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Mathematical Models of Human Learning
F. Gregory Ashbya, Matthew J. Crossleyb, and Jeffrey B. Inglisc

4.1 Early Models of Human Learning

Many early learning theories were seeded by the seminal work of Thorndike.

In his famous “puzzle box” experiments, Thorndike placed an animal inside

a box with a door that could be opened via a latch accessible to the animal.

When the animal learned to operate the latch correctly, the door opened,

and it was free to consume a reward placed near the box. Thorndike mea-

sured the amount of time it took animals to solve such puzzle boxes and

found that the escape time tended to decrease with each trial – that is, the

animals learned. From these observations, Thorndike (1927) postulated the

law of effect , which states that behavior is driven by associations between

stimuli and responses, and that these associations are strengthened when a

response is followed by a satisfying effect and weakened when followed by

a discomforting effect. With this, the field of associative learning was born.

Already apparent in this early work is its clear connections to modern-day

reinforcement learning (RL) theory.

Russian physiologist Pavlov (1927) pioneered one still modern approach to

studying associative learning called classical conditioning . His famous exper-

iments studying how the salivation response of dogs could be conditioned to

occur to a previously neutral stimulus gave the field a standardized paradigm

and a new nomenclature (e.g., unconditioned stimulus [US], unconditioned

response [UR], conditioned stimulus [CS], and conditioned response [CR])

that drove research in the field forward. Later, Skinner (1938) pioneered

many more of the standard methods in use today for the investigation of

associative learning. He created operant conditioning chambers – popularly

known as the Skinner box – that were equipped with both a manipulandum

a University of California, Santa Barbara, USA
b Macquarie University, Australia
c University of California, Santa Barbara, USA



4 Mathematical Models of Human Learning

(e.g., a lever) and a tool to record lever pulls so that cumulative operant

behavior (e.g., pulling the lever) could be measured over an experimental

session. This approach came to be known as operant or instrumental condi-

tioning .

Watson and Guthrie followed many of the basic tenets of associative learn-

ing formulated by Thorndike, but each introduced novel refinements (e.g.,

Guthrie 1935; Watson 1913). Unlike Thorndike, neither thought that rein-

forcement (i.e., neither a satisfying nor discomforting effect) was necessary

for associative learning. Rather, they thought that mere temporal contigu-

ity between stimulus and response was sufficient. Later in this chapter, we

will see how this notion is related to a form of two-factor synaptic plasticity

proposed by Hebb (1949).

An important theoretical alternative to the dominant theories of instru-

mental conditioning came from Tolman (1948), who advocated that animals

learned “cognitive maps” and used these maps to make flexible and goal-

directed actions. This view gained relatively little traction in Tolman’s life-

time, but is renewed today by modern model-based RL accounts of learning.

The first attempts to formalize theories of learning focused on building

mathematical equations that could fit learning curves from a variety of dif-

ferent conditioning experiments (Gulliksen, 1934; Hull, 1943; Thurstone,

1919). The most systematic attempts were by Hull (1943), who embraced

Thorndike’s fundamental ideas on associative learning – although he spoke

of habits instead of stimulus-response associations. More importantly, he ex-

pressed his views in the form of explicitly stated assumptions. The resulting

equations clearly expressed what Hull believed were driving factors of an

animal’s behavior (e.g., habit strength, drive reduction, etc.).

In the 1950’s, mathematical models of learning began to focus less on curve

fitting and more on the psychological processes that mediate the learning.

This change in focus began with two Psychological Review articles on math-

ematical learning theory that appeared in quick succession – Estes’ (1950)

introduction of stimulus-sampling theory and Bush and Mosteller’s (1951)

description of the linear-operator model. Both of these contributions were

hugely influential, partly because they were among the first process models

in psychology, and as such, they spurred others to develop their own process

models. The excitement created by these efforts played a key role in the

birth of modern mathematical psychology. But both articles were also influ-

ential in their own right. In particular, the linear-operator model inspired the

Rescorla-Wagner model (Rescorla & Wagner, 1972), which is now ubiqui-

tous in the learning literature, and more than a half century later, stimulus-
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sampling theory continues to motivate new research (e.g., Fanselow, Ze-

likowsky, Perusini, Barrera, and Hersman 2014; Soto and Wasserman 2010).

Mathematical learning theory played a huge role in the field of math-

ematical psychology during its first formal decade of existence. Stimulus

sampling theory and the linear operator model were both elaborated, and

a large number of Markov chain models were proposed that assumed learn-

ing was a process of moving between discrete states of knowledge. During

the 1960s, interest in cognitive processes saw a shift to models of concept

learning, which today would be called rule-based learning, and a new focus

on the cognitive components of learning, including attention, storage, and

retrieval (e.g., Greeno and Bjork 1973). Much of this work is reviewed in the

classic text by Atkinson, Bower, and Crothers (1965).

Today, mathematical models of learning are developed and tested in a

wide range of different fields, including for example, machine learning (e.g.,

Alpaydin 2020; Mohri, Rostamizadeh, and Talwalkar 2018), and learning in

simple species such as Drosophila (e.g., Kennedy 2019) and zebrafish (e.g.,

Ninkovic and Bally-Cuif 2006). A review of all this work is outside the scope

of any one chapter. Instead, our focus will be on mathematical models of

human learning. In some cases, we will consider developments in machine

learning and research with non-human animals, but in all cases the focus

will be on how such work has contributed to our understanding of human

learning.

4.2 Neuroscience Breakthroughs

Mathematical modeling of human learning began to languish in the late

1960s, partly because of the cognitive revolution that turned interest to other

phenomena, and partly because it became apparent that the best existing

models were valid for only a narrow and limited set of learning-related phe-

nomena. Furthermore, models that succeeded in different domains often bore

little similarity to each other. This landscape remained largely unchanged

for the next several decades, until two breakthroughs in neuroscience offered

a clear path forward. The first was the discovery of long-term potentiation

(LTP) and long-term depression (LTD), which served as promising models

of learning at the cellular level. The second breakthrough was the discov-

ery that humans have multiple learning and memory systems that for the

most part are functionally and anatomically distinct, and that each con-

trol behavior under different experimental conditions. As a result, it is likely

that no single mathematical model can describe all human learning. Instead,

qualitatively different models are needed for different learning systems.
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4.2.1 Discovery of LTP and LTD

In his classic 1949 book, entitled “Organization of Behavior: A Neuropsycho-

logical Theory,” Donald Hebb proposed a neural mechanism that he thought

might mediate learning and memory. Specifically, he postulated that

Let us assume then that the persistence or repetition of a reverberatory activity
(or ‘trace’) tends to induce lasting cellular changes that add to its stability. The
assumption can be precisely stated as follows: When an axon of cell A is near
enough to excite a cell B and repeatedly and persistently takes part in firing it,
some growth process or metabolic change takes place in one or both cells such that
A’s efficiency, as one of the cells firing B, is increased (p. 62, Hebb 1949).

Hebb’s hypothesis is now widely known as Hebbian learning .

Several decades later, this exact type of neural plasticity was discovered at

synapses in the hippocampus (Bliss & Lømo, 1973). Specifically, brief, high-

frequency presynaptic activation was found to cause a persistent (at least 1

hour) increase in the post-synaptic response – a phenomenon known as long-

term potentiation (LTP). Then, 9 years later, the opposite phenomenon of

long-term depression (LTD) was discovered, in which prolonged, but weak

presynaptic activation causes a persistent (at least 1 hour) decrease in the

postsynaptic response (Ito, Sakurai, & Tongroach, 1982). LTP and LTD have

now been observed and closely studied in many different brain regions and

in many different cell types. Furthermore, they are known to occur under a

plethora of diverse conditions, and to be driven by numerous intracellular

signalling cascade mechanisms. Although a review of the current literature

on LTP and LTD is well beyond the scope of this chapter, a noncontroversial

conclusion of this literature is that it is now widely accepted that LTP

and LTD form the neural basis of learning and memory (e.g., S. Martin,

Grimwood, and Morris 2000; Nicoll 2017).

4.2.2 Discovery of multiple learning and memory systems

Early mathematical models of learning assumed that all human learning

occurs in the same way, which suggests that all learning should depend on

the same neural network and be consolidated into the same memory system.

This assumption was inconsistent with the growing body of evidence that

began to accumulate in the 1960s showing that the best models seemed valid

for only a narrow range of experimental tasks, and this led many mathemat-

ical psychologists to turn away from the study of learning. A resurgence in

mathematical models of learning was ushered in by the discovery that hu-

mans have multiple learning and memory systems that for the most part are
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functionally and anatomically distinct, that evolved at different times and

for different purposes, that are ideally suited to learning different types of

information, and that thrive under very different environmental conditions.

The first step in this process was to realize that humans have multiple

memory systems (e.g., Eichenbaum and Cohen 2001; Poldrack et al. 2001;

Squire 2004; Tulving and Craik 2000). After overwhelming evidence in sup-

port of multiple memory systems was documented, it was an easy inference

to conclude that humans must therefore also have multiple learning systems.

After all, learning is the acquisition of a skill or some form of knowledge, and

memory is the storage and/or expression of what was learned. So learning

and memory are closely related. Mathematical models of learning focus on

how the memory traces are established and consolidated, whereas models

of memory focus on the nature of those traces and how they are accessed

to produce memory-dependent behaviors (e.g., see the chapter by Howard

in this volume). For this reason, an obvious hypothesis is that there are

as many learning systems as there are memory systems (e.g., Ashby and

Maddox 2005; Ashby and O’Brien 2005).

As soon as the multiple systems hypothesis was formulated, work began to

identify the networks that mediate learning in each system and to study the

properties of the various systems (for a review, see e.g., Ashby and Valentin

2017). This body of research made it clear that no single model was likely to

account for all human learning. For example, basal-ganglia-mediated proce-

dural learning is incremental, whereas prefrontal-cortex mediated rule learn-

ing is mostly all-or-none (e.g., J. D. Smith and Ell 2015).

4.3 Modern Approaches to Modeling Human Learning

The birth of mathematical psychology coincided with the first attempts to

build process models of learning. The reinterest in learning that occurred

with the neuroscience breakthroughs described in the previous section coin-

cided with the development of new types of learning models, and also with

the first ever implementational-level models – that is, models that attempt to

describe the neural circuits that implement the algorithms described by pro-

cess models. This section briefly introduces these more modern approaches

to building mathematical models of learning, and then the rest of the chapter

examines these trends in more detail.
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4.3.1 Descriptive- and process-level approaches

Current descriptive and process models of human learning are dominated

by two different, but converging approaches – one rooted in the statistics

literature and one rooted in the machine-learning and computer-science lit-

eratures (as described, e.g., by Alpaydin 2020; Sutton and Barto 1998). Both

attempt to build models that optimize some aspect of learning – the former

by following principles of Bayesian statistics, and the latter by assuming that

human learning depends on some popular machine-learning algorithms.

Normative models have a long history in psychology. For example, ideal

observer models have played an important role in psychophysics and signal

detection theory since the 1950s (e.g., Green and Swets 1966). Similarly,

during the 1980s and 1990s, human classification performance was carefully

compared to the performance of optimal classifiers (e.g., Ashby and Alfonso-

Reese 1995; Ashby and Maddox 1998). Comparing human performance to

the performance of an optimal device is a valuable step in the evolution of

model building in any area of psychology. Humans are highly skilled in many

behaviors, so an optimal model will often provide a reasonably good fit to

human data. Better fits are usually possible by adding certain suboptimal

components to the model, such as various types of noise. Carefully docu-

menting which types of added suboptimalities allow the model to provide

the best fit provides invaluable information about the underlying processes

that mediate the behavior. In the case of human learning, the Bayesian mod-

els are objectively optimal, in the sense that they assume the learner chooses

the response most likely to be correct, and that these choice probabilities are

updated trial-by-trial according to Bayes theorem. In this class of models,

learning is typically equivalent to Bayesian updating.

An alternative approach, which is perhaps even more popular and that

looks very different on the surface, is to build models that assume human

learning follows algorithms that were developed in the computer-science,

machine-learning, and artificial-intelligence literatures. In this approach, the

models are typically some form of neural network, and learning is a pro-

cess of adjusting the connection strengths or weights between units. These

algorithms fall into one of three general classes: unsupervised, RL, and su-

pervised (e.g., Alpaydin 2020). Unsupervised learning algorithms, which

include Hebbian learning as a prominent special case, modify all learning-

related weights using the same algorithm and without regard to feedback.

RL algorithms also apply the same learning algorithm to every weight, but

the algorithm applied depends on the type of feedback that was delivered

(e.g., reward versus non-reward). Finally, supervised learning algorithms at-
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tempt to compute the unique error of the output unit associated with every

modifiable weight in the network, and they then tune that weight according

to this unique error. The most prominent examples, such as backpropagation

and the delta rule, attempt to implement a gradient descent optimization

procedure. Unsupervised learning and RL are global learning rules because

they apply the same rule to every learning-related weight, whereas super-

vised learning is a local learning rule because it uses a different error to

modify every weight.

Early models imported from computer science assumed that learning fol-

lowed gradient descent trajectories, as implemented for example, by the

delta rule and backpropagation. More recently, a large subset of these mod-

els apply one of the many RL algorithms that are described in the influential

text of Sutton and Barto (1998). Included in this list are temporal-difference

learning, actor-critic architectures, Q learning, and SARSA (State-Action-

Reward-State-Action).

