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State-trace analysis (STA) is a method for determining the number of underlying parameters or latent
variables that are varying across two or more tasks. STA is based on the fact that under very weak
conditions, any model in which r parameters are varying across r or more tasks predicts an r-
dimensional state-trace plot. Although monotonicity assumptions can sometimes be useful in STA,
they are not required. Specifically, there is no need to assume that performance in any task is a
monotonic function of whichever parameters are varying. As a result, requiring STA models to assume
monotonicity seriously reduces the applicability of STA. Whereas an STA can identify the number of
varying parameters, it provides no information about the number of underlying systems. Similarly, STA
is ill suited to examining dissociations. It can be used to test for double, but not single dissociations.
In particular, a monotonic state-trace plot rules out a double dissociation but provides no information
about whether or not the data contain a single dissociation.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

State-trace analysis (STA; Bamber, 1979) is a method for de-
ermining the complexity of a set of data in which one or more
ndependent variables (IVs) are manipulated across experiments
r conditions and, most typically, two separate dependent vari-
bles (DVs) are measured (e.g., performance in two tasks). If the
omplexity of the data is less than the potential variation in the
Vs and DVs, then some sort of bottleneck must exist. Although
more precise description is given below, informally, the goal of
TA is to measure the width of this bottleneck. The bottleneck
etween the IVs and DVs is due, presumably, to perceptual and
ognitive processes internal to the human participant. As such, an
ccurate model of those processes should therefore also include
he same bottleneck. In the case of mathematical models, the
idth of the bottleneck is typically defined by the number of
arameters the model must vary to account for the data.
Fundamentally, STA is a method for determining the complex-

ty or dimensionality of perceptual and cognitive processes that
re recruited across a variety of tasks and conditions. In our opin-
on, it is the best available method for addressing this problem.
owever, during the past several decades, STA has been used
or a variety of other purposes — in particular, to ask questions
bout the architecture of the underlying processes, that is, about
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whether the perceptual and cognitive processes are configured as
a single system or as multiple systems, and also to ask whether
the data from the various conditions provide empirical support
for some kind of dissociation. As we will see, STA is poorly suited
to both of these problems.

This article describes the mathematical basis of STA, with the
goal of improving its current application. Some of the results
presented here have been described previously (i.e., Proposi-
tions 2 and 4). However, Propositions 1, 3 and 5 are new. In
particular, we extend STA from its usual two-task applications
to any number of tasks, and we present new results on the
inability of STA to identify the number of underlying cognitive
systems or a possible dissociation between performance in two
tasks. This article proceeds as follows. Section 2 establishes the
mathematical foundations of STA, and extends the method to
any number of tasks. Section 3 shows that a popular restriction
of STA to state-trace plots that are monotonically increasing or
decreasing fails to exploit the full potential of STA. Section 4
establishes the inability of STA to discriminate between single-
and multiple-systems models that predict the same width bot-
tleneck. Section 5 provides rigorous justification for using STA to
test for double dissociations, but also shows that STA provides
no information about whether or not the data contain a single
dissociation. Finally, we close with some general conclusions.

2. The mathematical foundations of STA

STA begins by plotting performance on two DVs against each

other. The DVs may come from the same or different tasks. For
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Fig. 1. Different types of state-trace results. All four panels were generated from the generalized context model (GCM; Nosofsky, 1986) in rule-based (RB) and
nformation-integration (II) categorization tasks. The single-monotonic curve in panel (a) was generated by assuming that the GCM overall discriminability parameter
varies across tasks and participants. The single-nonmonotonic curve in panel (b) was generated by assuming that the GCM attention weight parameter w varies
cross tasks and participants. The double curves in panel (c) show a possible outcome of an experiment with two groups of participants, in which the parameter c

varies continuously within each group and the two groups are characterized by different values of w. The scatter plot in panel (d) was generated by assuming that
both c and w vary across tasks and participants.
example, an STA could be performed on an ROC curve, which
plots the probability of a hit against the probability of a false
alarm from a YES–NO detection task. Alternatively, the STA could
be performed on data collected from two different categorization
tasks, where the two DVs are the proportion of correct responses
in each task (as in Figs. 1–3).

