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Abstract
General recognition theory (GRT; Ashby & Townsend, 1986) is a multivari-
ate extension of signal detection theory to cases in which there is more than
one perceptual dimension. GRT has traditionally only been concerned with
behavioral data, but during the past decade or two, much has been learned
about the architecture and functioning of the neural circuits that implement
the perceptual and decision processes hypothesized by GRT. This chapter
reviews this neuroscience literature, with a focus on three separate ques-
tions. First, what does the neuroscience literature say about the validity of
GRT? Second, how can we use results from the neuroscience literature to
improve GRT applications? Finally, how can GRT analyses be extended to
neuroscience data?

1.1 INTRODUCTION

General recognition theory (GRT; Ashby & Townsend, 1986) is a multivariate extension
of signal detection theory to cases in which there is more than one perceptual dimension.
GRT has all the advantages of univariate signal detection theory (i.e., it separates per-
ceptual and decision processes) but it also offers the best existing method for examining
interactions among perceptual dimensions (or components). Since its inception, hundreds
of articles have applied GRT to a wide variety of phenomena, including categorization (e.g.,
Ashby & Gott, 1988; Maddox & Ashby, 1993), similarity judgment (Ashby & Perrin, 1988),
face perception (Blaha, Silbert, & Townsend, 2011; Soto, Vucovich, Musgrave, & Ashby,
2014; R. D. Thomas, 2001; Wenger & Ingvalson, 2002), recognition and source memory
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(Banks, 2000; Rotello, Macmillan, & Reeder, 2004), source monitoring (DeCarlo, 2003),
attention (Maddox, Ashby, & Waldron, 2002), object recognition (Cohen, 1997; Demeyer,
Zaenen, & Wagemans, 2007), feature binding (Ashby, Prinzmetal, Ivry, & Maddox, 1996),
perception/action interactions (Amazeen & DaSilva, 2005), auditory and speech perception
(Silbert, 2012; Silbert, Townsend, & Lentz, 2009), haptic perception (Giordano et al., 2012;
Louw, Kappers, & Koenderink, 2002), and the perception of sexual interest (Farris, Viken,
& Treat, 2010). Townsend has been at the forefront of this movement, coauthoring the
article that introduced and named GRT and advancing the theory with many subsequent
contributions.

Of course, the perceptual and cognitive processes modeled by GRT are mediated by
circuits in the brain. During the past decade or two, much has been learned about the
architecture and functioning of these circuits. This chapter reviews this neuroscience litera-
ture, with a focus on three separate questions. First, what does the neuroscience literature
say about the validity of GRT? In other words, do the recent discoveries in neuroscience
support or disconfirm the fundamental assumptions of GRT? Second, how can we use re-
sults from the neuroscience literature to improve GRT applications? For example, are there
experimental conditions that improve the validity of GRT analyses? Third, how can GRT
analyses be extended to neuroscience data, and especially to data from neuroimaging ex-
periments?

1.2 SUPPORTING EVIDENCE FO THE NEURAL FEASIBILITY OF GRT

GRT is an extremely general model of perception and decision making that has been ap-
plied to a great variety of different tasks and behaviors. Nevertheless, it makes some core
assumptions that are assumed to hold in all applications. In particular, it assumes two
separate stages of processing – a sensory/perceptual stage that must generally precede a
second decision stage. It also assumes that all sensory representations are inherently noisy,
that every behavior, no matter how trivial, requires a decision, and that decision processes
can be modeled via a decision bound. All but the last of these assumptions also define
univariate signal detection theory.

When GRT was first proposed nearly 30 years ago, the only one of these assumptions
with any independent support was that all sensory representations are noisy. The other
assumptions were justified almost exclusively on the basis of intuitive appeal. During the
intervening three decades however, an explosion of new neuroscience knowledge has pro-
vided strong tests of all GRT assumptions. This section reviews these assumptions and the
relevant neuroscience data. As we will see, for the most part, neuroscience has solidified
the foundations of GRT.

1.2.1 Separate Sensory and Decision Processes

GRT and signal detection theory both assume that decision processes act on a percept that
may depend on the nature of the task, but does not depend on the actual response that is
made. GRT can be applied to virtually any task. However, the most common applications
are to tasks where the stimuli vary on two stimulus components or dimensions. Call these
A and B. Then a common practice is to let AiBj denote the stimulus in which component A
is at level i and component B is at level j. GRT models the sensory or perceptual effects of
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stimulus AiBj via the joint probability density function (pdf) fij(x1, x2). On any particular
trial when stimulus AiBj is presented, GRT assumes that the subject’s percept can be
modeled as a random sample from this joint pdf, and that the subject uses these values to
select a response. Thus, the pdf fij(x1, x2) is the same on every trial that stimulus AiBj

is presented, regardless of what response was made, or in other words, GRT assumes that
a sensory representation is formed first, and then decision processes use this representation
to select a response. A possible neural implementation of the theory would require that
the neural networks used to represent the perceptual properties of stimuli are relatively
separated from the networks used to set criteria for decision making (which determine
response biases).

Even 30 years ago, it was known that the flow of information from sensory receptors up
through the brain, pass through sensory cortical regions before reaching motor areas that
initiate behaviors. In the case of vision, for example, it was known that retinal ganglion cells
project from the retina to the lateral geniculate nucleus of the thalamus, which projects to
V1 (primary visual cortex), then V2, V4, and many other regions before the M1 (primary
motor cortex) neurons are stimulated that cause the subject to press one response key or
the other. So the general neuroanatomy seemed consistent with the GRT assumption of
separate sensory and decision processes. Even so, there was virtually nothing known about
whether visual cortex plays a significant role in the decision process. For example, the 1986
neuroanatomy was also consistent with a theory in which the response was actually selected
as the representation moved up through higher levels of visual cortex, and that the main
goal of the processing that occurred in many psychophysical tasks in later non-visual areas
(e.g., premotor cortex and M1) was simply to serve as a relay between visual areas and
the effectors that would execute the selected behavior. This type of intermingling would
violate the GRT assumption that sensory/perceptual and decision processes are relatively
separate.

In fact, the evidence is now good that decisions are not mediated within visual cortex.
For a while, however, evidence against the GRT assumption of separate sensory and deci-
sion processes seemed strong. The most damning evidence came from reports of a variety of
category-specific agnosias that result from lesions in inferotemporal cortex (IT) and other
high-level visual areas. Category-specific agnosia refers to the ability to perceive or catego-
rize most visual stimuli normally but a reduced ability to recognize exemplars from some
specific category, such as inanimate objects (e.g., tools or fruits). The most widely known
of such deficits, which occur with human faces (i.e., prosopagnosia), are associated with
lesions to the fusiform gyrus in IT. In GRT, a category is defined by a response region, not
by a perceptual distribution. So the association of category-specific agnosias to lesions in
visual cortex seemed to suggest that the visual areas were also learning the decision bounds
that defined the categories.

