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Abstract
In rule-based (RB) category-learning tasks, the optimal strategy is a simple explicit rule, whereas in information-integration (II)
tasks, the optimal strategy is impossible to describe verbally. Many studies have reported qualitative dissociations between
training and performance in RB and II tasks. Virtually all of these studies were testing predictions of the dual-systems model
of category learning called COVIS. The most prominent alternative account to COVIS is that humans have one learning system
that is used in all tasks, and that the observed dissociations occur because the II task is more difficult than the RB task. This article
describes the first attempt to test this difficulty hypothesis against anything more than a single set of data. First, two novel
predictions are derived that discriminate between the difficulty and multiple-systems hypotheses. Next, these predictions are
tested against a wide variety of published categorization data. Overall, the results overwhelmingly reject the difficulty hypothesis
and instead strongly favor the multiple-systems account of the many RB versus II dissociations.
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Introduction

A large literature compares performance in rule-based (RB)
and information-integration (II) categorization tasks. Typical
examples of such tasks are shown in Fig. 1. Each task includes
two categories of stimuli that vary across trials on two stimu-
lus dimensions. In the case of Fig. 1, these stimuli are circular
sine-wave gratings (e.g., Gabor patches) that vary across trials
in bar width and bar orientation. In standard applications,
stimuli are presented one at a time, participants assign each
stimulus to a category by pressing a response key, and feed-
back is given after each response (i.e., correct vs. incorrect).
Participants are told that there are two categories of stimuli
and that their task is to use the feedback to learn how to assign

each stimulus to its correct category. Critically, they are given
no prior information about the structure of the categories.

In RB tasks, the optimal strategy is a relatively simple
explicit rule that can be described using Boolean algebra
(Ashby, Alfonso-Reese, Turken, & Waldron, 1998). In the
simplest variant, illustrated in Fig. 1, only one dimension is
relevant (bar width), and the task is to discover this dimension
and then map the different dimensional values to the relevant
categories. In II tasks, accuracy is maximized only if informa-
tion from two or more incommensurable stimulus dimensions
is integrated perceptually at a pre-decisional stage (Ashby &
Gott, 1988). In most cases, the optimal strategy in II tasks is
difficult or impossible to describe verbally (Ashby et al.,
1998). Verbal rules may be (and sometimes are) applied but
they lead to poor performance. The categories shown in the
two Fig. 1 tasks are simple rotations of each other in stimulus
space (i.e., by 45°), and so are exactly equated on many
category-separation statistics. They differ only in whether
the optimal decision bound is horizontal (RB condition) or
diagonal (II condition). Despite their similarity, many studies
have shown that during early learning, human accuracy is
much higher in the RB task than the II task (i.e., given the
same amount of training). The RB advantage lasts for at least a
few thousand trials, but after that, performance asymptotes at
the same high levels of accuracy in both tasks (e.g., Hélie,
Waldschmidt, & Ashby, 2010).
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Many studies have compared performance in RB and II
tasks, like those shown in Fig. 1, across a variety of different
training and testing conditions. These studies have varied the
methods and order of stimulus presentation, the nature and
timing of feedback, the quality of the training conditions, and
the generalizability of the knowledge acquired during training.
This line of research has produced scores of articles that have
reported somewhere between 25 and 30 qualitative dissocia-
tions between training and performance in RB and II tasks1

(for a review of many of these, see Ashby & Valentin, 2017).
Virtually all of these studies were testing predictions of the

dual-systems model of category learning called COVIS
(Ashby et al., 1998; Ashby & Valentin, 2017; Ashby &
Waldron, 1999). Briefly, COVIS assumes that humans learn
categories in at least two qualitatively different ways. An ex-
ecutive attentional system uses working memory to learn ex-
plicit rules, whereas a procedural system uses dopamine-
mediated reinforcement learning when perceptual similarity
determines category membership and the optimal strategy is
difficult or impossible to describe verbally. The explicit, rule-
learning system is assumed to dominate in RB tasks, whereas
the procedural learning system dominates in II tasks. COVIS
accounts for the many RB versus II dissociations by assuming
that the training and testing conditions that were manipulated
affected the two systems differently. In fact, this approach
allows COVIS to simultaneously account for all of the report-
ed dissociations, and in many cases COVIS predicted the dis-
sociations a priori – that is, COVIS predicted that a dissocia-
tion in the opposite direction was impossible. For example,
COVIS predicts that a simultaneous dual task that requires
working memory and executive attention must interfere with
RB tasks at least as much as II tasks, because the explicit rule-
learning system presumed to dominate in RB tasks uses exec-
utive attention and working memory, whereas the procedural-
learning system does not. This prediction has been supported
in several studies (Crossley, Paul, Roeder, & Ashby; 2016;
Waldron & Ashby, 2001; Zeithamova & Maddox, 2006).

No competing or alternative account of all these dissocia-
tions has been proposed. However, a number of studies have
hypothesized that the results of some individual dissociation
could be due to a difficulty or complexity difference between
the RB and II tasks (Edmunds, Milton, & Wills, 2015; Le
Pelley, Newell, & Nosofsky, 2019; Nosofsky, Stanton, &
Zaki, 2005; Zaki & Kleinschmidt, 2014). In particular, each
of these studies postulated that there is a single learning system
used in all tasks, but that the II task shown in Fig. 1 is more
difficult than the RB task, and that this difficulty difference was
the cause of the one dissociation that the study examined.

