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This article reports the results of a memory scanning cxperiment (S. Sternberg, 1966,
Science. 183, 652-654) in which each of Tour subjects participated in about 1500 experimental
trizls per memory set size. These large samples made it possible to test a number of important
nonparametric {i.e,, model-free) propertics of the response time {RT) distributions, These
properties place scvere constraints on the various memory scanning models and they provide
a deeper deseription of the data than summary statistics or goodness-ol-fit values. Five conclu-
sions stood oul. First, increasing the size of the memory set induced the strongest possible
form of stochastic dominance on both target present and target absent trinds. Second, (he RT
hazitrd functions were nonnonotonte, therehy falsilying a large class of scrial search models.
Third. strong evidence was oblained apainst an exhaustive scarch. Fourth, some evidence was
found that adding an item to the memory set inserts a stage with exponentially distributed
durmtion it the processing chain, at least on larpel shsent trials, 1ifth, the data supported
the iypothesis that three of 1he subjects stored the representations of the meomory set iems
in a viswitl short-tlerm memory system and the fourth subject used an acoustic short-term
systemt. To owr knowledge. the only extant model of memory scanning that is consistent
with all lhese resufts assumes thal scarch s parallel, sell-lenninating, and of very limiled
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In almost any domain of experimental psychology, the time taken to perform a
task is likely to carry some important information. Consequently, the study of
response times has been of central concern for many years and a large body of
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empirical and theoretical findings has been amassed (e.g., Luce, 1986; Townsend &
Ashby, 1983; Welford, 1980). As might be expected, however, theoretical develop-
ments have progressed more rapidly than empirical ones, in the sense that a great
many theoretical resuits and predictions have been derived that have never been
properly tested. In many cases, this is because these results depend on complicated
properties of the response time (RT) distributions, and the accurate estimation of
these distributions will typically require unusually large sample sizes.

Response time distributions have been carefully estimated in simple reaction time
tasks (e.g., Burbeck & Luce, 1982; Green & Luce, 1971; Kohfeld, Santee, & Wallace,
1981), but less empirical work has been done along these lines in the more cognitive
tasks, such as memory scanning, visual search, and same-different (although see
Ashby, 1982; Balakrishnan & Ashby, 1992; Ratcliff, 1978). Possibly this short-
coming is because, in general, the more cognitive the task the greater the number
of potential independent variables. Rather than carefully estimate RT distributions
under one specific set of conditions, cognitive psychologists have preferred to
explore the effects of new independent variables.

This article reports the results of a memory scanning experiment {Sternberg,
1966) in which each of four subjects participated in about 1500 experimental trials
per memory set size. These large sample sizes allow fairly accurate estimates of the
RT distributions and therefore, make it possible to test empirically a number of
important distributional properties. A great many mathematical models of memory
scanning have been proposed (see, c.g., Townsend & Ashby, 1983, for a review),
and a carefull comparison of all these is beyond the scope of this article. Instead,
we focus on nonparametric {i.e., model-free) properties of the RT distributions.
These properties place severe constraints on the various models, so they serve to
falsify large classes of competing models. They also provide a deeper description of
the data than summary statistics or goodness-of-fit values, so they can be used to
evaluate models that might be developed sometime in the future.

THE MEMORY SCANNING EXPERIMENT

On each trial of a standard memory scanning task (Sternberg, 1966), the subject
is first shown a list of alphanumeric characters, called the memory set. Following
a brief delay, a single character, called the target, is shown to the subject, whose
task is to respond YES or NO as quickly as possible, depending on whether the
target was or was not a member of the memory set. In the varied set procedure, the
memory set is changed on each trial. Stimulus conditions are arranged so that
perfect accuracy is possible and RT is the dependent variable of primary interest.
The most popular independent variable in these experiments is memory set size,

Perhaps the largest class of memory scanning models assume that the items in
the memory set are stored in some short-term memory buffer and that the subject
systematically searches this buffer for the target item. The models in this class,
which differ greatly in their assumptions about the search process, can be
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categorized along a number of different dimensions. For example, serial models
assume a sequential search, whereas parallel models assume that search is
simultaneous. Self-terminating models assume the search is halted as soon as the
target is discovered, whereas exhaustive models assume the entire short-term
memory buffer is searched on every trial. Discrete-stage models assume that later
processing stages do not begin until earlier stages are completed, whereas
continuous-flow models assume that information flows from one stage to another
in a continuous fashion. A number of the properties that are tested below were
derived by assuming one of these types of processing. While it may be tempting to
interpret a violation of the property as evidence in support of the contrasting
category, it must be remembered that none of these categorizations is all inclusive.
It is f{airly easy to formulate models that are neither serial nor parallel, neither
sell-terminating nor exhaustive, and neither discrete-stage nor continuous-flow.

Most of the search models of memory scanning make predictions about response
time but not about response accuracy. In the simpier, two alternative forced choice
paradigm, models predicting both dependent variables are common, Many of these
are based on diffusion processes, random walks, or counting processes (i.c., the
so-called accumulator models). Because the memory scanning task uses two
responses but more than two stimulus alternatives (at least when the memory set
size is at least two), the cost of naively applying most of these models to the
memory scanning task is the loss of a detailed processing interpretation. For
example, traditional random walk models would associate one barrier with a NQ
response and one barrier with a YES response. On target present trials, the drift
would tend toward the YES barrier. The effect of increasing memory set size would
be to decrease the drift rate. Although such a model might be able to account for
the major empirical results, it would reveal little about the underlying search
process, because it makes no assumptions about why drift rate decreases with
memory set size. One would do almost as well with a model that simply assumed
RT increases with memory set size.

Search models that predict both response time and response accuracy have been
formulated. Perhaps the most successful of these is Ratcliff's (1978) diffusion model.
This is a parallel, self-terminating model that assumes each comparison can be
modelled by a diffusion process. Although no nonparametric tests of the diffusion
model are known, because it assumes a parallel, self-terminating search it is
constrained by the serial versus parallel and the self-terminating versus exhaustive
tests considered below.

An important alternative to the search models of memory scanning is provided
by the so-called strength models (e.g., Baddeley & Ecob, 1973; Cavanagh, 1976,
Murdock, 1985; Wickelgren & Norman, 1966). Strength models assume direct
access to memory, so search time is instantaneous (or at least a constant}. When
the memory trace of the target item is accessed, its trace strength is compared to
a criterion value. If it exceeds the criterion then a positive response is given, and if
it falls below the criterion then a negative response is given. RT is assumed to vary
inversely with the absolute value of the difference between the trace strength of the
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target item and the criterion value. Strength models make predictions about both
response accuracy and response latency, but again, no nonparametric tests are
known.