Of course, a category-specific agnosia that results from an IT lesion does not logically
imply that category representations are stored in IT. For example, although such agnosias
are consistent with the hypothesis that category learning occurs in IT, they are also generally
consistent with the hypothesis that visually similar objects are represented in nearby areas
of visual cortex. In particular, it is well known that neighboring neurons in IT tend to fire
to similar stimuli.

Take the example of the most anterior IT region in the monkey brain: area TE. This is
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the final stage of purely visual processing in the primate brain; thus, if high-level categorical
representations were stored in visual cortex, TE would be a likely place for their storage.
Research indicates that most neurons in this area are maximally activated by moderately
complex shapes or object parts (for reviews, see Tanaka, 1996, 2004); that is, by features
that are more complex than simple edges or textures, but not complex enough to represent
a whole natural object or object category. Because neurons in TE are selective to partial
object features, the representation of a whole object requires the combined activation of at
least several of these neurons. In other words, anterior IT seems to code for objects in a
sparse distributed manner (Rolls, 2009; E. Thomas, Van Hulle, & Vogels, 2001), which is
confirmed by analyses showing that the way in which information about a stimulus increases
with the number of IT neurons that are sampled is in line with a sparse distributed code
(Abbott, Rolls, & Tovee, 1996; Hung, Kreiman, Poggio, & DiCarlo, 2005; Rolls, Treves, &
Tovee, 1997). It appears that TE neurons that code for similar features cluster in columns
(Fujita, Tanaka, Ito, & Cheng, 1992), that a single object activates neurons in several
columns (Wang, Tanifuji, & Tanaka, 1998; Yamane, Tsunoda, Matsumoto, Phillips, &
Tanifuji, 2006), and that the columns that are activated by two similar objects represent
features that are common to both (Tsunoda, Yamane, Nishizaki, & Tanifuji, 2001). Thus,
damage to some contiguous region of IT (or any other visual cortical area) is likely to lead to
perception deficits within a class of similar stimuli, due to their shared perceptual features.

In fact, there is also now strong evidence that decision processes are not implemented
within visual cortex. For example, Rolls, Judge, and Sanghera (1977) recorded from neurons
in IT of monkeys. In these experiments, one visual stimulus was associated with reward
and one with a mildly aversive taste. After training, the rewards were switched. Thus, in
effect, the animals were taught two simple categories (i.e., “good” and “bad”), and then the
category assignments were switched. If the categorical decision was represented in the visual
cortex, then the firing properties of visual cortical neurons should have changed when the
category memberships were switched. However, Rolls et al. found no change in the response
of any of these cortical neurons, although other similar studies have found changes in the
responses of neurons in other downstream brain areas (e.g., orbitofrontal cortex).

More recent studies have found similar null results with more traditional categorization
tasks (Freedman, Riesenhuber, Poggio, & Miller, 2003; Op de Beeck, Wagemans, & Vogels,
2001; Sigala, 2004; E. Thomas et al., 2001; Vogels, 1999). In each of these studies, monkeys
were taught to classify visual objects into one of two categories (e.g., tree versus non-tree,
two categories of arbitrary complex shapes). Single-cell recordings showed that the firing
properties of IT neurons did not change with learning. In particular, IT neurons showed
sensitivity to specific visual images, but category training did not make them more likely to
respond to other stimuli in the same category or less likely to respond to stimuli belonging
to the contrasting category.

Similar results have been found in neurobiological studies of visual perceptual learning.
The standard model of perceptual learning includes an early stage of sensory processing that
is separate from a later stage of decision making (Amitay, Zhang, Jones, & Moore, 2014;
Law & Gold, 2010). Theories proposing changes in the later decision stage of processing
have been particularly successful in accounting for the available data (Amitay et al., 2014),
including findings of heightened behavioral sensitivity that are not associated with changes
in early sensory areas, but instead with the way that sensory information is used to form
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a decision variable at later stages of processing (e.g., Kahnt, Grueschow, Speck, & Haynes,
2011; Law & Gold, 2008).

On the other hand, under certain conditions, categorization training can change the
firing properties of IT neurons. Sigala and Logothetis (2002; see also De Baene, Ons, Wage-
mans, & Vogels, 2008; Sigala, 2004) trained two monkeys to classify faces into one of two
categories and then in a separate condition to classify fish. In both conditions, some stimu-
lus features were diagnostic and some were irrelevant to the categorization response. After
categorization training, many neurons in IT showed enhanced sensitivity to the diagnostic
features compared to the irrelevant features. Such changes are consistent with the widely
held view that category learning is often associated with changes in the allocation of per-
ceptual attention (Nosofsky, 1986). Accounting for such shifts in perceptual attention is
straightforward in GRT. The typical approach is to assume that increases in the amount of
attention allocated to a perceptual dimension reduces perceptual variance on that dimension
(Maddox et al., 2002; Soto et al., 2014).

Changes in the selectivity of IT neurons after categorization training are consistent with
the hypothesis that category learning is mediated outside the visual system, and that the
attentional effects of categorization training are propagated back to visual areas through
feedback projections (see Gilbert & Sigman, 2007; Kastner & Ungerleider, 2000). In support
of this hypothesis, the effect of category learning on neural responses is stronger in non-
visual areas, such as the striatum and prefrontal cortex (PFC), than in IT (De Baene et
al., 2008; Seger & Miller, 2010). Simultaneous recordings from PFC and IT neurons during
category learning show that, although IT neurons change their firing after learning, the
changes are weaker than in PFC and several results suggest that the IT changes might be
driven by PFC input (Freedman et al., 2003; Meyers, Freedman, Kreiman, Miller, & Poggio,
2008).

Even so, the presence of feedback projections from higher-level areas (e.g., PFC) to visual
cortex (and between visual areas, see Salin & Bullier, 1995) could be taken as evidence that
decision processes might influence perceptual representations. As suggested earlier, however,
it seems likely that most such influences could be explained by a GRT model that allows
attentional modulation of perceptual noise. Furthermore, the fast behavioral and neural
responses in visual tasks suggest that information conveyed by feedforward processing is
often sufficient for object recognition and classification (e.g., Hung et al., 2005; Thorpe &
Fabre-Thorpe, 2001). This supports a simple feedforward two-stage model of perceptual
decision making.