This difficulty hypothesis is the most prominent alternative
account to COVIS for the many RB versus II dissociations
that have been reported. Given this prominence, it is surpris-
ing that no attempt has been made to test the difficulty hypoth-
esis against anything more than a single isolated data set. For
example, Le Pelley et al. (2019) hypothesized that deferred
feedback impairs II learning more than RB learning – as re-
ported by Smith et al. (2014) – because the II task is more
difficult or complex than the RB task, but Le Pelley et al.
(2019) made no attempt to determine whether this difficulty

1 They are qualitative in the sense that the dissociations are not the result of the
specific parametric choices of any independent variables. For example, feed-
back delays impair II learning but have no effect on RB learning whether the
delay is 2 s, 5 s, or 10 s (Crossley & Ashby, 2015; Dunn, Newell, & Kalish,
2012; Maddox, Ashby, & Bohil, 2003; Maddox & Ing, 2005).

Fig 1 Examples of rule-based (RB) and information-integration (II)
category structures. Each stimulus is a sine-wave disc that varies across
trials in bar width and bar orientation. For each task, two illustrative
Category A and B stimuli are shown. The circles and stars denote the
specific values of all stimuli used in each task. In the RB task, only bar
width carries diagnostic category information, so the optimal strategy is to
respond with a one-dimensional bar-width rule (thick versus thin), while
ignoring the orientation dimension. In the II task, both bar width and
orientation carry useful but insufficient category information. The
optimal strategy requires integrating information from both dimensions
in a way that is impossible to describe verbally
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account is consistent with the many other empirical RB versus
II dissociations that have been reported. To correct this short-
coming in the literature, this article reports the results of the
first attempt to test the difficulty hypothesis against a broader
range of data. One challenge to testing this hypothesis is that
none of the studies arguing that a particular RB-II dissociation
was caused by a difficulty difference defined what they mean
by difficulty. Even without a rigorous definition, however, it
turns out that strong tests are possible.

In the next section, we derive two novel predictions that
discriminate between the difficulty and multiple-systems hy-
potheses. First, we show that the difficulty hypothesis predicts
that there must exist some single measure of task difficulty
that simultaneously accounts for performance differences in
all RB and II tasks. In contrast, the multiple-systems hypoth-
esis predicts that no such measure can exist because compar-
ing difficulty in RB and II tasks is like comparing apples and
oranges. Second, we show that the difficulty hypothesis pre-
dicts that the ordering of tasks by performance (e.g., final-
block accuracy) cannot change with the state of the learner,
whereas the multiple-systems hypothesis predicts that such
reversals are possible.

In the third section we examine the first test. Specifically,
we examine 13 different measures of categorization task dif-
ficulty that come from the cognitive-science and machine-
learning literatures, and we show that none of these are con-
sistent with performance differences in RB and II tasks. We
also show that one of the most powerful and popular deep
convolutional neural networks performs identically on the
two tasks. Therefore, none of these 13 measures are candi-
dates for the unknown difficulty measure that is required by
the difficulty hypothesis, nor is the convolutional neural net-
work that we tested. The fourth section describes empirical
evidence that strongly favors the multiple-systems hypothesis
on the second of these tests.

In the fifth section we show that even if one leaves diffi-
culty undefined, and just accepts that the II task is more diffi-
cult, there are still many empirical phenomena that falsify the
hypothesis that the dissociations are due to a difficulty differ-
ence. Overall, the evidence reported in this article overwhelm-
ingly rejects the difficulty hypothesis and instead strongly
favors the multiple-systems account of the many RB versus
II dissociations.

Two novel predictions of the difficulty
hypothesis

In this section, we derive two novel and contrasting predic-
tions that differentiate the difficulty and multiple systems hy-
potheses. The first is that the difficulty hypothesis predicts that
there must exist a single difficulty measure that can account
for performance differences in all categorization tasks,

whereas the multiple systems hypothesis predicts that such a
measure cannot exist. The second differential prediction is that
the difficulty hypothesis predicts that the rank order of two
tasks by difficulty cannot depend on the state of the learner,
whereas the multiple systems hypothesis predicts that at least
some difficulty reversals of this type are possible.

Is there a single measure that predicts difficulty in all
categorization tasks?

All learning systems struggle under certain experimental con-
ditions and flourish under others. If there is only one learning
system, then the same conditions will cause learning to strug-
gle in all tasks. A difficulty measure that is sensitive to these
conditions will therefore accurately predict difficulty in all
categorization tasks. In contrast, if one system dominates in
RB tasks and a different system dominates in II tasks, then
conditions that cause learning to struggle will be different in
RB and II tasks (else the systems would not be different). As a
result, instead of one difficulty measure, two would be re-
quired – one that is sensitive to the conditions that make RB
learning difficult, and one that is sensitive to the conditions
that make II learning difficult. Therefore, one difference be-
tween the difficulty and multiple-systems hypotheses is that
the difficulty hypothesis requires that a single measure of task
difficulty exists that simultaneously accounts for performance
differences in all RB and II tasks, whereas the multiple-
systems hypothesis requires that constructing such a measure
is impossible. The single measure assumed by the difficulty
hypothesis might be highly complex in the sense that it could
depend on a variety of different category statistics. The only
requirement of the difficulty hypothesis is that the same mea-
sure must apply to all tasks.

Unfortunately, this prediction of the difficulty hypothesis is
almost impossible to refute because doing so would require
testing and rejecting an infinite number of different possible
measures. Conversely, even if the difficulty hypothesis is true,
and there is a single measure of categorization difficulty, it
might be difficult to find this measure among the infinite
number of alternatives. For this reason, our goals must be
somewhat limited. One way to begin, however, is to note that
if there is a single valid difficulty measure, then it must accu-
rately predict performance differences among all RB tasks,
and also among all II tasks. So one approach is to begin with
measures that have successfully predicted difficulty differ-
ences among RB tasks and ask whether they also succeed on
II tasks, and to examine measures that have been successful
with II tasks and ask whether they succeed with RB tasks.