Monsell (1978) showed that on both YES and NO trials, RT is affected by how
recently the target item appeared as a stimulus—a result he interpreted as favoring
strength models over search models. Such a result does falsify the simplest class of
search models, but it is straightforward to construct models in which search is
through a list of items larger than the memory set and in which search rate depends
on trace strength. This more general class of search models should have no more
difficulty with the Monsell results than do the strength models.

A detailed description of the various theoretical properties that were tested is
given after the Method section.

METHOD

Subjects. Three undergraduate students and one of the experimenters par-
ticipated in the study. The students were paid assistants in the laberatory, and each
of the four had normal or corrected-to-normal vision.

Stimuli and Appararys. The stimulus set consisted of the 11 lower-case
consonants: ¢, d, £, j, k, I, n, p, s, v, and z. Subjects were seated in a small booth
with soft lighting and viewed an HP2000 CRT display at approximately eye-level.
Stimulus characters were generated by a Megatek graphics generator with a
resolution of 4096 x 4096, The order and timing of the displays were controlled by
computer. A two-button response board was connected to the computer, providing
both the accuracy and response time measurements.

Procedure. The design followed the varied set paradigm outlined by Sternberg
(1966). Before each trial, a new memory set containing # letters (for n=2, 3, 4, or
5} was selected at random and without replacement from the total set of 11
stimulus letters. The letters in the memory set were then presented simuitaneously
and in a linear array for a duration of ns. The display corresponding to the largest
memory set size subtended a visual angle of about 3.25°. After a delay of 25, the
target letter was presented. The target was a member of the memory set on 50%
of the trials. The subject responded YES by pressing a button on the right of the
response board, and NO by pressing a button on the left. Subjects were instructed
to respond as quickly as possible without sacrificing accuracy, and were allowed a
maximum of 5s to respond.

Two complete practice sessions (330 trials) were followed by 15 experimental
sessions for each subject. Each experimental session began with 10 warm-up trials,
followed by 330 experimental trials divided into 6 blocks (55 trials per block).
Accuracy feedback (percent correct) was provided at the end of each block.
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THEORETICAL PROPERTIES, RESULTS, AND DISCUSSION

Let RT, denote the. response time on a trial in which the memory sel size is k.
Denote the mean or expected value of RT, by E(RT,), the probability density
function by f,(¢), and the cumulative probability distribution function P(RT, < ¢)
by F(¢).

Error Rates

The error rates are given in Table 1. Note that they are uniformly small. For
Subject 1, overall error rate was about 2.2% and for Subjects 2-4, the overall error
rates were less than 2.0%. For example, when the memory set size was 2, Subject
2 was incorrect on only | of 639 target present trials and on only 7 of 612 target
absent trials. These small sample sizes make it impossible to accurately estimate the
RT distributtons on trials when subjects were incorrect. In fact, even incorrect mean
RT cannot be accurately estimated. Therefore, all RT analyses were restricted to
trials on which a correct response was made in less than 3 s,

Schweickert {1985) showed that if the probability of a correct response is the
product of the probabilities that each stage in an independent serial process is
executed correctly, then experimental factors that affect different stages will have
additive effects on log percent correct. In memory scanning experiments, it is

TABLE 1
Error Rates by Memory Set Size and Trial Type

Trial type
Subject Set size Target absent Target present
1 2 24% 1.3%
3 28% 1.6 %
4 26% 0.8%
5 310% 21%
2 2 1.1% 0.2%
3 24% 0.5%
4 4.6% 0.8%
5 4.2% 1.4%
3 2 1.6% 0.8%
3 1.9% 1.3%
4 1.8% 1.6%
5 1.9% 1.9%
4 2 1.3% 0.7%
3 [.4% 09%
4 24% 1.7%
5 1.2% 20%
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natural to test this prediction on the factors of memory set size and response type
(ie, YES versus NO). Although a number of nonmonotonicities exist, Table 1
indicates that in accord with this prediction, error rates tend to increase with
memory set size. Unfortunately, however, small error rates cause large standard
errors on log percent correct and so the test is of dubious value in the present case.

The Effect of Increasing the Processing Load

Theoretical Properties

One of the most popular assumptions in RT theory is that adding an item to the
memory set should increase processing time and thus that RT, should be stochasti-
cally greater than RT, ,. Theoretically, there are many levels at which such a
stochastic dominance can be established (Townsend, 1990; Townsend & Ashby,
1978, 1983). Among the weakest is at the level of the mean or expected RT. That
is, we could conclude that larger memory sets require at least as much processing
as smaller memory sets if

E(RT,)= ERT,_)) (1)

for all values of k and for both target present and target absent conditions. This
prediction has been supported in virtually every varied set memory scanning study
that has been reported (e.g., Sternberg, 1975). In fact, a common linding is that
mean RT increases linearly with memory set size.

A stronger form of stochastic dominance is an ordering at the level of the
cumulative distribution functions:

Fo_ ()= F (1), for all (>0 (2}

Such a dominance is stronger in the sense that an ordering of the cumulative dis-
tribution functions implies an ordering of the means, but an ordering of the means
does not guarantee an ordering of the cumulative distribution functions. Townsend
and Ashby (1983) found strong empirical support for the Eq. (2) ordering in the
memory scanning data of Townsend and Roos (1973).

An even stronger form of stochastic dominance involves the so-called hazard
function, which is defined by

(3)

At each particular time ¢, the hazard function gives the conditonal probability
density that a response will be given in the next instant, given that one has not yet
occurred. The hazard function, also called the age specific failure rate, is used
heavily in reiiability theory as a model for the life span of a system compoenent {e.g.,
Barlow & Proschan, 1965). In this context, ¢ represents the time at which the
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system first fails. For many physical systems, such as a light bulb, the hazard func-
tion initially rises because of the possibility that the component was defective when
initially installed. After it has functioned successfully for a fixed time, the possibility
that it is defective is diminished and so the hazard function begins to fall.
Eventually, because of natural aging, the hazard function gradually begins to rise
again. An ordering of the hazard {unctions

he_1(B)zh(t), forall >0 (4)

implies an ordering of the distribution functions, but the reverse is not true (e.g.,
Townsend & Ashby, 1978, 1983). To our knowledge, the Eq. {(4) ordering has not
been empirically tested for memory scanning data (although see Ratcliff, 1988;
Townsend, 1990). )

The hazard function completely characterizes a distribution, in the sense that the
density function and cumulative distribution functions can be expressed in terms of
the hazard function via

F(0) = hir) exp[—j; h(x)dx] (5)

and

F(t)=1 exp[—f; h(x)dx]. (6)

Even so, hazard functions are of interest in their own right. For example, they are
associated with many important theoretical properties (for a list, see Bloxom, 1984;
Luce, 1986; Townsend & Ashby, 1983). In addition, in many cases the hazard
function is more visually informative than the density function. This is especially
true when the tails of the distributions are important {Luce, 1986, pp. 18-19).
For example, the density and distribution functions of Rayleigh and Gamma
distributions appear very similar (both densities are positive valued, unimodal, and
positively skewed), but the hazard functions are strikingly different. The Rayleigh
hazard rate increases linearly with ¢ whereas the Gamma hazard rate initially
increases but then asymptotes at a constant value.'
Finally, an even stronger form of dominance occurs if the likelihood ratio

L) =1 O)ff~ () (7}

is nondecreasing in t. Once again the dominance is stronger in the sense of the
unidirectional implication {e.g, Ross, 1983; Townsend, 1990; Townsend & Ashby,
1983). As with hazard functions, likelihood ratios in memory scanning experiments
have never been examined (although see Townsend, 1990).