The models in this class are not objectively optimal, at least not in the

sense of the Bayesian models, which try to maximize response accuracy. Even

so, the learning algorithms they assume were all developed in attempts to

maximize the learning abilities of some artificial system. Therefore, if not

objectively optimal, many of them are among the most efficacious learning

algorithms ever invented. In this sense, models in this class are similar to

the normative models that are constructed using Bayesian statistics.

4.3.2 Implementational-level approaches

Implementational-level models require extensive knowledge about brain func-

tion and behavior. Despite this high standard, they date back at least to

early work by Marr (e.g., Marr 1969) and Grossberg (e.g., Grossberg 1972).

One remarkable aspect of these early models is that they predate the discov-

ery of the forms of synaptic plasticity that they postulated. Despite this early

and seminal work, until recently, there were relatively few implementational-

level models in psychology.

During the past two decades, the field of neuroscience has exploded, and

the number implementational-level models in psychology has grown com-

mensurately. As these models became more popular, new methods were de-

veloped to build and test them, and collectively this new field is known

as computational cognitive neuroscience (Ashby, 2018; O’Reilly, Munakata,

Frank, Hazy, et al., 2012). The goal here is to first identify the neural net-

work that mediates the behavior and then build a model that mimics neural

activity in this network. In the case of learning, the model should display



10 Mathematical Models of Human Learning

learning-related synaptic plasticity in accord with what is observed in the

biological system being modeled. Such models are generally more compu-

tationally intractable than their process counterparts, and therefore require

extensive computer simulation to fit and test. Even so, despite this cost, im-

plementational models have many advantages over more traditional process

models (e.g., see Ashby 2018). For example, whereas process models can gen-

erally be tested only against response time and accuracy data, computational

cognitive neuroscience models can be tested against virtually any dependent

measure between behavior at the highest level and single-unit recordings at

the lowest level, including for example, response times, accuracies, single-

neuron recordings, fMRI blood oxygen-level dependent (BOLD) responses,

and EEG recordings. Another advantage is that if two computational cog-

nitive neuroscience models are built and validated that each account for

different types of behaviors, then because each should be faithful to the

underlying neuroanatomy, it should be possible to link the two in a plug-

and-play fashion to create a new composite model that is consistent with all

the behavioral and neuroscience data that are consistent with either model

alone (as done e.g., by Cantwell, Riesenhuber, Roeder, and Ashby 2017).

Implementational models attempt to model activity in the actual neural

circuits that mediate the behavior under study. And rather than borrow

learning algorithms from Bayesian statistics or machine learning, they di-

rectly model the types of synaptic plasticity thought to occur during LTP

and LTD. Thus, whereas implementational models directly model the struc-

tures and processes thought to mediate learning, Bayesian models and mod-

els based on machine-learning notions of RL are examples of modeling by

analogy – in the sense that they are based on algorithms developed for other

purposes (statistics or machine learning). Modeling by analogy has a long

history in psychology (’the brain is like a telephone switchboard’; ’the brain

is like a computer’), and comparing human behavior to other devices can

be a useful exercise because it can expose uniquely human characteristics.

Implementational models should be the ultimate goal, but they require far

more knowledge to build, and for many behavioral phenomena, this high

threshold has not yet been reached.

Whereas it was always obvious that ’the brain is like a telephone switch-

board’ is an analogy, as the analogies became more sophisticated, they also

became more difficult to recognize. This is especially true with models based

on machine-learning RL algorithms. After all, RL has been a central focus

of research within psychology for more than a century. Furthermore, it was

quickly noted that synaptic plasticity in the striatum has properties that

are similar to several popular machine-learning RL algorithms (e.g., Doya
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2000; Houk, Adams, and Barto 1995). Because of this similarity, learning

models based on machine-learning notions of RL can be especially useful.

Ultimately though, we should expect that synaptic plasticity, and therefore

learning, will have some uniquely human properties that require their own

uniquely human models to capture completely.

4.4 Descriptive and Process Models of Human Learning

4.4.1 Reinforcement learning

In computer-science, RL is a general approach to building decision-making

agents that learn to maximize rewards. The standard approach (Sutton

& Barto, 1998) is to model the environment as a Markov decision pro-

cess and to assume that the agent moves through a set of discrete states

S = {s1, s2, . . . , sn} by choosing among a set of possible actions A =

{a1, a2, . . . , am}. The decision rule that determines the probability of each

possible action, given a particular state is called the action policy π.

A state can be almost anything. The one requirement is that since we

assume a Markov decision process, the states, as defined by the model, must

satisfy the Markov property, in the sense that knowledge of the current state

alone should be enough to compute the predicted probability of reward and

this probability should not depend on the path the agent took to reach the

current state. So for example, a state could be the position of a rat in a maze.

If the rat is in an arm that is not baited with reward, then the probability

of imminent reward is low, whereas if the animal is in a baited arm, then

the probability of imminent reward is high.

The action policy π determines the probability that the state will change

from si to sk, for any i and k. Since each state has some true probability

of imminent or future reward that is determined by the environment, the

actions selected by the agent therefore also determine current and future

reward probabilities. Thus, the agent must learn to take actions that cause

transitions to the most rewarding states. This requires that the agent learns

the value of each state. Value is formalized in the state-value function Vπ(s),

which equals the expected value of all rewards – both current and future –

that the agent can expect if the state is s and future actions are selected

according to policy π.1 Let rt denote the value of a reward received t time

units in the future, and let R denote the total value of all current and future

1 Sutton and Barto (1998) define the value function as the expected value of all future rewards.
Therefore, in their formulation, the current reward does not contribute to the value function.
This definition implies that the value to an animal of reaching a baited goal box when
exploring a maze is zero. For this reason, we chose to define the value function as the
expected value of all current and future rewards.
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rewards. Then RL models assume

R =
∞∑
t=0

γtrt, (4.1)

where 0 < γ ≤ 1 is a temporal discounting parameter that serves to reduce

the value of rewards the more distant they occur in the future. The value

function is then defined as

Vπ(s) = E[R|π, s]

= E

[ ∞∑
t=0

γtrt|π, s

]
. (4.2)

Different methods use the estimated value function in different ways to

select the best actions, and a complete description of all these methods is

beyond the scope of this chapter. However, one major dimension on which

different methods are classified is whether or not the agent directly estimates

the state transition probabilities (i.e., the probability that the state will

transition from si to sk when action aj is selected). Methods that estimate

these transition probabilities are called model-based , whereas methods that

do not are called model-free.

Model-free RL approaches

The iterative sample mean. As we have seen, the goal of many RL

models and algorithms is to estimate a state-value function. For example,

the Rescorla-Wagner model estimates the expected reward value of a cue

in a classical conditioning paradigm, temporal-difference learning estimates

the expected value of all future rewards given some fixed action policy, and

Q learning estimates a similar value for different state-action pairs. The

standard statistical approach to parameter estimation assumes a sample

of fixed size. RL algorithms however, apply to an agent operating in real

time through an environment that presents successive opportunities to re-

ceive rewards. Therefore, the agent must continually update value estimates

when moving through the environment. For this reason, parameter estima-

tion must be iterative (e.g., as in dynamic programming). This is a straight-

forward and well-known statistical problem. For example, a population mean

can be estimated iteratively as follows.

Theorem 4.1 Consider a set of successive samples X1, X2, ..., Xn that are
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all drawn from some population. Then the sample mean equals

Xn =
1

n

n∑
i=1

Xi = Xn−1 +
1

n
(Xn −Xn−1), (4.3)

where X0 = 0. Furthermore, note that Xn is the current sample and Xn−1

is the best guess of Xn after n − 1 samples have been collected (i.e., in the

sense of the law of large numbers). As a result Xn −Xn−1 is the prediction

error – call it PE. So Eq. 4.3 is equivalent to:

Xn = Xn−1 +
1

n
PE. (4.4)

Proof See for example, Ashby (2018).

In other words, the standard, batch estimate of the population mean,

Xn, can be efficiently computed in real time by updating the old estimate

by an amount that is proportional to the prediction error. If the newest

sample is larger than expected (i.e., if Xn > Xn−1) then the mean estimate

is increased, and if the newest sample is smaller than expected (i.e., if Xn <

Xn−1) then the mean estimate is decreased.

As we will see, the most popular RL algorithms are all based on Eq. 4.4.

They differ mainly in how they define Xn, although in all RL algorithms the

goal is to estimate some reward-related value. In such cases, the prediction

error in Eq. 4.4 becomes a reward prediction error (RPE), which in general,

is defined as obtained reward minus expected reward.

Because the iterative estimate of the mean is mathematically equivalent

to the standard, batch estimate, it possesses the same statistical proper-

ties. Therefore, note that this iterative estimate is the uniformly minimum

variance unbiased estimator of the population mean if the Xi are indepen-

dent, and identically distributed (iid) samples from some population, and

the sample size n is known ahead of time. In many real-world environments

of course, the samples are not iid, and if the sampling is done in real time,

the final sample size is often unknown. The standard RL solution to these

problems is to replace the constant 1/n with some constant α that can be

adjusted or set in a way that depends on the environment. For example, a

standard approach is to set α in a way that causes temporal discounting,

so that recent samples are weighted more heavily than early samples.2 In

fact, this form of temporal discounting occurs whenever α > 1/n. Therefore,

2 Note that we have now introduced two different temporal discounting parameters. The
parameter γ discounts future rewards and the parameter α discounts distant samples.
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when applied to nonstationary data, the iterative sample mean equals:

Xn = Xn−1 + α(Xn −Xn−1) = Xn−1 + αPE. (4.5)

The parameter α is commonly referred to as the learning rate because in-

creases in α cause Xn to change more quickly.

Another advantage of the iterative sample mean, relative to the batch

estimate, is that it is easier to incorporate prior beliefs into the estimate of

the population mean. For example, consider a simple coin-tossing experiment

in which the goal is to estimate the probability of a heads (i.e., where we

assign a value of 1 to each heads and 0 to each tails, and then use Eq. 4.5

to estimate the true probability of a heads). A natural prior belief might

be that the coin is fair, which is easily incorporated into Eq. 4.5 by setting

X0 = .5.

Temporal-Difference Learning. Temporal-difference learning estimates

the state-value function under the assumption that the action policy is fixed.

A popular paradigm that satisfies this constraint is classical conditioning,

in which some cue may or may not be followed some time later by a reward

or perhaps by multiple rewards. The goal of the agent in this case, is to

learn that the cue predicts a future reward. Note that there is no action

to produce here and so in this special case, we can omit the subscript π

in our notation. And although temporal-difference learning applications to

classical conditioning are free to define the states in any way that satisfies

the Markov property, the most common definition, by far, is to define the

states as time points that begin with the cue and end with the last possible

reward.

Therefore, define the state st = t, where t equals the number of time steps

since cue presentation, and let rn(t) equal the value of the reward received

at time t on trial n. Then the total value of all future rewards on trial n at

time t equals

Rn(t) =
T∑
i=t

γi−trn(i), (4.6)

where T equals the time of the last possible reward on each trial. As in other

RL algorithms, the goal of temporal-difference learning is to estimate the

state-value function – that is, the expected value of Rn(t):

Vn(t) = E[Rn(t)]. (4.7)

Now because Vn(t) is a population mean, our best estimate is the sample
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mean of the Ri(t) across previous trials:

V̂n(t) =
1

n

n∑
j=1

Rj(t). (4.8)

This sample mean can be estimated efficiently via term-by-term substitution

into the iterative sample mean defined in Eq. 4.5 to produce

V̂n(t) = V̂n−1(t) + α[Rn(t)− V̂n−1(t)]. (4.9)

The problem with this estimate is that Rn(t) includes the immediate reward

rn(t), plus all future rewards that will be obtained on trial n – that is,

Rn(t) = rn(t) +

T∑
i=t+1

γi−trn(i)

= rn(t) + γ

T∑
i=t+1

γi−(t+1)rn(i) (4.10)

and unfortunately, all reward-related terms on the right except rn(t) are

unknowable since they occur in the future. Temporal-difference learning es-

timates the unknowable part – that is, the expression defined by the summa-

tion sign – by using the iterative sample mean of all rewards that occurred

after time t on previous trials [i.e., via V̂n−1(t + 1)]. This results in the

following estimate:

R̂n(t) = rn(t) + γV̂n−1(t+ 1). (4.11)

Substituting this estimate into Eq. 4.9 for Rn(t) produces the final form of

temporal-difference learning:

V̂n(t) = V̂n−1(t) + α[rn(t) + γV̂n−1(t+ 1)− V̂n−1(t)]. (4.12)

Note that, despite initial appearances, the expression in square brackets

equals the prediction error (or more specifically, the RPE), just as in Eq.

4.5. The first term in the square brackets is the immediately obtained reward

and the second term is the best guess of the (discounted) value of all future

rewards expected on trial n. The sum of the first two terms is therefore

the agent’s estimate of the total obtained rewards on trial n given that we

are t time units into the trial. The last term is the predicted value of this

quantity that was made before the trial began. Therefore, the sum of the

first two terms represents obtained reward, whereas the last term represents

predicted reward.
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As an application of temporal-difference learning, consider a simple classical-

conditioning task in which the same CS (e.g., a light or tone) is followed T

time steps later by a reward. On the first presentation of the CS, the subse-

quent reward is unexpected, but as the CS-reward pairing is repeated, the

agent will eventually learn that the CS is paired with future reward. The

standard temporal-difference learning application to this task assumes that

initially, all states have zero value [i.e., V0(t) = 0, for all t] because the CS

has never before been paired with reward. On trial 1, the CS is presented

and then the agent unexpectedly receives a reward at time T . Suppose the

value of this reward is r. Then temporal-difference learning predicts that

V̂1(T ) = V̂0(T ) + α[r1(T ) + γV̂0(T + 1)− V̂0(T )]. (4.13)

Note that, by our assumptions about initial conditions, all V0 terms equal

0. However, r1(T ) = r because the agent receives a reward on each trial at

time T . Therefore,

V̂1(T ) = αr. (4.14)

Now consider the value that temporal-difference learning assigns to the state

that is one-time unit earlier than reward delivery on trial 2:

V̂2(T − 1) = V̂1(T − 1) + α[r2(T − 1) + γV̂1(T )− V̂1(T − 1)]. (4.15)

Note that V̂1(T − 1) = 0 because at time T − 1 of trial 1 the agent has not

yet received any rewards. Furthermore r2(T − 1) = 0 because rewards are

delivered at time T , not at time T − 1. However, as we saw, V̂1(T ) = αr.