2.1. Different types of state-trace plots

To begin, we describe the various possible outcomes of an STA,
which are all illustrated in Fig. 1.

Definition 1 (Types of State Traces). Consider an STA that plots
values of two DVs against each other. The plot that results in-
cludes the following types.

• In a single-monotonic plot, the data all fall on a single mono-
tonic curve — that is, a curve that is either nondecreasing or
nonincreasing (e.g., as in Fig. 1a);

• In a single-nonmonotonic plot, the data all fall on a single
nonmonotonic continuous curve (e.g., as in Fig. 1b);

• In a double plot, the data fall on two separate curves — that
is, they do not all fall on a single continuous curve (e.g., as
in Fig. 1c);

• In a scatter plot, the data fill a region and do not fall on any
one or two curves (e.g., as in Fig. 1d).
2

2.2. Mathematical models

All applications of STA assume that the IVs manipulated in an
experiment and the DVs that are recorded are related via one or
more latent or intervening variables. In psychology, latent vari-
ables are often interpreted broadly and include constructs such
as hunger, personality, or intelligence. Many such latent variables
are surely multidimensional, in the sense that any serious model
of these broad constructs would likely include more than one
parameter. The best that STA can do is determine the number
of dimensions across which the latent variable or variables are
varying. For example, if an STA concludes that the latent variables
vary on two dimensions, it is impossible to know, on the basis
of the STA alone, whether the two dimensions describe two
different latent variables, or represent a single latent variable that
varies on two dimensions. Therefore, to be clear, we refer to the
dimensions across which the latent variables vary as parameters.
So in an application to an experimental setting in which there are
m IVs, r parameters, and n DVs, the goal of STA is to identify the
numerical value of r .

Consider any of the state-trace plots described in Definition 1.
Suppose that two IVs are manipulated and that performance in
both tasks is mediated by a single intervening parameter θ . In
this case, there must exist some function f that determines the
value of θ for every possible set of values of IV1 and IV2 – that is,
f (IV1, IV2) = θ . Furthermore, there must also exist functions g1
and g that map θ to DV and DV , respectively. In other words,
2 1 2
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1(θ ) = DV1 and g2(θ ) = DV2. We call f the input function and g1
nd g2 the output functions (i.e., as in Dunn & Anderson, 2018).
Determining the functions f , g1, and g2 from the empirical

tate-trace plot is beyond the scope of STA. These functions could
e highly complex. Future research might approximate them,
ut in almost all applications of STA, they should be considered
nknowable. The contribution of STA to this problem is not to
stimate these functions, but to identify the existence of the
ottleneck — that is, to conclude that performance in the tasks
ust be mediated by some single varying parameter.
Although the functions f , g1, and g2 are unknowable, a com-

on goal of researchers, especially mathematical psychologists, is
o propose a mathematical model of the perceptual and cognitive
rocesses thought to be active in the tasks under study. A fully-
pecified model should define all three functions f , g1, and g2, and
escribe the bottleneck by proposing a parameter that models the
ingle varying dimension of the latent variable. In practice how-
ver, few if any, current models within mathematical psychology
eet these goals. Current mathematical models specify the free
arameters that define the latent variable space and they specify
utput functions that generate predicted values of various DVs
or any specified set of numerical parameter values. However,
hey typically make weak, or no assumptions about the input
unctions. We call such models output-specified models.