'Of course, a large sample size is needed to discriminate between two distributions that differ
primarily in the tail.
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To summarize the dominance relations, the following implications hold:

I,(t) nondecreasing  forall >0
=h, ()=hdt) forall 120
=F,_(t)y=z F.(!) forall ¢=0
= E(RT.) = E(RT,_,}.
Results

Mean RT Ordering. The mean RT versus memory set size functions are
presented in Fig, 1 for correct responses only. For Subjects 1, 2, and 4 the average
standard error associated with each mean RT is 6.1 ms and for Subject 3 it is
11.4 ms. With one exception, each subject shows the expected mean RT increase
with memory set size for both target present and target absent trials (all differences
significant with p <0.01). The exception occurs for Subject 3 on target present
trials when the set size is 3 or 4. This slight mean RT decrease is not statistically
significant {p > 0.2).

Cumulative Distribution Function Ordering. The estimated cumulative distribu-
tion fuctions for target present trials are shown in Fig. 2. Note that there are
relatively few cross-overs, so it appears that the functions are ordered by set size.
The distribution function estimates on target absent trials appear even more
regular and ordered than those on target present trials. Further support for

Mean RT

o - Respond Yes
SO0 —— Respond No

500
850
800 |
750
700
6501 |
6001 T

Mean RT

Memory Set Size Memoary Set Size

Fig. 1. Target present and target absent mean RT as a function of memory set size for each of the
four subjects.
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FiG. 2. RT cumulative distribution function estimates on larget present trials for each of the four
subjects.

stochastic dominance at this level is obtained by Kolmogorov-Smirnov tests of
the null hypothesis Hy: F,_ (t)= F.(t) for all 1 >0, against the alternative H,:
Fi_ (1Y < F (1) for some ¢ > 0, for each pair of consecutive memory set sizes (e.g.,
Walsh, 1965). For these data the null hypothesis of a distribution function ordering
was not rejected in any case (with «a=0.01).

Hazard Function Ordering. Two different methods for estimating the RT hazard
functions were used: the random smoothing technique of Miller and Singpurwalla
{(1977) and the quadratic spline estimator of Bloxom (1985). Burbeck and Luce
{1982) used the random smoothing method to estimate hazard functions in a simple
RT task, but to our knowledge, we are the first, apart from Bloxom himself, to use
the spline estimator.

Computation of the random smoothing estimates proceeds as follows. First, let
Z, represent the jth smallest of the n observed RTs. Next define the normalized
spacings by

S =nZ,, S;=n—10Z,—-Z,), ...,
Si=m—i+1IWZ,~Z,_\), .., S.=2Z,-Z,._.\.

Now let & be the number of samples used to estimate the hazard rate within
each fixed interval of time. An estimate of the hazard rate during the ith interval
is given by

k

hiy=or——
zj=i7k+1 Sk
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where k< i<n. For the first k — 1 intervals, set k=i This definition is straight-
forward except in cases where the same RT is recorded on several trials.
Specifically, suppose Z;=Z,= -.. = Z, for some i through k. In this case, let the
hazard rate for the previous time interval Z,—Z, | be the mean of the rates
computed for each { through k. Note that hazard rates estimated by this procedure
will be constant over each interval (Z;, Z;,_,}) and thus the resulting estimate is a
step function.

One of the most attractive features of the random smoothing technique is that it
requires no initial assumptions about the general form of the functions to be
estimated. In addition, it is an adaptive filter in the sense that the sample sizes vsed
to estimate the hazard rate at each point in time are equalized by adjusting the size
of the time window according to the number of samples available locally.

Random smoothing estimates of the hazard functions for each subject and
condition were obtained using a smoothing constant of &= 100. To aid visual
examination, the resulting estimates were then passed through a 100-ms moving
window {c.g., Green & Luce, 1971). Examples of the results for Subjects 2 and 4
are given in Fig. 3. Although we know of no statistical test for ordered hazard
functions, a visual inspection of Fig. 3 indicates only a few cross-overs, and these
are concentrated in the target present conditions. The estimates for Subjects 1
and 3 followed much the same pattern. Overall, then, the data indicate reasonable
support for the hypothesis that the hazard functions are ordered by memory set
size,

Bloxom™s (1979; 1985) method of estimating the hazard function involves fitting
a separate quadratic polynomial, called a spline, to each decile of the data (using
a penalized maximum likelihood procedure). Each pair of adjacent splines are

Subj 2 Subj 4
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o 0.015F
51
= £.006
'E 0017
§ 0004
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[ ]
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by ]
=
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i
o ut - 0 -
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Fig. 3. Random smoothing estimates of the RT hazard functions for Subjects 2 and 4.
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constrained to have the same first derivative at their point of intersection. In
addition, extra side constraints may be placed on the estimation procedure. For
example, the hazard function can be estimated under the assumption that it is
nondecreasing or that it increases to a peak and then decreases. Goodness-ol-fit
values are provided for each estimate, thereby allowing a test of the hypothesis that
the hazard function is nondecreasing.

For each subject, memory set size, and display type (i.e., target present or target
absent), we separately estimated the RT hazard function first under the constraint
that it was nondecreasing and then under the constraint that it increased to a peak
and thereafter decreased. In roughly half the cases the penalized log likelihood
favored the nondecreasing estimates and in roughly half the cases it favored the
increasing-then-decreasing estimates.” However, a second goodness-of-fit measure
overwhelmingly favored the nondecreasing estimates [ie, the sum of squared
deviations between two culmulative RT distribution function estimates; namely, the
standard estimate and Eq. (6) with the spline estimate used in place of A{x)]. A
visual examination revealed that the nondecreasing estimates were approximately
ordered by memory set size for all subjects. Only a few small cross-overs occurred.
Thus, there is converging evidence from both estimation procedures that the hazard
functions are ordered by memory sct size.