In fact, measures that successfully predict difficulty differ-
ences among RB tasks exist, and so do measures that success-
fully predict difficulty differences among II tasks. In the case
of RB categories, the best measure of task difficulty was pro-
posed by Feldman (2000), who hypothesized that difficulty is
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determined by the Boolean complexity of the optimal classi-
fication rule. He showed that Boolean complexity gave a good
account of difficulty differences across 41 different category
structures that all had optimal rules that could be described
verbally. Rosedahl andAshby (2019) derived a difficulty mea-
sure for II tasks from the procedural-learning model of
COVIS, which they called the striatal difficulty measure
(SDM). They showed that the SDM accounted for 87% of
the variance in final-block accuracy across a wide range of
mostly II category-learning data sets, and that this measure
provided consistently better predictions than 12 alternative
measures. The data sets came from four previously published
studies that each included multiple conditions that varied in
difficulty. The studies were highly diverse and included ex-
periments with both continuous- and binary-valued stimulus
dimensions, a variety of stimulus types, and both linearly and
nonlinearly separable categories.

The current question is whether either of these measures, or
any others, can simultaneously predict learning difficulty in
RB and II tasks. Unfortunately, Boolean complexity of the
optimal classification strategy can be ruled out immediately
because there is no Boolean algebraic analogue of the diago-
nal bound in the Fig. 1 II task.2 Even so, the SDM can be
applied to RB tasks, and many other difficulty measures have
been proposed that can be applied to both RB and II tasks.
Below we consider 13 measures that are popular in the
cognitive-science and machine-learning literatures, and ask
whether any of these are at least roughly consistent with per-
formance differences in RB and II tasks. In addition to these
measures, we also tested a popular deep convolutional neural
network – named AlexNet – on the same RB and II categories
(Krizhevsky, Sutskever, & Hinton, 2012). AlexNet famously
won the ImageNet Large Scale Visual Recognition Challenge
in 2012 by a large margin. This competition required each
algorithm to categorize 150,000 photographs of natural ob-
jects into one of 1,000 object categories. Although AlexNet
may use a different classification strategy than humans, in
terms of classification accuracy, it is among the most
human-like algorithms available.

Does categorization difficulty depend on the state
of the learner?

A fundamental prediction of the multiple-systems hypothesis
is that accurate prediction of task difficulty must depend on
statistical properties of the categories and on some property of
the learner. If there are multiple learning systems and each
system struggles under different conditions, then information
about which system the learner is using is required to

determine which statistical properties of the categories deter-
mine difficulty. In contrast, the difficulty hypothesis predicts
that the learner uses the same learning strategy with all cate-
gories, and therefore information about the current state of the
learner is not necessary to order tasks by difficulty.
Knowledge of the learner’s state might help predict whether
performance will be good or bad, but if the learner struggles
more with task A than task B, then this ordering should hold
regardless of the current working memory capacity, attention-
al resources, or motivation of the learner. Therefore, only the
categories need to be studied – to extract the statistical prop-
erties that determine difficulty. One can see that the difficulty
hypothesis is quickly undermined without this constraint. If
different task conditions determine difficulty when the learner
changes state, then the learner must be using different strate-
gies or processes in different states, in which case the difficul-
ty hypothesis explodes into a perfect version of the multiple-
systems hypothesis.

One empirical test between these alternatives would be to
ask whether it is possible that performance in some task A is
better than performance in task B when the learner is in one
state, but that this ordering reverses when the learner is in a
different state. The difficulty hypothesis predicts that this sce-
nario is impossible because any state that affects learning
should have similar effects on all tasks. For example, reduced
motivation should impair performance in all tasks, so the or-
dering of tasks by difficulty should be preserved across differ-
ent levels of motivation. However, if performance in task A is
mediated by one system and performance in task B is mediat-
ed by a different system, then any state of the learner that
affects one system more than the other could cause the order-
ing of tasks by performance to reverse. Thus, a second novel
test between the difficulty and multiple-systems hypotheses is
to ask whether the ordering of tasks by performance can ever
reverse with changes in the state of the learner.

Is there a single measure that predicts
difficulty in all categorization tasks?

This section examines the first novel prediction of the diffi-
culty hypothesis – namely, that there must exist a single mea-
sure of difficulty based only on statistical properties of the
categories that simultaneously accounts for performance dif-
ferences in all categorization tasks. In contrast, the multiple-
systems hypothesis predicts that the best one can do is develop
separate quantitative measures of RB and II task difficulty. As
mentioned previously, this section examines whether any of
13 different difficulty measures that are popular in the cogni-
tive science and machine learning literatures, or the deep
convolutional neural network AlexNet are roughly consistent
with learning rate differences in RB and II tasks. Each of these

2 To write the Boolean analogue of a categorization strategy, the correspond-
ing decision bound must be a piece-wise linear function that includes only
vertical and horizontal line segments.
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measures is briefly described below. Readers not interested in
the technical details can skip to the following section.

Difficulty measures

We know of only two previous articles that attempted to pre-
dict difficulty in II tasks (Alfonso-Reese, Ashby, & Brainard,
2002; Rosedahl & Ashby, 2019). Alfonso-Reese et al. (2002)
focused on three measures (class separation, covariance com-
plexity, and error rate of the ideal observer). Rosedahl and
Ashby (2019) examined these same three measures, plus nine
other measures that are popular in the machine-learning liter-
ature (described by Lorena, Garcia, Lehmann, Souto, & Ho,
2018), and in addition, they proposed a new measure (i.e., the
striatal difficulty measure). Here we tested the predictions of
all these measures on RB and II category structures. As men-
tioned earlier, we also tested AlexNet on these same RB and II
categories (Krizhevsky et al., 2012). These 13 alternative mea-
sures and AlexNet are described briefly in this section. For
more details, see Rosedahl and Ashby (2019), Lorena et al.
(2018), and Krizhevsky et al. (2012).

