the category means on the relevant di-
mension.
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Step 5. Transform the sample so that the sample statis-
tics exactly equal the population parameters. Of course,
with any random sample, the sample means, variances, and
covariance will not exactly equal the population values, no
matter how large the sample size. If not, then the most accu-
rate classifier for the sample will differ from the desired de-
cision bound that was used to carefully select the population
parameter values. To eliminate this problem, it is necessary
to linearly transform the sample values so that the sample
statistics exactly match the population values.

Denote the vector of sample means by x and the sample
variance-covariance matrix by S . The first step is to con-
struct the Cholesky matrix from the entries in S . If we call
this matrix Q, then

Q =


s1 0
cov
s1

√
s2

2 −
cov2

s2
1

 , (11)

where cov is the sample covariance, and s2
1 and s2

2 are the
sample variances. The transformation that converts x to µ
and S to Σ is

y = PQ−1(x − x) + µ. (12)

To use Eq. (12), simply substitute each random sample in for
x and then perform the matrix operations to produce a new
random sample y. The sample mean of the y’s created in this
fashion will be exactly µ and the sample variance-covariance
matrix will be exactly Σ.

Step 6. Discard outliers. The next step is to discard
any sample more than 3 standard deviations from the mean.
Strictly speaking, this step is not necessary. However, given
the methods described above, outliers can be physically un-
realizable, whereas the methods should ensure that any stim-
ulus within 3 standard deviations from the mean can be phys-
ically constructed. Discarding outliers, however, is compli-
cated by the fact that the numerical value of the standard de-
viation will typically depend on the direction from the sam-
ple to the mean. For example, with the Figure 4 categories
the standard deviation along the minor axis of the ellipse that
characterizes each distribution (i.e., w2) is much less than
the standard deviation along the major axis (i.e., w1). For-
tunately, the distance metric known as Mahalanobis distance
(e.g., Fukunaga, 1990) corrects for these changes. Thus, the
following algorithm should be used for removing outliers.
Discard any sample x if and only if

(x − µ)′Σ−1(x − µ) > 3. (13)

Step 7. Generate the stimuli. The final step is to con-
vert each numerical sample into a physical stimulus. This
requires converting from the space used in steps 1 – 6 to a
space in which the dimensions are in physical units – for ex-
ample, in the case of sine-wave gratings, degrees of counter-
clockwise rotation from horizontal for orientation and cycles

per disk for bar width. Such dimensions should not be used
however, to generate the numerical samples. This is because
it is important that a change of say 10 units in each dimension
in the space where the numerical samples were generated is
equally salient perceptually. So in the Figure 4 example, the
last problem is to find two linear transformations that con-
vert each [0,100] dimension to a dimension defined in terms
of units that have physical meaning, but with the provision
that a change of n units on each [0,100] dimension is equally
perceptually salient. So for example, one approach might be
to equate a difference of 10 units on each [0,100] dimension
with one just noticeable difference (jnd) (Wichmann & Jäkel,
in press). Then both dimensions would span 10 jnds. To de-
termine a jnd on each dimension, one could either consult the
literature or run a quick psychophysical pilot experiment that
uses a staircase procedure to estimate the jnd.

Prototype-Distortion Categories

The standard procedure for generating prototype-
distortion categories dates back to Posner, Goldsmith,
and Welton (1967). The method predates modern laboratory
computers and was developed to allow hand-drawn images.
But it is readily adapted to modern display devices. This
section describes the version of this method that was used
by Smith and Minda (2002). The first step is to create the
prototype of each category. In most cases, high-dimensional
stimuli are used. For example, as mentioned earlier, the
classic prototype is a random constellation of up to 9 dots
(e.g., Homa et al., 1979, 1981; Posner & Keele, 1968; Shin
& Nosofsky, 1992; Smith & Minda, 2002). To create the
other category members, the location of each dot on the
display screen is perturbed. Since the display is flat, the
location of each dot is completely specified by 2 numbers
that identify the horizontal and vertical coordinates of each
dot. Thus, with 9 dots, the stimuli vary across trials on
18 different dimensions. A standard approach is to create
alternative categories that vary in the amount of distortion.
For example, performance might be compared across three
different conditions created from low, medium, and high
levels of distortion.

In the standard method, which is illustrated in Figure 5,
the array of pixels that will display the images is divided into
a square grid. A grid size of 50 × 50 is common, but for
pedagogical purposes, the grid in Figure 5 is 20 × 20. Typ-
ically, each square in the grid includes a number of pixels.
Each dot in every stimulus pattern is displayed in the center
of one of these squares, so the size of each square is chosen
to ensure that dots presented in neighboring squares are far
enough apart that they would not be confused as a single dot.

If the grid size is 50 × 50 then the prototype is created
so that it can be displayed on a smaller square grid that is
centered within the 50 × 50 grid. A common choice for the
prototype might be a 30 × 30 grid. In Figure 5, this smaller
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Figure 5. A 20 × 20 square grid that includes a 16 × 16 grid
of central squares (in light green) surrounded by a 2-deep
border of squares (dark green).

central grid is the 16 × 16 grid of light green squares and
the dark green squares define the border. If the central grid
is 30 × 30, then each of these 900 squares can be identified
by an ordered pair (m, n), where m and n are both integers
from 1 to 30, m identifies the column number of the square,
and n identifies the row number. A 9-dot prototype pattern is
then selected by generating 18 random samples from a uni-
form distribution over the integers 1, 2, ..., 30. The first two
samples define the column and row of the first dot, samples
3 and 4 define the column and row of the second dot, and
so forth. Figure 5 shows 9 randomly placed black dots that
might define one such category prototype.

If the goal is to study the perceptual representation mem-
ory system, then it might be a good idea to ensure that the
prototype constellation created from this process does not
have any simple verbal description. For example, if the dots
happen to roughly fall into a square configuration, then an
(A, not A) task simplifies to deciding whether or not the
stimulus is a square. This judgment relies on more than just
perceptual priming because it could be affected by the par-
ticipant’s lifetime experience with squares. If the prototype
pattern appears unacceptable for any reason, then it should be
rejected and a new random prototype created. This process
should be repeated until an acceptable prototype is generated.

The next step is to generate the other category members.
For each dot in the prototype, it is possible to define a series
of concentric square annuli centered on the dot that are suc-
cessively further away. For example, consider the dot shown
in Figure 6. Note that the light green annulus includes all

Figure 6. A 5 × 5 square grid centered on one dot of a 9-dot
prototype pattern.

squares that are neighbors to the square containing the dot.
Moving the dot to the center of a light green square is there-
fore a 1-step move. Similarly, the dark green annulus in-
cludes all squares that are 2 squares away from the dot, so
moving the dot to one of these squares is a 2-step move. In
the same way, a 3-step move would move the dot to a square
in the annulus of squares that are 3 squares away (which
would form the outermost squares in a 7 × 7 grid), and a
4-step move would move the dot to a square in the annulus
of squares that are 4 squares away (which would form the
outermost squares in a 9 × 9 grid). Using this logic, a 0-step
move leaves the dot in its current location.