Monotonicity of the Likelihood Ratios. Statistically, likelihood ratios are difficult
to estimate. Fortunately, there is a statistically more reliable method for testing
whether the likelihood ratio is nondecreasing, A well-known result in signal detec-
tion theory states that the likelihood ratio, formed by the signal-plus-noise density
function devided by the noise-alone density, is an increasing function of the sensory
variable, if and only if the ROC curve is concave® (Laming, 1973; Peterson,
Birdsall, & Fox, 1954). To take advantage of this result, consider a standard
YES-NO signal detection task. Now let £, _,(¢) play the role of the noise distribu-
tion, f,.(t) play the role of the signal distribution, and ¢ play the role of the sensory
variable. Then for any given time ¢, the analogue of P(hit) is 1 — Fi(¢;) and the
analogue of P(false alarm) is 1 — F,_,(¢,). A latency ROC can be constructed by
estimating these probabilities for a number of different values of ¢, The RT
likelthood ratio /,(¢) is an increasing function of ¢ if and only if the resulting latency
ROC is concave. Because the latency ROC involves cumulative distributions

? The pattern was unrelated to memory set size. Specifically, it was not generally true that for small
memory set sizes increasing-then-decreasing estimaies were favored and for large set sizes nondecreasing
estimates were favored.

* A function = is concave over the interval (a, b) if for each x, ve(a, b) and for each « in the interval

[o. 11,
alax + ({1 —a)y]zoan(x)+ (1 —a) n(y).

If the = is replaced by <, the function is said to be convex (e.g, Royden, 1968). Note that this
definition contradicts Laming's (1973} use of these terms.
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[actually, survivor functions, | — F{t)] rather than densities, it can be estimated
more accurately than the likelihood ratio.

Figure 4 shows the estimated latency ROC curves for Subject 4. Once again the
remaining subjects show basically the same results. Note that none of the curves
show any significant violations of concavity. The plot of 1 — Fi(7) versus 1 — F,(1)
in the target present condition falls almost on the main diagonal, which makes it
difficult to tell whether concavity holds in this case, but this indicates that f,(r) and
[s(tY are almost identical and so one does not expect the likelihood ratio to deviate
much from a value of /;(1}=1.0 in this case. Overali, the data support the
hypothesis that the likelihood ratio is an increasing function of ¢, in both target
present and target absent conditions. Because an increasing likelihood ratic implies

Target Absent Target Present
1
o - /
s o067 L
528
2 o4l L
02t
o . . : . .
1-F,(1) L-Fy(t)
1
LEXS L
= s}
o
— 04
o2
0 Z L L L n L
l‘F3(t) 1-F3(1)
1 —
o8
= o6l
u_ll‘»
04 | |
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% n:z 0:4 ofs o:a 10 02 0.4 06 038 1
1-F40 L-Fyin

Fig. 4. RT ROC curves for Subject 4. {These curves are concave if and cnly if the likelihood ratio
FlD/f _ . (4) is nondecreasing in &.)
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ordered hazard functions, these results suggest that the occasional cross-overs
found in the hazard function estimates are probably due to statistical artifact rather
than to any significant failure of stochastic dominance.

Summary

The tests of the stochastic dominance relations indicate that adding an item to
the memory set causes an increase in response time that profoundly affects the
entire RT distribution. Although this may seem an obvious conclusion, it rules out
a number of possible processing models. For example, parallel self-terminating
models with unlimited capacity do not predict stochastic dominance at even the
mean RT level on target present trials. Other models may predict a low level of
stochastic dominance, but not a high level (e.g., ordered hazard functions}). For
example, a model which assumes that adding an item to the memory set increases
RT variance much more rapidly than mean RT predicts a dominance at the level
of the mean RTs but not at the level of the cumulative RT distribution functions.
A succesful theory of memory scanning must account for the extreme levels of
stochastic dominance found in the present data.

Serial versus Parallel Search

Theoretical Properties

The shape of the empirical RT hazard function is also of interest because many
serial search models predict increasing hazard functions. To see this, consider a
serial process with » stages. The hazard rate must initially be low because n suc-
cessive tasks {i.e., stages) remain 10 be completed. As each task is completed, {ewer
remain and so the hazard rate should increase. If n is large and the successive stage
durations are statistically independent then, by the Central Limit Theorem, RT wiil
be approximately normally distributed. The hazard function of the normal distribu-
tion is strictly increasing. In fact, Barlow, Marshall, and Proschan (1966) showed
that if the hazard functions of all stage durations are nondecreasing, then the serial
exhaustive RT hazard function is nondecreasing. Serial models therefore, naturally
predict nondecreasing hazard functions.

On the other hand, parallel models are not similarly constrained. For example,
parallel, exhaustive models predict that RT is the maximum of # stage durations,
The limit distribution of the maximum of » independent and identically distributed
random variables can be one of three types (e.g., Galambos, 1978), One of these
predicts an increasing hazard function but the other two predict the hazard
function to rise to a peak and thereafter to decrease (Luce, 1986} Thus, a finding
that the RT hazard function is nonmonotonic not only falsifies a very large class of
serial models, but in so doing it also provides indirect support for parallelism.

Results

In the last section, we saw that the quadratic spline estimators support the
hypothesis that the hazard functions are nondecreasing. In contrast, Fig. 3 indicates
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that the random smoothing estimates may be nondecreasing in ¢ for large memory
set sizes but they display a marked peak for small memory set sizes. This pattern
was observed in the data of all four subjects. Interestingly, Burbeck and Luce
{1982), who also used the random smoothing procedure, found a similar pattern of
results in their study of auditory simple RT. Specifically, they obtained non-
decreasing hazard estimates for low intensity signals and peaked estimates for high
intensity signals, and their estimates were ordered by signal intensity.

Clearly, either the random smoothing technique or the quadratic spline
estimators have a consistent bias somewhere in the taiis. That is, either the random
smoothing technique underestimates the true hazard rate in the tail, which intro-
duces a spurious peak at small memory set sizes, or the quadratic spline estimator
overestimates the hazard rate in the tail, which masks a true peak at small set sizes.

In an attempt to resolve this discrepancy, we performed the following additional
analysis. First, note that Eq. {6) implies

_log[1— F(1)] =L hix) dx

and thus

d
= {—log[1 = F(N1} = ().

The function 1 — F(¢) is known as the survivor function in reliability theory. Thus,
the slope of minus the log survivor function at time ¢ equals the hazard function,
so if the hazard function is nondecreasing in ¢, then the slope of minus the log
survivor function must also be nondecreasing in 7. In other words, if the hazard
function is nondecreasing, then minus the log survivor function is convex.