Therefore,

V̂2(T − 1) = α2γr. (4.16)

In other words, the RPE that occurred at time T on trial 1 has propagated

back on trial 2 to the immediately preceding state (i.e., T −1). Similarly, on

trial 3, the positive value associated with state T − 1 will propagate back to

state T − 2. In this way, the value associated with earlier and earlier states

will increase. This propagation will continue until it eventually reaches the

time of cue presentation – that is, until Vn(0) > 0, for some value of n. It will

not propagate to earlier times than this however, so long as cue presentation

times are unpredictable.

Temporal-difference learning is popular, in part because it shares some

properties with the firing properties of dopamine (DA) neurons. In particu-

lar, in this same classical-conditioning experiment, DA neurons will eventu-

ally begin to fire to any cue that predicts a future reward. We will consider
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temporal-difference learning as a model of DA neuron firing in more detail

in a later section.

Q-learning. Q-learning is a model-free RL algorithm to learn actions that

maximize current and future rewards. It is similar to temporal-difference

learning, but it learns the value of state-action pairs, instead of states inde-

pendently of the selected action. The resulting value function, denoted by

Qn(s, a) (i.e., “Q” for quality), gives the value of taking action a from state s

on trial n, under the assumption that all actions after a are optimal with re-

spect to the estimated action-value function – that is, that all future actions

are selected so as to maximize total reward. The policy that always chooses

the action that maximizes reward is called the greedy policy . So Q learning

updates the value function under the assumption that a greedy policy will

be used, even when the agent follows some non-greedy policy. Algorithms

that estimate the value function using a policy that is different from the one

that is currently being followed are called off-policy algorithms.

Let st denote the state at time t and at denote the action taken at time t.

Let Rn(at|st) denote the total current and future rewards obtained on trial

n if the state is st, action at is immediately taken, and all subsequent actions

are greedy. Then term-by-term substitution into the iterative sample mean

produces:

Q̂n(st, at) = Q̂n−1(st, at) + α[Rn(at|st)− Q̂n−1(st, at)]. (4.17)

As with temporal-difference learning, Rn is unknowable since it depends on

future rewards. So Q learning estimates Rn via:

R̂n(at|st) = rn(t) + γmax
a

Q̂n−1(st+1, a); (4.18)

that is, by adding the immediate reward to the discounted (iterative sam-

ple) mean of the best rewards produced by any sequence of past actions

that started from the state that results from taking action at from state st.

Combining these two equations produces the final form of Q learning:

Q̂n(st, at) = Q̂n−1(st, at)+α
{
rn(t) + γ[max

a
Q̂n−1(st+1, a)]− Q̂n−1(st, at)

}
.

(4.19)

A common assumption is that all initial Q values equal 0 (i.e., Q0(s, a) = 0,

for all s and a). Once these initial values are all set, Eq. 4.19 is used to

update the Q estimates beginning on trial 1.

The Q values are often used to define action policies. For example, as we

already saw, the greedy action policy is to always choose the action with the

maximum Q value. Although at first glance, this policy sounds appealing,

note that it fails to explore the set of all possible actions. Unless the optimal
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policy is discovered early on by chance, then the greedy policy is unlikely to

ever discover this optimal policy. Therefore, many action policies trade off

exploration and exploitation. One way to do this is via an ε-greedy algorithm

that selects an action randomly with probability ε and uses a greedy policy

with probability 1 − ε. Another popular choice is to compute the action

selection probabilities by passing the Q values through a softmax function:

P (ai|s) =
eQ(s,ai)∑
j e

Q(s,aj)
. (4.20)

Note that since this policy depends on the Q values, updating or changing

the estimates of Q changes the policy.

To make the discussion concrete, consider an agent in a maze in which one

or more arms are baited with reward. In this case, we can consider the states

to be locations within the maze, and actions to be movements that carry

the agent from one location to another. Before any learning has occurred,

if state si is one step before a baited arm, then the action that moves the

animal one step forward (i.e., towards the reward) will be rewarded and

Q(si, aforward) will gain positive value.

Model-based RL approaches

Model-based RL approaches build a model of the environment by estimating

the value function [e.g., Vπ(s) or Q(s, a)], and the state-transition function

T (sk|aj , si), which specifies the probability that taking action aj will tran-

sition the agent from state si to state sk. Once accurate estimates of these

functions are available, action selection is a matter of solving directly for

the action sequence that maximizes reward.

Daw, Niv, and Dayan (2005) proposed a dual-controller model that as-

sumes the brain includes both model-free and model-based RL algorithms,

with behavior determined by the system that is most confident in its pre-

dictions (i.e., has the lowest uncertainty). The model includes a striatal-

mediated, model-free cache system that implements habit learning and a

prefrontal-cortex-mediated model-based tree-search system that implements

goal-directed learning. Both systems use a form of Q learning. Traditional

Q learning (i.e., Eq. 4.19) does not track uncertainty, so Daw et al. (2005)

proposed a Bayesian version (i.e., based on Dearden, Friedman, and Russell

1998), in which both systems attempt to estimate a distribution of Q values

across trials. If we assume that rewards are Bernoulli distributed, then a

convenient prior distribution of Q values is the beta distribution (because

the beta distribution is a conjugate prior for the Bernoulli distribution).
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This prior is then updated through Bayes rule to obtain model-free and

model-based posterior distributions of Q values.

The model-based system consists of a Bayesian tree-search algorithm in

which the agent uses experience in its environment to estimate the distribu-

tion of reward values R(aj |si) and state-transition probabilities T (sk|aj , si).
The model assumes a beta distribution for the prior on rewards and a Dirich-

let distribution for the prior on the state transitions. These distributions are

then updated according to Bayes rule by counting up the obtained rewards

and state transitions. Since both systems estimate distributions of Q values,

the variances from these two estimates are compared and the system with

the lowest uncertainty controls the response of the agent.

The model successfully accounts for a variety of instrumental condition-

ing phenomena, including for example, the effects of reward devaluation

(Dickinson & Balleine, 2002). In these experiments, an animal is trained

to lever press (for example) and at some point in training, the reward is

devalued prior to the session, typically either by providing free access to

food or administering a drug that causes ingestion of the reward to induce

illness. Early in training, reward devaluation reduces the frequency of the in-

strumental behavior, but after extensive overtraining, the behavior becomes

immune to the devaluation. Furthermore, the degree to which the animal is

sensitive to devaluation is proportional to the complexity of the task and the

temporal proximity of the action to the reward. The dual-controller model

accounts for these phenomena by proposing that the model-based tree-search

system controls responding early in training, but that control is passed to

the model-free cache system after overtraining. Furthermore, the amount of

training required for the transfer of control is assumed to increase with the

complexity of the task.

Early in training, new information immediately influences action values

at all states in the tree-search system. In contrast, the cache system takes

significantly longer to propagate new information to other states. Addition-

ally, in more complex tasks, the tree-search system takes control because it

is more data efficient – in more complex tasks there is less data available

for each state-action pair. Finally, the tree-search system performs better

for actions more proximate to reward due to its superior data efficiency,

whereas the cache system performs better for actions more distal to reward

due its lower sensitivity to computational noise. Since the tree-search system

has a model of the task and it has access to the long-term consequences of

its actions at each time step, it can adapt its policy in response to reward

devaluation. Alternatively, the cache system estimates the value of each ac-
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tion directly, and reward devaluation is insufficient to reverse the cumulative

effects of the many positive rewards that were received earlier in training.

4.4.2 Bayesian modeling of human learning under uncertainty

The RL models described in the previous section are arguably more popular

than Bayesian models of learning, at least partly because they are compu-

tationally simpler to implement. Traditional Bayesian approaches require

numerical evaluation of complex multiple integrals. This section reviews the

hierarchical Gaussian filter (Mathys, Daunizeau, Friston, & Stephan, 2011;

Mathys et al., 2014), which attempts to overcome this limitation by deriv-

ing computationally simple, interpretable, and efficient update equations –

similar to those used in RL models – except from normative Bayesian prin-

ciples. Conveniently, these update equations also enable the estimation of

agent-specific parameters that allow each individual to be modeled as sub-

jectively optimal with respect to minimizing the agent’s surprise (i.e., free

energy) when unexpected events occur.3 Furthermore, the form of these up-

date equations is similar to a version of the iterative sample mean (Eq. 4.5)

in which the learning rate, α, is modulated by various forms of uncertainty.

Accordingly, the benefits of the hierarchical Gaussian filter extend past the

Bayesian framework by providing a normative foundation for the sequential

updating equations of heuristic RL algorithms.

As a context for describing the model, consider an (A, not A) categoriza-

tion task in which an agent is asked to report whether or not a presented

stimulus belongs to category A (e.g., by responding YES or NO). Suppose

the stimuli in category A vary on one stimulus dimension, call it w, and

are normally distributed on this dimension with mean µA and variance π−1
A ;

that is

w ∼ N (µA, π
−1
A ), (4.21)

where πA is the precision of the category A samples (not to be confused

with action policies as defined in the RL literature). Suppose that on “not

A” trials, the stimuli are uniformly distributed on dimension w over all

physically realizable values. Therefore, the optimal decision strategy is to

respond YES if the presented stimulus is close to µA on dimension w and

NO if it is far away. Consider the simplest possible case in which the agent

3 See Ashby (2019), Friston, Mattout, Trujillo-Barreto, Ashburner, and Penny (2007), or Penny
(2012) for a description of free energy minimization in the context of model selection, and
Friston (2010) for a description of free energy minimization as a general principle of brain
function.
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knows πA but not µA. Then the optimal strategy requires the agent to

estimate µA.

An agent trying to estimate µA could do so by computing the iterative

sample mean (Eq. 4.5). Instead, however, consider a Bayesian approach.

Suppose the agent assumes that the prior distribution of µA is

µA ∼ N (µ0, π
−1
0 ), (4.22)

where π0 is the precision of the agent’s knowledge of the task. Suppose

further that on trial n the stimulus has value wn on the relevant dimension

and the feedback informs the agent that this stimulus belonged to category

A. Then a Bayesian approach indicates that the posterior likelihood that

the true orientation is µA equals:

p(µA|wn) =
p(wn|µA)p(µA)∫
p(wn|µ)p(µ)dµ

∼ N (µµA|wn
, π−1

µA|wn
). (4.23)

Equation 4.23 illustrates the traditional problem of Bayesian approaches

– the integral in the denominator is often computationally intractable. As a

model of human learning, Eq. 4.23 would be more attractive if it included

a plausible hypothesis about how humans could approximate such integrals

sequentially in real time. As a start, it turns out that the posterior mean

and precision can be rewritten as (e.g., see Kruschke 2011, for a derivation):

µµA|wn
= µµA|wn−1

+
πA

π0 + πA
(wn − µµA|wn−1

) (4.24)

and

πµA|wn
= π0 + πA. (4.25)

Note that Eq. 4.24 is in the same form as the iterative sample mean (Eq. 4.5),

except that α is replaced with the ratio of the precision of the category A

samples, πA, to the sum of the category A precision plus the agent’s precision

about the task, π0. Therefore, if category A precision is low (relative to π0),

then the learning rate is small. This makes sense intuitively – if we trust our

model of the environment (i.e., π0 is large) then we should be conservative

about updating that model on the basis of noisy observations. On the other

hand, if we have poor knowledge about the environment (i.e., π0 is small)

and there is not much variation in the samples (i.e., πA is large) then we

should use those samples to rapidly update our model of the environment.

This Bayesian formulation is beneficial for ensuring that prediction errors

are precision-weighted according to their informativeness in a stable envir-

onment. However, this formulation will perform poorly in a non-stationary
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environment because the learning rate will not adapt to the environmen-

tal changes. For example, suppose the experimenter periodically changes

the category A mean. The hierarchical Gaussian filter provides an efficient

method for adapting to such changes in the environment by iteratively ad-

justing its estimate of µA using a variational Bayesian procedure (Mathys

et al., 2011, 2014).

The hierarchical Gaussian filter estimates µA in a hierarchical fashion.