Another prediction that follows from the GRT assumption of separate sensory and de-
cision processes is that only decision-related processes should be immediately modifiable
by variables such as verbal instruction and reward history. Whenever studies have tested
this prediction, they have consistently found that decision tasks, such as setting a response
criterion, predominantly recruit motor and frontal areas, rather than sensory association
areas. For example, the development of decision biases in people is correlated with activity
in the same areas that mediate reward processing during goal-directed action, including
the ventral striatum (Chen, Jimura, White, Maddox, & Poldrack, 2015). Other examples
come from studies examining the neural basis of the speed-accuracy tradeoff (e.g., Bogacz,
Hu, Holmes, & Cohen, 2010; Heitz, 2014), which is usually attributed to changes in re-
sponse criteria during perceptual decision making. High levels of activity in the striatum
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and pre-supplementary motor area (preSMA) are found during decisions that are biased
towards speed, both in people (Forstmann et al., 2008) and monkeys (Lauwereyns, Watan-
abe, Coe, & Hikosaka, 2002), and individual variability in levels of response caution are
correlated with changes in striatal activity (Forstmann et al., 2008) and with the strength
of white matter tracts between preSMA and the striatum (Forstmann et al., 2010). The
development of perceptual representations in the visual system might include interactive
processing, top-down influences and even categorical representations. Even so, the evidence
clearly suggests that different processes are involved in criterion setting during decision
making, as proposed by GRT. As indicated earlier, the evidence also clearly suggests that
feedback-based category learning, which also occurs over short timescales, has substrates in
associative areas such as the PFC and the basal ganglia.

In summary, we believe that the current evidence provides strong support for the GRT
assumption of separate sensory and decision processes. Even so, the presence of feedback
connections to visual areas (Salin & Bullier, 1995), top-down influences in vision (e.g.,
Kveraga, Ghuman, & Bar, 2007; Gilbert & Sigman, 2007), and category-specific agnosias
suggests that this debate is far from resolved and therefore that much more research on
this important issue is needed. In the interim, however, we believe that the best current
evidence suggests that decisions about what response to make are not learned or formed in
visual cortex. Instead, the evidence supports the GRT assumption that visual cortex builds
the perceptual representation of the visual stimulus as activation moves up from V1 to IT.
According to this view, IT could be seen as the terminal stage of the perceptual system. If
so, then it follows that decision processes should be mediated by structures receiving direct
projections from IT. There are three obvious candidates: the PFC, the medial temporal
lobes (i.e., the hippocampal system), and the basal ganglia. As it happens, many relevant
studies have examined each of these targets. A review of this large literature, however, is
well beyond the scope of this chapter.

1.2.1 All Sensory Representations Are Noisy

A second fundamental assumption of GRT (and signal detection theory) is that there is
trial-by-trial variability in the perceptual information obtained from every object or event
(Ashby & Lee, 1993). The evidence supporting this assumption is overwhelming (for recent
reviews, see Faisal, 2012; Faisal, Selen, & Wolpert, 2008), and was overwhelming even in
1986 when GRT was first proposed.

First, physical stimuli are intrinsically variable. For example, the number of photons
emitted by a constant light source is approximately Poisson distributed (e.g., Geisler, 1989;
Wyszecki & Stiles, 1982). In a Poisson distribution, the mean equals the variance, so the
standard deviation of the number of photons reaching the cornea increases as the square root
of the stimulus luminance. Therefore, intense stimuli are more variable than threshold-level
stimuli.

Second, variability occurs after the stimulus enters the sensory system and before trans-
duction (called perireceptor noise). For example, in vision, variable amounts of light are
scattered or absorbed while it passes through the lens and the aqueous and vitreous humors.
In fact, Barlow (1977) estimated that somewhere between 67% and 89% of the photons that
strike the cornea are never absorbed by a photoreceptor.
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Third, virtually all neurons in the brain exhibit spontaneous activity. For example,
spontaneous isomerization of photopigment occurs frequently enough to be called “dark
light” (Barlow, 1957) and retinal ganglion neurons can have spontaneous firing rates as
high as 100 Hz (Robson, 1975).

Finally, there is also variability in the chemical events that occur at every neural synapse
and across the neuronal membrane. There are many causes, including variability in the num-
ber of neurotransmitter molecules released presynaptically, variability in the time it takes
neurotransmitter to diffuse across the synapse, variability in the number of neurotrans-
mitter molecules that bind to a post-synaptic receptor, etc. Collectively, these stochastic
processes produce significant variability in the postsynaptic response to identical presy-
naptic stimulation (e.g., Kleppe & Robinson, 2006). Furthermore, due to thermodynamic
effects, voltage-gated ion channels open and close randomly, producing random variability
in electrical currents (White, Rubinstein, & Kay, 2000). This "channel noise" might be
one of the most important sources of biochemical noise at the neuronal membrane (Faisal,
2012).

One might propose that such randomness at the biophysical and biochemical levels is
averaged out at the level of neurons and neural circuits. This is not necessarily true, as
operations in neurons are highly non-linear and might act to amplify small effects, and key
structures are small enough to be responsive to randomness at small scales (Faisal, 2012).
Indeed, it has been shown that channel noise should affect the reliability of action potential
propagation in thin axons, such as those found in mammalian cortex (Faisal & Laughlin,
2007).

All these sources of noise should cause us to expect variability in the timing of action
potentials within and across trials, even under the same conditions of stimulation. Such
variability has been observed (Shadlen & Newsome, 1998). Again, one might propose that
the variability observed at the level of the responses of single neurons might average out at
larger scales and not be relevant for behavioral performance, in contrast to the predictions
of GRT. However, there is plenty of evidence showing that variability in the responses of
sensory neurons is behaviorally relevant in perceptual discrimination tasks. For example,
several studies have found a relation between the trial-by-trial variability in the activity
of neurons and in the responses given by participants (e.g., Britten, Newsome, Shadlen,
Celebrini, & Movshon, 1996; Purushothaman & Bradley, 2005). These results suggest that
the random activity from such neurons influences behavioral decisions (Gold & Ding, 2013).

Furthermore, noise in sensory representations can explain observed phenomena involving
“discrimination” of identical stimuli. Perceptual learning has been found after training in a
discrimination task involving identical stimuli (Amitay, Irwin, & Moore, 2006) and a signal-
detection analysis showed that such effects can be explained as resulting from variability
in internal sensory representations (Micheyl, McDermott, & Oxenham, 2009). Confirming
this hypothesis, Amitay et al. (2013) found that identical auditory stimuli evoked different
EEG responses as early as 100 ms after stimulus onset, depending on whether the stimuli
were perceived to be same or different.