For each subject, the negative of the log survivor functions was estimated from
the cumulative distribution function estimates given in Fig. 2. The resulting
estimates showed consistent violations of convexity. Specifically, for small memory
set sizes the functions were S—shaped. Thus, this analysis provides converging
evidence that memory scanning RT hazard functions are nrot nondecreasing func-
tions of «. Instead, like hazard functions in simple RT, they appear to increase to
a peak and thereafter to decrease to some nonzero asymptote. Further, the non-
monotonicity decreases with increasing memory set size. As discussed above, these
results rule out a large class of serial search models.

Self- Terminating versus FExhaustive Search

Theoretical Properties

Consider those trials of a memory scanning experiment on which the memory set
contains the target item. In this case, the subject has enough information to
respond YES as soon as the target item is discovered. Search is self-terminating if
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the subject terminates the search as soon as the match is discovered and it is
exhaustive if search continues through the entire memory set on all trials. Although
many other search strategies are possible,* these two have received the most
attention in the literature. A number of methods for discriminating between
sell-terminating and exhaustive search have been proposed. In this article we
consider six,

First, Sternberg (1966) proposed that exhaustive models predict equal slopes for -
the mean RT versus memory set size curves for target present and target absent
conditions but that seif-terminating models predict a shallower slope on target
present trials (in fact, simple serial, sel-terminating models predict a 2:1 slope
ratio). While intuitive, it is well known that this test is imperfect. Exhaustive models
can predict unequal target present and target absent slopes and seif-terminating
models can predict parallel target present and target absent curves {Townsend &
Ashby, 1983, pp. 126-128; Townsend & Van Zandt, 1990). In many cases, however,
some nonintuitive capacity or processing rate assumptions are required to make
these uncharacteristic predictions. This is especially true when exhaustive models
try to predict unequal slopes. For example, Townsend and Van Zandt (1990)
showed that for serial exhaustive models “sizable slope differences between negative
and positive mean reaction time functions are very difficult and usually impossible
to predict” (p. 486} and that for parallel exhaustive models “slope differences
between positive and negative functions imply super capacity of target processing
in many cases” (p. 487). Super capacity requires the processing rate of an individual
item to increase as the memory set size increases, whereas we expect most biological
systems to be of limited capacity (ie., so the individual item rates decrease as set
size increases). The classic empirical result is that the target present and target
absent curves are parallel (see Sternberg, 1975, for a review of this literature),
although shallower target present slopes are sometimes found (e.g., Briggs & Blaha,
1969, Briggs & Johnsen, 1973; Clifton & Birenbaum, 1970; Schneider & Shiffrin,
1977).

Second, self-terminating models more easily predict serial position effects than
exhaustive models. Serial position curves are plots of mean RT versus the serial
position of the target item within the memory set display. A serial position effect
occurs whenever the serial position curves are not flat. Although exhaustive models
can predict serial position effects, the simplest exhaustive models predict flat serial
position curves., On the other hand, intuitive self-terminating models can be
constructed that can predict any type of serial position curves (including flat). Thus,
flat serial position curves reveal little about whether search is exhaustive or self-
terminating but pronounced serial position effects strongly indicate self-terminating
search, especially when combined with linear target absent and target present mean
RT curves (Townsend & Van Zandt, 1990). Strength models, postulating a

* For example, after a match is discovered, the subject may try to terminate the scarch, but because
of inertia an additional item or two may be processed before termination is complete. Another possibility
is that overall search may be a probability mixture of sell-terminating and exhaustive processing.
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degenerate form of self-terminating search, also easily predict serial position effects,
although whether they predict the correct type of effect is in question (Murdock,
1985). Empirically, serial position effects are common, especiaily when the delay
between the offset of the memory list and the onset of the probe is brief (e.g.,
Burrows & Qkada, 1971; Clifton & Birenbaum, 1970; Forrin & Cunningham, 1973).

Third, it has been noted that most serial, self-terminating models predict that RT
variance will increase more sharply with memory set size for target present condi-
tions than for target absent conditions, whereas most exhaustive models (both
serial and parallel) predict equal target present and absent slopes (Rossmeissl,
Theios, Krunnfusz, 1979; Schneider & Shiffrin, 1977; Townsend & Ashby, 1983,
pp. 192-201). On the other hand, most parallel, self-terminating models predict that
target present RT variance will increase more slowly than target absent RT
variance (Townsend & Ashby, 1983). Thus, equal siopes support an exhaustive
search and unequal slopes supports a self-terminating search. The few empirical
results that have been obtained are equivocal. Schneider and Shiffrin (1977) found
a slight tendency for the target present RT variances to increase faster than the
target absent variances, but Rossmeitssl er af. (1979) found the exact opposite result,
namely a slight tendency for the target absent curve to increase faster than the
target present curve. The standard error for estimating a variance is {20%/n)'?,
where ¢ is the RT pepulation variance and # is the sample size. Thus, accurate
estimation of RT variances requires very large sample sizes (Ratcliff, 1979).

Sternberg (1973) proposed two tests of self-termination that involved examining
the RT distribution functions. Specifically, he showed that a large class of serial,
self-terminating models make the following two predictions. The first, which
Sternberg called the long RT property, is simply the cumulative distribution
ordering F, _,(t)= Fi(¢) for all t>0. The second property, called the short RT
property, states that

kF ()= (k—1)F,_,(¢), forall ¢>0. (8)

S

Note that this inequality holds trivially for large ¢ since the left side asymptotes at
k and the right side at & — 1. The property is therefore of interest only for small :.

Of the serial models that Sternberg (1973) considered, the exhaustive models also
predict the long RT property to hold and therefore, the long RT property cannot
be used to discriminate between self-terminating and exhaustive search (Townsend
& Ashby, 1983, pp. 218-248). On the other hand, the short RT property provides
a powerful test between self-terminating and exhaustive search, within the class of
serial models and also within the class of independent parallel models (Townsend
& Ashby, 1983). For example, most independent parallel, exhaustive models predict
the short RT property to fail and most independent parallel, self-terminating
models predict it to hold.

Townsend and Ashby (1983) also examined the implications that both properties
have on the capacity structure of the processing system. Capacity is said to be
unlimited if the individual item processing time distributions do not depend on



542 ASHBY, TEIN, AND BALAKRISHNAN

memory set size. If the individual item processing times increase with increases in
memory set size, then capacity is said to be limited and if they decrease, then
capacity is super. If the long RT property holds, then the most reasonable conclu-
sion is that capacity is unlimited or limited. If it fails, then super capacity is
indicated. If the short RT property holds, then a self-terminating search is strongly
supported. If it fails, then search is exhaustive or else capacity is very limited.