Category members are created by randomly moving each
dot in the prototype pattern to the center of some surround-
ing square. For example, the algorithm might move the dot
located in light-green square (5,2) of Figure 5 (i.e., column 5,
row 2) to the location of the red dot. Note that this would con-
stitute a two-step move. The algorithm for moving each dot
is a two-step procedure. First, the magnitude of the move-
ment is determined, then the direction. All movements are of
size 0-step, 1-step, 2-step, 3-step, or 4-step, with correspond-
ing probabilities p0, p1, p2, p3 and p4 (where the sum of these
five pi’s equals 1). So first, a random sample is drawn to de-
termine the movement magnitude for each dot (according to
the pi probabilities). Next, a second random sample is drawn
to determine which square in the selected annulus will be the
new dot location, with the provision that all squares in the
selected annulus are equally likely.
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The numerical values of the pi’s depends on the level of
distortion. For example, to create a category of low-level
distortions called Level 1 distortions, the 5 probabilities are
(p0 = .88, p1 = .10, p2 = .015, p3 = .004, p4 = .001). Note
that 98% of the time, each dot either does not move, or only
moves one square away. A category of medium level distor-
tions (called Level 3) uses the probabilities (.59, .20, .16, .03,
.02), and a category of high-level distortions (Level 5) uses
the probabilities (.00, .24, .16, .30, .30).

Feedback Choices

After selecting the type of category structures to use and
the stimuli, and after the categories have been constructed, a
number of choices must still be made about how or whether
to deliver feedback. The issues critical to those choices are
described in this section.

Supervised versus Unsupervised Training

The first decision is whether or not to provide feedback,
or any instruction at all. Tasks that provide no trial-by-trial
feedback about response accuracy, or any instruction about
category structure, are called unsupervised or free-sorting
categorization experiments. Many studies have shown that
with RB or II category structures, in the absence of feed-
back, participants virtually always respond with a simple
one-dimensional rule, even when that rule is highly subop-
timal (e.g., Ahn & Medin, 1992; Ashby, Queller, & Berretty,
1999; Imai & Garner, 1965; Medin, Wattenmaker, & Hamp-
son, 1987). For example, the data shown below in Figure 7d
are exactly what one would expect if the Figure 7a II cate-
gories were used in an unsupervised experiment (Ashby et
al., 1999). Thus, unless the goal is to study some aspect of
one-dimensional rule use, then some sort of feedback or in-
struction should be given with RB or II categories.

The category-learning task in which feedback appears
least important is the (A, not A) prototype distortion task. For
example, Casale and Ashby (2008) reported that (A, not A)
learning was better with feedback when the distortion level
was high, but for low levels of distortion, learning was actu-
ally better (although not significantly) without feedback.

Observational versus Feedback-based Training

By definition, feedback is provided after the response. But
another training method is to allow participants to learn by
observation. Observational training occurs when a teacher
points out an object and names the category for the student,
and no action is required from the student at that time. To
assess the efficacy of learning, a later test is required. In con-
trast, feedback-based training requires the participant to re-
spond to each stimulus, and that response is either confirmed
or corrected by feedback. Several studies have reported no

difference between observational and feedback-based learn-
ing for simple one-dimensional RB tasks, but that learning
in more complex RB tasks (e.g., a two-dimensional con-
junction rule) and in II tasks is better with feedback-based
training (Ashby, Maddox, & Bohil, 2002; Edmunds, Milton,
& Wills, 2015). Furthermore, even when categories can be
learned with either observational or feedback-based training,
these two training methods may result in different learning
trajectories and recruit different neural structures (Cincotta
& Seger, 2007).

A long history of research has investigated the relative
efficacy of positive versus negative feedback. For exam-
ple, more than a half century ago it was reported that in
simple two-choice RB tasks, negative feedback is more ef-
fective than positive feedback (e.g., Buss & Buss, 1956;
Buss, Weiner, & Buss, 1954; Meyer & Offenbach, 1962).
Several researchers hypothesized that the negative feedback
advantage occurs because positive feedback is less infor-
mative than negative feedback, at least in two-choice tasks
(Buchwald, 1962; Jones, 1961; Meyer & Offenbach, 1962).
The idea is that negative feedback informs the participant that
his or her hypothesis was incorrect and also signals which
response was correct (i.e., the other response), whereas posi-
tive feedback signals only that the response was correct (i.e.,
the hypothesis might have been incorrect, but, by chance, the
response was correct). So one possibility is that feedback-
based training is better in difficult RB tasks than observa-
tional training because feedback-based training includes neg-
ative feedback trials, whereas observational training does
not.

Another possibility though is that performance is gener-
ally better with feedback because participant motivation is
higher. With observational training there is no immediate
penalty for inattention, whereas with feedback-based training
inattention is punished immediately with negative feedback.

With (A, not A) prototype-distortion tasks, observational
training is standard. The most common training method is to
begin by showing participants a series of exemplars from the
A category. Not A’s are generally not presented during this
phase of the experiment. During a later test period, partici-
pants are shown exemplars from the A category intermixed
with not A stimuli, and their task is to respond “Yes” or “No”
indicating whether or not each stimulus belongs to category
A.

Feedback Timing

Several studies have reported that learning in II tasks
is impaired if the feedback is delayed 2.5s or longer after
the participant’s response (Maddox, Ashby, & Bohil, 2003;
Maddox & Ing, 2005; Worthy, Markman, & Maddox, 2013).
In contrast, delays as long as 10s seem to have no effect on
RB learning, and RB learning can succeed even when the
feedback in delivered in deferred batches (Smith et al., 2014).
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Thus, if a goal is to study rule learning, then the timing and
nature of the feedback are not critical issues, but if the goal
is to study procedural learning, then the feedback should be
delivered within a second of the response.

Feedback timing is an especially important consideration
in fMRI experiments, where jittering the time between suc-
cessive events is often necessary to ensure that the param-
eters are estimabile in the standard method of data analysis
(i.e., the general linear model; e.g., Ashby, 2011). In most
fMRI studies of category learning, one goal will be to sepa-
rately estimate the BOLD response triggered by the stimulus
presentation and the BOLD response triggered by presen-
tation of the feedback. This typically requires trial-by-trial
variation in the amount of time between the response and the
feedback (called jitter). Many jitter algorithms will include
at least some delays of 6–8 seconds or longer (Ashby, 2011).
Such delays are potentially problematic for studies that use
II categories. Even so, several factors can mitigate the effects
of such delays.

First, one recommendation is to provide training with im-
mediate feedback on the II categories in the laboratory be-
fore the scanning session begins. This way the learning will
be mostly complete before the long delays are encountered.
The general linear model commonly used to analyze fMRI
data assumes the scanning data are stationary, and therefore
not appreciably changing during the scanning session. Thus,
providing preliminary laboratory training on the II categories
also ensures that the data are more appropriate for standard
statistical analysis. Second, the most popular jitter algo-
rithms include more short delays than long delays. Thus,
even if learning is compromised on long-delay trials, there
may be enough short delays to allow II learning. Third, the
studies reporting impaired II learning with long feedback de-
lays included a visual mask during the delay period5 (i.e.,
during the time between the response and the feedback). So
another recommendation is to avoid presenting any visual
images during the long feedback delays required by the jitter
algorithm.