1.2.3 Every Task Requires a Decision

There is a wealth of evidence (reviewed by Gold & Shadlen, 2007) supporting the assump-
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tion that even the simplest discrimination tasks recruit separate neural representations for
sensory and decision processes. For example, in a vibrotactile frequency discrimination
task, participants are exposed to a vibrating stimulus on their skin and are required to re-
port what frequency of stimulation they perceived. Electrophysiological studies in monkeys
show that neurons in somatosensory cortex respond in this task as if they encode a sensory
representation, with increasing rate of responding as frequency of stimulation increases, but
without reflecting the final decision (Hernández, Zainos, & Romo, 2000). On the other
hand, neurons in PFC (e.g., Brody, Hernández, Zainos, & Romo, 2003) and premotor cor-
tex (Romo, Hernández, & Zainos, 2004) respond in this task as if they encode the actual
judgment leading to a behavioral decision.

Perhaps the most widely used task to study the role of decision processes in simple
sensory discriminations is the random-dot motion (RDM) discrimination task. This task
presents participants with a cloud of moving dots, some of them moving in a coherent
direction and others moving in a random direction. Participants must report the direction of
motion of the coherently moving dots, whose proportion is determined by the experimenter.
Electrophysiological studies with monkeys have shown that neurons in medial temporal
visual cortex (area MT) respond in this task as if they encode sensory evidence for the
direction of motion. Their average response after stimulus presentation is stable, reflecting
constant differences in firing rate as a function of motion coherence (Gold & Shadlen, 2007).
Furthermore, the effect of microstimulation of MT neurons on behavioral choices is similar
to what is observed by changes in the actual motion coherence of the stimulus (Hanks,
Ditterich, & Shadlen, 2006).

On the other hand, neurons in a number of areas – including lateral intraparietal cortex
(LIP), dorsolateral PFC (dlPFC), and superior colliculus – seem to respond as if they
encode a decision variable that is closely related to the actual action ultimately chosen by
the monkeys. The average response of these neurons to a motion stimulus increases with
time from stimulus onset, and the speed at which firing ramps-up increases with the motion
coherence of the stimulus. More importantly, the average firing reaches the same threshold
for all levels of motion coherence right before the behavioral response is made (e.g., Roitman
& Shadlen, 2002, and shows a steep drop afterwards). There is also evidence suggesting
that sensory stimulation presented after this threshold has been reached is ignored in the
final choice (Kiani, Hanks, & Shadlen, 2008). Finally, the effect of microstimulation of LIP
neurons on behavioral choices is smaller than the effect of microstimulation of MT neurons,
especially in choice accuracy. This is in line with the idea that MT encodes sensory evidence
that is later accumulated by LIP (Hanks et al., 2006). For example, a simple model of
these experiments is that microstimulation of MT neurons adds a constant to the sensory
evidence, which means that the decision variable increases by this constant amount at every
time step. In contrast, microstimulation of LIP neurons would add the same constant to
the decision variable itself, and therefore not affect the temporal integration.

Signals resembling evidence accumulation have also been found in human experiments
using fMRI (Heekeren, Marrett, Bandettini, & Ungerleider, 2004) and EEG (e.g., Kelly &
O’Connell, 2013; O’Connell, Dockree, & Kelly, 2012; Van Vugt, Simen, Nystrom, Holmes,
& Cohen, 2012). Note that the presence of such signals is not only evidence for the assump-
tion that decision processes are implemented in the brain in even the simplest perceptual
discrimination tasks, but also for the assumption, discussed in the previous section, of sep-
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arate sensory and decision processes.

1.2.4 Decision Processes can be Modeled with Decision Bounds

There is now overwhelming evidence that humans have multiple learning systems that for
the most part are neuroanatomically and functionally distinct (Ashby & Maddox, 2005;
Eichenbaum & Cohen, 2001; Squire, 1992). Interestingly, the evidence is good that the
default decision strategy of one of these systems can be modeled by decision bounds that
satisfy decisional separability (DS), but the decision strategy of the other system likely to
contribute to the learning of tasks where GRT is relevant is incompatible with decision
bounds.

The most complete description of two of the most important learning systems is ar-
guably provided by the COVIS theory (Ashby, Alfonso-Reese, Turken, & Waldron, 1998;
Ashby, Paul, & Maddox, 2011). COVIS assumes separate explicit reasoning and procedural-
learning systems that compete for access to response production. The explicit system uses
executive attention and working memory to select and test simple verbalizable hypothe-
ses about which response is correct. The procedural system gradually associates responses
with regions of perceptual space via reinforcement learning. COVIS assumes that explicit
decision making is mediated by a broad neural network that includes the PFC, anterior
cingulate, head of the caudate nucleus, and the hippocampus, whereas the key structures
in the procedural-learning system are the striatum and premotor cortex.

COVIS has been applied most frequently to categorization tasks that are defined by
a many-to-one stimulus-to-response mapping, whereas GRT is applied most frequently to
identification tasks in which the stimulus-to-response mapping is one-to-one. Even so, CO-
VIS has been applied to identification tasks (Ashby, Waldron, Lee, & Berkman, 2001),
GRT is frequently applied to categorization tasks (Ashby & Maddox, 1994), and there are
long-standing proposals that similar perceptual and decision processes mediate both iden-
tification and categorization (Nosofsky, 1986). For these reasons, evidence about decision
processes that underlie COVIS should be directly applicable to GRT.

The evidence is good that the explicit system is constrained to make independent deci-
sions about single stimulus dimensions and that these decisions can be combined in ways
that follow the rules of Boolean algebra. Singling out a stimulus dimension requires selec-
tive attention – an ability that has been associated with dimensions that are perceptually
separable (Ashby & Townsend, 1986; Garner, 1974; Lockhead, 1966; Maddox, 1992; Shep-
ard, 1964). Thus, in any experiment that uses perceptually separable stimulus dimensions,
DS is likely to hold – at least locally – if subjects perform the task explicitly. Later in this
chapter, we describe experimental conditions that promote explicit processing.

Note that the qualifier “locally” plays a critical role in this hypothesis. If subjects use
explicit strategies then the resulting decision bounds should be constructed from piecewise
vertical and horizontal line segments, but this does not guarantee that DS will hold overall.
For example, consider the GRT model of a hypothetical 2 × 2 identification experiment
shown in Figure 1. Here, aibj denotes the response region associated with stimulus AiBj .
Note that perceptual separability (PS) and DS hold on stimulus dimension X2 but not on
stimulus dimension X1. Because the bounds are all constructed from vertical and horizontal
line segments, this decision model is compatible with an explicit strategy (assuming selective
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Figure 1 . A GRT model that satisfies perceptual and decisional separability on dimension
X2 but not on dimension X1.

attention to the stimulus dimensions is possible).
Selective attention is thought to depend on the PFC (e.g., Miller & Cohen, 2001. Thus,

the ability to quickly form decision bounds that satisfy local DS might be unique to species
with a well-developed PFC. Some evidence supports this prediction. First, of course, many
studies have shown that healthy humans learn categories that can be separated by a one-
dimensional decision bound (that satisfies DS) far more quickly than categories that can be
separated by a diagonal bound, even when the two category structures are exactly equated
on all category-separation statistics (e.g., Ashby & Maddox, 2005). Second, pigeons learn
these two types of category structures equally well and at exactly the same rate (Smith et
al., 2011). Although pigeons do possess brain regions thought to be analogous to PFC, such
structures are not homologous, and it seems clear that pigeons lack at least some of the
cognitive mechanisms recruited during rule-based learning (see Soto & Wasserman, 2014).
Third, macaque and capuchin monkeys, who both have substantial PFCs, show similar
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performance advantages as humans on the one-dimensional category structures. This result
suggests that the human and monkey advantage for DS is probably not language-based, even
though rules that satisfy DS are typically easy to describe verbally. Although much more
data are needed to settle this issue, a tentative first hypothesis is that selective attention is
the critical attribute that makes one-dimensional rules so easy to learn.