Let x1(n) denote the current estimate of µA on trial n [i.e., so on trial n,

µ̂A = x1(n)]. Then the agent’s model of category A on trial n is that

wn ∼ N [x1(n), π−1
A ], (4.26)

since again, we are considering the simple case where πA is known. This is

the lowest level of the hierarchy. The next level up (i.e., level 2) estimates

the distribution of the mean, x1(n). Specifically, The hierarchical Gaussian

filter assumes that

x1(n) ∼ N {x1(n− 1), exp[κ1x2(n− 1) + ω1]} , (4.27)

where κ1 and ω1 are constants, with κ1 > 0, and x2(n) is a new random

variable. The exponential function was chosen as a mathematically conve-

nient form via which to estimate the variance of x1(n) (see, e.g., Mathys

et al. 2014). Because κ1 > 0, note that the variance of x1(n) increases

with x2(n). The standard deviation of x1(n) is often referred to as volatility

(Behrens, Woolrich, Walton, & Rushworth, 2007; Bland & Schaefer, 2012;

Nassar, Wilson, Heasly, & Gold, 2010; Payzan-LeNestour & Bossaerts, 2011;

R. C. Wilson, Nassar, & Gold, 2013), so x2(n) increases with volatility.

Level 3 of the hierarchy estimates the variance of x1(n) by assuming that

x2(n) ∼ N {x2(n− 1), exp[κ2x3(n− 1) + ω2]} , (4.28)

where x3(n) is a new random variable that increases with the variance of

volatility. In other words, x3(n) is measuring how much volatility is changing

in the environment. In principle, this hierarchy can continue indefinitely. At

each new level, the variance is defined in terms of a new random variable

that is itself defined at the next higher level. So for example, level 4 would

define x3(n) as normally distributed with a variance that depends on a new

random variable x4(n− 1).

Another critical feature of the hierarchical Gaussian filter is that it spec-

ifies trial-by-trial update equations for the mean and precision parameters

at each level of the hierarchy. These updates, which were all derived us-

ing a variational Bayesian procedure, are in the same general form as Eq.

4.24, with the notable exception that the learning rates [i.e., the analogue
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of πA/(π0 + πA) in Eq. 4.24] are sensitive to changes in the environment,

including for example, volatility and changes in volatility. For example, the

update equations specify that when the environment becomes more volatile,

the learning rate on µA increases. This makes sense intuitively because in

a more volatile environment, deviations from our expectations may indi-

cate that environmental events driving our sensory data have changed and

learning should therefore proceed more rapidly.

The hierarchical Gaussian filter update equations enable real-time esti-

mation of states and are optimal in the sense that they minimize variational

free energy – an upper bound on an agent’s surprise given its model of the

world. The hierarchical Gaussian filter has a number of advantages over

more traditional Bayesian models. First, it avoids the need to evaluate in-

tractable integrals. Second, by placing different subject-specific priors on the

κi and ωi parameters, it provides a convenient method for modeling indi-

vidual differences across agents. Third, it provides a foundation for RL-style

update equations and firmly grounds RL models within the foundations of

probability theory. Finally, the hierarchical Gaussian filter has also had con-

siderable success at accounting for a wide variety of empirical phenomena,

including impulsivity in healthy individuals (Paliwal, Petzschner, Schmitz,

Tittgemeyer, & Stephan, 2014) and Parkinson’s patients with deep brain

implants (Paliwal et al., 2018), reward-based decision making in schizophre-

nia (Deserno et al., 2020), social learning (Diaconescu et al., 2017), percep-

tual learning (Weilnhammer, Stuke, Sterzer, & Schmack, 2018), and sensory

learning (Iglesias et al., 2013).

4.4.3 Supervised-learning models of sensorimotor adaptation

Models based on supervised learning are also popular. As described above,

supervised learning is a local learning rule that uniquely changes each mod-

ifiable weight or connection strength in the model. The most popular ver-

sions, which include backpropagation and the delta rule, implement a form of

gradient descent (e.g., Rumelhart and McClelland 1986). Consider a general

model in which some unit i projects to some unit j. Let xi denote the output

of unit i, yj denote the output of unit j, and denote the connection strength

between units i and j by the parameter ωi,j . Then supervised learning al-

gorithms change each ωi,j differently. The most common approach, which is

followed for example by gradient descent algorithms, is to modify ωi,j ac-

cording to the error between the desired output y∗j of unit j and the observed

output yj . This error is typically referred to as δj = y∗j − yj .
Gradient descent algorithms modify ωi,j in a way that causes δj to decrease
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as quickly as possible at each time step. Specifically, if we let F represent

the mathematical transformation that unit j performs on its input, then

yj = F (xi | ωi,j). Gradient descent algorithms modify ωi,j according to

∆ωi,j ∝ −
∂δj
∂ωi,j

, (4.29)

that is, in proportion to the negative of the gradient on the error surface.

Here, we can see that the key feature of a supervised learning system is

that (1) the system is provided a teaching signal in the form of a desired

output, and (2) the error signal (i.e., the difference between actual and

desired output) is differentiable with respect to the parameters of the model.

Equation 4.29 describes a local learning rule because every output unit in

the model has its own unique desired output. Because of this, in response to

an error signal at time t, some parameters will be increased, and others will

be decreased. This property also strongly distinguishes supervised learning

from RL, in which all active weights are either strengthened or weakened in

accord with the presence or absence of unexpected rewards.

One prominent class of supervised-learning models uses linear dynamical

systems to model the sensorimotor learning that causes adaptive changes in

motor outputs in response to changing sensory inputs (Baddeley, Ingram,

& Miall, 2003; Cheng & Sabes, 2006; Donchin, Francis, & Shadmehr, 2003;

Scheidt, Dingwell, & Mussa-Ivaldi, 2001; Thoroughman & Shadmehr, 2000).

Such changes are essential for coordinated and efficient execution of action

selection and motor control. For example, as muscles are fatigued they re-

quire greater neural impulses to be activated, and therefore the motor com-

mands that achieve some goal before muscle fatigue need to be scaled up to

achieve that same goal after fatigue has accumulated. Sensorimotor learning

also allows agents to adjust for noisy and dynamic environments. For exam-

ple, the brakes on a rental car only feel foreign and jerky for a short while

before we adapt our motor commands to smoothly operate them.

In the lab, sensorimotor learning is commonly studied with visuomotor

adaptation experiments (Cunningham, 1989; Krakauer, Pine, Ghilardi, &

Ghez, 2000; T. A. Martin, Keating, Goodkin, Bastian, & Thach, 1996a,

1996b; Redding, Rossetti, & Wallace, 2005; Von Helmholtz, 1925). The

agent’s objective in such tasks is typically to reach from a start location

to a target location as quickly, smoothly, and accurately as possible. Af-

ter a baseline or familiarization phase, the visual feedback provided by the

moving hand is perturbed to introduce a mismatch between the actual and

perceived hand position. Early experiments of this nature used prism glasses

to induce lateral shifts, but recently the most common approach has been to
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use crude virtual reality environments to impose visuomotor rotations such

that movements beginning at the centre of a work space and travelling in

a given direction generate on-screen cursor trajectories that match the ra-

dial distance from the reach origin but are rotated by some amount. People

readily learn to compensate for a range of perturbations, quickly becoming

proficient at moving to a target with relatively normal kinematics (Welch,

1986).

Since the early 2000s, linear dynamical systems endowed with supervised

learning algorithms have provided a popular general model of sensorimotor

learning, including behavior observed in visuomotor adaptation tasks (Bad-

deley et al., 2003; Cheng & Sabes, 2006; Donchin et al., 2003; Scheidt et al.,

2001; Thoroughman & Shadmehr, 2000). This is usually done by defining

the state of the dynamical system as a sensorimotor transformation – that

is, as an intermediate mapping from sensory input to motor output. Senso-

rimotor learning is then modeled as adaptive changes that reduce the errors

in each state, and for this reason, models that employ this method are often

referred to as state-space models.

As an example, consider a simple reaching task in which participants make

center-out reaches to a single target. After some baseline phase in which

participants are afforded the opportunity to familiarize themselves with the

apparatus, the visual feedback is perturbed by a rotation. Further suppose

that feedback is only given at the end of each reach, so that any adaptive

change in the sensorimotor mapping occurs exclusively between trials. A

simple and common state-space model of this task is described on trial n by

the following equations:

δn = y∗n − yn
xn+1 = βxn + αδn

yn = xn + θn (4.30)

where δn is the error (i.e., the angular distance between the reach endpoint

and the target location), y∗n is the desired output (e.g., the angular position

of the reach target), yn is the output and corresponds to the angle of the

movement that will be generated when trying to reach to the target (i.e., it

is a readout of the sensorimotor state), xn is the state of the system (i.e.,

the sensorimotor transformation), β is a retention rate that describes how

much is retained from the value of the state at the previous trial, α is a

learning rate that describes how quickly states are updated in response to

errors, and θn is the imposed rotation.

If we assume that in the absence of visuomotor rotations, the system is
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calibrated such that δn = 0, and that this state corresponds to xn = 0,

then in the presence of a rotation θn+1 6= 0, the system will experience

the error δn+1 = −θn+1, and will adjust xn+2 in a direction that would

reduce the experienced error if the same rotation was applied on the next

trial. For example, if θn+1 is in a clockwise direction, then Eq. 4.30 leads

to xn+2 = βxn+1 − αθn+1. This means that adaptation to a clockwise rota-

tion occurs by adjusting the sensorimotor state to generate more counter-

clockwise movements. If β < 1, then on each trial the state will respond to

errors in the way just described, but will also return to baseline by some

increment. Thus, in the absence of reach errors, the system has a tendency

to reset itself. Because the goal of learning is to reduce the state error – that

is, δn – this model is based on a form of supervised learning known as the

delta rule or the Widrow-Hoff rule (Widrow & Hoff, 1960).

Another key feature of linear dynamical systems as models of sensorimotor

learning is that they are easily modified to accommodate considerably more

complexity than the simple version described above. For example, Cheng

and Sabes (2006) outlined a more general form for these models governed

by the following equations:

xn = Axn−1 + Bδn−1 + ηn−1

yn = Cxn + Dωn + γn, (4.31)

where xn is a state vector of sensory transformations, δn is the vector of

errors – that is, the differences between the desired and actual states, ηn is

a random vector that models noise in the learning process and is typically

assumed to have a multivariate normal distribution with mean vector 0 and

variance-covariance matrix Σ, yn is a vector of motor outputs (e.g., angle

and distance of movement), ωn is a vector of inputs to the system (e.g., θn
in the simple example above), γn is a random vector that models noise in

the output process (again typically assumed to have a multivariate normal

distribution), and A, B, C, and D are all matrices of constant values. Note

that this model modifies each state according to its own unique error, which

is a hallmark of supervised learning (and of the delta rule).

In this form, it is easy to see that linear dynamical systems can be flexibly

applied to a variety of sensorimotor learning scenarios in which the factors

relevant to sensorimotor learning (stored in δn) can be stated independently

of the factors relevant to sensorimotor output (stored in ωn). The result is a

convenient yet powerful framework that can be used to generate predictions

about sensorimotor learning on a trial-by-trial basis, or even on a moment-

to-moment basis if adaptive changes are thought to occur on that timescale.
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This approach is therefore well suited to modeling behavioral learning phe-

nomena that appreciably change on these fast timescales.

4.5 Implementational Models of Human Learning

Implementational-level models explicitly state how neural circuits drive be-

havior, and how changes in connection weights within these circuits drive

learning. Thus, at the core of these models are clear statements about the

brain regions and networks that drive a behavior, and the forms of synap-

tic plasticity that govern changes in connection weights between neurons in

constituent regions. We now know that synaptic plasticity comes in many

different forms. For instance, it operates by different computational princi-

ples in different brain regions and between different cell types (Doya, 2000;

Feldman, 2009), and it is governed physiologically by different molecular

mechanisms and intracellular signaling cascades. A complete review of both

the physiological and computational underpinnings of every form of synaptic

plasticity is well beyond the scope of this chapter. Instead, we focus on three

forms of synaptic plasticity that are deeply understood from a physiological

perspective, and are at the core of both classic and contemporary computa-

tional models of learning. In particular, we will discuss two-factor synaptic

plasticity in cerebral cortex and the hippocampus that is similar to Hebbian

learning, three-factor DA-dependent synaptic plasticity in the basal ganglia

that is similar to RL (Doya, 2000; Houk et al., 1995), and a form of synaptic

plasticity in the cerebellum that resembles supervised learning.

4.5.1 Physiology of DA-dependent two- and three-factor synaptic

plasticity

The most common excitatory neurotransmitter in the brain is glutamate,

and LTP at glutamatergic synapses is well understood. Glutamate binds to

a number of different receptors, but the most important for LTP is NMDA.

The biochemical details are not important for our purposes, except to note

that NMDA requires partial depolarization to become activated, and so it

has a higher threshold for activation than non-NMDA glutamate receptors.

NMDA-receptor activation initiates a number of chemical cascades that can

increase synaptic efficacy. Because of its high threshold, however, activation

of NMDA receptors on the post-synaptic membrane requires strong pre-

synaptic activation. If presynaptic activation either fails to activate or only

weakly activates NMDA receptors, then a variety of evidence suggests that
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the long-term efficacy of the synapse is weakened (i.e., LTD occurs; Bear

and Linden 2001; Kemp and Bashir 2001).

DA plays a critical modulatory role in these processes because it can

potentiate synaptic efficacy if it is above baseline when NMDA receptors

are activated, but synaptic weakening occurs if DA is below baseline during

NMDA receptor activation (Calabresi, Pisani, Mercuri, & Bernardi, 1996;

Reynolds & Wickens, 2002; Yagishita et al., 2014). A large literature shows

that DA neurons in the ventral tegmental area and substantia nigra pars

compacta increase their firing above baseline following unexpected rewards,

and decrease their firing below baseline following the failure to receive an

expected reward (e.g., Hollerman and Schultz 1998; Mirenowicz and Schultz

1994; Schultz 1998). Thus, this form of DA-enhanced LTP should be in effect

following an unexpected reward in any brain region that is a target of DA

neurons. This includes the basal ganglia, the hippocampus, the amygdala,

and all of frontal cortex. In contrast, there is virtually no DA projection to

visual or auditory cortex. In these regions however, there is evidence that

acetylcholine may play a modulatory role similar to DA in LTP and LTD

(e.g., Gu 2003; McCoy, Huang, and Philpot 2009).