Difficulty measures from the cognitive science literature

Class Separation (Csep; Alfonso-Reese et al., 2002) This mea-
sure is analogous to the between-category d′. It is defined as
the distance between the categorymeans divided by ameasure
of the standard deviation within the categories along this
direction.

Covariance Complexity (CC; Alfonso-Reese et al., 2002) This is
a measure that increases with the heterogeneity in the category
variances and covariances.

Error Rate of the Ideal Observer (eIO; Alfonso-Reese et al.,
2002) This is the error rate of a participant using the optimal
classification strategy in the absence of any perceptual or
criterial noise.

Striatal Difficulty Measure (SDM; Rosedahl & Ashby, 2019)
SDM is defined as between-category similarity divided by
within-category similarity, where between-category similarity
is the summed similarity of all exemplars to all other exem-
plars belonging to contrasting categories and within-category
similarity is the summed similarity of all exemplars to all other
exemplars belonging to the same category.

Graph-theoretic measures of difficulty
from the machine-learning literature

A number of difficulty measures that are popular in the
machine-learning literature begin by representing the categories
as a graph. In these approaches, each category exemplar is

represented as a node or vertex in a graph, and nodes are
connected if the Gower distance in stimulus space between
the corresponding exemplars is less than some criterion value.
Finally, edges that connect exemplars from contrasting
categories are pruned. In the current applications, Gower
(1971) distance is similar to city-block distance that has been
standardized to a [0,1] scale, with the value of 1 being assigned
to the largest possible distance in the data set. So consider the
Fig. 1 categories. Note that if the two categories are moved
farther apart (in either condition), then the maximum possible
distance will increase. Thus, the Gower distance between two
exemplars from the same category decreases as the categories
move farther apart.3 This means that, for the same pruning
criterion, more exemplars will be connected to exemplars from
the same category as category separation increases.

Average Density of the Network (Density; Lorena et al., 2018)
Density is defined as the number of edges in the graph divided
by the maximum possible number of edges in a graph with the
same number of nodes.With widely separated categories, little
or no pruning will be necessary and density will be high. In
contrast, with overlapping categories, many exemplars will
have nearby neighbors that belong to the contrasting category,
and therefore density will be low.

Clustering Coefficient (ClsCoef; Lorena et al., 2018) This is a
measure of average local density. First, for each node, define
its neighborhood as the set of all nodes that are directly con-
nected (i.e., in the same graph used to compute Density).
ClsCoef is the mean density of each of these neighborhoods.

Hub Score (Hubs; Lorena et al., 2018) The hub score equals the
number of connections a node has weighted by the number of
connections of each of its neighbors. With widely separated
categories, each exemplar will be connected to more exem-
plars from its own category than with overlapping categories,
so hub score increases with category separation.

Fraction of Borderline Points (FBP; Lorena et al., 2018) This is
a related measure that uses a different algorithm to represent
the categories as a graph or network. In this case, the catego-
ries are represented as a minimum spanning tree, which essen-
tially is a tree constructed by placing an edge between each
exemplar and its nearest neighbor, regardless of category
membership. In this approach, there is no pruning. The frac-
tion of borderline points equals the proportion of exemplars in
all categories that are connected by an edge to an exemplar
belonging to a contrasting category.

3 If two exemplars are in the same category then the absolute distance between
them will not change as the categories are moved apart, but to standardize to a
[0,1] scale we must divide their absolute distance apart by the maximum
possible distance. Since this value increases with category separation, the
Gower distance between the two exemplars must decrease.
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Other machine-learning measures of difficulty

Collective Feature Efficiency (CFE; Orriols-Puig Macià, & Ho,
2010) This measure is based on the percentage of stimuli that can
be correctly classified using decision bounds perpendicular to each
stimulus dimension (i.e., the one-dimensional bounds that COVIS
assumes are fundamental to the explicit rule-learning system).

Error Rate of Nearest Neighbor Classifier (eNN; Lorena et al.,
2018) This is the error rate of a classifier that assigns the
stimulus to the category of its nearest neighbor among all
other stimuli in the two categories.

Fraction of Hyperspheres Covering Data (T1; Ho & Basu, 2002)
This measure is computed by first centering a hypersphere on
each stimulus and setting the radius equal to the distance be-
tween that stimulus and the nearest exemplar from the contrast-
ing category. All hyperspheres that are completely contained in
another hypersphere are then removed and the measure is sim-
ply the fraction of original hyperspheres that remain.

Ratio of Intra- to Extra-Class Nearest-Neighbor Distance (N2;
Ho, 2002) N2 equals the sum of the distances to the nearest
neighbors in each contrasting category divided by the sum of
the distances to the nearest neighbors in the same category.

Volume of Overlapping Regions (VOR; Souto, Lorena, Spolaôr,
& Costa, 2010) This measure increases with the amount of
overlap of the category distributions on each separate stimulus
dimension.

AlexNet

AlexNet (Krizhevsky et al., 2012) is a deep convolutional
neural network that includes five convolutional layers and
three fully connected layers. We replaced the final three layers
of the network with a fully connected layer, a softmax layer,
and a classification output layer, respectively. To test the abil-
ity of AlexNet to learn the RB and II categories, we generated
600 stimuli from both structures, split the data sets into 70%
(420 trials) training and 30% (180 trials) testing, and trained
the network on ten minibatches of 42 trials each. We defined
AlexNet difficulty as its error rate on the testing data.