Deterministic versus Probabilistic Feedback

Another choice regarding feedback is whether it should be
deterministic or probabilistic. During probabilistic category
learning, some stimuli have probabilistic associations with
the contrasting categories. A response that assigns a stim-
ulus to category A might be rewarded with positive feed-
back on one trial and punished with negative feedback on
another. Obviously, in such tasks, perfect performance is im-
possible. While studies of deterministic category learning are
more common, research on probabilistic category learning
also has a long history (Ashby & Gott, 1988; Ashby & Mad-
dox, 1990, 1992; Estes, 1986; Estes, Campbell, Hatsopoulos,
& Hurwitz, 1989; Gluck & Bower, 1988; Kubovy & Healy,
1977; Medin & Schaffer, 1978).

Almost all probabilistic category-learning experiments are
of one of two types. One approach, illustrated in Figures 1
and 4, uses stimuli that vary on continuous dimensions and
defines a category as a bivariate normal distribution. Proba-
bilistic category assignments are created by using categories
defined by overlapping distributions (Ashby & Gott, 1988;
Ashby & Maddox, 1990, 1992; Ell & Ashby, 2006). A sec-
ond popular approach uses stimuli that vary on binary-valued
dimensions (Estes, 1986; Estes et al., 1989; Gluck & Bower,
1988; Medin & Schaffer, 1978) and probabilistically asso-
ciates each stimulus with the two contrasting categories. A
common example of this approach uses the weather predic-
tion task described earlier (Knowlton et al., 1994).

Probabilistic feedback has been used in category-learning
experiments for three primary reasons. First, naturally
enough, it slows learning relative to deterministic feedback
(e.g., Crossley et al., 2012). So probabilistic feedback is
sometimes used to avoid ceiling effects in tasks that would
be too easy if deterministic feedback was used. Second,
when categories are defined as normal distributions, over-
lapping categories (and hence probabilistic feedback) are
used to improve identifiability of the participant’s decision
strategy (more on this immediately below). Third, some
early category-learning studies used probabilistic feedback
because it was thought to recruit striatal-mediated procedu-
ral learning (Knowlton et al., 1996), even in tasks that might
be solved via logical rules if the feedback was determinis-
tic. Subsequent studies have not provided strong evidence
for this assumption (e.g., Ashby & Vucovich, in press; Ell &
Ashby, 2006), although the issue of whether switching from
deterministic to probabilistic feedback can bias the type of
learning that occurs is still unresolved.

Overlapping Normal Distributions. Categories cre-
ated using the randomization technique are often defined by
overlapping normal distributions in an effort to make it easier
to identify the participant’s decision strategy. Details of this
strategy analysis are described below in the section entitled
‘Decision Bound Modeling.’ With overlapping categories,
only one decision bound will maximize accuracy, whereas
if there is any gap at all between exemplars in the contrast-
ing categories then an infinite number of bounds will achieve
perfect accuracy. For example, consider the II categories
shown in Figure 1. These categories do not overlap and note
that an infinite number of bounds can be drawn that perfectly
separate the category A and B exemplars. Virtually all of
these require information integration however, and so the in-
terpretation of most experiments will not depend on which
of these bounds best describe a particular participant’s cat-
egorization strategy. On the other hand, the interpretation
of experimental results often will depend on whether par-

5Theoretically, the mask disrupts the participant’s visual image
of the stimulus. The effects of long delays on II learning in the
absence of a mask have not been systematically studied.
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ticipants use an information-integration strategy or a sim-
ple one-dimensional rule. For example, such a difference
is often used to decide whether participants improved their
performance via explicit or procedural learning. Manipulat-
ing category overlap can bias participants toward one or the
other of these strategies. Procedural strategies are most likely
in II tasks when the category overlap is small to moderate.
Too much overlap (e.g., 30%) discourages use of procedural
strategies, as does too large a gap between exemplars in con-
trasting non-overlapping II categories (Ell & Ashby, 2006).

The Weather Prediction Task. The weather prediction
task is a popular experimental paradigm that pairs probabilis-
tic feedback with stimuli that vary on binary-valued dimen-
sions (Knowlton et al., 1994). As mentioned earlier, one,
two, or three of four possible tarot cards are shown to the
participant, whose task is to indicate whether the presented
constellation signals rain or sun. Each card is labeled with a
geometric pattern and each card combination is probabilisti-
cally associated with the two outcomes. As in other II tasks,
optimal accuracy can only be achieved by integrating the in-
formation across the different cards. The weather prediction
task is popular, especially in studies of various neuropsycho-
logical patient groups, because it is thought to recruit striatal-
mediated procedural learning without the need for hundreds
of training trials (Knowlton et al., 1996). One weakness of
the task, however, at least of the original version, is that sim-
ple declarative strategies can achieve almost optimal accu-
racy (Gluck, Shohamy, & Myers, 2002).

Table 1 shows the probabilities associated with each pat-
tern of card combinations in the original weather-prediction
task (Knowlton et al., 1994). The optimal strategy (which
maximizes accuracy) is to respond "rain" whenever the prob-
ability of rain given the presented stimulus [P(rain|S) in Ta-
ble 1] is greater than 0.5, and "sun" whenever this probabil-
ity is less than 0.5. The overall probability correct that is
possible with this optimal strategy is computed by multiply-
ing the baserate of each stimulus [i.e., the probability that
the stimulus is presented on a trial, denoted P(S) in Table
1] with the probability that the optimal strategy leads to a
correct response on this stimulus [denoted P(C|S) in Table
1], and summing these products over all 14 stimuli. These
operations indicate that the highest possible accuracy is 76%
correct.

This optimal strategy in the weather prediction task re-
quires equal attention to all 4 cards. However, consider
the far simpler strategy, which is described in the last two
columns of Table 1, in which the participant attends to cue
1 and completely ignores cues 2, 3, and 4. Specifically,
suppose the participant responds “sun” on every trial where
cue 1 is absent and “rain” on every trial where cue 1 is
present. Note that this simple single-cue strategy yields an
accuracy of 73% correct – only 3% below optimal. Partic-
ipants rarely exceed 73% correct in the weather prediction

task, so it is generally impossible to tell from overall ac-
curacy alone whether a participant is using an optimal-like
strategy that recruits procedural learning, or a simple ex-
plicit rule that could be learned via declarative learning and
memory (e.g., working memory and executive attention). In
fact, strategy analyses indicate that, at least initially, learning
in the weather-prediction task is dominated by simple rule-
based strategies (Gluck et al., 2002). This result is part of the
evidence, alluded to earlier, that probabilistic feedback does
not necessarily recruit procedural learning. If the goal is to
study procedural learning then it is vital to use a task that
punishes participants (with low accuracy) for using simple
explicit rules.