Although the biochemistry that mediates the modulatory role that DA

plays in synaptic plasticity is similar in all DA target regions, the func-

tional role of this plasticity is qualitatively different in the striatum and

frontal cortex. Within the striatum, DA is quickly cleared from synapses

by DA active transporter and, as a result, the temporal resolution of DA

in the striatum is high enough for DA to serve as an effective trial-by-trial

reinforcement-learning signal. For example, if the first response in a training

session receives positive feedback and the second response receives negative

feedback, then the elevated DA levels in the striatum that result from the

positive feedback on trial 1 should have decayed back to baseline levels by

the time of the response on trial 2. Unlike the striatum however, the con-

centration of DA active transporter in frontal cortex is low (e.g., Seamans

and Robbins 2010). As a result, cortical DA levels change slowly. For ex-

ample, the delivery of a single food pellet to a hungry rat increases DA

levels in prefrontal cortex above baseline for approximately 30 min (Feen-

stra & Botterblom, 1996). Thus, the first rewarded behavior in a training

session is likely to cause frontal cortical DA levels to rise, and the absence of

DA active transporter will cause DA levels in frontal cortex to remain high

throughout the training session. As a result, all synapses that are activated

during the session are likely to be strengthened, regardless of whether the

associated behavior is appropriate or not. Thus, although DA may facili-

tate LTP in frontal cortex, it appears to operate too slowly to serve as a
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frontal-cortical trial-by-trial reinforcement training signal (Lapish, Kroener,

Durstewitz, Lavin, & Seamans, 2007).

From a computational perspective, the high temporal resolution of the

striatal DA signal means that whether a synapse is strengthened or weak-

ened depends on three factors: the amount of presynaptic activation, the

amount of postsynaptic activation, and whether DA is above or below base-

line. As a result, synaptic plasticity in the striatum is said to follow the

three-factor learning rule (Wickens, 1993). In contrast, in cortex, DA levels

will change only slowly over time, so only two factors are needed to pre-

dict whether a synapse will be strengthened or weakened – the amount of

pre- and postsynaptic activation. As a result, plasticity in cortex follows the

two-factor learning rule.

4.5.2 Models based on two-factor plasticity

Models of two-factor plasticity

The structural changes at the synapse that accompany LTP and LTD are

complex and highly diverse. For example, changes in synaptic plasticity

might be mediated by changes in the number of receptors, their distribu-

tion, the type of receptors, or their sensitivity. But plasticity changes could

also occur because of changes in the size and/or shape of dendritic spines. If

our goal is to model learning-related changes in human behavior, then the

molecular and cellular mechanisms that mediate changes in synaptic plastic-

ity are irrelevant. We only need an accurate model of how much the efficacy

of the synapse changes from one behavioral measurement to the next.

The structural changes at the synapse unfold continuously in time, but

unless the behavioral measurements are continuous, there is no need to build

a continuous model. In particular, if the data have a discrete trial-by-trial

structure, as is common in many cognitive-behavioral experiments, then a

discrete-time model of changes in synaptic efficacy is often sufficient. Typ-

ically, such a model would be constructed from difference equations, where

the index is trial number, so the implicit time interval is the duration of

one trial. A continuous-time learning model (e.g., that uses differential equa-

tions) is typically required only when modeling a continuous-time behavioral

task.

The simplest and original form of Hebbian learning predicts that between

trials n and n+1, the strength of the synapse between units i and j, denoted

by wij(n+ 1), equals

wij(n+ 1) = wij(n) + αAi(n)Aj(n), (4.32)
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where Ai(n) and Aj(n) are the total activations in units i and j on trial n

and α is the learning rate. This model has two significant weaknesses. First,

all terms in Eq. 4.32 are positive, so this model includes no mechanism to

weaken a synapse, and as a result, it cannot account for LTD. Second, note

that it predicts that all synaptic strengths will eventually increase to infinity.

For these reasons, a variety of alternative models of Hebbian learning have

been proposed.

One model of two-factor plasticity, which can be seen as a generalization

of classical Hebbian learning, assumes that (Ashby, 2018)

wij(n+ 1) = wij(n)

+ α ∆ H [Aj(n)− θNMDA]Ai(n)
{

1− e−λ[Aj(n)−θNMDA]
}

[1− wij(n)]

− β H [θNMDA −Aj(n)]Ai(n) e−λ[θNMDA−Aj(n)]wij(n). (4.33)

The positive term describes conditions that strengthen the synapse and the

negative term describes conditions that cause the synapse to be weakened.

Ignore the constant ∆ for now (i.e., assume ∆ = 1). The function H[g(x)]

is the Heaviside function that equals 1 when g(x) > 0 and 0 when g(x) ≤ 0.

The constant θNMDA represents the threshold for NMDA-receptor activa-

tion. Note that the synaptic strengthening term is positive only on trials

when the postsynaptic activation exceeds the threshold for NMDA-receptor

activation, and that the amount of strengthening depends on the product

of the presynaptic activation and an exponentially increasing function of

the postsynaptic activation. The [1 − wij(n)] term is a rate-limiting term

that prevents wij(n + 1) from exceeding 1.0, and the constant λ scales the

postsynaptic activation.

Note that the synapse is weakened only when the postsynaptic activation

is below the NMDA threshold. Also note that the exponential term reaches

its maximum when postsynaptic activation is near the NMDA threshold

and decreases as the postsynaptic activation gets smaller and smaller. This

is consistent with the neurobiology. For example, in the absence of any post-

synaptic activation, we do not expect any synaptic plasticity. The wij(n) at

the end prevents wij(n + 1) from dropping below 0. Figure 4.1 shows pre-

dicted changes in synaptic strength [i.e., wij(n+ 1)−wij(n)] for this model

as a function of the magnitude of postsynaptic activation during both early

[when wij(n) = 0.2] and late [when wij(n) = 0.8] learning.

The Eq. 4.33 model of two-factor learning assumes that any activation

in postsynaptic unit j was caused by activation in presynaptic unit i. This

assumption is really only plausible in simple feedforward models. If unit j

receives input from many other units, then Eq. 4.33 could strengthen inap-
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Figure 4.1 Change in synaptic strength predicted by the two-factor learn-
ing model described in Eq. 4.33 as a function of amount of postsynaptic
activation (here scaled from 0 to 1). Predictions are shown for early in learn-
ing [i.e., when wij(n) = 0.2] and late in learning [i.e., when wij(n) = 0.8].

propriate synapses. In the mammalian brain, the magnitude and even the

direction of plasticity at a synapse depends not only on the magnitude of the

pre- and postsynaptic activations, but also on their timing – a phenomenon

known as spike-timing-dependent plasticity . Considerable data show that if

the postsynaptic neuron fires just after the presynaptic neuron then synap-

tic strengthening (i.e., LTP) occurs, whereas if the postsynaptic neuron fires

first then the synapse is weakened (e.g., Bi and Poo 2001; Sjöström, Rancz,

Roth, and Häusser 2008). Furthermore, the magnitude of both effects seems

to fall off exponentially as the delay between the spikes in the pre- and

postsynaptic neurons increases. Let Tpre and Tpost denote the time at which

the pre- and postsynaptic units fire, respectively. Then a popular model of

spike-timing-dependent plasticity (e.g., Zhang, Tao, Holt, Harris, and Poo

1998) assumes that the amount of change in the synaptic strength equals

∆ =

{
e−θ+(Tpost−Tpre), if Tpost > Tpre

eθ−(Tpost−Tpre), if Tpost < Tpre,
(4.34)

where θ+ and θ− are parameters that determine the decay rates of synaptic

strengthening and weakening, respectively. Figure 4.2 shows an example of

this function.
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Figure 4.2 Amount of change in synaptic strength predicted by spike-
timing-dependent plasticity as a function of the difference in time between
firing in the postsynaptic neuron (i.e., Tpost) and the presynaptic neuron
(i.e., Tpre).

To incorporate spike-timing-dependent plasticity into two-factor learning,

the first step is to compute ∆ from Eq. 4.34 anytime the pre- and postsy-

naptic units both fire. Next this value is inserted into Eq. 4.33 to compute

w(n+ 1).

Models of human learning that incorporate two-factor plasticity

Hasselmo and Wyble (1997) proposed a model that includes two-factor plas-

ticity in the hippocampus to account for the effects of scopolamine, an

acetylcholine anatagonist, on free recall and recognition. They tested this

model against data from an experiment reported by Ghoneim and Mewaldt

(1975), in which participants studied lists of 16 words each and were then

tested on their ability to recall and recognize the studied words. Recall and

recognition were both intact when scopolamine was administered between

study and test. In contrast, the administration of scopolamine before study

impaired recall, but not recognition.

Figure 4.3 shows the neural architecture of the Hasselmo and Wyble

(1997) model. Neural activation in each region was modeled by firing-rate

models (e.g., see Ashby 2018). The hippocampus contains two subfields, the

cornus ammonis and the dentate gyrus, each of which receives input from
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Figure 4.3 The neural architecture of the Hasselmo and Wyble (1997) hip-
pocampal model. EC2, EC3, and EC4 denote different subregions in en-
torhinal cortex, whereas CA1 and CA3 denote different subregions in the
cornus ammonis. Two-factor learning occurs at virtually all synapses, ex-
cept at the synapses between dentate gyrus and CA3 and between CA1
and medial septum.

entorhinal cortex, which in turn is driven by widespread input from neo-

cortex. The network is characterized by sparse encoding and many feedback

loops, and the behavior of the model is governed largely by how the resulting

network dynamics approach attractor states.

The network has two global states (encoding and retrieval) that are con-

trolled by the concentration of acetylcholine. The encoding mode is trig-

gered by elevated acetylcholine and is characterized by potentiated two-

factor learning at all plastic synapses (hence encoding), and also by inhib-

ited output from EC4 back to neocortex (hence no retrieval). Acetylcholine

can also reduce excitatory transmission, limiting the effects of recurrent col-

laterals and making the network primarily sensitive to external inputs. This

is good for learning because it helps reduce interference between new items

and previously stored items. The retrieval mode is triggered by depressed

acetylcholine and is characterized by reduced two-factor learning at plastic

synapses (hence no encoding) and also by potentiated output from EC4 to

neocortex (hence retrieval). Low acetylcholine also allows excitatory trans-

mission via the networks recurrent collaterals, making the network sensitive

to stored representations.

The form of two-factor learning used in the model is essentially the same

as in Eq. 4.33, but with the addition of providing a model of how the α and

β parameters in Eq. 4.33 change with concentrations of acetylcholine. The

model successfully simulates recall when context (i.e., cues associated with
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the word list) is presented to the network and it outputs words associated

with that context. Additionally, the model successfully simulates recogni-

tion when it is presented with words and it outputs the context associated

with the words. Hasselmo and Wyble (1997) showed that in the presence of

scopolamine, the network has no difficulty retrieving inputs learned prior to

scopolamine administration, whereas recall of inputs encoded in the pres-

ence of scopolamine is disrupted and recognition of these inputs is spared.

For a full explanation of the network dynamics that enable the model to

account for these phenomena, see Hasselmo and Wyble (1997).

Here we only focused on the synaptic effects of acetylcholine on the hip-

pocampus. However, Hasselmo and Wyble (1997) also explored the effects

on depolarization and adaptation of neurons. Furthermore, the model was

also shown to account for the list length and list strength effects (Murdock &

Kahana, 1993; Murdock Jr, 1962; Murnane & Shiffrin, 1991; Ratcliff, Clark,

& Shiffrin, 1990; Roberts, 1972) in addition to making predictions about

the effects of scopolamine on paired-associate tasks (Caine, Weingartner,

Ludlow, Cudahy, & Wehry, 1981; Crow & Grove-White, 1973; Ostfeld &

Aruguete, 1962). The Hasselmo and Wyble (1997) model provides a good

illustration of how relatively simple two-factor plasticity rules can be incor-

porated into sophisticated implementational-level models that account for

neuropharmacological and behavioral phenomena.

4.5.3 Models based on DA-dependent three-factor plasticity

Models of DA-dependent three-factor plasticity

In the striatum, DA reuptake is fast, so plasticity follows the three-factor

rule. In other words, three factors are needed to strengthen a synapse: strong

presynaptic activation, strong postsynaptic activation, and DA above base-

line. If any of these factors are missing, then the synapse is weakened. A

discrete-time model of three-factor learning is as follows:

wij(n+ 1) = wij(n)

+ α H [Aj(n)− θNMDA]H[D(n)−Dbase]

×Ai(n)
{

1− e−λ[Aj(n)−θNMDA]
}

[D(n)−Dbase][1− wij(n)]

− β H [Aj(n)− θNMDA]H[Dbase −D(n)]

×Ai(t)
{

1− e−λ[Aj(n)−θNMDA]
}

[Dbase −D(n)]wij(n)

− γ H [θNMDA −Aj(n)]Ai(n) e−[θNMDA−Aj(n)]wij(n), (4.35)
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where D(n) is the amount of DA released on trial n and Dbase is the baseline

DA level (Ashby, 2018).