Applications to RB and II Tasks

For AlexNet and each of these 13 measures, we computed
difficulty of the RB and II tasks illustrated in Fig. 1. The
results are shown in Table 1.4 Note that ten of the 14 measures

predict that the RB and II tasks are equally difficult. It is not
surprising that most of the measures predict no difficulty
difference because the RB and II category structures are
identical except for their orientation in stimulus space. The
SDM is among these ten measures. This is noteworthy
because the SDM is the best available predictor of learning
difficulty in II tasks. As mentioned earlier, Rosedahl and
Ashby (2019) showed that the SDM accounted for 87% of
the variance in the final-block accuracies of 17 different data
sets that were collected in different labs, used different stimuli,
and included both linearly and nonlinearly separable catego-
ries. Unfortunately, this powerful measure of II task difficulty
fails to account for the qualitatively strong finding that learn-
ing is much faster in the Fig. 1 RB task than in the II task,
unless one acknowledges that participants bring qualitatively
different learning processes to the RB task.

Supporting this idea, Rosedahl and Ashby (2019)
showed that the SDM failed in one important instance
– that is, human learners were better than the measure
predicts on the Shepard, Hovland, and Jenkins (1961)
Type 2 categories. Even Shepard and his colleagues
were struck originally by the high levels of Type 2
performance. But it turns out that the optimal rule on
Type 2 categories has a simple verbal description (e.g.,
respond A to a large square or a small triangle; other-
wise respond B), so the Type 2 categories are best de-
scribed as an RB task that is amenable to qualitatively
different learning processes.

Table 1 Predicted difficulty for the Fig. 1 rule-based (RB) and
information-integration (II) categorization tasks

Difficulty Measure RB Task II task

AlexNet 0.005 0.002

Density 0.81 0.81

Csep 0.07 0.07

ClsCoef 0.31 0.29

CFE 0 0.03

CC 0.32 0.32

eIO 0 0

eNN 0 0

FBP 0.003 0.003

T1 0.01 0.01

Hubs 0.66 0.66

N2 0.04 0.04

SDM 0.28 0.28

VOR 0 0.12

Note. Some of the measures we examined predict easiness, rather than
difficulty (i.e., higher values indicate an easier task). Therefore, to aid
interpretation, all such values in Table 1 are defined as 1 minus computed
easiness. The one exception is Csep, where we defined difficulty as the
inverse of easiness. Thus, in all cases, higher values of all Table 1 mea-
sures indicate greater difficulty

4 The numerical values in this table were computed from the RB and II
categories shown in Fig. 1, which are identical to the categories used by Ell
and Ashby (2006) in their medium-low condition.
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AlexNet actually performed slightly better on the II task.
However, as mentioned previously, the AlexNet difficulty
measure is its error rate in each task. Thus, the AlexNet accu-
racy was above 99% correct in both tasks, and as a result, the
difference in predicted difficulty is negligible. Difficulty mea-
sure ClsCoef also predicts that the RB task is more difficult
than the II task. ClsCoef is a network or graph-theoretic mea-
sure of task difficulty. As described in the previous section, the
first step is to represent the categorization stimuli as a graph in
which two stimuli are connected by an edge if their distance
apart in stimulus space is less than some criterion value. The
45° rotation of the Fig. 1 RB categories that creates the II
categories preserves the Euclidean distance between every
pair of points, but not other types of distance. For example,
the II category means are farther apart according to city-block
distance than the RB means. The graph that ClsCoef operates
on is built from a non-Euclidean metric that is similar to city-
block distance (called Gower distance). This models the II
categories to be more separated in perceptual space, and this
is the reason that ClsCoef predicts that the RB task should be
more difficult than the II task. Of course, this predicted differ-
ence is problematic because, empirically, RB tasks are gener-
ally more learnable, not less learnable.

Difficulty measures CFE and VOR predict that the II task is
more difficult than the (rotated) RB task. Both of these mea-
sures privilege the stimulus dimensions over other directions
through stimulus space. CFE predicts that difficulty decreases
with the proportion of stimuli that can be correctly classified
by a vertical or horizontal bound. Obviously, this proportion is
1 for the Fig. 1 RB categories, but less than 1 for the II cate-
gories. Similarly, VOR predicts that difficulty increases with
the range of values on each dimension that are shared by both
categories. Note that the RB categories share no common
values on the bar-width dimension, whereas the II categories
share common values on both dimensions. Thus, of the 13
difficulty measures considered here, only CFE and VOR cor-
rectly predict that with the Fig. 1 categories, RB learning will
be faster than II learning. And both do so by acknowledging
the learner’s potential strong role in dimensional perception,
selective attention, and rule learning.

The obvious next question, therefore, is whether either of
these measures can accurately predict difficulty in all RB and
II tasks. In other words, is either one of these measures a
candidate for the unknown difficulty measure that must
underly the difficulty hypothesis? The unfortunate answer is
a definite no. Whereas the SDM accounted for 87% of the
variance in the final-block accuracies of the 17 data sets ex-
amined by Rosedahl and Ashby (2019), VOR only accounted
for 2% of this variance and CFE only accounted for 18%.
Thus, neither measure that seems to accommodate the RB
learning advantage is able to predict learning-rate differences
across different II tasks. Both measures also make other incor-
rect predictions. For example, they also both incorrectly

predict no decrease in difficulty as the Fig. 1 RB categories
are moved farther apart from each other.