Vorberg, Colonius, and Schmidt (1989) derived results similar to the long and
short RT propertics for parallel, exhaustive models with unlimited capacity,
Specifically, they showed that these models predict the long RT property and also
the following inequality, which we call the medium RT property

Fo ()Y 3[Fe_ ot} + Fu(D)], forall ¢>0. )

The medium RT property has not been tested empirically, and little is known about
the ability of other models to predict the Eq. (9} inequality.

Results

Target Absent and Target Present Mean RTs. Figure 1 demonstrates that in all
cases, the target present mean RT curves increase more slowly with memory set size
than the target absent curves. In general, however, the slope ratio is less than 2:1.
Although some exhaustive modeis (e.g., parallel, super-capacity) can accomodate
this slope difference, these results clearly favor self-terminating models (Townsend
& Van Zandt, 1990).

Serial Position Curves. The serial position curves are shown in Fig. 5. Note first
that all subjects show substantial serial position effects. Second, note that Subjects
1, 2, and 4 all show a tendency to respond more slowly when the target is in either
end position of the display. They respond fastest when the target is in a middle display
positicn. On the other hand, Subject 3 shows a very different pattern of responding.
For this subject, RT tends to increase as the target moves rightward through the
display. These results, together with the shallower target present mean RT curves,
are extremely difficult for an exhaustive search model to predict (Townsend & Van
Zandt, 1990).

One possibility is that Subjects 1, 2, and 4 stored representations of the memory
set items in some visual short-term memory system, but Subject 3 stored the items
in an acoustic memory system. Under this interpretation, the V-shaped serial posi-
tion curves of Subjects 1, 2, and 4 are the result of laterality effects, since the shorter
RTs were associated with the more foveal items. If the stored representations are of
an acoustic nature, then RT should be unaffected by display laterality. The
increasing serial position curves of Subject 3 could indicate a left-to-right search
through such an acoustic store.

Two other factors support this hypothesis. First, an examination of Fig. 1
indicates that Subject 3 responded more slowly than the other subjects. Second,
athough the memory scanning task is usually thought to invelve a short-term
acoustic store (e.g., Townsend & Roos, 1973), the method of displaying the memory
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Fi1G. 5. Serial position curves for each of the four subjects.

set items in the present experiment facilitated storage in a visual form. Sternberg
{1966) presented the memory set items sequentially, whereas we presented them
simultaneousty. Sequential presentation facilitates rchearsal, which presumably
facilitates storage in an acoustic form. With sequential presentation, serial position
curves often display primacy or recency effects (or both, see, e.g.,, Sternberg, 1975).
Thus, the primacy effects displayed by Subject 3 are consistent with the sequential
presentation data. On the other hand, the use of simultaneous presentations makes
the memory scanning task more similar to visual scarch (Atkinson, Holmgren, &
Juola, 1969) and in visual search it is thought that subjects search through a visual
short-term store (Townsend & Roos, 1973).

The pronounced serial position effects support the hypothesis that the target
present RT distributions are a probably mixture of the distributions associated with
the different serial positions. Fortunately, this complication has little effect on the
present analyses. The tests of stochastic dominance are model free. They merely
provide a description of the degree to which one set of RTs dominates another.
They make no assumptions about processing. On the other hand, the tests of pure
insertion considered below were derived from a specific processing model. However,
the model assumes exhaustive processing and so these analyses will be restricted to
target absent data.

Targer Present and Targer Absent RT Variances. The target present and target
absent RT variance estimates are shown in Fig. 6. For Subjects 2 and 3 the target
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Fig. 6. Target present and target absent RT variance estimates as a function of memaery set size for
each of the four subjects.

present curves have a shallower slope whereas for Subjects 1 and 4 the curves are
roughly parallel. Because of the large sample size, virtually all differences in Fig. 6
are statistically significant.

The shallow target present curves of Subjects 2 and 3 are consistent with the
predictions of parallel, self-terminating models. For these models, target present RT
is determined completely by the processing time of the target item (and residual
processes such as encoding, response selection, and response execution). If capacity
is limited, then target item processing time increases with memory set size. In many
candidate processing time distributions (e.g., exponential), the variance increases
with the mean. Thus, limited capacity, parallel, self-terminating models predict that
target present RT variance will increase with memory set size. If, in addition, the
processing rate on targets and nontargets is different and capacity is very limited
then the increase in RT variance on target present trials may be as great as on
target absent trials.

The Short RT Property. Although Sternberg’s long RT property is mute with
respect to the self-terminating versus exhaustive issue, his short RT property, given
by Eq.(8), is a good test of self-termination. Figure 7 contains estimates of
(k—1)F, ,(¢) and kF,() on target present trials for values of k¥ from 3 to 5, and
for Subjects 2 and 4. Because the short RT property holds trivially for large values
of 1, Fig. 7 is limited to small 1,

Note that in 4 of the 6 cases, the short RT property is violated for at least some
value of t. For Subjects 1 and 3 the property is violated in every case. Although
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FiG. 7. Plots of kF,(1) (solid line} and (K — 1} F, _ (¢) (dashed line) for target present conditions for
Subjects 2 and 4.

there is no accepted statistical test of the hypothesis that kF, (1) = (k—1} F,_(¢)
for all values of 7, the fact that violations were observed in 10 of 12 cases is strong
evidence against the short RT property. These results, therefore, rule out a large
class of seli-terminating models. Specifically, we can conclude either that search is
not self-terminating or that capacity is very limited (Townsend & Ashby, 1983,
pp- 218-248),

The Medium RT Property. Figure 8 shows estimates of F,_ (t} and
[Fe_s(t)+ F(£)]/2 obtained from the target present conditions for all subjects and
all relevant values of & (ie., for k=4 and 5). Like many of the other properties
examined in this article, we know of no accepted statistical test of the medium RT
property. Even so, in 6 of the 8 tests, the ordering is violated for at least some value
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of 7. In one instance (Subject 3, k =4), the violations are large. In addition to an
exhaustive search, the medium RT property assumes unlimited capacity and
parallel processing. It is unknown how robust the property is with respect to viola-
tions of either of these latter two assumptions. Even so, these results seem to ruie
out a large class of unlimited capacity, parallel exhaustive models.
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Summary

Of the five tests of self-terminating versus exhaustive search considered above,
three yielded strong evidence against an exhaustive search for every subject. Of the
remaining two tests, the RT variances were inconsistent with exhaustive models for
two subjects and inconsistent with self-terminating models for two subjects. The
short RT property produced evidence against self-termination for all four subjects.
Although these conclusions seem mixed, they are much more consistent with the
predictions of self-terminating than exhaustive search strategies. In fact, all of these
results could be predicted (at least qualitatively) by a parallel, self-terminating
model with very limited capacity. One must also remember that many search
strategies exist that are neither self-terminating nor exhaustive. Therefore, evidence
against an exhaustive search is not necessarily evidence for self-termination.
Perhaps the correct model will postulate some hybrid combination of the two
strategies,

Discrete-Stage versus Continuous-Flow Processing.