It is possible to revise the weather prediction task so that
the best single-cue strategy yields an accuracy far below op-
timal, simply by adjusting the probabilities associated with
specific stimuli. In the original weather prediction task, note
that a cue 1 strategy disagrees with the optimal strategy on
only two stimuli, namely D and K. The optimal response to
stimulus D is “rain”, whereas the cue 1 strategy responds
“sun”, and vice versa for stimulus K. Thus, one way to in-
crease the difference between the optimal and best single-cue
strategies is to increase the probability of occurrence (i.e., the
baserate) and prediction strengths of stimuli D and K. Table
2 shows an alternative version of the weather prediction task
that follows this approach6. Note that in this new version,
optimal accuracy has increased to 86% correct and the ac-
curacy of the best single-cue strategy has dropped to 66%
correct. Many other alternative versions with similar proper-
ties are also possible. The key point is that because simple
single-cue strategies are punished much more heavily with
this alternative version, the frequency of procedural strategy
use should be much higher and the frequency of simple ex-
plicit rules should be much lower than in the original version
of the task.

Assessing Performance

Before data collection begins, the experimenter must de-
cide how participant performance will be assessed. There are
three popular choices and each requires different experimen-
tal methods.

One popular approach is to include separate Training and
Transfer (or Test) phases. In these designs, participants train
on the category structures for a number of trials with some
sort of feedback, then their performance is tested during the
transfer trials. Frequently, no feedback is provided during
transfer to ensure that no further learning occurs, and there-
fore that performance is stationary during the transfer phase.

6Changes to probabilities associated with other stimuli were also
made so that simple strategies with cues 2, 3, or 4 would also be
much less accurate than the optimal strategy. In fact, the accuracies
of the other single-cue strategies are 68%, 68%, and 66%, for cues
2, 3, and 4, respectively.
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Table 1
Probability Structure for the Weather Prediction Task

S Cues P(S) P(rain|S) Op R Op P(C|S) Cue 1 R Cue 1 P(C|S)
A 0001 0.14 0.143 sun 0.857 sun 0.857
B 0010 0.08 0.375 sun 0.625 sun 0.625
C 0011 0.09 0.111 sun 0.889 sun 0.889
D 0100 0.08 0.625 rain 0.625 sun 0.375
E 0101 0.06 0.167 sun 0.833 sun 0.833
F 0110 0.06 0.500 rain or sun 0.500 sun 0.500
G 0111 0.04 0.250 sun 0.750 sun 0.750
H 1000 0.14 0.857 rain 0.857 rain 0.857
I 1001 0.06 0.500 rain or sun 0.500 rain 0.500
J 1010 0.06 0.833 rain 0.833 rain 0.833
K 1011 0.03 0.333 sun 0.667 rain 0.333
L 1100 0.09 0.889 rain 0.889 rain 0.889
M 1101 0.03 0.667 rain 0.667 rain 0.667
N 1110 0.04 0.750 rain 0.750 rain 0.750

Sum = 1 Overall Accuracy = 0.76 Overall Accuracy = 0.73
S = stimulus, 0 = absent, 1 = present, R = response, OP = optimal, C = correct.

Table 2
Probability Structure for an Alternative Version of the Weather Prediction Task

S Cues P(S) P(rain|S) Op R Op P(C|S) Cue 1 R Cue 1 P(C|S)
A 0001 0.090 0.056 sun 0.944 sun 0.944
B 0010 0.120 0.083 sun 0.917 sun 0.917
C 0011 0.030 0.167 sun 0.833 sun 0.833
D 0100 0.120 0.917 rain 0.917 sun 0.083
E 0101 0.050 0.100 sun 0.900 sun 0.900
F 0110 0.010 0.500 rain or sun 0.500 sun 0.500
G 0111 0.030 0.167 sun 0.833 sun 0.833
H 1000 0.090 0.944 rain 0.944 rain 0.944
I 1001 0.010 0.500 rain or sun 0.500 rain 0.500
J 1010 0.050 0.900 rain 0.900 rain 0.900
K 1011 0.170 0.206 sun 0.794 rain 0.206
L 1100 0.030 0.833 rain 0.833 rain 0.833
M 1101 0.170 0.794 rain 0.794 rain 0.794
N 1110 0.030 0.833 rain 0.833 rain 0.833

Sum = 1 Overall Accuracy = 0.86 Overall Accuracy = 0.66
S = stimulus, 0 = absent, 1 = present, R = response, OP = optimal, C = correct.

Data analysis focuses on transfer performance. For this rea-
son, it is critical that enough transfer trials are included to es-
timate transfer accuracy with a reasonably small standard er-
ror. It is also common to use different stimuli during training
and transfer. For example, this is the norm with the Medin
and Schaffer (1978) 5/4 categories. Testing with novel stim-
uli assesses the generalizability of the knowledge acquired
during training. Note that this method requires that some of
the category exemplars are held back during training to be
available for the transfer phase.

A second popular method of assessing performance is to
train each participant until he or she reaches some learn-
ing criterion. The dependent measure of interest is then the

number of trials required to reach criterion. This method is
widely used when the stimuli are constructed from binary-
valued dimensions (as in Figures 2 and 3) and the feedback
is deterministic. In this case, due to the small number of stim-
uli, most participants eventually achieve perfect accuracy. A
criterion of 10 or 12 correct responses in a row is usually ef-
fective. In general, the criterial number of correct responses
in a row should be large enough so that it is unlikely to be
reached by random guessing (Tharp & Pickering, 2009), but
small enough so that the task does not become tedious for
participants.

With probabilistic feedback or with categories constructed
using the randomization technique, perfect accuracy is either
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impossible or exceedingly rare. In either case, training to
any criterial level of performance is problematic. First, un-
like a perfect accuracy criterion, any criterion that allows less
than perfect accuracy is subjective. For example, consider
the II categories shown in Figure 4a. Theoretically, perfect
accuracy is possible (because the categories do not overlap),
but in practice, it is virtually certain that all participants will
make frequent errors at the end of a single session of train-
ing – even if that session includes 600-800 trials. So if one
wanted to train participants on these categories until some
accuracy criterion is reached, what is a reasonable value for
the criterion? One might arbitrarily choose a reasonably high
value, such as 90% correct over any 50-trial block, but then it
is likely that many participants will never reach criterion. To
guarantee that all (or almost all) participants reach criterion,
a low threshold is needed. The problem with this is that the
lower the criterion, the more likely that it could be reached
with some suboptimal categorization strategy (e.g., such as
the one-dimensional rule illustrated in Figure 4e). Also, if
some acceptable criterion could be found that prevents this
problem, the arbitrary nature of the criterion raises the ques-
tion of whether the results of the data analysis might qualita-
tively change if some other criterion was used instead.

A second problem with using an arbitrary learning crite-
rion in tasks where perfect performance does not occur is
that because of statistical fluctuations, it is almost certain that
the accuracy of some participants who reach criterion would
drop below criterion in the next block of training, if that train-
ing were continued. As a result, it is likely that some partic-
ipants will be misclassified as learners. Furthermore, this
problem is more severe the lower the criterion7, so attempts
to lower the criterion enough so that most participants reach
criterion will cause more of these kinds of errors.

For these reasons, experiments in which perfect accuracy
is rare often train all participants for the same fixed number
of trials. The standard for comparing the performance of par-
ticipants in different conditions is then to compare learning
curves and the results of strategy analyses. These methods
are described in detail in the next section.