In summary, the difficulty hypothesis requires as a prereq-
uisite that some single quantitative measure of difficulty exists
that simultaneously accounts for learning-rate differences in
all RB and II tasks. If this is not true, then there is no basis to
claim that the Fig. 1 RB task is less difficult than the Fig. 1 II
task. In this section, we saw that no current measures of diffi-
culty satisfy this prerequisite. The best available predictor of
difficulty in RB tasks – namely the Boolean complexity of the
optimal classification rule – is not even defined for II tasks.
The best available predictor of difficulty in II tasks – the SDM
– incorrectly predicts no difficulty difference between the Fig.
1 RB and II tasks. Furthermore, one popular difficulty mea-
sure actually predicts that the II task should be easier than the
RB task, and nine other widely used measures predict no
difference in RB and II difficulty. We did identify two mea-
sures that correctly predict that the II task is more difficult
(CFE and VOR), but both measures failed miserably at
predicting difficulty differences among different II tasks. In
addition, we showed that one of the most powerful and pop-
ular deep convolutional neural networks also predicts no dif-
ficulty difference between the Fig. 1 RB and II tasks.

Does categorization difficulty depend
on the state of the learner?

In the previous section, we saw that no current measures of
categorization difficulty are able to account simultaneously
for performance differences in RB and II tasks. Although this
result supports the multiple-systems hypothesis over the diffi-
culty hypothesis, it is not definitive because our results do not
rule out the possibility that a single measure exists, but has not
yet been identified. However, the second novel prediction
derived in the section Two novel predictions of the difficulty
hypothesis can be tested definitively. As we saw in that sec-
tion, the difficulty hypothesis predicts that the ordering of
tasks by performance can never reverse with changes in the
state of the learner, whereas the multiple-systems hypothesis
predicts that such reversals are possible.5

In fact, difficulty reversals have been documented in the
literature. Many studies have shown that the Fig. 1 RB cate-
gories are learned much more quickly than the II categories –
when the stimuli are the sine-wave gratings shown in Fig. 1. In
fact, this large learning difference is the strongest evidence in
support of the difficulty hypothesis. But it turns out that the
Fig. 1 diagonal category structure is not always more difficult

5 The multiple-systems hypothesis predicts that difficulty must depend on the
state of the learner, but it does not necessarily predict that these changes with
the state of the learner have to be large enough to reverse some difficulty
ordering.
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than the rotated vertical (or, equivalently, horizontal) bound
structures. Whether the Fig. 1 RB or II categories are more
difficult to learn depends on how the participants perceive the
stimulus dimensions.

For example, Ell, Ashby, and Hutchinson (2012) construct-
ed two categories of color patches that varied on brightness
and saturation. They started with a category structure that was
almost identical to the Fig. 1 RB condition and then they
created three other conditions by successively rotating the
categories by 45°, 90°, and 135° in color space. In the original
(i.e., 0° rotation) and 90° rotation conditions, only one stimu-
lus dimension is relevant – either saturation or brightness. In
contrast, both of these dimensions are relevant in the 45° and
135° conditions. The Ell et al. (2012) categories were essen-
tially identical to those shown in Fig. 1. The only difference
was in the name of the stimulus dimensions. Therefore, the
difficulty hypothesis predicts that, as in Fig. 1, performance
should be worse in the 45° and 135° conditions than in the 0°
and 90° conditions. However, contrary to this prediction, the
worst performance in the four conditions occurred in the 90°
condition, in which the stimuli varied on only one relevant
dimension (i.e., saturation).

Whether stimulus dimensions are perceptually separable or
integral is a property of the perceiver, not of the stimuli them-
selves. Therefore, the Ell et al. (2012) results show that to
predict whether the Fig. 1 RB or II categories will be more
difficult requires knowledge about the state of the learner –
namely, about how the learner perceives the stimulus dimen-
sions. Thus, the Fig. 1 II task is not inherently more difficult
than the RB task. The II task is more difficult for humans to
learn with some stimuli, but not with others. COVIS accounts
for this result by acknowledging that the nature of the stimulus
dimensions profoundly affects the state of the learner, and a
change in stimulus dimensions can change which learning
system controls behavior. For the learner to apply the rule-
learning system, the selected dimension must be perceptually
separable from the non-selected dimension. For example, if
we call the perceived value on the selected dimension Y, then
the optimal strategy in the Fig. 1 RB categories is an explicit
rule of the form “Respond A if Y > yc, otherwise respond B,”
where yc is the criterion that separates the A and B categories.
Note that this rule requires that the learner attend selectively to
the attended dimension and that the perceived value on that
dimension does not depend on the value of the stimulus on
any non-selected dimensions. These are exactly the conditions
required by perceptual separability (Ashby & Townsend,
1986). Saturation and brightness are integral dimensions.
This makes attentional selection and rule-learning difficult or
impossible. Thus, the Ell et al. (2012) results confirm that the
perceptual-attentional state of the learner must also be consid-
ered when predicting task difficulty. This is strong evidence
against the difficulty hypothesis and in support of the
multiple-systems hypothesis.

No difficulty measure can account
for dissociations between RB and II learning

We saw above that current measures of classification difficulty
can predict learning rate differences in RB tasks, or in II tasks,
but not concurrently in both, and next, we saw that whether
the Fig. 1 RB task is easier or more difficult than the Fig. 1 II
task depends on how participants perceive the stimulus di-
mensions. This section considers whether the difficulty hy-
pothesis might account for the many RB and II dissociations
if we simply accept that the Fig. 1 II task is more difficult than
the Fig. 1 RB task. In other words, suppose that we accept that
there is some measure of classification difficulty that correctly
predicts difficulty in all RB and II tasks, but that this measure
has not yet been discovered. If such a single difficulty measure
existed, would the difficulty hypothesis be able to account for
all the reported RB versus II dissociations?