Ashby and Waldron (1999) tested whether or not the procedural system learns decision
bounds. Subjects in this experiment learned two categories of stimuli that varied on two
stimulus dimensions. The stimuli were sampled randomly from non-normal distributions.
In the first experiment, the variance-covariance matrices from the two categories were iden-
tical, but the optimal category bound was quadratic, whereas in the second experiment
the opposite was true – that is, the two variance-covariance matrices were different, but
the optimal bound was linear. Previous research had shown that when the optimal bound
was linear, people responded as if using linear bounds, and when the optimal bound was
quadratic, people responded as if using quadratic bounds. Ashby and Waldron (1999) ar-
gued that the only information signaling which type of bound to use that could be reliably
estimated within a few hundred learning trials was in the category variances and covari-
ances. Thus, if subjects learned decision bounds, they should have responded suboptimally
in both experiments – with a linear bound in the first experiment and a quadratic bound in
the second. However, in both experiments, subjects responded optimally, suggesting that
they were not using decision bounds.

More evidence suggesting that the human procedural system does not use decision
bounds was reported by Casale, Roeder, and Ashby (2012). This article reported results
from a series of experiments in which subjects were first trained on categories that were sep-
arated either by a bound that satisfied DS or by a diagonal bound. After subjects learned
the categories, they were transferred to novel categories in which perfect performance was
possible with the original training bound. If subjects had learned decision bounds during
the original training, then transfer performance should be good because there was nothing
new to learn. In fact, transfer was almost perfect in the DS conditions, but there was no
evidence of any transfer in the diagonal bound conditions, suggesting that the procedural
system does not learn a global decision rule, but instead only learns local stimulus-response
associations.

Much evidence suggests that procedural learning is mediated largely within the striatum,
and is facilitated by a dopamine (DA) mediated reinforcement learning signal (Ashby & En-
nis, 2006; Badgaiyan, Fischman, & Alpert, 2007; Grafton, Hazeltine, & Ivry, 1995; Jackson
& Houghton, 1995; Knopman & Nissen, 1991). The well-accepted theory is that positive
feedback that follows successful behaviors increases phasic DA levels in the striatum, which
has the effect of strengthening recently active synapses, whereas negative feedback causes
DA levels to fall below baseline, which has the effect of weakening recently active synapses
(Houk, Adams, & Barto, 1995). The critical site of learning within the striatum is thought
to be at synapses between striatal medium spiny neurons and pyramidal neurons projecting
from visual association areas of cortex (in the case of GRT experiments with visual stimuli).
The idea is that each medium spiny neuron becomes associated with a motor goal (e.g., press
the button on the left), so the procedural system learns associations between each presented
stimulus (via activation of visual cortical neurons) and the relevant motor response (Ashby,
Ennis, & Spiering, 2007; Ashby & Waldron, 1999). These cortical-striatal projections are
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characterized by massive convergence – the ratio is somewhere around 10,000-to-1 (Wilson,
1995).

Based on these anatomical considerations, Ashby and Waldron (1999; Ashby et al.,
2011) proposed the striatal pattern classifier (SPC) as a model of decision processes in the
procedural learning system. The SPC assumes a high-resolution perceptual space that maps
to a low-resolution decision space. Each perceptual unit is assumed to represent a different
neuron (or group of neurons) in visual cortex and each decision unit is assumed to repre-
sent a different medium spiny neuron in the striatum. Typical applications might include
10,000 perceptual units and only a few decision units. Each perceptual unit has a different
preferred stimulus, but presentation of a stimulus causes a graded pattern of perceptual
activation because the tuning of each perceptual unit is modeled via a radial basis function.
Each decision unit is associated with a response. Initially, the perceptual units are fully
connected to the decision units, but reinforcement learning changes the strengths of these
connections. Computationally, the SPC is similar to the covering map version of ALCOVE
(Kruschke, 1992) and to Anderson’s rational model (Anderson, 1991).

1.3 USING NEUROSCIENCE RESULTS TO IMPROVE GRT APPLICATIONS

The preceding sections suggest that the neuroscience literature provides considerable sup-
port for the assumptions that underlie GRT. The single caveat concerns the assumption that
decision processes can be modeled with (piecewise) linear or quadratic decision bounds. We
saw that the evidence is good that this assumption is valid when subjects are using PFC-
mediated explicit strategies. In fact, under these conditions, bounds that satisfy local DS
should be expected. However, if subjects use striatal-mediated procedural strategies then
the decision bound assumption of GRT is problematic. Thus, one approach that could be
used to maximize the validity of GRT is to adopt experimental methods that encourage sub-
jects to use explicit decision strategies. If successful, an added bonus is that DS is likely to
hold, at least locally. DS greatly simplifies data analyses, both because it makes numerical
integration under bivariate normal distributions easier, but also because it allows stronger
inferences about PS and independence (e.g., Ashby & Soto, 2015; Silbert & Thomas, 2013).

It is important to note that encouraging subjects to use decision strategies that satisfy
DS when they might instead naturally use some procedural strategy could possibly affect
the underlying perceptual representations. For example, Soto and Ashby (2015) reported
that categorization training with a DS bound increased the PS of novel stimulus dimensions.
The extent of such decisional/perceptual interactions is unknown and much more work is
needed, but for the present purposes, several remarks are in order. First, the pre-training
required to increase PS was fairly extensive, so changes in PS are unlikely in a one-session
experiment (Soto & Ashby, 2015). Second, such training is unlikely to affect the PS of
familiar stimulus dimensions, and third, many GRT analyses, especially those based on
summary statistics, assume DS holds and therefore are invalid if subjects are using some
procedural strategy. For these reasons, researchers might often want to encourage their
subjects to use DS strategies.