The following definitions formalize these ideas.

efinition 2 (Fully-specified Mathematical Model). Consider a set
f one or more tasks in which m real-valued IVs (i.e., IV1, . . . , IVm)
re varied and n real-valued DVs (i.e., DV1, . . . ,DVn) are recorded.
fully-specified mathematical model of these tasks specifies how

he value of each of the DVs (i.e., DV1, . . . ,DVn) is determined
y the values of the IVs (i.e., by IV1, . . . , IVm). This is done as
ollows. Let I ⊆ Rm denote the set of potential values of the
-tuples [IV1, . . . , IVm], let D ⊆ Rn denote the set of potential
alues of the n-tuples [DV1, . . . ,DVn], and let Θ ⊆ Rr denote
he set of potential values of the r-tuples θ = [θ1, . . . , θr ], where
1, . . . , θr are real-valued intervening variables called parameters
hat mediate the effect of the IVs on the DVs. A fully-specified
athematical model specifies an input function f : I → Θ that
aps each [IV1, . . . , IVm] ∈ I to some θ ∈ Θ, and an n-tuple

output function G : Θ → D that maps each θ ∈ Θ to an n-tuple
DV1, . . . ,DVn] ∈ D. The model predicts, for all [IV1, . . . , IVm] ∈ I,
hat

DV1, . . . ,DVn] = G[f (IV1, . . . , IVm)]. (1)

t is often useful to express the n-tuple output function G in terms
f real-valued component output functions. Thus

(θ) = [g1(θ), . . . , gn(θ)]. (2)

Using these functions, the model’s predictions can be rewritten
as:

DVi = gi[f (IV1, . . . , IVm)], for i = 1, . . . , n. (3)

Definition 3 (Output-specified Mathematical Model). Given the
same experiment and notation as in Definition 2, an output-
specified mathematical model consists of an n-tuple output func-
tion G : Θ → D. The model predicts that, as the values of the IVs
(i.e., IV1, . . . , IVm) are varied, it will always be the case that

[DV1, . . . ,DVn] ∈ G[Θ] = {G(θ) : θ ∈ Θ}. (4)

Thus, given an output-specified model, its output function
G could be paired with any one of a variety of different in-
put functions f to produce a variety of different fully-specified
models.
3

Earlier we noted that almost all mathematical models in psy-
chology are output-specified models, in the sense that they spec-
ify output functions, but rarely say much, if anything, about
input functions. For example, signal detection theory specifies
exact equations that predict P(Hit) and P(FA) given values of its
parameters d′ and Xc . But the theory is much more vague about
how the IVs manipulated in an experiment determine values of
d′ and Xc . It predicts that d′ should increase with signal intensity,
but it does not postulate a functional form for this increase, and
it prescribes how Xc might change with payoffs, but an estimated
value of Xc that differs from the predicted value is generally not
considered strong evidence against the theory.

Historically, mathematical psychology has not considered an
input function as a necessary component of a mathematical
model. There are several reasons that the field has focused on out-
put functions. First, one could speculate that the natural evolution
of mathematical modeling is to first focus on identifying the out-
put functions, and only shift attention to the input function after
this first problem is largely solved. The predictions of an output
function can be tested directly against observed data, so it should
be possible to identify an incorrect output function via sufficient
empirical testing. The predictions of input functions though are
often unobservable since they predict numerical values of some
hypothetical parameters. Without knowing something about the
true output function, it might not even be possible to identify
the appropriate parameters. If not, then it seems hopeless to try
to identify the correct input function.

Second, mathematical psychology has agreed collectively on
a rather small set of DVs to receive the lion’s share of attention
— including, for example, response accuracy and response time.
Thus, the search for output functions can largely be restricted
to functions that make predictions about this small set of DVs.
In contrast, there is no such universal agreement about relevant
IVs. In fact, there are virtually an unlimited number of potential
IVs that could affect response time or accuracy. And each new
IV requires specifying a new input function. So naturally, the
search for input functions has lagged behind the search for output
functions.

Even so, the field has allocated some attention to input func-
tions, and we suspect that this trend will only increase in the
future. For example, some general modeling principles are clearly
directed at the input function. For example, consider the principle
of correspondent change (Townsend & Ashby, 1983), which states
that, if a model is valid, then changing some IV should only cause
a correspondent change in the value of the parameter the theory
associates with this IV. So if signal detection theory is valid,
then increasing signal intensity should increase d′ but have no
effect on Xc . From the input-, output-function perspective, this
is clearly an attempt to force a theory to make (e.g., ordinal)
predictions about its input functions, or at least to favor theories
that make some empirically supported predictions about input
functions over theories that make no predictions. Furthermore,
there have been some attempts to build stronger models. For
example, van Ravenzwaaij, Brown, Marley, and Heathcote (2020)
used Fechner’s law to predict brightness and Valentin, Maddox,
and Ashby (2014) proposed a model of how feedback delays
affect learning rates in tasks that depend on procedural learning
by modeling the time-course of the biochemical events in the
striatum that mediate synaptic plasticity. These attempts are all
incomplete however, since the final models still included free
parameters. A fully-specified model would predict values of the
DVs directly from knowledge of the IVs, without appealing to any
unknown free parameters.