Recall that H(x) is the Heaviside function, which equals 0 if x ≤ 0 and 1

if x > 0. Therefore, the positive LTP term equals 0 except when presynaptic

activation exceeds the postsynaptic NMDA threshold (i.e., Aj(n) > θNMDA)

and DA exceeds baseline (i.e., D(n) > Dbase). Thus, synaptic strengthening

requires three conditions – strong presynaptic activation, postsynaptic ac-

tivation above the threshold for NMDA-receptor activation, and DA above

baseline. Once these conditions are met, synaptic strengthening is the same

as in the Eq. 4.33 two-factor learning model. Two different conditions cause

the synapse to be weakened. The second (the last γ term in Eq. 4.35) is

the same as in the two-factor model. The first (i.e., the β term) however, is

unique to striatal-mediated three-factor plasticity. Cortical-striatal synapses

are weakened if postsynaptic activation is strong and DA is below baseline –

a condition that would occur for example, on trials when feedback indicates

the trial n response was incorrect.

The Eq. 4.35 model of three-factor plasticity requires that we specify the

amount of DA released on every trial in response to the feedback signal [the

D(n) term]. The more that DA increases above baseline (Dbase), the greater

the increase in synaptic strength, and the more it falls below baseline, the

greater the decrease.

Although there are a number of powerful models of DA release, Eq. 4.35

requires only that we specify the amount of DA released to the feedback

signal on each trial. The key empirical results are (e.g., Schultz, Dayan, and

Montague 1997; Tobler, Dickinson, and Schultz 2003): (1) midbrain DA neu-

rons fire tonically, and therefore have a nonzero baseline (i.e., spontaneous

firing rate); (2) DA release increases above baseline following unexpected

reward, and the more unexpected the reward the greater the release, and

(3) DA release decreases below baseline following unexpected absence of re-

ward, and the more unexpected the absence, the greater the decrease. One

common interpretation of these results is that over a wide range, DA firing is

proportional to the reward prediction error (RPE) – that is, to the difference

between obtained reward and predicted reward. If we denote the obtained

reward on trial n by rn and the predicted reward by Pn, then the RPE on

trial n is defined as:

RPEn = rn − Pn. (4.36)

So positive prediction errors occur when the reward is better than expected,

and negative prediction errors when the reward is worse than expected. Note
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that either a positive or negative prediction error is a signal that learning is

incomplete.

A simple model of DA release can be built by specifying how to compute

1) obtained reward, 2) predicted reward, and 3) exactly how the amount

of DA release is related to the RPE. A straightforward solution to these

three problems is as follows (Ashby & Crossley, 2011). First, in tasks that

provide positive feedback, negative feedback, or no feedback on every trial

and where reward magnitude never varies, then a simple model can be used

to compute obtained reward. Specifically, define the obtained reward rn on

trial n as +1 if correct or reward feedback is received, 0 in the absence of

feedback, and -1 if error feedback is received.

Second, following an old tradition (Bush & Mosteller, 1951), predicted

reward can be computed using the iterative sample mean (i.e., Eq. 4.5):

Pn+1 = Pn + αp(rn − Pn), (4.37)

where αp is the learning rate. 4

The final step is to compute the amount of DA released for any spe-

cific value of RPE. A simple model, which is consistent with the single-unit

recording data reported by Bayer and Glimcher (2005) assumes that

D(n) =


1 if RPE > 1;

.8 RPE + .2 if −.25 < RPE ≤ 1;

0 if RPE < .25.

(4.38)

Note that this model assumes a baseline DA level of 0.2 [i.e., D(n) on trials

when RPE = 0]. Positive RPEs increase DA release above this baseline, and

negative RPEs depress it below baseline.

Figure 4.4 shows predicted changes in synaptic strength [i.e., wij(n +

1) − wij(n)] for this model as a function of the magnitude of postsynap-

tic activation, separately for early [when wij(n) = 0.2] and late learning

[when wij(n) = 0.8], and following correct and incorrect responses. Note

that synaptic plasticity following correct (rewarded) responses is similar to

plasticity in the two-factor model (compare the top panel of Figure 4.4 with

Figure 4.1). The only real difference is that plasticity is attenuated more dur-

ing late learning in the three-factor model. This is because DA fluctuations

decrease as rewards become more predictable. Note also that errors have a

greater effect on synaptic plasticity late in learning. This is because errors

are expected early in learning, so DA fluctuations are small. Late in learning

4 The subscript p is to distinguish this learning rate parameter from the learning rate α in Eq.
4.35.
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Figure 4.4 Change in synaptic strength predicted by the model of three-
factor plasticity described in Eq. 4.35 as a function of amount of post-
synaptic activation (here scaled from 0 to 1). Predictions are shown for
early in learning [i.e., when wA,B(n) = 0.2] and late in learning [i.e., when
wA,B(n) = 0.8], and following feedback that the response was correct re-
sponse or incorrect. (α = 2, β = 4, γ = 1).

however, when accuracy is high, errors are unexpected, which causes a large

DA depression and therefore a large decrease in synaptic efficacy.

Relationship of 3-factor plasticity to psychological constructs of RL

Three-factor plasticity may – in some respects – be seen as a possible neural

implementation of the many SR association learning models that were in-

spired by Thorndike’s (1927) law of effect. The obvious analogy maps presy-

naptic activity onto the stimulus component, postsynaptic activity onto the

response component, and DA onto the reinforcement signal. A step further,
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and we might expect the stimulus component to be encoded by a primary

sensory neuron, the response unit to be encoded by a primary motor neuron,

and the reinforcement signal to strengthen or weaken the synapse between

these two neurons. Although human neuroanatomy supports the existence

of direct projections from sensory to motor areas, the evidence suggests that

these synapses are not strengthened via a DA-mediated reinforcement signal,

because DA reuptake in cortex is too slow. Rather, the available evidence

suggests that sensory and motor neurons are indirectly wired together via

a DA-mediated reinforcement signal in the basal ganglia. Here, stimulus-

response associations can be learned at cortical-striatal synapses, with the

striatum projecting via a multi-synaptic pathway to the motor neurons rep-

resenting the response component of the association. From this perspective,

the anatomy and physiology of cortical–basal ganglia–DA interactions may

provide a plausible neural substrate for the classic psychological constructs

of stimulus-response learning originally posed by Thorndike. However, the

anatomy also suggests that the association mechanism is more indirect and

complex than in the original proposals of direct reinforcement of stimu-

lus/response components.

Relationship of 3-factor plasticity to machine-learning constructs of RL

Three-factor plasticity in the basal ganglia may also offer a plausible biolog-

ical substrate for various machine-learning constructs of RL. In this view,

cortical-striatal synaptic weights implement a value function, and DA neu-

rons provide the reinforcement signal – a role motivated by the finding that

DA neuron firing reflects an RPE (Glimcher, 2011; Schultz et al., 1997). This

arrangement could be seen as compatible with a range of specific RL algo-

rithms, including temporal-difference learning, Q learning, and actor-critic

architectures, although the mapping does not seem perfect for any of these.

To be compatible with temporal-difference learning, cortical-striatal synap-

tic weights would need to encode a value function that depends exclusively

on sensory states (i.e., is independent of action). This sort of value func-

tion encoding may be characteristic of the ventral striatum (e.g., nucleus

accumbens). The value function would also need to be used to generate pre-

diction errors, which is consistent with one of the roles sometimes ascribed

to the ventral striatum. However, the value function would also need to op-

erate under the assumption of a fixed action policy, and at present, it is

unclear whether the ventral striatum learns different value functions for dif-

ferent policies. Another feature of temporal-difference learning, which makes

it a problematic model of DA neuron firing, is that, as we saw earlier, the

temporal-difference signal propagates back one time step every trial, until it
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reaches the cue, at which point the propagation ends. DA neurons initially

fire to the reward, and eventually, after learning occurs, they begin to fire

to the cue. But there is no evidence that the propagation backwards is in-

cremental – that is, there is never a DA response to an intermediate time

point between cue and reward 5.

To be compatible with Q-learning, cortical-striatal synaptic weights would

need to encode a value function that combines both sensory states and ac-

tions. This sort of value function encoding may be characteristic of the dorsal

striatum. Parts of the dorsal striatum have quite direct access to motor areas

of cortex, so it is plausible that they could also directly implement the action

selection components of Q learning. However, DA-encoded RPEs would also

need to be derived from the value estimates provided by the dorsal stria-

tum. At present, it is unclear to what degree such prediction errors factor

in information about action.

In actor-critic RL models, an actor system implements an action selection

policy, and a critic system estimates the value of different states and uses

these estimates to generate prediction errors, which are then used to up-

date the critic’s value estimates and the actor’s selection policy. Of all the

machine-learning RL algorithms, these models may most easily map onto

three-factor plasticity in the basal ganglia (Houk et al., 1995; Joel, Niv, &

Ruppin, 2002; Sutton & Barto, 1998). In this view, the critic is implemented

by the DA system and the actor is implemented by cortical-striatal projec-

tions through the dorsal striatum. Since the critic is a separate module from

the actor, there is no need for cortical-striatal synaptic weights (part of the

actor) to be used to compute prediction errors. However, this view does not

say where and how the value function is implemented. One possibility is the

ventral striatum (Takahashi, Schoenbaum, & Niv, 2008).

Models of human learning that incorporate three-factor plasticity

The COVIS procedural-learning model incrementally learns arbitrary stimulus-

response associations via a model of three-factor plasticity that is essentially

identical to Eq. 4.35. Figure 4.5 shows the architecture of the model (Ashby,

Alfonso-Reese, Turken, & Waldron, 1998; Ashby & Crossley, 2011; Ashby

& Waldron, 1999; Cantwell, Crossley, & Ashby, 2015). The key structure is

the striatum, a major input region within the basal ganglia that includes

the caudate nucleus and the putamen. In primates, all of extrastriate visual

cortex projects directly to the striatum, with a cortical-striatal convergence

5 This problem can be solved by replacing the temporal-difference learning algorithm with a
version that includes an eligibility trace, which allows the error to propagate backwards by
more than a single state per step (Sutton & Barto, 1998).
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Figure 4.5 The neural architecture of the COVIS model of procedural learn-
ing for a two-alternative forced-choice task with responses A and B (SMA
= supplementary motor area, PreSMA = presupplementary motor area,
VL = ventral lateral nucleus of the thalamus, VA = ventral anterior nu-
cleus of the thalamus, CM/Pf = centromedian and parafascicular nuclei
of the thalamus, GPi = internal segment of the globus pallidus, TAN =
tonically active neuron, SNPC = substantia nigra pars compacta, MSN =
medium spiny neuron of the striatum).

ratio of approximately 10,000 to 1 (e.g., C. J. Wilson 1995). The model

assumes that, through a procedural-learning process, each striatal medium

spiny neuron associates a motor goal (e.g., press the button on the left) with

a large group of visual cortical neurons (i.e., all that project to it). Much ev-

idence supports the hypothesis that procedural learning is mediated within

the basal ganglia, and especially at cortical-striatal synapses, which exhibit

three-factor plasticity (Ashby & Ennis, 2006; Houk et al., 1995; Mishkin,

Malamut, & Bachevalier, 1984; Willingham, 1998). The COVIS procedural-

learning model is a formal instantiation of these ideas.

Note that the model includes two loops through the basal ganglia (Cantwell

et al., 2015). One loop projects from visual cortex through the body and tail

of the caudate nucleus and terminates in pre-supplementary motor area,

and the second loop projects from pre-supplementary motor area through
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the putamen and terminates in supplementary motor area. Because this

second loop terminates in premotor cortex, COVIS predicts that the associ-

ations that are learned are between stimuli and motor goals. Both loops rely

on three-factor learning at cortical-striatal synapses. The first loop learns

which stimuli are associated with the same response and the second loop

learns what motor response is associated with each of these stimulus clus-

ters. In a novel task, both types of learning are required. However, note that

if we train agents to make accurate classification responses and then switch

the responses associated with the two stimulus classes, then the classes re-

main unchanged – only the response mappings must be relearned. So CO-

VIS predicts that reversing the locations of the response keys will interfere

with procedural classification performance, but that recovery from such a

reversal should be easier than novel classification learning – a prediction

that has been supported in several studies (Cantwell et al., 2015; Kruschke,

1996; Maddox, Glass, O’Brien, Filoteo, & Ashby, 2010; Sanders, 1971; Wills,

Noury, Moberly, & Newport, 2006).

COVIS uses a biologically accurate model of spiking in individual neu-

rons proposed by Izhikevich (2003). Let Vi(t) and Vj(t) denote the intracel-

lular voltages of the pre- and postsynaptic neurons, respectively, at time t.

Then the Izhikevich (2003) model assumes that the intracellular voltage of

the postsynaptic neuron on trial n is described by the following differential

equations:

dVj(t)

dt
= wij(n)f [Vi(t)] + β + γ [Vj(t)− Vr] [Vj(t)− Vt]− θUj(t),

dUj(t)

dt
= λ [Vj(t)− Vr]− ωUj(t), (4.39)

where β, γ, Vr, Vt, θ, λ, and ω are constants that are adjusted to produce dy-

namical behavior that matches the neural population being modeled. Uj(t)

is an abstract regulatory term that is meant to describe slow recovery in the

postsynaptic neuron after an action potential is generated. Equation 4.39

produces the upstroke of an action potential via its own dynamics. To pro-

duce the downstroke, Vj(t) is reset to Vreset when it reaches Vpeak, and at

the same time, Uj(t) is reset to Uj(t) +Ureset, where Vreset, Vpeak, and Ureset

are free parameters.