In fact, a large literature establishes conditions that favor explicit decision strategies over
procedural strategies. Critical features include the nature of the optimal decision bound, the
instructions given the subjects, and the nature and timing of the feedback, to name just a
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few (e.g., Ashby & Maddox, 2005, 2010). For example, Ashby, Waldron, Lee, and Berkman
(2001) fit the full GRT identification model to data from two experiments. In both, 9
similar stimuli were constructed by factorially combining 3 levels of the same 2 stimulus
components. Thus, in stimulus space, the 9 stimuli had the same 3 × 3 grid configuration in
both experiments. In the first experiment however, subjects were shown this configuration
beforehand and the response keypad had the same 3 × 3 grid as the stimuli. In the second
experiment, the subjects were not told that the stimuli fell into a grid. Instead, the 9
stimuli were randomly assigned responses from the first 9 letters of the alphabet. In the
first experiment, where subjects knew about the grid structure, the best-fitting GRT model
assumed DS on both stimulus dimensions. In the second experiment, where subjects lacked
this knowledge, the decision bounds of the best-fitting GRT model violated DS. Thus,
one interpretation of these results is that the instructions biased subjects to use explicit
strategies in the first experiment and procedural strategies in the second experiment.

Therefore, to encourage the use of explicit strategies, subjects should be told about
the factorial nature of the stimuli and the response device should map onto this factorial
structure in a natural way. Furthermore, several other design principles should be followed.
First, the intertrial interval should be long enough so that subjects have sufficient time to
process the meaning of the feedback. Maddox, Ashby, Ing, and Pickering (2004) showed
that a short delay interferes with explicit but not procedural learning. If subjects are testing
explicit hypotheses about the correct decision strategy then after error feedback for example,
they might decide to reject their current hypothesis, and then select and implement some
new strategy. These processes require time, attention, and effort. In contrast, evidence
suggests that feedback processing in the procedural-learning system is essentially automatic.

Second, working memory demands should be minimized (e.g., avoid dual tasking) to
ensure that working memory capacity is available for explicit hypothesis testing. This is
critical because several studies have shown that a simultaneous dual task interferes with
explicit learning much more than with procedural learning (Waldron & Ashby, 2001; Zei-
thamova & Maddox, 2006).

1.4 EXTENDING GRT TO NEUROIMAGING DATA

The perceptual distributions and decision bounds in typical GRT applications are latent
variables in the sense that they are hypothetical and unobservable. Modern neuroimaging
technology however, makes it possible to observe brain activity with a precision that seemed
impossible when GRT was first developed. For example, the newest fMRI scanners record
an indirect measure of neural activation (i.e., the BOLD response) in as many as 500,000
separate brain locations at a temporal resolution of better than one second. The GRT per-
ceptual and decision processes are presumed to provide summary descriptions of the neural
activation that is mediating the behavior under study. Therefore, at least theoretically,
fMRI might allow the possibility of observing this neural activation almost directly. Thus,
an exciting area of future research is to extend GRT applications to neuroimaging data.

There are at least two qualitatively different ways that GRT could contribute to neu-
roimaging data analysis. One is that a variety of different GRT models could be used
to make predictions about how neural activation should change across stimuli or condi-
tions. The version that provides the best account of the neuroimaging data would then be
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supported relative to its competitors. Within the neuroimaging literature, mathematical
models used in this way are known as encoding models (e.g., Naselaris, Kay, Nishimoto, &
Gallant, 2011). The encoding approach is similar to typical applications of GRT, except
neuroimaging data are used to test the models as well as behavioral data. Unlike traditional
behavioral applications however, multiple GRT analyses could be possible with neuroimag-
ing data. For example, fMRI provides enough data that different GRT models could be fit
to data from each separate neural region-of-interest (ROI). For example, suppose that the
best fitting models satisfy PS in early visual cortical areas, but that in some higher-level
visual association area, the best-fitting model violates PS. Such a discovery would greatly
advance our understanding of human object perception because it could begin to address
the question of why PS fails on behavioral data.

A second approach to a GRT-based analysis of neuroimaging data would be to extract
the raw perceptual distributions and/or decision bounds directly from the neuroimaging
data. Models used in this way are known as decoding models in the neuroimaging liter-
ature (e.g., Naselaris et al., 2011). Of course, decoding of this type is impossible if only
behavioral data are used, but especially with fMRI, the extra observability makes decod-
ing the GRT perceptual distributions, for example, a reasonable goal. One advantage of
decoding methods is that they can be distribution free, and therefore make fewer assump-
tions than traditional GRT approaches. For example, it might be possible to estimate the
GRT perceptual distributions using a nonparametric estimator. This would allow for ex-
ample, nonparametric tests of PS. The next two sections describe encoding and decoding
approaches to neuroimaging data analysis in more detail.

1.4.1 Neural Encoding Models

An encoding model is a formal representation of the relation between sensory stimuli and the
response of a single neuron or a group of neurons. Because neuronal responses are inherently
stochastic, the encoding problem requires specifying p(r|s), or the probability that neuronal
response r occurs on trials when stimulus s is presented (Pillow, 2007). An encoding model
usually includes a set of parameters, which we denote via the vector θ, which summarize the
information in the stimulus that drives the neural activity. These parameters are estimated
from the data in such a way that p(r|s, θ) becomes a good approximation to p(r|s). The
data required to fit an encoding model are obtained from experiments presenting a variety
of stimuli to participants (typical choices are white noise stimuli and natural images) and
recording some measure of neural activity in response to the stimuli (e.g., the fMRI BOLD
response). In the case of GRT, one approach might be to construct two different types
of neuronal response models. In sensory models, p(r|s, θ) would be constructed from the
GRT perceptual distribution associated with the presented stimulus, whereas in decision
models, p(r|s, θ) would be constructed from the decision bounds (e.g., from the discriminant
functions). One could then apply both model types to each ROI to determine whether the
ROI was a sensory or decision region.

The standard encoding model is constructed from one or more channels, as shown in
Figure 2. Each channel is sensitive to some information about the stimulus, which can
be as simple as the luminance value in a single pixel (e.g., models of neuronal receptive
fields in the early visual system; for a recent review, see Sharpee, 2013) or as complex
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Figure 2 . A schematic representation of a standard encoding model. Figure by F. Soto,
shared under creative commons license at http://figshare.com/articles/Standard-encoding-
model/1385405

as semantic information about an object presented in the stimulus (Huth, Nishimoto, Vu,
& Gallant, 2012). Usually, the responses from several channels are pooled to compute the
response of a readout channel in the next step of processing. This hierarchical scheme can be
extended to include as many levels and channels as necessary, but the most common choice
is the simple structure shown in Figure 2, where the response of several input channels
is known and described by a fixed, often nonlinear transformation, and the response of a
single readout channel is a linear function of the activity in the input channels. Models
of this type are known as linearizing encoding models (Naselaris et al., 2011), because the
free parameters (e.g., channel weights) are restricted to the linear readout portion of the
model. For example, in an encoding model for a voxel located in primary visual cortex,
each channel in Figure 2 could be replaced by a single Gabor wavelet. The response of the
channel to an image is determined by filtering the image using the Gabot wavelet, which
implements a nonlinear mapping from the stimulus to the channel’s response (see Naselaris
et al., 2011). In studies of object representation, it is possible to include input channels
that encode for even more complex information, such as the semantic categories to which
an object belongs (e.g., Huth et al., 2012; Naselaris, Prenger, Kay, Oliver, & Gallant, 2009).