For these reasons, although we believe that a complete (i.e.,
fully-specified) model must include both input and output func-
tions as described in Definition 2, to be consistent with popular
terminology, we will use the term model even in cases when only
weak assumptions are made about the input function.
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.3. The dimensionality of state-trace plots

A state-trace plot is generated by plotting values of DV2 against
alues of DV1. Suppose an empirical STA supports the inference

of a single varying parameter (i.e., that r = 1). A proposed model
of these data might vary a single parameter θ across the tasks
in an attempt to model the bottleneck imposed by the single
parameter. Note that for a single numerical value of θ , the model
predicts a single point on a state-trace plot, namely

(DV1,DV2) = [g1(θ ), g2(θ )]. (5)

If the value of θ is changed, then the model predicts a different
point. Therefore, continuously changing θ sweeps out a curve in
state-trace space, and each single numerical value of θ points to
a single point on this curve.1 The curve is the state-trace plot
predicted by the model under the assumption that θ is the only
parameter that varies across DV1 and DV2.

Bamber (1979) briefly considered the possibility of generaliz-
ng STA to an arbitrary number of tasks. This possibility has not
een seriously pursued (although see Dunn & Anderson, 2018;
unn & James, 2003), but the exercise provides insights into
tandard applications of STA, and it also offers the possibility
f extending applications of STA to new domains, and thereby
ncreasing its usefulness and applicability.

Consider the situation described in Definition 2, in which we
ompare performance across n DVs (which could come from any
number of tasks between one and n), rather than only two. The
space of all possible outcomes of these n DVs defines the experi-
ment’s data space D, and note that any point in D can be indexed
by the ordered n-tuple d = [DV1,DV2, . . . ,DVn]. Similarly, the
pace of all possible values of a model’s parameters, Θ, defines
he model’s parameter space, and note that any point in Θ can be
ndexed by the ordered r-tuple θ = [θ1, θ2, . . . , θr ]. For any spe-
ific numerical combination of its parameters, a model predicts
performance value in each task. Thus, the output function of a
odel maps its r-dimensional parameter space to n-dimensional
ata space:

: Θ → D, (6)

where in general G(θ) = [g1(θ), g2(θ), . . . , gn(θ)]. Note that tra-
itional STA is a special case of this scenario in which n =

.
Now consider G(Θ), the image of G. These are all possible data

ombinations that the model can fit perfectly. When n > r; that
s, when there are more DVs than free parameters, then we expect
hat there will be possible data outcomes that the model cannot
erfectly fit. In these cases, the image of G is a proper subset of D
nd it defines a manifold in data space. Therefore, call this image
he model manifold.2 Note that every state-trace plot predicted by
he model is a subset of the model manifold — that is, all points in
he predicted state-trace plot must belong to the model manifold,
ut we expect that some points in the model manifold will not be
epresented in the state-trace plot. The goal of STA is to determine
he dimensionality of the model manifold.

Topologists have devised a few different ways of defining the
imension of a topological space. In the case of ‘‘well behaved’’
paces (i.e., normal spaces with a countable base), these defini-
ions all agree with each other.3 For our purposes, the definition

1 These arguments assume that the model satisfies the conditions of
roposition 1.
2 Technically, it is not necessarily a manifold. Proposition 1 will describe

onditions on G(Θ) that guarantee that it is a manifold or a manifold with
oundary, and as we will discuss, almost all mathematical models within
sychology satisfy these conditions.
3 A topological space X is normal if any two disjoint closed sets of X have
isjoint open neighborhoods.
 c

4

of dimension with the nicest properties is the small inductive
dimension, also known as the Menger–Urysohn dimension. The
small inductive dimension of a topological space X is denoted
ind X . A formal definition requires more topological machinery
than is needed for this article because we are concerned here only
with spaces X that are subsets of some Euclidean space Rs, s ≥ 1,
and that have the usual subspace topology.4 In this case, the
small inductive dimension has the following properties, which
are sufficient for our purposes.