Theoretical Properties

Discrete-stage models assume that later processing stages do not begin until
earlier stages have completed processing. In contrast, continuous-flow models
assume that information flows continuously from one stage to the next. Although
these notions seem quite different, it has been surprisingly difficult to test between
them. In an extended review of the relevant literature, Miller (1988) could find “no
decisive evidence of continuity” (p.249). He conciuded that “if anything, the
available evidence supports discrete transmission” (p. 250). Perhaps the most
sophisticated tests, however, were developed by Schweickert {1989). He showed
that a large class of continuous-flow models predicts certain observable relations
between RT and any number of performance measures (e.g., d'), and that these
relations are unlikely to be predicted by discrete-stage models. In a preliminary
application of these tests, Schweickert (1989) found evidence against the
continuous-flow models in two separate experiments. Unfortunately, however,
Schweickert’s tests require data from a number of speed—accuracy conditions and so
they are untestable with the data reported here.

Fortunately, it is somewhat easier to derive predictions that characterize discrete-
stage models. For example, when discrete-stage models are applied to memory
scanning experiments they almost always assume that adding an item to the
memory set causes a separate discrete stage to be inserted into the processing chain.
The special case in which the inserted stage has no effect on the duration of any
other stage is known as pure insertion (Donders, 1969; Sternberg, 1969). If we let
T, denote the duration of the inserted stage when there are a total of & items in the
memory set, then the assumption of pure insertion can be written as

RTk=RTk_1+Tk. (10)
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The strongest possible form of pure insertion assumes T, and RT, | are statisti-
cally independent. Although Eq. (10) has a natural serial interpretation, it could
also describe a paraliel model (Ashby & Townsend, 1980). In this case, rather than
an actual processing time, T, represents an intercompletion time; that is, the time
between the successive completions of separate stages.

Pure insertion is difficult to test rigorously. It is easy to see that Eq. {10) implies
an ordering of the mean RTs, but an ordering of means is such a weak form of
dominance that, in this case, its empirical verification is not convincing. Stronger
tests of pure insertion are possible, however., For example, Eq. (10) implies an
ordering of the RT cumulative distribution functions (Ashby, 1982). In fact,
Townsend and Schweickert (1989) showed that if the cumulative distribution func-
tions are ordered, then there exists some discrete-stage model that is compatible
with the data (although there may not be one in which statistical independence
holds). In addition, Ashby (1982} showed that if pure insertion holds and if &, _ (1)
is nondecreasing in #, then the hazard functions must be ordered. These results
emphasize the importance of empirically testing the stochastic dominance
orderings, but note that the latter result also makes it important to test whether the
hazard functions are nondecreasing in 7.

A second assumption made by many discrete-stage models is that the duration
of one or more of the processing stages is exponentially distributed (e.g., Christie
& Luce, 1956; McGill, 1963; Townsend, 1976). For example, let g,(z) denote the
processing time density function for the kth processing stage. According to this
assumption

gilt) =V exp(— Vir). (11)

The parameter ¥, is known is the processing rate because E(T,)=1/V,. Although
this is a difficult assumption to test in isolation, it is known that if the duration of
every discrete stage has a nondecreasing hazard function, and if one or more of the
stage durations is exponentially distributed, then the tail of the RT hazard function
will be flat (Ashby, 1982). Note that the reverse implication is not true. A flat tail
on the RT hazard function does not guarantee an inserted stage with an
exponentially distributed duration.

Combining the assumption of pure insertion with the assumption that the dura-
tion of the inserted stage is exponentially distributed permits much stronger tests.
First, Ashby and Townsend (1980) showed that if and only if Egs. (10) and (11)
both hold, then

Fly =V [Fe_ ()= F.(0)], forall t>0. (12)

Equation (12) permits a strong test of both assumptions, since it states that a plot
of f,(¢) against [F,_,{¢r)— F.(¢r)] should be lincar with positive slope and zero
intercept. Further, the slope of the linear regression should predict the mean RT
increase that results from adding a kt/ item to the memory set, because if Egs. (10)
and (11) hold, then

E(RT,) — E(RT,_,) = I/V,. (13)
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By taking the derivative of both sides of Eq. {12) with respect to time, one can
also show that for each &, f,_,(#) and f,{1) should intersect at the mode of f,(¢)
{Ashby, 1982). This second test i1s simpler but not as strong as the Eq. (12) test,
since it is not stated in an “if and only if” fashion. Checking the RT density func-
tions for their points of intersection should therefore be a preliminary test of the
two assumptions (i.e., Egs. (10) and (11)). Both tests have yielded tentative support
for Egs. (10) and (11) (Ashby, 1982; Ashby & Townsend, 1980), but more empirical
attention is needed.

When interpreting these results, one must also consider the possibility that other
models, which do not make the exponential pure insertion assumption, may mimic
the predicted effects statistically. For example, Ratchff (1988) showed that his diffu-
sion model predicts results that are similar enough to those of the discrete-stage
model that they pass the statistical criteria suggested by Ashby and Townsend
{(1980).

Results

Pure Insertion. Pure insertion predicts that the cumulative RT distribution func-
tions are ordered by memory set size and that, if #, _,(7) is nondecreasing in ¢, then
the hazard functions are also ordered by memory set size. Although the data satisfy
both of these ordering relations, for smali memory set sizes the RT hazard functions
are nonmenotonic. Thus, we cannot interpret the fact that they are ordered as
evidence for pure insertion. On the other hand, because the cumulative distribution
functions are ordered, we know at least that some (possibly dependent) discrete-
stage model is compatible with the data (Townsend & Schweickert, 1989).

Exponentially Distributed Processing Durations. If the duration of all processing
stages have nondecreasing hazard functions, and if one or more of these is exponen-
tially distributed, then the tail of the RT hazard function will be flat (Ashby, 1982),
Both the random smoothing and the quadratic spline estimates have flat tails in
almost every case, and thus the data are consistent with the exponential
assumption. -

Inserting a Stage with an Exponentially Distributed Duration. 1f pure insertion
holds and if the duration of the inserted stage is exponentiaily distributed (ie., if
Eqgs. (10) and (11) hold), then f,, _,(z) and f,{¢) should intersect at the mode of f,(r)
(Ashby, 1982) and a plot of f,(¢) versus F,_ (f)— F,{r) should be linear with zero
intercept and slope equal to the rate of the inserted stage (Ashby & Townsend,
1980).