Data Analysis

Categorization response times are sometimes analyzed
(e.g., Ashby, Boynton, & Lee, 1994; Little, Nosofsky, &
Denton, 2011; Maddox, Ashby, & Gottlob, 1998), but the
most popular dependent measure in categorization experi-
ments, by far, is response accuracy. Standard statistical anal-
yses are of course possible and common, but several less
well-known methods of analyzing categorization data are
also widely used. First, because many categorization experi-
ments include a learning component, it is often necessary to
document changes in accuracy with practice, which is com-
monly done via some sort of learning curve. Second, when-
ever possible, it is beneficial to include a strategy analysis,

if for no other reason than to identify participants who were
just randomly guessing throughout the experiment. These
two issues are discussed in this section.

Forward- versus Backward-Learning Curves

Learning is often operationally defined as a change in
response accuracy with experience. Trial-by-trial learning
data are frequently summarized in a forward-learning curve,
which plots proportion correct against trial or block number.
Learning curves are a good non-parametric method for inves-
tigating category learning, because they require few assump-
tions, are relatively simple to estimate, and often provide an
effective method for comparing task difficulty across differ-
ent conditions of an experiment (e.g. Shepard et al., 1961).

Different learning strategies can produce qualitatively dif-
ferent learning trajectories. Procedural learning, which is
thought to rely on trial-by-trial updating of stimulus-category
association strengths, produces incremental learning and a
gradual learning curve. In contrast, a rule-based strategy is
qualitatively different, because as long as an incorrect rule is
being used, accuracy will be near chance, but on the first trial
that the correct rule is selected, accuracy will jump dramat-
ically. So rule learning strategies tend to predict all-or-none
learning curves. Even so, such sudden jumps in accuracy
are often obscured when the data are averaged across partic-
ipants.

Many years ago, Estes (1956, 1964) cautioned about the
dangers of averaging individual learning curves across par-
ticipants. Many other examples have been subsequently re-
ported that document how averaging can change the psycho-
logical structure of data (Ashby et al., 1994; Maddox, 1999;
Smith & Minda, 1998). As a result, averaging is often inap-
propriate when testing theories of individual participant be-
havior. For example, if every participant’s accuracy jumps
from 50% to 100% correct on one trial, but the trial on which
this jump occurs varies across participants, then the result-
ing averaged learning curve will gradually increase (Estes,
1956). Hayes (1953) proposed the backward-learning curve
as a solution to this problem.

To construct a backward-learning curve, one must first de-
fine a learning criterion. For example, consider an exper-
iment that uses categories with only a few exemplars and
deterministic feedback, so that most participants eventually
achieve perfect accuracy (e.g., as in the Figure 2 RB and II
categories, the Figure 3 categories, and most unstructured
categorization experiments). Suppose we choose a criterion
of 10 consecutive correct responses. A backward-learning
curve can only be estimated for participants who reach cri-
terion, so the second step is to separate participants who
reached criterion from those who did not. The most com-
mon analysis for nonlearners is to compare the proportion of

7This is because the binomial variance is largest when p = .5.
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nonlearners across conditions. The remaining steps proceed
for all participants who reached criterion. Step 3 is to iden-
tify for each participant the trial number of the first correct
response in the sequence of 10 correct responses that ended
the learning phase. Let Ni denote this trial number for partici-
pant i. Then note that the response on trial Ni and the ensuing
9 trials were all correct. But also note that the response on the
immediately preceding trial (i.e., trial Ni −1) must have been
an error. Step 4 is to renumber all the trial numbers so that
trial Ni becomes trial 1 for every participant. Thus, for every
participant, trials 1 – 10 are all correct responses and trial 0
is an error. The final step is to estimate a learning curve by
averaging across participants.

Because of our renumbering system, the averaged accu-
racy for trials 1–10 will be 100% correct. Thus, if every par-
ticipant shows a dramatic one-trial jump in accuracy, then the
averaged accuracy on trial -1 should be low, even if the jump
occurred on a different trial number for every participant (ac-
cording to the original numbering system). In contrast, if par-
ticipants incrementally improve their accuracy then the aver-
aged accuracy on trial -1 should be high. So if one is inter-
ested in discriminating between explicit-rule strategies and
procedural strategies, then backward learning curves should
be used rather than the more traditional forward learning
curves.

Backward-learning curves are more problematic in tasks
where most participants do not achieve perfect accuracy (see
the section above entitled “Assessing Performance”). Even
so, if estimated with care, they can still be useful (Smith &
Ell, 2015).

Decision Bound Modeling

Before interpreting the results of categorization experi-
ments, it is crucial to identify the strategy that participants
used in the task. For example, participants can and often
do use simple explicit rules in II tasks and before proceeding
with any further analyses it is often helpful to examine results
separately for participants who used an explicit strategy ver-
sus participants who appeared to use a procedural strategy.

A statistical approach to strategy analysis is illustrated in
Figure 7. Panel (a) shows the same II categories as in Fig-
ure 4a, where each stimulus is color coded according to its
category membership. During an experiment, the participant
assigns each of these stimuli to a category by depressing a
response key (e.g., either the key associated with a category
A response or the key associated with a B response). So
an alternative representation is to color code each stimulus
according to the response the participant made on the trial
when that stimulus was presented. An example for a hy-
pothetical participant is shown in Figure 7b. Note that this
participant performed well, but nevertheless appeared to be
using a slightly suboptimal response strategy. A statistical
method for identifying this strategy is provided by decision

A

B

(a) (b)

(d)(c)

Figure 7. Panel a: Stimuli in a hypothetical II categoriza-
tion experiment color coded by category membership. Panel
b: Data from a hypothetical participant in the panel a ex-
periment. Stimuli are now color coded by the participant’s
response. Panel c: Same as in panel b, except also showing
the decision bound that provides the best statistical account
of the participant’s responses. Panel d: Responses from a
different hypothetical participant in the panel a task along
with the best-fitting decision bound.

bound modeling (Ashby, 1992; Maddox & Ashby, 1993).
In decision bound modeling, the experimenter fits a num-

ber of statistical models to the responses of individual par-
ticipants in an attempt to determine the type of decision
strategy that each participant used. Decision bound mod-
els, which are essentially just a more cognitive version of
discriminant analysis, assume that participants partition the
perceptual space into response regions. On every trial, the
participant determines which region the percept is in, and
then emits the associated response. Two different types of
decision bound models are typically fit to the responses of
each individual participant: models that assume an explicit
rule-learning strategy and models that assume a procedural
strategy. It is also common to fit other models that assume
the participant guesses at random on every trial. The rule-
and procedural-learning models make no detailed process as-
sumptions, in the sense that a number of different process ac-
counts are compatible with each of the models (e.g., Ashby,
1992). For example, if a procedural-strategy model fits sig-
nificantly better than a rule-learning model, then we can be
confident that participants did not use a simple explicit rule,
but we could not specify which specific non-rule-based strat-
egy was used (e.g., a weighted combination of the two di-
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mensions versus more holistic memory-based processing).