• For every nonempty subset X of Rs, ind X is defined and
is equal to an integer between zero and s inclusive. In
particular, indRs

= s.
• If X and Y are nonempty subsets of Rs and X ⊆ Y , then

ind X ≤ ind Y .
• Suppose X is a subset of Rs. Then ind X = s if and only if X

is a substantial subset of Rs – that is, if and only if X ⊇ O,
where O is some nonempty open subset of Rs.

• Suppose that X and Y are nonempty subsets of Rs and Rt

respectively, where s and t need not be equal. If X and Y
are homeomorphic, then ind X = ind Y .

Proposition 1 establishes the dimensionality of the model
manifold, and therefore the dimensionality of the resulting state-
trace plot.

Proposition 1. Consider applications of a model with r free pa-
rameters, θ = [θ1, θ2, . . . , θr ], to a task or collection of tasks with
DVs, where n ≥ r. Let G(θ) = [g1(θ), g2(θ), . . . , gn(θ)] denote the

model’s output function. Suppose that the parameter space Θ is a
substantial subset of Rr and that the data space D is a substantial
subset of Rn. Suppose further that the model’s output function G is a
homeomorphic embedding (Engelking, 1989, p. 67) of the model’s
parameter space Θ into the model’s data space D; or in other words,
that the following conditions hold:

1. The output function G is one-to-one (i.e., injective) — that is,
if θ ̸= θ∗, then G(θ) ̸= G(θ∗). (This guarantees that the output
function has an inverse.)

2. The output function G is continuous.
3. Its inverse is also continuous.

hen, the model manifold has dimension indG(Θ) = r, whereas
ndD = n. If r < n then the model manifold has a smaller
imension than the data space. As a result, we say that the model is
homeomorphic-embedding model with a bottleneck.

Proof. Because Θ is a substantial subset of Rr , indΘ = r .
ecause the output function G is one-to-one, it has an inverse.
nd, because G and its inverse are both continuous, G is (by
efinition) a homeomorphism, and thus Θ and G(Θ) are homeo-
orphic. Therefore, indG(Θ) = indΘ = r . Finally, because D is a
ubstantial subset of Rn, indD = n. □

This proposition has a number of important implications. First,
ote that it predicts that in standard two-task applications of
TA, models in which only one parameter is varying must predict
single-monotonic or single-nonmonotonic state-trace curve,
hereas models with two or more varying parameters must
redict a scatter plot.
Second, it also suggests that in some cases it might be useful to

eneralize STA to three or more tasks. For example, suppose we
lot performance across various conditions and/or participants
n three different DVs. So points in the data space are denoted
y the ordered triple [DV1,DV2,DV3]. First, Proposition 1 tells us

4 The interested reader can find the definition in either Engelking (1989,
hap. 7), or Pol (2004).
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hat any model for which only one parameter is varying predicts
one-dimensional model manifold — that is, the state trace plot
ill be a one-dimensional curve through the three-dimensional
ata space. Second, as Bamber (1979) noted, any model for which
wo parameters are varying predicts a two-dimensional model
anifold — in other words, a curved surface in data space. Fi-
ally, models for which three or more parameters vary predict
three-dimensional model manifold. In this case, the predicted
erformance combinations could fill a three-dimensional volume
hat is a subset of data space. Current applications of STA allow
xperimenters to identify scenarios in which one parameter is
arying versus more than one, but current applications cannot
iscriminate between cases where two parameters are varying
ersus more than two. So adding a third task has the potential to
llow identification of three possibilities: DV triples in which only
ne parameter is varying, DV triples in which two parameters are
arying, and DV triples in which three or more parameters are
arying.
Note that the conditions required for Proposition 1 to hold