The first problem with this counterfactual is the same one
we had in the previous section – that is, that the Ell et al.
(2012) results prove that such ameasure cannot exist – at least,
not if the difficulty measure is based only on statistical prop-
erties of the to-be-learned categories. This implies that the
desired difficulty metric is unattainable. But in this section,
we set this concern aside, and consider the validity of the
difficulty hypothesis under the assumption that the categories
are constructed from stimuli with perceptually separable stim-
ulus dimensions. Thus, this section analyzes the literature in a
manner strongly favorable to the difficulty hypothesis. Even
so, the literature includes many results that are seemingly in-
compatible with any version of the difficulty hypothesis, and
therefore there is strong evidence that the many reported dis-
sociations between RB and II learning and performance are
not due to an RB versus II difficulty difference.

As noted earlier, many studies have shown that under im-
mediate feedback conditions, healthy young adults learn the
Fig. 1 RB categories much more quickly than the II categories
– at least when the stimuli are constructed from perceptually
separable stimulus dimensions. If this RB over II advantage is
due to a difficulty difference between the tasks, then any ma-
nipulation that impairs performance should have a greater ef-
fect on II learning than on RB learning. A manipulation that
slows learning should impair a more difficult task more than
an easy task. Many studies have disconfirmed this prediction
of the difficulty hypothesis.6

First, if humans perform worse in the II task because it is
more difficult or complex than the RB task, then the RB ver-
sus II difference should be even greater in a cognitively sim-
pler species. Tasks that are difficult for humans should be even

6 This prediction of the difficulty hypothesis is not unique to this article (e.g.,
Smith et al., 2011), which is why it is not included in the section Two novel
predictions of the difficulty hypothesis as a third novel prediction.
Nevertheless, to our knowledge, this is the first attempt to test this prediction
against a wide variety of different data.
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more difficult for a simpler species. In contrast to this predic-
tion, two different labs independently showed that pigeons
learn rotated RB and II categories at exactly the same rate
(Smith et al., 2011). Recently, a third study replicated this find-
ing (Qadri, Ashby, Smith, & Cook, 2019). This striking identity
of learning performance is shown in Fig. 2. Thus, the perfor-
mance of pigeons is perfectly predicted by the SDM and many
of the other Table 1 difficulty measures. The orientation of the
decision bound is irrelevant to pigeons. Of course, pigeons may
use a different strategy in both tasks than humans, but their
identity of performance supports the hypothesis that they used
the same strategy in both tasks, and that as predicted by most
difficulty measures, the two tasks are equally difficult.

COVIS predicts that humans are better in the RB task be-
cause they use their well-developed rule-learning system. This
system fails in the II task, so humans must resort to a slower,
associative-learning mechanism. Presumably, pigeons lack an
effective rule-learning system, and therefore must resort to
some form of associative learning in both tasks. Evidence
supporting this comes from Berg, Ward, Dai, Arantes, and
Grace (2014) who compared pigeon and human performance
in the Fig. 1 RB task and its 90° rotation, in which the single
relevant dimension was bar orientation. They reported that
“Results showed that humans learned both tasks faster than
pigeons, with abrupt increases in accuracy that were indicative
of rule-based responding, while pigeons learned the tasks grad-
ually” (p. 44). Another possibility, however, is that pigeons
perceive the Gabor stimuli in a fundamentally different way
than humans. Perhaps for pigeons, bar width and orientation
are not fundamental perceptual dimensions and therefore, for
pigeons, both Fig. 1 tasks require attention to two perceptual
dimensions. Qadri et al. (2019) reported evidence against this
hypothesis. They reported that pigeons showed greater percep-
tual generalization along the dimensions of bar width and

orientation than along other directions, and they concluded that
“these dimensions are salient, independent, and meaningful in
the pigeons’ categorization” (p. 265).

Furthermore, Broschard, Kim, Love, Wasserman, and
Freeman (2019) recently reported similar results with rats.
Specifically, they reported that rats also learn RB and II
categories like those shown in Fig. 1 equally well and at
exactly the same rate. This is an important result because rats
are mammals and therefore have a brain structure that is more
similar to humans than pigeons. Broschard et al. (2019) conclud-
ed that “rats extract and selectively attend to category-relevant
information but do not consistently use rules to solve the RB
task” (p. 84). Thus, rats, like pigeons, seem to learn RB and II
categories in the same way. In summary, neither pigeons nor rats
find the II task to be more difficult than the RB task, which
strongly suggests that there is no inherent difficulty or complexity
difference between the tasks, and therefore that the human RB
advantage occurs, not because of a difficulty difference, but be-
cause people learn the two tasks in qualitatively different ways.

Second, several studies have reported that a simultaneous
(working-memory) dual task interferes more with one-
dimensional RB learning than with II learning (e.g.,
Crossley et al., 2016; Waldron & Ashby, 2001; Zeithamova
& Maddox, 2006). This is opposite to what the difficulty hy-
pothesis predicts. Trying to do two things at once should be
harder if the two tasks are difficult than if they are easy. And
the fact that the second task in these studies required working
memory is especially problematic for the difficulty hypothesis
because the presumed difficulty difference between RB and II
tasks is often justified by the assumption that the II task has
greater working memory demands than the RB task. For
example, Le Pelley et al. (2019) cited the “low memory-
demands associated with the” RB category-learning task as a
major driver of the RB versus II difficulty difference. If the II
task is more difficult than the RB task because it has higher
memory demands, then increasing working memory load via
a simultaneous dual task should have a muchmore deleterious
effect on the more memory-demanding II task. But the oppo-
site is clearly true. A simultaneous (working-memory-depen-
dent) dual task interferes with learning much more in the
“simple” RB task than in the “difficult” II task. It is important
to note that COVIS predicts these results a priori. According
to COVIS – the most influential current instantiation of the
multiple-systems hypothesis – learning the optimal rule in the
RB task requires working memory and executive attention,
whereas executive function plays little or no role in the pro-
cedural learning needed to optimize performance in the II task.