For example, consider Figure 7c, which shows the deci-
sion bound of the best-fitting decision bound model to the
responses of the hypothetical participant illustrated in Fig-
ure 7b. Note that the best-fitting bound requires integrating
information from the two dimensions in a way that is impos-
sible to describe verbally. Thus, the decision bound analy-
sis would conclude that this participant is using some type
of procedural strategy. In contrast, note that the best-fitting
bound for the different hypothetical participant shown in Fig-
ure 7d is a vertical line, which corresponds to the explicit rule
“respond A if the stimulus has a small value on dimension
x and B if it has a large value.” Therefore, this participant
would be classified as using an explicit rule, despite the fact
that this was an II task.

Decision bound models are a special case of general
recognition theory (GRT, Ashby & Soto, 2015; Ashby &
Townsend, 1986), which is a multidimensional generaliza-
tion of signal detection theory. As in GRT, decision bound
models assume that perceptual and decisional processes are
noisy. Hence, every time a stimulus is presented it elicits a
new (and unique) percept, even if the stimulus has been pre-
viously encountered. Each percept is represented by a point
in a multi-dimensional perceptual space (i.e., one dimension
for each perceptual dimension), and the set of all possible
percepts is represented by a multivariate probability distri-
bution. Decision bound models (and GRT) assume that the
participant’s decision processes divide the perceptual space
into response regions. On each trial, decision processes note
which region the percept is in and then emit the associated
response.

GRT is often applied to identification experiments in
which the stimuli are highly confusable. In this case, er-
rors are often made because of perceptual confusions. As
a result, GRT models of identification data typically allocate
many parameters to the perceptual distributions. For exam-
ple, it is not uncommon to allow the means of each percep-
tual distribution to be free parameters and to allow the per-
ceptual distributions associated with the different stimuli to
all have different variances and covariances (e.g., Ashby &
Soto, 2015). In category-learning experiments like the one
illustrated in Figure 7, perceptual confusions are inevitable.
However, as noted earlier, most errors are not caused by such
confusions, but rather by the application of a suboptimal de-
cision strategy. For this reason, decision bound models of
categorization data use a highly simplified perceptual rep-
resentation relative to the most general versions of GRT. In
particular, decision bound models assume that the mean of
each perceptual distribution equals the stimulus coordinates
(so perceptual noise has zero mean), that all perceptual distri-
butions have equal variances on every perceptual dimension,
and that all covariances equal zero. These assumptions leave
only one free perceptual parameter – namely the common

perceptual variance, denoted by σ2
p.

Predictions are derived for each of the models via the
model’s discriminant function. Suppose the stimulus is two
dimensional and denote the numerical value of the stimu-
lus on these two dimensions by (x1, x2). Then for any de-
cision bound, we can always define a discriminant function
h(x1, x2) with the property that h(x1, x2) > 0 for any stim-
ulus (x1, x2) falling on one side of the bound, h(x1, x2) = 0
for any stimulus (x1, x2) falling exactly on the bound, and
h(x1, x2) < 0 for any stimulus (x1, x2) falling on the other
side of the bound. For example, for the vertical bound in
Figure 7d, the corresponding discriminant function is

h(x1, x2) = 50 − x1. (14)

Note that this function is positive for any stimulus in the A
response region, negative for any stimulus falling in the B re-
gion, and 0 for any point on the bound. Similarly, the optimal
bound shown in Figure 7a corresponds to the discriminant
function

h(x1, x2) = x2 − x1, (15)

which is also positive in the A region and negative in the B
region.

In decision bound models with linear bounds, perceptual
and criterial noise are not separately identifiable (Maddox
& Ashby, 1993). Because of this, it makes no difference
whether we assume that the noise is perceptual or decisional
(or some combination of the two). Therefore, if the discrim-
inant function has been defined so that the A response region
is associated with positive values, then all decision bound
models predict that the probability of responding A on a trial
when stimulus (x1, x2) was presented equals

P[A|(x1, x2)] = P[h(x1, x2) > ε], (16)

where ε represents the noise. More specifically, we assume
ε is a normally distributed random variable with mean 0 and
variance σ2

p. Given these assumptions, Eq. (16) reduces to

P[A|(x1, x2)] = P
[
Z ≤

h(x1, x2)
σp

]
, (17)

where Z has a standard normal distribution (with mean 0 and
variance 1). In two-category experiments, P[B|(x1, x2)] =

1 − P[A|(x1, x2)].
All decision bound models are described by Eq. (17).

Two different classes of models can be constructed depend-
ing on what assumptions are made about the decision pro-
cess. These classes, along with the guessing models, are de-
scribed in the following subsections.

Explicit Rule Models

Explicit rule models assume the participant uses an ex-
plicit rule that is easy to describe verbally (Ashby et al.,
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1998). When the stimulus dimensions are perceptually sep-
arable and in incommensurable units then rule models are
restricted to decision bounds that are perpendicular to some
stimulus dimension. For example, with the stimuli shown in
Figure 1 the only possible explicit rules are 1) give one re-
sponse if the bars are thick and the contrasting response if the
bars are thin; 2) give one response if the orientation is steep
and the contrasting response if the orientation is shallow; and
3) some Boolean algebra combination of rules 1) and 2) – for
example, a logical conjunction, disjunction, or exclusive-or
rule.

Suppose bar width is dimension 1 and bar orientation is
dimension 2. Then the discriminant function that describes
a one-dimensional rule on bar width (i.e., a type 1 explicit
rule) is:

h(x1, x2) = x1 − c1, (18)

where c1 is the numerical value of the criterion that separates
thin bars from thick bars. When fitting this model, Eq. (18)
is substituted into Eq. (17) and a search algorithm is imple-
mented (described below) that finds values of the two free
parameters, σp and c1, that allow the model to give the best
possible account of the participant’s responses. Similarly, the
discriminant function that describes a one-dimensional rule
on bar orientation (i.e., a type 2 explicit rule) is:

h(x1, x2) = x2 − c2. (19)

Models that assume a rule that is some logical combi-
nation of these two one-dimensional rules are only slightly
more difficult to fit. For example, consider the conjunction
rule: “Respond A if the bars are narrow and steep; other-
wise respond B.” This is equivalent to the following rule:
“Respond A if x1 < c1 and x2 > c2; otherwise respond B.”
Therefore,

P[A|(x1, x2)] = P (x1 − c1 < ε1 and x2 − c2 > ε2) (20)
= P (x1 − c1 < ε1, x2 − c2 > ε2)

= P(x1 − c1 < ε1)P(x2 − c2 > ε2)

=

[
1 − P

(
Z ≤

x1 − c1

σp

)]
P

(
Z ≤

x2 − c2

σp

)
.

The joint probability described in the first line equals the
products of the two marginal probabilities because we as-
sume that the noise terms ε1 and ε2 are statistically indepen-
dent.

Similarly, consider the disjunctive rule: “Respond A if the
bars are either narrow or wide; otherwise respond B,” which
is equivalent to: “Respond A if x1 < c1 or x1 > c2; otherwise

respond B.” Predictions for this model are as follows:

P[A|(x1, x2)] = P (x1 − c1 < ε1 or x1 − c2 > ε2) (21)
= P(x1 − c1 < ε1) + P(x1 − c2 > ε2)
= [1 − P(ε1 ≤ x1 − c1)] + P(ε2 ≤ x1 − c2)

=

[
1 − P

(
Z ≤

x1 − c1

σp

)]
+ P

(
Z ≤

x1 − c2

σp

)
.