The contribution of each input channel to the response of the readout channel, repre-
sented by a weight w, is usually unknown. These weights and any other free parameters in
the model must therefore be estimated from data using standard statistical procedures. To
do this, a statistical model is included that makes it possible to compute the probability
of a neural observation given the output of the readout channel, which describes the prob-
ability of observing a measure of neural activity – such as neural spikes, firing rate, local
field potentials (LFPs), BOLD responses, etc. – as a function of the activity in the readout
channel and possibly other parameters. The statistical model is sometimes explicitly stated,
which allows maximum likelihood estimation of the model parameters (Pillow, 2007), but
in many cases it is only implicitly assumed to be described by a normal distribution with
mean equal to the activity of the output channel. This assumption of normality, which
is common in models of fMRI and EEG data, is useful to estimate the value of the free
parameters w through linear regression (e.g., Garcia, Srinivasan, & Serences, 2013; Kay,
2012; Kay, Naselaris, Prenger, & Gallant, 2008).
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Figure 3 . GRT models implementing perceptual separability (PS Model, left col-
umn) and failure of perceptual separability (No-PS Model, right column). The
top row represents traditional GRT models and the bottom row represents encod-
ing GRT models. Figure by F. Soto, shared under creative commons license at
http://figshare.com/articles/GRT_encoding_models/1547914

A standard encoding model assumes that a small population of neurons encodes each
stimulus dimension (Pouget, Dayan, & Zemel, 2003). According to this view, a dimension
is represented by a group of neurons, each with a tuning function that determines its firing
rate to different stimuli, with peak firing at the value of the preferred stimulus and decreased
firing as stimuli become more dissimilar to the preferred stimulus.

In the Figure 2 model, each input channel represents one neuron or group of identical
neurons within this population code, with different mean firing rates to each of the stimuli
included in the task. Implementing a signal detection theory model using this formalism is
quite simple, only requiring the addition of noise in the neurons’ firing rate. This is usually
modeled by a Gaussian distribution, making this a Gaussian population model (Ma, 2010),
but other distributions are possible. Thus, each one of the input channels in Figure 2 would
actually be a noisy channel, with responses influenced by some random component.

The role of the readout channel in this model is to compute a decision variable, which
can then be used as the basis for a final behavioral choice. Gold and Shadlen (2001) showed
that a simplified version of this framework (with only two neurons encoding each dimension)
is able to compute a log-likelihood ratio test for a binary perceptual discrimination, as in
traditional signal detection theory.
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Figure 4 . Hypothetical fMRI experiment testing perceptual separability of orientation
from width; Panel (a) shows the sequence of stimuli shown and (b) shows the BOLD
response measured in two voxels of interest; Panels (c) and (d) show the predictions
of encoding models implementing perceptual separability and failure of perceptual sep-
arability, respectively. Figure by F. Soto, shared under creative commons license at
http://figshare.com/articles/Fitting_data_from_an_fMRI_experiment_with_GRT
_encoding_models/1547915

Although extending this framework to full GRT models will require substantial work,
very simple modifications allow implementing at least some tests of GRT concepts. Imag-
ine an experiment in which stimuli vary along two dimensions, each with only two possible
values. A good example is sets of bars that vary in width (narrow versus wide) and orien-
tation (vertical versus horizontal). The combination of possible values on both dimensions
makes a total of four stimuli. The concept of PS from GRT is illustrated in the top row of
Figure 3. Each axis in these models represents a particular stimulus dimension, each circle
represents the bivariate distribution of perceptual effects produced by a specific stimulus,
and the curves at the bottom represent the marginal distribution of perceptual effects along
a specific dimension. To the left we see a GRT model in which PS holds for the orienta-
tion dimension. In this PS Model, stimuli that have the same orientation have equivalent
marginal perceptual distributions on the x-axis. To the right we see a GRT model in which
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PS does not hold for the orientation dimension. In this No-PS Model, stimuli that have the
same orientation do not have equivalent marginal perceptual distributions. Note how the
definition of PS in GRT refers only to marginal distributions of perceptual effects. Because
these marginal distributions are unidimensional, they can be directly modeled using the
probabilistic population coding scheme explained earlier.

An example of simple encoding models for PS and failure of PS is shown in the bottom
row of Figure 3. To the left we see an encoding model implementing PS. In this model, there
is a single channel that encodes both vertical bar stimuli, completely ignoring information
about bar width. Similarly, there is a second single channel that encodes both horizontal bar
stimuli and ignores information about bar width. The orientation dimension is thus encoded
in this model separately from the width dimension: the representation of orientation is
invariant to changes in width. The encoding model shown to the right implements a failure
of PS. In this case, there are separate channels encoding wide vertical bars and narrow
vertical bars. There are also separate channels encoding wide horizontal bars and narrow
horizontal bars. The representation of orientation in this model is not separable from width,
but it rather depends on width.

Remember that encoding models are fitted to neural data using traditional statistical
procedures. A simple test of the separability of neural representations would require fitting
a PS Model and a No-PS Model, and performing parameter estimation and model selection
on those models. In our example, we could show participants the four oriented bar stimuli
during fMRI scanning. Imagine that we are particularly interested in the representation of
orientation in primary visual cortex. Figure 4a shows a sequence of stimuli that could be
shown to participants in such a hypothetical experiment. Assume, for dydactical purposes,
that the representation of orientation in primary visual cortex is not separable from the
representation of width, with neurons in different voxels encoding the same orientation
for different widths. This could produce BOLD responses like those observed in Figure
4b. Voxel 1 is clearly responding only to vertical bars that are thin, whereas voxel 2 is
responding only to vertical bars that are wide. If both the PS Model and No-PS Model
are fitted to these data, then it is likely that the No-PS model would offer a better fit,
as this model could explain the data in voxel 1 by having a strong weight for the channel
encoding the combination of vertical and thin and low weights for all other channels, and
it could explain the data in voxel 2 by having a strong weight for the channel encoding the
combination of vertical and thick and low weights for all other channels. The predictions
of this model could be similar to those observed in Figure 4d. On the other hand, the PS
Model would in both cases assign a strong weight to the channel that encodes “vertical” and
a low weight to the channel that encodes “horizontal.” As shown in Figure 4c, the model
would correctly predict the responses of both voxels in half of the trials, but it would also
incorrectly predict responses in the other half of the trials in which no response is observed.
Model comparison should thus conclude that the No-PS model provided a better fit to the
data.