To estimate the RT density functions, we used a Parzen (1962) estimate with a
Gaussian kernel, :

() e (5] e

where T, is the ith observed RT and # is the number of trials. The parameter & is
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Fi1G. 9. Parzen estimates {Gaussian kernel) of the RT density functions on target absent trials for
¢ach of the four subjects.

a measure of kernel width. If some care is taken in the selection of A, the estimate
can be shown to be uniformly consistent, provided f,(¢) is uniformly continuous
(Parzen, 1962). The asymptotic variance of the Eq. (14} estimator is about half as
large as the more widely known histogram estimator {(Parzen, 1962). In the present
applications, kernel width was set to 1= 10 ms.

The density estimates are presented in Fig. 9 for target absent trials. To aid visual
examination, some of the higher frequency components were attenuated by passing
the density estimates through a moving window of width 100 ms (Green & Luce,
1971). This procedure is essentially the same as convolving the estimates with a
uniform distribution of zero mean. It does not change the mean of the density
estimates, but it could change the mode slightly. By the same token, however, the
high frequency components that the smoothing eliminates can make determination
of the mode a difficult task.

An examination of Fig. 9 indicates surprisingly good agreement with the modal
intersection hypothesis. Some violations are evident, particularly for Subject 3, but
an appeal to the stronger Eq. (12) “if and only if” test is clearly warranted.

Figure 10 shows scatter-plots® of f,(¢) versus F, (1) — F,(¢) for Subjects 2 and
4. Although, there is some variability, overall the results appear reasonably linear,
and so a more careful examination is required. Tabie 2 shows the results of a regres-
sion analysis of the Eq. (12) prediction. First, note the values of the correlation
coeflicient R. Except for Subject 3, these are all greater than 0.950, suggesting

% Less then 2% of the data points were omitted from these analyses because they were judged to be
too close to the origin. We reasoned that these points would unfairly bias the intercept toward zero,



RT DISTRIBUTIONS 551

strong evidence of linearity. Note also that all y-intercepts are within 0.0001 of the
predicted value of zero. Despite their small size, however, in about half the cases
these deviations are statistically significant.

Although it may not be evident in Fig. 10}, in some cases there is a tendency for
the data to be separated into two distinct regions of the figure, one above and the
other below the diagonal [e.g., see the /(1) versus F3(¢) — F,(1) plot for Subject 4].
This separation reflects a violation of the model’s assumptions. Also worth noting
is that the size of this effect appears to increase with the magnitude of the violations
in the model intersection test. If the pure insertion and exponential assumptions are
correct, the estimates of 1/V, computed from the regression slopes should equal
those computed from the mean RT differences (i.e., see Eq. {13)). An examination
of Table 2 indicates that, in general, the agreement is good. Except for Subject 3,
the largest deviation is 13 ms. Note, however, that the deviations are consistently in
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TABLE 2
Lincar Regression Analysis of Eq. (12)

(Slope}~'RT,—RT,_, Intercept Print R

Subject |

2-3 48 52 —0.0001 0.023 0.983

34 59 65 —0.00007 0.084 0.938

4-5 55 68 —0.00016 0.025 0952
Subject 2

23 72 81 —0.00008 0.004 0.973

34 33 40 —0.00006 0.038 0.965

4-5 82 88 —0.00006 0.023 0.951
Subject 3

23 ‘113 £33 —000006  0.100 0913

34 57 32 Q00019 Q.00 0,765

4-5 70 67 0.00001 0.802 0838
Subject 4

2-3 42 38 0.00001 0.579 0.980

34 35 43 —0.00004 (.240 0.960

4-5 33 37 —0.00012 0.001 0.967

one direction. Specifically, the slope estimates are consistently smaller than the
mean RT differences.

While these results provide reasonable support for the pure insertion and
exponential assumptions, they also suggest the possibility that the assumptions do
not hold exactly. One possibility is that the assumptions do hold but that in addi-
tion, adding an item to the memory set causes some irreducible minimum decision
time to be inserted into the processing chain. This model can be expressed as

RTk:RTk—l +tﬂ+Tk9

where ¢, is a constant and T, is exponentially distributed. As a test of this
hypothesis, we estimated ¢, by the difference between the 1/V, estimates obtained
from the Table 2 slopes and from the mean RT differences. We then subtracted this
value from all observed values of RT, and retested the Eq. (12) prediction. In vir-
tually ali cases, R increased, the bowing effect decreased, and the correspondence
increased between the 1/, estimates obtained from the regression slopes and from
the mean RT differences (except for Subject 3). The only negative result that did not
disappear was the significant p-intercepts.

In summary, although the results do not fully support the pure insertion and
exponential assumptions, the results do suggest that this model, or perhaps a model
that is able to closely mimic these assumptions, such as the diffusion model
(Ratcliff, 1988), provides a good first approximation to the data.
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CONCLUSIONS

The goal of this article was to develop and characterize an empirical data base
against which current and future theories of memory scanning can be tested.
Toward this end, results were reported from a standard varied-set memory scanning
task in which each subject participated in about 1500 trials per memory set size.
This large sample size made it possible to examine a number of nonparametric
distributional properties of the RT data. On the basis of these analyses, a number
of important conclusions stand out.

First, increasing the size of the memory set induces the strongest possible form
of stochastic dominance on both target present and target absent trials. This result
rules out a number of possible processing models, including parallel, seif-
terminating models with unlimited capacity.

Second, evidence was found that for the smaller memory set sizes, the RT hazard
functions increased to a peak and then decreased to some asymptotic value. For
larger memory set sizes, the hazard functions appeared to increase monotonically
to an asymptote (although the possibility of a small decrease cannot be ruled out).
Because most serial models predict nondecreasing hazard functions for all memory
set sizes, this result falsifies a large class of serial search models.

Third, the evidence strongly disconfirmed exhaustive search. Exhaustive models
would find it extremely difficult, if not impossible, to predict the combination of
shallower target present RT mean and variance curves and pronounced serial posi-
tion effects that we observed.

Fourth, some evidence was found in support of the assumption that adding an
item to the memory set inserts a discrete stage with exponentially distributed
duration into the processing chain, at least on target absent trials. Apparently,
however, this assumption is not exactly correct. One possibility that appears to
account for the major discrepancies is that adding an item to the memory set also
adds an irreducible minimum delay, and thus instead of an exponential distribution,
the duration of the inserted stage has the distribution of r,+ T,, where 1, is a
constant an T, is exponentially distributed.

Finally, we found some evidence that three of the subjects stored the representa-
tions of the memory set items in a visual short-term memory system and the fourth
subject used an acoustic short-term system.

To our knowledge, the only extant model able to predict all qualitative results
reported in this article assumes that search is parallel, self-terminating, and of very
limited capacity. Because Ratclifl’s (1978) diffusion model is parallel and self-
terminating and also makes predictions about response accuracy, these results
make it an excellent candidate for more detailed study.
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