If the dimensions are perceptually integral or in commen-
surable units, then it could be considerably more difficult
to identify the set of all explicit rules. For example, con-
sider rectangles that vary across trials in height and width.
Since these dimensions are measured in the same units (and
therefore are commensurable) other explicit rules can also
be formed. For example, the rule “give one response if the
rectangle is taller than it is wide, and give the contrasting
response if it is wider than it is tall” corresponds to a linear
bound with slope +1. If the dimensions are integral – such
as the saturation and brightness of a color patch – then it
is not clear what if any explicit rules can be formed. For
these reasons, if a goal is to discriminate between explicit
and procedural categorization strategies then our recommen-
dation is to use stimuli constructed from perceptually sepa-
rable dimensions measured in incommensurable units.

Procedural-learning models

Explicit-reasoning models assume participants make sep-
arate decisions about each relevant stimulus dimension, and
then these decisions are combined if more than one dimen-
sion is relevant. In contrast, procedural-learning models as-
sume perceptual information from all relevant dimensions is
integrated before a decision is made. This integration could
be linear or nonlinear. The most common application as-
sumes linear integration, and the resulting model is known
as the general linear classifier (GLC). The GLC assumes that
participants divide the stimulus space using a linear deci-
sion bound8. One side of the bound is associated with an
“A” response, and the other side is associated with a “B”
response. These decision bounds require linear integration
of both stimulus dimensions, thereby producing a procedural
decision strategy.

8There is good evidence that people do not learn decision
bounds in II tasks (Ashby & Waldron, 1999; Casale, Roeder, &
Ashby, 2012). Thus, the GLC is not a good model of the psycholog-
ical processes participants use in II tasks. So its use here is more like
how one would use discriminant analysis – not as a psychological
model, but as a statistical tool. Specifically, our only expectation
is that of the three model classes, the GLC will provide the best
account of the responses of a participant using a procedural strat-
egy, even if the GLC does not accurately describe the psychological
processes used by that participant.
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The GLC decision rule is equivalent to: “Respond A if
a1x1 + a2x2 + b > 0; otherwise respond B.’ Therefore

P[A|(x1, x2)] = P [a1x1 + a2x2 + b > ε] (22)

= P
[
Z ≤

a1x1 + a2x2 + b
σp

]
.

The GLC has four parameters – a1, a2, b, and σp – but only
three of these are free parameters. For example, for any set
of numerical values for the parameters a1, a2, and b, we can
always divide both sides of the GLC decision rule by any one
of these values that is nonzero to produce an equivalent deci-
sion rule that has only two parameters. For example, suppose
a1 , 0. Then the rule “Respond A if a1x1 + a2x2 + b > 0;
otherwise respond B,’ is equivalent to the rule “Respond A if
x1 + a∗2x2 + b∗ > 0; otherwise respond B,’ where a∗2 = a2/a1
and b∗ = b/a1. There are ways to implement this constraint
into the parameter estimation algorithm, but a simpler ap-
proach is to estimate all four parameters – a1, a2, b, and σp –
and then eliminate either a1 or a2 afterwards.

Guessing models

Guessing models assume that the participant guesses ran-
domly on every trial. All versions assume the probability
of responding “A” (and therefore also the probability of re-
sponding “B”) is the same for every stimulus. As a result,
perceptual noise can not change these predicted probabilities
and so there is no need to account for perceptual noise in the
guessing models. Because of this, guessing models do not
include a noise variance parameter.

Two types of guessing models are common. One version
assumes that each response is selected with equal probabil-
ity, or in other words that P[A|(x1, x2)] = 1

2 for all stimuli.
This model had no free parameters. A second model, with
one free parameter, assumes that the participant guesses re-
sponse “A” with probability p and guesses “B” with proba-
bility 1− p, where p is a free parameter. This model is useful
for identifying participants who are biased toward pressing
one response key.

Model fitting

The models described above all assume that the partic-
ipant uses the same rule, procedural, or guessing strategy
on every trial. In experiments where learning is expected,
this assumption will be violated, so one common practice is
to break the data into blocks of at least 50 trials each and
then fit the models separately to each block of data. Another
common approach is to only fit the models to the last block
of data because we expect the participant’s decision strategy
to be most stable at the end of the session (in this case a
block size of 100 or more trials is common). Recently, an
iterative version of decision bound modeling (called iDBM)

was developed, which allows for strategy switches by indi-
vidual participants during the course of the experimental ses-
sion (Hélie, Turner, Crossley, Ell, & Ashby, in press). iDBM
iteratively fits a series of decision bound models to all trial-
by-trial responses of individual participants in an attempt to
identify: (1) all response strategies used by a participant,
(2) changes in response strategy and, (3) the trial number at
which each change occurs.

When a decision-bound model is fit to categorization data,
the best-fitting values of all free parameters must be found.
The standard approach to model fitting uses the method of
maximum likelihood in which numerical values of all pa-
rameters are found that maximize the likelihood of the data
given the model. Let S 1, S 2, ..., S n denote the n stimuli in
the block of data to be modeled and let R1,R2, ...,Rm denote
the m category responses (i.e., with m < n). Let ri j denote
the frequency with which the subject responded R j on trials
when stimulus S i was presented. Note that the ri j are ran-
dom variables. For any particular stimulus, the ri j have a
multinomial distribution. In particular, if P(R j|S i) is the true
probability that response R j is given on trials when stimu-
lus S i was presented, then the probability of observing the
response frequencies ri1, ri2, ..., rim equals

P[ri1, ri2, ..., rim|S i]

=
ni!

ri1!ri2!...rim!
P(R1|S i)ri1 P(R2|S i)ri2 ...P(Rm|S i)rim (23)

where ni is the total number of times that stimulus S i was pre-
sented during the course of the experiment. The probability
or joint likelihood of observing the entire data set is the prod-
uct of the probabilities of observing the various responses to
each stimulus; that is,

L =

n∏
i=1

P[ri1, ri2, ..., rim|S i]

=

n∏
i=1

ni!∏m
j=1 ri j!

m∏
j=1

P(R j|S i)ri j . (24)

Decision bound models predict that P(R j|S i) has the form
given by Eq. (17). The maximum likelihood estimators of
the parameters in each model are those numerical values of
each parameter that maximize L from Eq. (24). Note that the
first term in Eq. (24) does not depend on the values of any
model parameters. Rather it only depends on the data. Thus,
the parameter values that maximize the second term of Eq.
(24) (which we denote by L∗) also maximize the whole ex-
pression. For this reason, the first term can be ignored during
the parameter estimation process. Another common practice
is to take logs of both sides of Eq. (24). Parameter values
that maximize L will also maximize any increasing function
of L. So, the standard approach is to find values of the free
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parameters that maximize

ln L∗ =

n∑
i=1

m∑
j=1

ri j ln P(R j|S i). (25)

In randomization experiments (Ashby & Gott, 1988), it is
typical to present each stimulus only one time in a session.
So if a block includes 100 trials, then 100 different stimuli
are presented. In this case, n = 100, and each ni = 1. If there
are only two categories then m = 2, and riA + riB = 1, which
means that one of riA and riB equals 1 and the other equals 0.
In this case, Eq. (25) reduces to

ln L∗ =

n∑
i=1

ln P(Ri|S i), (26)

where Ri is the response (i.e., either A or B) made on the trial
when stimulus S i was presented.