The model has many free parameters and therefore can fit a wide variety of

dynamical behavior. Izhikevich (2003) identified different sets of parameter

values that allow the model to mimic the spiking behavior of approximately

20 different types of neurons. For example, one set of parameter values al-

lows the model to mimic the firing properties of the striatal medium spiny
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neurons shown in Figure 4.5 (including, e.g., their up and down states), and

another set of values allows the model to mimic the regular spiking neurons

that are common in cortex. Furthermore, Ashby and Crossley (2011) modi-

fied the Izhikevich model to account for the unusual dynamics of the striatal

cholinergic interneurons (which produce a pronounced pause in their high

tonic firing rate following excitatory input). In all these cases, the param-

eters are fixed by fitting the model to single-unit recording data from the

neural population being modeled. Once set, the parameter values that define

the models of each individual neuron type then remain fixed throughout all

applications. Therefore, when testing the model against behavioral or neu-

roimaging data, the models of each neuron type have zero free parameters.

The function f [Vi(t)] in Eq. 4.39 models the input from the presynaptic

neuron i. In particular, it uses a simple model called the alpha function to

mimic the temporal delays of spike propagation and the temporal smearing

that occurs at the synapse (Rall, 1967). Specifically, the alpha function as-

sumes that every time the presynaptic neuron spikes, the following input is

delivered to the postsynaptic neuron (with spiking time t = 0):

α(t) =
t

δ
exp

(
δ − t
δ

)
, (4.40)

where δ is a constant. This function has a maximum value of 1.0 and it

decays to .01 at t = 7.64δ. Thus, δ can be chosen to model any desired

temporal delay. Suppose the presynaptic neuron i produces N spikes that

occur at times t1, t2, ..., tN . Then the function f in Eq. 4.39 equals

f [Vi(t)] =

N∑
k=1

[α(t− tk)]+ , (4.41)

where

[α(t− tk)]+ =

{
α(t− tk) if t > tk;

0 if t ≤ tk.
(4.42)

Finally, synaptic plasticity, and therefore learning, is modeled by the

wij(n) multiplier on f [Vi(t)] in Eq. 4.39. The value of this term is adjusted

trial-by-trial, either via the two-factor (Eq. 4.33) or three-factor (Eq. 4.35)

models of synaptic plasticity. COVIS assumes that the procedural learn-

ing in the striatum is mediated by three-factor plasticity at cortical-striatal

synapses. Therefore, the presynaptic neuron i in Eq. 4.39 would be in cor-

tex (either visual cortex or pre-supplementary motor area), the postsynaptic

neuron j would be a medium spiny neuron in the striatum, and wij(n) would

be adjusted trial-by-trial by Eq. 4.35. For a complete description of this type
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of mathematical modeling, called computational cognitive neuroscience, see

Ashby (2018).

COVIS uses the Izhikevich (2003) model (i.e., Eq. 4.39) to model spiking

in all neuron types shown in all brain regions illustrated in Figure 4.5, and it

uses the alpha function (Eq. 4.41) to model synaptic transmission between

all connected neurons. The supplementary motor area in the model includes

as many simulated neurons as there are response alternatives in the task

under study. Figure 4.5 shows the architecture of the model when applied to

a two-alternative forced-choice task with responses A and B. To generate a

motor behavior, a response threshold is set on the integrated alpha function

of each supplementary motor area unit (i.e., the integral of Eq. 4.41). The

first unit to exceed its threshold initiates its associated motor response.

The lateral inhibition between competing supplementary motor area units

causes the units to display the type of push-pull activity identified in many

premotor regions of cortex (e.g., as in Shadlen and Newsome 2001). Formally,

this architecture – that is, separate accumulators with lateral inhibition –

mimics a drift diffusion process, but of course, is more easily extended to

tasks with more than two response alternatives (Bogacz, Usher, Zhang, &

McClelland, 2007; P. L. Smith & Ratcliff, 2004; Usher & McClelland, 2001).

Note that COVIS predicts that synaptic strengthening can only occur

when the visual trace of the stimulus and the post-synaptic effects of DA

overlap in time. More specifically, synaptic plasticity in the striatum is

strongest when the intracellular signaling cascades driven by NMDA recep-

tor activation and DA D1 receptor activation coincide (Lisman, Schulman,

& Cline, 2002; ?). The further apart in time these two cascades peak, the

less effect DA will have on synaptic plasticity. For example, Yagishita et

al. (2014) reported that synaptic plasticity was best (i.e., greatest increase

in spine volume on striatal medium spiny neurons) when DA neurons were

stimulated 600 ms after medium spiny neurons. When the DA neurons were

stimulated before or 5 s after the medium spiny neurons, then no evidence

of any plasticity was observed. In a task mediated by procedural learning,

activation of the medium spiny neurons should occur just before the mo-

tor response, and activation of the DA neurons should occur just after the

feedback. So COVIS predicts that feedback delays during procedural learn-

ing should have effects that are similar to those observed by Yagishita et

al. (2014). In fact, many studies have confirmed this prediction in a form

of category learning thought to depend on procedural learning (i.e., the

information-integration categorization task; Dunn, Newell, and Kalish 2012;

Maddox, Ashby, and Bohil 2003; Maddox and Ing 2005; Worthy, Markman,

and Maddox 2013). Valentin, Maddox, and Ashby (2014) showed that the
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COVIS procedural-learning model can accurately account for the effects of

all these feedback delays. In contrast, the same studies showed that delays

up to 10 s have no effect on rule-based category learning that is thought to

be mediated primarily in prefrontal cortex.

Ashby and Crossley (2011) proposed that the striatal cholinergic interneu-

rons serve as a context-sensitive gate between cortex and the striatum (see

also Crossley, Ashby, and Maddox 2013, 2014; Crossley, Horvitz, Balsam,

and Ashby 2016). The idea, which is supported by a wide variety of neuro-

science evidence, is that the striatal cholinergic interneurons tonically inhibit

cortical input to striatal medium spiny neurons (e.g., Apicella, Legallet, and

Trouche 1997; Pakhotin and Bracci 2007). The striatal cholinergic interneu-

rons are driven by neurons in the centremedian–parafascicular nuclei of the

thalamus, which in turn are broadly tuned to features of the environment.

In rewarding environments, the cholinergic interneurons learn to pause to

stimuli that predict reward, which releases the cortical input to the stria-

tum from inhibition. This allows striatal output neurons to respond to exci-

tatory cortical input, thereby facilitating cortical-striatal plasticity. In this

way, cholinergic interneuron pauses facilitate the learning and expression

of striatal-dependent behaviors. When rewards are no longer available, the

cholinergic interneurons cease to pause, which prevents striatal-dependent

responding and protects striatal learning from decay.

Extending the COVIS procedural-learning system to include striatal cholin-

ergic interneurons allows the model to account for many new phenomena –

some of which have posed difficult challenges for previous learning theo-

ries. One of these is that the reacquisition of an instrumental behavior after

it has been extinguished is considerably faster than during original acqui-

sition (Ashby & Crossley, 2011). The model accounts for this ubiquitous

phenomenon because the withholding of rewards during the extinction pe-

riod causes the cholinergic interneurons to stop pausing to sensory cues

in the conditioning environment (since they are no longer associated with

reward). This closes the gate between cortex and the striatum, which pre-

vents further weakening of the cortical-striatal synapses. When the rewards

are reintroduced, the cholinergic interneurons relearn to pause, and the be-

havior immediately reappears because of the preserved synaptic strengths.

4.5.4 Models based on plasticity that mimics supervised learning

The cerebellum is commonly thought to provide a neural substrate for super-

vised learning (Doya, 1999) and there is a rich basis of implementational-

level models in support of this view, beginning with the seminal work of
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Marr (1969). For this reason, the following sections are focused on learning

in the cerebellum.

Learning in the cerebellum

The cerebellum is anatomically arranged into multisynaptic loops with the

cerebral cortex (Ramnani, 2006). Influence over the cerebellum is orches-

trated through the pons, which receives widespread inputs from cortical and

peripheral sites – including those associated with proprioception (Sawtell,

2010), haptics (Ebner & Pasalar, 2008; Shadmehr & Krakauer, 2008; Weiss

& Flanders, 2011), and ongoing motor commands (Schweighofer, Spoelstra,

Arbib, & Kawato, 1998) – and gives rise to the mossy fiber inputs to cere-

bellar granule cells. Granule cells give rise to parallel fibers, which provide

one of two major inputs to the Purkinje cells of the cerebellar cortex, which

are the only projection neurons in the cerebellar cortex. The second input

to Purkinje cells comes from climbing fibers, which originate in the inferior

olive. Purkinje cells project to the cerebellar deep nuclei, which in turn are

relayed to the thalamus, and ultimately back to cortex, thereby closing the

anatomical loop.

Classic theories proposed that the cerebellum uses a form of supervised

learning to control and coordinate motor function (Albus, 1971; Ito, 1984;

Marr, 1969). In essence, these theories viewed the cerebellum as a biologi-

cal implementation of a perceptron (Rosenblatt 1958; see Figure 4.6), with

distributed inputs provided by the mossy fibers, error signals communicated

by the climbing fibers, and supervised learning carried out by synaptic plas-

ticity at the synapses between parallel fibers and Purkinje cells (either LTP

as originally proposed by Marr 1969 or LTD as originally proposed by Ito

1984). Ito and colleagues played pivotal roles in establishing the biological

plausibility of this synaptic plasticity (e.g., Ito 1984).

The anatomy of the cerebellum is unique in a few ways that probably

played a large role in the development of these models. First, granule cells

constitute more than half the neurons in the mammalian cerebellum (Eccles,

Ito, & Szentágothai, 1967; Palay & Chan-Palay, 2012), so mossy fiber input

seems like a plausible biological substrate for the distributed input repre-

sentations commonly used with perceptrons. Second, each Purkinje neuron

receives input from exactly one climbing fiber, and each fiber makes exten-

sive synaptic contact with the dendritic tree of its target Purkinje neuron

(Eccles et al., 1967; Palay & Chan-Palay, 2012). The most effective training

methods for artificial neural networks rely on supervised learning algorithms

that implement some form of gradient descent (e.g., backpropagation), which

require the system to have fine-grained access to errors that occur at ev-
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Figure 4.6 Simplified neuroanatomy of the cerebellum when viewed as a
three layer perception. Purkinje cell output is inhibitory. All other illus-
trated projections are excitatory. See text for further details.

ery synapse. The one-to-one correspondence between Purkinje neurons and

climbing fibers may be a biologically plausible way of projecting these errors

into the cerebellum.

Later physiological discoveries also fall roughly in line with this classic

view of the cerebellum. For instance, in Purkinje neurons, the shape of the

spike evoked by activation of parallel fibers (i.e., “simple spike”) is differ-

ent from the shape of the spike evoked by inferior olive activation (i.e.,

“complex spike”). Simple spikes encode parameters of movement such as

trajectory, velocity, and acceleration (Gomi et al., 1998; Shidara, Kawano,

Gomi, & Kawato, 1993), whereas complex spikes encode errors in move-

ment (Kitazawa, Kimura, & Yin, 1998; Kobayashi et al., 1998), which is

compatible with their involvement in a learning process. Furthermore, the

granule cell/Purkinje cell synapse is highly plastic (e.g., it exhibits LTP and

LTD both presynaptically and postsynaptically), and climbing fiber signals

can control the direction of plasticity (e.g., LTP versus LTD) at granule

cell/Purkinje cell synapses (Coesmans, Weber, De Zeeuw, & Hansel, 2004;

Lev-Ram, Mehta, Kleinfeld, & Tsien, 2003). Much is known about the in-
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tracellular signalling cascades that drive this plasticity (van Woerden et al.,

2009), but the details are beyond the scope of this chapter.

The mechanisms of synaptic plasticity at parallel fiber/Purkinje cell synapses

do not fall neatly into the network architectures assumed by two-factor and

three-factor learning rules. The two-factor learning rule describes synaptic

plasticity when only two neurons are connected (i.e., a presynaptic neu-

ron and a postsynaptic neuron), and the three-factor learning rule describes

plasticity when a presynaptic neuron and a dopaminergic input converge on

a postsynaptic neuron. In contrast, plasticity at parallel fiber/Purkinje neu-

ron synapses is determined by the convergence of parallel fibers and climb-

ing fibers – both of which are excitatory glutamatergic projections – onto

Purkinje neurons. Thus, synaptic plasticity at parallel fiber/Purkinje cell

synapses follows its own unique learning rule. In particular, LTD is induced

with (1) strong presynaptic activation from input 1, (2) strong presynaptic

activation from input 2, and (3) strong postsynaptic activation. In contrast,

LTP is induced with (1) weak presynaptic activation from input 1, (2) weak

or absent activation from presynaptic input 2, and (3) weak postsynaptic ac-

tivation. A further difference is that, in the two-factor learning rule, strong

presynaptic activation (i.e., above the threshold for NMDA receptor acti-

vation) leads to LTP, and weak presynaptic activation leads to LTD. At

parallel-fiber/Purkinje neuron synapses, these roles are reversed: weak acti-

vation of presynaptic Purkinje neurons leads to LTP, and strong activation

leads to LTD.

Finally, we now know that there is synaptic plasticity at a multitude of

synapses within the cerebellar circuit beyond those postulated by the classic

model (e.g., between mossy fibers, between Purkinje cells and deep cerebellar

nuclei, between various interneuron types, etc.), and we understand much of

the cellular and molecular mechanisms at play. A complete review of these

forms of plasticity and their mechanisms is outside the scope of this chapter,

but see D’Angelo (2014) for a review.