Third, a number of studies have shown that manipulations
that interfere with feedback processing impair RB learning
more than II learning (Maddox, Ashby, Ing, & Pickering,
2004a; Zeithamova & Maddox, 2007). This result also runs
counter to the difficulty hypothesis. The II task, the putatively
more difficult task, should need more of the effortful and

Fig. 2 Pigeons’ learning curves in information-integration (II) and rule-
based (RB) categorization tasks. The proportion of correct responses in
each session are shown from the criterial block backward for eight II-
learning pigeons and eight RB-learning pigeons. Reprinted from Smith
et al. (2012)
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attentional feedback processing than the RB task, so the II task
should suffer more when those interpretative processes are
blocked. The opposite is clearly true. COVIS correctly pre-
dicts these results (again in an a priori fashion) because it
assumes that II learning is about the building of associative
connections between cortical stimulus representations and be-
havioral outputs. Feedback is incorporated automatically into
strengthening these associations (Maddox et al., 2003).
Blocking post-trial cognition will not affect this process. In
contrast, humans in the RB task are testing, (dis)confirming,
and revising dimensional hypotheses to learn the appropriate
rule. They must effortfully evaluate what feedback means for
their ongoing hypothesizing, and so derailing post-trial cogni-
tion has serious consequences.

Fourth, pressure to perform impairs performance in RB
tasks, and actually improves performance in II tasks
(Markman, Maddox, & Worthy, 2006; Worthy, Markman, &
Maddox, 2009). Similarly, Ell, Cosley, and McCoy (2011) re-
ported that stress improved performance and the use of optimal
strategies in II tasks, but impaired performance in RB tasks,
although not significantly. These results are strongly incompat-
ible with the difficulty hypothesis. For example, the difficulty
hypothesis predicts that the difficult II task should crumble first
under pressure, yet the opposite is true. Instead, these results are
compatible with multiple learning systems. The implicit system
learns automatically – pressure cannot affect the forming of
stimulus-response associations. Moreover, under pressure, one
is less likely to send the explicit learning system to hijack the
task, which can lead to adventitious rules and poor perfor-
mance. So, true II learning can occur. However, pressure might
well derail the explicit, effortful cognitive processes that are
necessary to solve the RB task, and so it could be impaired.

Fifth, increasing the number of contrasting categories
slows RB learning but not II learning (Maddox, Filoteo,
Hejl, & David, 2004b) – again, exactly opposite to the predic-
tion of the difficulty hypothesis. Sixth, many studies have
deliberately included more difficult RB conditions – so that
RB and II performance is approximately equated – and found
that the qualitative differences predicted by COVIS are still
evident (e.g., Crossley et al., 2016; Maddox & Ing, 2005).

Conclusions

Difficulty is a tricky construct. It seems so familiar that one is
tempted to apply the criterion that Supreme Court Justice
Potter Stewart used to identify obscenity in Jacobellis v.
Ohio – namely, “I’ll know it when I see it” (Lattman, 2007).
Examining Fig. 1 can produce the impression that the II task is
more difficult than the RB task. After all, learning the RB
categories is simply a matter of figuring out that Category A
disks have thick bars and Category B disks have thin bars,
whereas learning the II categories requires… well, something

else. But this is exactly the point of the multiple-systems hy-
pothesis. Learning the RB categories is a matter of finding the
optimal explicit rule, whereas no such rule exists for the II
categories. With RB categories, humans can accelerate learn-
ing by exploiting our sophisticated logical reasoning abilities.
The RB task seems easier because we evolved a system that is
perfectly suited for this task. With the II categories, no logical
rule determines category membership so this system fails.
Instead, II categories must be learned in a slower, more incre-
mental and associative fashion.

The “I’ll know it when I see it” criterion is dangerous
because it flirts with circularity. One can always examine
any set of results, note which condition has the worst perfor-
mance, and then assert by fiat that this is the most difficult
condition. But this approach has no predictive power – the
results are used as an explanation of themselves.

Difficulty is a useful scientific construct only if it can be
defined rigorously. Unfortunately, none of the studies hypothe-
sizing that the RB versus II dissociations are due to difficulty
differences defined what they mean by difficulty. The vague
theoretical nature of this claim makes it much more difficult
to test. Nevertheless, as demonstrated here, strong tests are pos-
sible. And, as we have shown, these tests overwhelmingly re-
ject the difficulty hypothesis and instead strongly favor the
multiple-systems account of the many RB versus II dissocia-
tions. Even so, it is important to acknowledge that any single
article is unlikely to definitively disconfirm or confirm any
psychological theory, and in this sense, the ambiguity of the
difficulty hypothesis works in its favor. For example, we
showed that a wide variety of current difficulty measures fail
to account for learning rate differences betweenRB and II tasks,
but we did not show that a difficulty measure that can account
for these differences does not exist. And we disconfirmed sev-
eral predictions that seem to follow in a straightforward manner
from the difficulty hypothesis, but perhaps some other subtler
version of the hypothesis is possible that is not constrained by
these predictions. Even so, our results make an important con-
tribution because they show that the most straightforward inter-
pretation of the difficulty hypothesis is incompatible with many
well-established empirical phenomena. In this sense, the ball is
now in the court of proponents of the difficulty hypothesis. We
found no evidence supporting this hypothesis and we
disconfirmed several of its seemingly straightforward predic-
tions. Resurrecting this theoretical account of themany reported
dissociations between RB and II tasks now requires a more
formal description of the difficulty hypothesis that overcomes
the apparent weaknesses that were demonstrated here.
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