Throughout this example, we assumed the simplest possible encoding model in which
each channel represents either the presence or absence of a feature. Such a model should
help to identify violations of PS such as that shown in the top-right of Figure 3, in which
the means of marginal distributions are displaced, but it would not identify all possible
violations of PS. Better encoding models could be developed if we could get estimates of
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the perceptual effects of a stimulus on each trial. One way to do this is by fitting GRT
models to response time data (Maddox & Ashby, 1996) and inverting the model to obtain
estimates of perceptual effects (under the assumption of DS; for an introduction to these
basic concepts from GRT see Ashby & Soto, 2015).

1.4.2 Neural Decoding

The term neural decoding is used in the computational neuroscience literature to refer
both to a series of methods used by researchers to extract information about the task from
neural data (Naselaris et al., 2011; Quiroga & Panzeri, 2009) and to the mechanisms used
by readout neurons to extract similar information, which is later used for decision making
and other cognitive processes (Gold & Ding, 2013; Pouget et al., 2003). Referring back to
Figure 2, we can think of the input channels as implicitly encoding a particular variable,
which is then decoded by the readout channel.

Researchers have decoded many forms of information from neural data, ranging from
abstract properties, such as an object’s identity or its membership to a particular class (e.g.,
Hung et al., 2005; Kriegeskorte, Formisano, Sorger, & Goebel, 2007; Li, Cox, Zoccolan, &
DiCarlo, 2009; Said, Moore, Engell, Todorov, & Haxby, 2010; Soto, Waldschmidt, Helie, &
Ashby, 2013), to the more concrete reconstruction of the actual images presented during an
experiment (e.g., Miyawaki et al., 2008; Naselaris et al., 2009; Nishimoto et al., 2011; Thirion
et al., 2006). The methods used to extract information are also highly variable, and include
a variety of statistical learning algorithms (for a review, see Pereira, Mitchell, & Botvinick,
2009) and information theoretic measures (see Quiroga & Panzeri, 2009). Simple linear
classification and regression algorithms are the most commonly used decoding methods, a
practice that rests on the assumption that the mapping from observed neural activity to
stimulus information is linear (Naselaris et al., 2011), in the same fashion as in the encoding
models reviewed in the previous section. A theoretical justification for this choice is that
real neurons integrate information from upstream neurons through a mechanism akin to a
weighted sum with a threshold, in a similar manner to a linear classifier (Li et al., 2009).
In contrast, a nonlinear classifier could produce successful classification from activity in a
region that does not explicitly encode the features of interest (e.g., the retina; Naselaris
et al., 2011). Furthermore, in practice it is usually the case that the decoding accuracy of
nonlinear classifiers does not improve substantially over that of linear classifiers (e.g., Hung
et al., 2005; Pereira et al., 2009).

Neural decoding using linear models is similar in goal to encoding models that represent
information about a single stimulus dimension (Kay, 2012). In both cases, the goal is to
show that a particular stimulus dimension is encoded by a neuronal population. Whereas
an encoding model uses the dimension of interest to make predictions of neural responses, a
linear decoding model uses the measured activity to recover the dimension of interest, and
fitting the model amounts to finding a direction in the activity space that can best describe
the differences across stimuli on the dimension of interest.

This suggests a method, which is schematized in Figure 5, to extend neural decoding
procedures to test for separability of neural representations. To understand how this method
works, let us return to the example of the hypothetical experiment described in the previous
section, in which participants are scanned in the MRI while being presented with a series of
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Figure 5 . A schematic representation of a test of separability of neural representations,
implemented as an extension to traditional linear decoding procedures. Figure by F. A. Soto,
shared under creative commons license at http://figshare.com/articles/Test-of-separability-
of-neural-representations/1385406

oriented bar stimuli (see Figure 4a), with the goal of understanding whether the represen-
tation of orientation is separable from the representation of width in primary visual cortex.
Assume that we get estimates of neural activity on each trial from two voxels located in
our region of interest. Such estimates can be obtained, for example, by simply estimating
the mean BOLD response 4 or 6 s after stimulus onset, or by some other, more sophisti-
cated method (Mumford, Turner, Ashby, & Poldrack, 2012; Turner, Mumford, Poldrack,
& Ashby, 2012). The estimates of activity could then be represented in a two-dimensional
voxel space, as shown at the top of Figure 5.

Each point here represents activity on a different trial, with different colors representing
different stimuli that have been repeatedly presented across the experiment. If our goal
was to decode bar orientation from these two voxels, a traditional decoding analysis would
use a linear classifier to find the line in this space that best separates trials on which ver-
tical bars were shown from trials on which horizontal bars were shown. This classification
bound is represented by the dotted line in Figure 5. The line orthogonal to the classification
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bound represents the direction in voxel space that best discriminates one orientation from
the other (that is, the line along which the points corresponding to vertical bars are max-
imally separated from the points corresponding to horizontal bars). Thus, it is reasonable
to assume that this is the direction in this specific voxel space along which orientation is
encoded. If we take all the observed data points and project them onto this "orientation"
dimension, the two distributions of points for a given value of orientation (e.g., “vertical”),
each corresponding to a different value of width, can be compared to one another. Un-
der the hypothesis of PS, these two sets of points should come from the same marginal
distribution. There are a variety of statistical tests in the literature that allow a test of
this hypothesis, with the most popular being the two-sample Kolmogorov-Smirnov test, but
with more statistically powerful alternatives also available. We have recently used such a
test to study separability of the neural representations of identity and emotional expression
of human faces in an fMRI study (Soto, Vucovich, & Ashby, in preparation).

1.5 CONCLUSIONS

GRT has been exceptionally successful. But to date, virtually all applications have been
purely behavioral. When GRT was first developed in 1986, this behavioral focus was neces-
sary because little was known about the architecture and functioning of the neural circuits
that implement the perceptual and decision processes hypothesized by GRT. Thirty years
later however, this picture has changed dramatically and now many neuroscience results
speak to the validity of GRT and suggest ways to improve its application. In addition, new
neuroimaging technologies have created massive and complex data sets that beg for sophis-
ticated new quantitative analyses. FMRI data analysis, for example, has been dominated
by the general linear model – a statistical method that was never intended as a model of
psychological process. GRT, with its extensive validation as a general model of perceptual
and decision processes, therefore offers promising new tools for neuroimaging data analysis.
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