Example models of supervised learning in the cerebellum

Classic models view the cerebellum as a neural implementation of a supervised-

learning machine (Albus, 1971; Ito, 1984; Marr, 1969). In this conception,

sensory input signals are carried by the mossy fibers, transformed into a

more expansive basis set by the greatly divergent projections to the granule

neurons, and ultimately transformed into the output signal by the granule

neuron projections to Purkinje neurons. The ω parameters of Eq. 4.29 de-

note the synaptic strengths of the connections between granule and Purkinje

neurons in this system. Climbing fibers from the inferior olive are thought
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to provide a supervised error or teaching signal that dictates plasticity at

the granule neuron/Purkinje neuron synapse.

Owing largely to the homogeneity of anatomical circuitry across the cere-

bellum, this basic model has been proposed to apply to essentially every

domain of cognition and action (Schmahmann, Guell, Stoodley, & Halko,

2019). However, likely because of the cerebellum’s early association with mo-

tor function, the most clearly developed class of cerebellar-based supervised-

learning models include models of motor planning and motor control – espe-

cially for arm-reaching movements (Schweighofer, Arbib, & Kawato, 1998;

Schweighofer, Spoelstra, et al., 1998; Wolpert, Miall, & Kawato, 1998). In

this case, all signals in Eq. 4.29 are considered to vary continuously in time,

with output signals yj(t) conceived of as motor commands (i.e., muscle ac-

tivation or joint torques), and input signals xi(t) conceived of as desired

trajectories (i.e., position, velocity, and acceleration). In addition, the ωi,j
parameters represent synaptic weights between the granule cell and Purk-

inje cell layer, and the inferior olive is hypothesized to transmit a supervised

error signal (actual trajectory minus desired trajectory).

4.5.5 Models of human learning that include multiple forms of

plasticity

After long periods of practice, almost any behavior can be executed quickly,

accurately, and with little or no conscious deliberation. At this point, we say

that the behavior has become automatic. A strong case can be made that

most behaviors performed by adults are automatic. When we sit in a chair,

pick up a cup of coffee, or swerve to avoid a pothole, our actions are almost

always automatic.

Automaticity could be viewed as the asymptotic state of learning. Ashby,

Ennis, and Spiering (2007) proposed that skills learned procedurally are me-

diated entirely within cortex after they become automatized, and that the

development of automaticity is associated with a gradual transfer of control

from the striatum to cortical-cortical projections from the relevant sensory

areas directly to the premotor areas that initiate the behavior. So in Figure

4.5, the cortical-cortical projections from visual cortex to the supplemen-

tary motor area eventually mediate the expression of automatic behaviors

without any assistance from the subcortical loops through the basal ganglia.

Therefore, according to this account, a critical function of the basal ganglia

is to train purely cortical representations of automatic behaviors. Kovacs,

Hélie, Tran, and Ashby (2021) proposed a similar account of how rule-guided
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behaviors are automatized in which the prefrontal cortex trains the cortical

circuits that implement the automatic behaviors.

The Ashby et al. (2007) model was motivated by the observation that be-

cause cortical synaptic plasticity follows two-factor learning rules, the purely

cortical circuits are incapable of learning any behavior that requires trial-

by-trial feedback. Such behaviors require the three-factor plasticity of the

basal ganglia. Ashby et al. (2007) proposed that the basal ganglia use DA-

mediated three-factor learning (i.e., at cortical-striatal synapses) to gradu-

ally activate the correct postsynaptic targets in supplementary motor area,

which thereby enables two-factor plasticity at cortical-cortical synapses to

learn the correct associations (i.e., because there will be more postsynaptic

activation at the correct synapses than at synapses leading to incorrect re-

sponses). As a result, in the full version of the Figure 4.5 model, plasticity

at cortical-striatal synapses is modeled via three-factor learning rules (as

in Eq. 4.35), whereas plasticity at cortical-cortical synapses is modeled via

two-factor learning rules (as in Eq. 4.33).

This model accounts for many results that are problematic for other the-

ories of automaticity. For example, it correctly predicts that people with

Parkinson’s disease, who have DA reductions and striatal dysfunction, are

impaired in initial procedural learning (Soliveri, Brown, Jahanshahi, Caraceni,

& Marsden, 1997; Thomas-Ollivier et al., 1999), but relatively normal in

producing automatic skills (Asmus, Huber, Gasser, & Schöls, 2008). It also

correctly predicts that blocking all striatal output to cortical motor and pre-

motor targets does not disrupt the ability of monkeys to fluidly produce an

overlearned motor sequence (Desmurget & Turner, 2010). Similarly, a neu-

roimaging study reported that activation in the putamen was correlated with

performance of a procedural skill early in training but not after automaticity

developed (Waldschmidt & Ashby, 2011). Instead, automatic performance

was only correlated with activity in cortical areas (i.e., pre-supplementary

motor area and supplementary motor area).

4.6 Empirical Testing

Of course, any psychological theory or model must eventually be tested

against empirical data. In the case of learning models, this is especially

challenging because, by definition, learning data are non-stationary. In fact,

in some cases, the human learner could be in a different state on every trial

of the experimental task. If so, then accurate estimation of that state is

virtually impossible. In other words, learning data often provide, at best, a

highly noisy sample of the learner’s true state. As a result, model mimicry
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is perhaps a greater problem with models of learning than with models of

other types of psychological phenomena – that is, learning data are often

noisy enough that a less valid model could be statistically indistinguishable

from a more valid model, based on goodness-of-fit alone. For these reasons,

some extra steps are often needed to test models of learning.

One advantage of building models in which learning is mediated by the

synaptic plasticity algorithms described in the previous sections, is that be-

cause of their biological constraints, such models tend to be mathematically

rigid (Ashby, 2018). In other words, they tend to make a narrow set of pre-

dictions, regardless of how their free parameters are set. Because of this,

in many cases, parameter-free a priori predictions are possible. For exam-

ple, any model that assumes learning is based on DA-mediated synaptic

plasticity that mimics reinforcement-learning algorithms must predict that

omitting trial-by-trial feedback or even delaying feedback by just a few sec-

onds should have devastating effects on learning.

Even if a model does not make a priori predictions in a given task, it

may predict only a limited set of possible outcomes. If one of those out-

comes is observed in an experiment, then a model predicting that this is

one of the few outcomes possible should be favored over a model that can

account for a wider variety of possible outcomes by manipulating free pa-

rameters in a post hoc manner. The method of parameter-space partitioning

was designed to address this issue (Pitt, Kim, Navarro, & Myung, 2006).

In particular, parameter-space partitioning estimates the volume of param-

eter space throughout which a model is consistent with a certain qualitative

pattern of data. A parameter-space partitioning analysis is valuable with

all kinds of modeling, but especially so with learning models because of the

challenges their non-stationary nature presents to standard goodness-of-fit

testing.

Other good model fitting practices are also recommended. For example,

the models should be validated by simulating data under a variety of dif-

ferent parameter settings and then investigating under what conditions the

generating parameter values can be recovered during the parameter estima-

tion process.

When learning models are fit to behavioral data, the most common choice

is to fit them to some form of empirical learning curve – most often a forward-

learning curve, which plots proportion correct against trial or block number.

As with all modeling, the most effective tests compare the fit of the model

under investigation to some other established model from the literature. In

the case of forward learning curves, a good choice for comparison is the
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exponential learning curve

Pn = P∞ − (P∞ − P0) e−λn, (4.43)

where Pn is the probability correct on trial n, P∞ and P0 are asymptotic

and initial accuracy, respectively, and λ is the learning rate. This model

was proposed more than one hundred years ago (Thurstone, 1919), and re-

mains popular today (e.g., Heathcote, Brown, and Mewhort 2000; Leibowitz,

Baum, Enden, and Karniel 2010). As an example of how this model might be

used, Cantwell et al. (2017) compared the fits of the exponential model and

a biologically detailed model that assumes learning in procedural-memory-

mediated tasks depends on three-factor plasticity (i.e., the model described

in Figure 4.5) to learning curves from two separate experiments. In both

cases, the biologically detailed model fit better than the exponential model.

Different learning strategies can produce qualitatively different learning

curves. Procedural learning and instrumental conditioning predict incre-

mental learning and gradual learning curves. In contrast, rule-guided learn-

ing predicts discrete and abrupt jumps in accuracy as the learner switches

rules trial-by-trial. In many tasks, incorrect rules cause accuracy to be near

chance, whereas the correct rule predicts perfect accuracy. In these cases,

rule-learning strategies predict all-or-none learning curves.

Although incremental and all-or-none learning curves might seem easy to

distinguish empirically, it has long been known that these differences can

be obscured if the data are averaged across learners (Estes, 1956, 1964).

In fact, it is well documented that averaging can change the psychological

structure of many different types of data (Ashby, Maddox, & Lee, 1994;

Maddox, 1999). As a result, averaging is typically inappropriate when testing

models of how individuals learn. For example, if every learner’s accuracy

jumps from 50% to 100% correct on one trial, but the trial on which this

jump occurs varies across participants, then the resulting averaged learning

curve will be incremental – not all-or-none (Estes, 1956). The top panel

of Figure 4.7 illustrates this phenomenon. This panel shows the traditional

(forward) learning curve (i.e., mean accuracy across all participants on every

trial) for 1,000 simulated participants who each display all-or-none learning.

Specifically, each participant responds randomly with a probability correct

of .5 until the correct strategy is discovered on some random trial (between 5

and 85), after which they respond perfectly. Note that the all-or-none nature

of learning is completely obscured by the averaging process.

Hayes (1953) proposed the backward-learning curve as a solution to this

problem. Backward-learning curves are most effective at discriminating be-

tween incremental and all-or-none learning in experiments where perfect
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Figure 4.7 (a) Forward learning curve, which plots mean proportion correct
on each trial for 1,000 simulated participants who are all characterized by
one-trial learning in which accuracy jumps from .5 to 1 on one trial, but
who all make this jump on a different random trial. (b) Backward learning
curve of the same data.

accuracy is possible. The first step is to define a learning criterion, which is

conservative enough to rule out guessing or partial learning. For example,

consider a two-alternative task, like the one illustrated in Figure 4.7, in which

the probability correct by guessing is .5 on each trial. Then a criterion of 10

consecutive correct responses is possible by guessing with a probability of

less than .001. A backward-learning curve can only be estimated for partici-

pants who reach criterion, so the second step is to separate participants who

reached criterion from those who did not. The most common analysis for
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nonlearners is to compare the proportion of nonlearners across conditions.

The remaining steps proceed for all participants who reached criterion. Step

3 is to identify for each learner the trial number of the first correct response

in the sequence of 10 correct responses that ended the learning phase. Let

Ni denote this trial number for learner i. Then note that the response on

trial Ni and the ensuing 9 trials were all correct. But also note that the re-

sponse on the immediately preceding trial (i.e., trial Ni− 1) was necessarily

an error. Step 4 is to renumber all the trial numbers so that trial Ni becomes

trial 1 for every participant. Thus, for every participant, trials 1 – 10 are

all correct responses and trial 0 is an error. The final step is to estimate a

learning curve by averaging across learners. The bottom panel of Figure 4.7

shows the backward learning curve that results from this re-analysis of the

data plotted in Figure 4.7a.

Because of our renumbering system, the mean accuracy for trials 1-10

will be 100% correct, and the mean accuracy for trial 0 will be 0% correct.

Thus, if every learner shows a dramatic one-trial jump in accuracy, then

the averaged accuracy on trial -1 should be low, even if the jump occurred

on a different trial number for every participant (according to the original

numbering system). In the Figure 4.7 example, all participants had perfect

all-or-none, one-trial learning and note that the mean accuracy for all trials

preceding trial 0 is at chance (i.e., .5). In contrast, if participants incremen-

tally improve their accuracy then the averaged accuracy on trial -1 should

be significantly higher than chance. So if one is interested in discriminat-

ing between strategies that predict incremental learning and strategies that

predict all-or-none learning, then backward learning curves should be used

rather than the more traditional forward learning curves.

Backward-learning curves are more problematic in tasks where most par-

ticipants do not achieve perfect accuracy, because in these cases, it is usually

impossible to define a learning criterion that ensures learning has termi-

nated. Even so, if estimated with care, backward learning curves can be

useful even in these more ambiguous cases (J. D. Smith & Ell, 2015).

4.7 Conclusions

Mathematical models of human learning have progressed enormously during

the last century. After an initial period of intense activity that dominated

experimental psychology during the first half of the 20th century, the field

entered a lull that lasted for several decades. As we have described, several

neuroscience breakthroughs reinvigorated the study of learning and the sub-

sequent progress has been dramatic. Even so, the study of learning has not
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recaptured its formally prominent place within experimental psychology. For

example, none of the leading textbooks on cognitive neuroscience currently

include any chapters on learning. Learning is a fundamental component of

the human experience, and we believe that the recent progress described in

this chapter should re-establish the foundational role of learning, not only in

mathematical psychology, but more generally within the cognitive sciences.

4.8 Related Literature

Many articles and texts review mathematical learning theory as it existed

during the early years of mathematical psychology, including Atkinson et

al. (1965), Bush and Estes (1959), and Laming (1973). No recent texts pro-

vide a similar comprehensive coverage. Even so, there are a variety of more

specialized recent reviews. In the case of machine-learning, the classic text

on reinforcement learning is Sutton and Barto (1998), whereas Neal (2012)

covers Bayesian approaches. A number of computational neuroscience re-

views include sections on learning, including Dayan and Abbott (2001) and

Ashby (2018). For a review of the neurobiological foundations of learning

(e.g., synaptic plasticity), see Rudy (2020).
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