The maximum likelihood estimators of the parameters are
those numerical values that maximize Eq. (25) [or in the case
of randomization experiments, Eq. (26)]. These values are
found numerically using any one of many available optimiza-
tion algorithms. For example, in Matlab a popular choice is
called ‘fmincon’, whereas in Excel the function ‘solver’ can
be used. All such algorithms work in similar ways. First, the
user must write code that computes a numerical value from
Eq. (25) for any given set of numerical parameter values.
Second, the user must select initial guesses for all parame-
ters. The algorithms then proceed as follows. Step 1: use
the user-provided code to generate a fit value for those initial
guesses [e.g., a numerical value for ln L∗ in Eq. (26)]. Step
2: change the initial guesses in some way and compute the
fit value for the new guesses. Step 3: repeat step 2 until no
better fit can be found. Step 4: stop and report the parameter
estimates that led to the best fit as well as the value of the
best fit. If Eq. (25) is used then the best fit occurs when ln L∗

is maximized. Some algorithms will only find parameter es-
timates that minimize the goodness-of-fit value. In this case,
one simply substitutes − ln L∗ for ln L∗.

Although Eq. 25 [or Eq. 26] will lead to maximum like-
lihood estimates of all model parameters, it is not a good
choice for deciding which model provides the best account
of the data because adding more parameters to a model can
never cause a decrease in ln L∗. So to decide which model
provides the most parsimonious account of the data, it is vi-
tal to choose a goodness-of-fit measure that penalizes models
for extra free parameters (e.g., Myung & Pitt, in press). We
recommend using the Bayesian information criterion (BIC)
for this purpose:

BIC = r ln N − 2 ln L∗ (27)

where N is the sample size, r is the number of free parame-
ters, and ln L∗ is as in Eq. (25) (Schwarz, 1978). Note that

for each given model, r and N are fixed, so the parameter
estimates that maximize ln L∗ in Eq. (25) or that minimize
− ln L∗ will also minimize BIC in Eq. (27). So Eqs. (25) and
(27) will lead to exactly the same parameter estimates, but
the BIC values can also be used to compare different mod-
els. Note that the BIC statistic penalizes a model for bad
fit and for extra free parameters. Therefore, to find the best
model among a set of competitors, one simply computes a
BIC value for each model and then chooses the model with
the smallest BIC.

For example, suppose the parameter-estimation algorithm
reports a final BIC value of 605 for the best explicit rule
model, which assumes a single horizontal decision bound,
608 for the best procedural-learning model (i.e., for the
GLC), and 719 for the best guessing model. Then the conclu-
sion would be that the one-dimensional rule model provides
the best account of the data. Note though that the GLC can
never fit worse than the one-dimensional rule model in an
absolute sense, because the GLC could always set the slope
of its decision bound to zero. In this case, the BIC statistic is
suggesting that the best account of the data is provided by the
one-dimensional rule model because the absolute fits of the
rule model and the GLC are almost identical [i.e., the second
term in Eq. (27)] but the rule model has fewer free parame-
ters and therefore incurs a smaller penalty [i.e., the first term
in Eq. (27)]. Thus, BIC implements a parsimony criterion.
The (horizontal bound) rule model assumes that the decision
bound must be horizontal. The GLC assumes only that the
decision bound is linear. Therefore, if the data show evidence
of a horizontal bound then the model that assumed this is the
only possible outcome should be rewarded.

The BIC values identify which model provides the best ac-
count of the participant’s responses, but this fact alone does
not indicate whether the fit was good or bad. It is possible
that all models provided poor fits and the best-fitting model
just happened to provide the least poor fit. Unfortunately,
the numerical value of the raw BIC score does not help with
this problem because BIC scores increase with sample size,
regardless of the quality of fit.

Any model that assumes either a rule or procedural deci-
sion strategy will provide a poor fit to randomly generated
data. With random data, the guessing model will provide the
best fit. So one way to assess how well a decision bound
model (DBM; either rule or procedural) fits the data is to
compare its fit to the fit of the guessing model. Bayesian
statistics allows a method to make such comparisons (via the
so-called Bayes factor). If the prior probability that the DBM
model MDBM is correct is equal to the prior probability that
the guessing model MG is correct, then under certain techni-
cal conditions (e.g., Raftery, 1995), it can be shown that

P(MDBM|Data) .=
1

1 + exp
[
− 1

2 (BICG − BICDBM)
] , (28)
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where P(MDBM|Data) is the probability that the DBM is cor-
rect, assuming that either the DBM or guessing model is cor-
rect, and .

= means “is approximately equal to.” Thus, for ex-
ample, if the DBM model is favored over the guessing model
by a BIC difference of 2, then the probability that the DBM
model is correct is approximately .73. In other words, even
though the DBM fits better than the guessing model, the fit
is not very good because there is better than 1 chance in 4
that the data were just generated by random coin tossing. In
contrast, if the BIC difference is 10, then the probability that
the DBM model is correct is approximately .99, which means
that we can be very confident that this participant was consis-
tently using a single decision strategy that is well described
by our DBM. In this case, the DBM provides an excellent fit
to the data.

Conclusions

The design of an efficient and meaningful categorization
experiment requires many good choices about exactly what
category structures to use, what stimuli to use, how the feed-
back should be delivered, and how performance should be
assessed. The optimal solution to these problems depends on
the research goals, and as a result there is no one ideal cate-
gorization experiment. Nevertheless, there are some general
design principles that should be followed whenever possible.

First, choose experimental conditions most favorable to
the type of learning that the experiment was designed to
study. Second, determine optimal accuracy and understand
how perceptual and criterial noise might affect this value. It
is also critical to ensure that the type of learning under study
can achieve optimal accuracy. Third, compute the accuracy
of the most salient alternative strategies that your participants
might use. Most important in this class are single-cue or
one-dimensional explicit rules. Because these rules are so
salient to humans, the best experiments will try to maximize
the penalty associated with the use of such simple strategies
(i.e., by ensuring that they lead to low accuracy) – unless of
course, the goal is to study explicit rule learning. Fourth,
a key component of any data analysis should be a strategy
analysis that at the minimum identifies participants who were
randomly guessing, but ideally can also identify participants
who used some strategy that is qualitatively different from
the optimal strategy.

The goal of this chapter was to provide the knowledge
needed to solve these problems. Hopefully, by following
the principles described here, new investigators will be able
to design effective categorization experiments – without the
years of trial and error that were necessary for some senior
researchers9.

List of Abbreviations

RB = Rule Based
II = Information Integration

fMRI = functional Magnetic Resonance Imaging
BOLD = Blood Oxygen Level Dependent
GRT = General Recognition Theory
GLC = General Linear Classifier
BIC = Bayesian Information Criterion
DBM = Decision Bound Model
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