re all exceedingly weak. For example, in the standard two-task
TA, the first condition simply means that any model in which
nly one parameter is varying cannot produce a state-trace curve
hat intersects itself. And the continuity conditions just imply that
mall changes in the parameter values cause small changes in
redicted performance. The strongest condition is arguably that
is continuous because this condition could rule out a model

hat predicts a bifurcation as some parameter increases through
critical point — that is, a model that predicts a qualitative

hange in performance as a parameter increases from below to
bove some critical threshold value. A few such models have been
roposed (e.g., Savi, Marsman, van der Maas, & Maris, 2019; Van
er Maas & Molenaar, 1992), but the vast majority of current
ognitive models do not violate any of these conditions.
It is also important to note that the conditions of Proposition 1,

lthough weak, are necessary for STA to succeed at identifying
he number of varying parameters. For example, if G is not one-
o-one, then it is possible that a model with a single varying
arameter could fill an entire area of the standard two-task
tate-trace plot. If so, then STA would conclude wrongly that
wo or more underlying parameters are varying. Such space-
illing curves, which were first discovered by Peano (1890), are
ontinuous but not smooth. But it is possible that in the absence
f a one-to-one mapping, a single-parameter model could even
roduce a smooth state-trace curve that would be impossible
o distinguish from an area-filling state-trace plot (i.e., a scatter
lot) produced by a model with two or more parameters. For
xample, Bamber and Van Santen (1985) identified the Lissajous
urve as an example of this phenomenon.5
The requirement that G is one-to-one rescues us from these

cenarios.6 Even so, this rescue is only theoretical because it is
ossible to construct single-parameter one-to-one mappings G
hat produce state-trace curves that, in practice, would be sta-
istically impossible to distinguish from a scatter-plot state trace.
or example, most space-filling curves are constructed by taking
he limit of a sequence of simpler curves, each of which is a one-
o-one mapping from the unit interval to the unit square, with the
roperty that each successive curve in the sequence more closely
pproximates the area-filling limit. So a curve that is late in the
equence, but before the limit, is one-to-one and will fill much of

5 Note that Peano curves and Lissajous curves are continuous, so the
roblems arise from condition 1 of Proposition 1, not from conditions 2 or 3.
6 Although just barely. For example, Osgood curves are non-intersecting

urves of positive area. Even so, they are not space-filling and so, theoretically
t least, could be distinguished from state traces produced by models with two
r more varying parameters.
5

the state-trace plot. Most importantly, because of statistical error
(measurement, perceptual, cognitive, or individual difference), it
would be impossible to discriminate from a scatter plot.

On the other hand, there are several reasons that these iden-
tifiability concerns are not serious problems. First, as already
mentioned, we know of no models in the literature that produce
anything close to an area-filling state-trace plot when only a
single parameter is varied, and it is difficult to conceive of any
future model having this problem.

The second reason why these identifiability issues should not
be of concern is much more important. And this reason stems
from the basic question of why we would want to use STA to
identify how many parameters are varying. The answer, of course,
is that our goal is to study the complexity of the underlying model
— that is, we are interested in how tight the bottleneck is between
the independent and dependent variables (Bamber, 2019). And
we use the number of varying parameters as an operational
definition of this complexity. This makes sense because in gen-
eral, adding a parameter to a model increases its complexity or
mathematical flexibility. In fact, popular goodness-of-fit measures
like AIC and BIC define complexity or flexibility in exactly this
way. But it is also widely recognized (at least within the statis-
tics literature) that this measure of flexibility is imperfect. For
example, in the field of information geometry, the mathematical
flexibility of a model can be measured by the volume of its model
manifold (i.e., its image in data space). Remember that each point
in the model manifold is a data combination that the model can
fit perfectly. Therefore, by this definition, the more different data
sets the model can fit perfectly, the more complex or flexible it
is. The volume of the model manifold will almost always increase
with the addition of a new parameter, but models with the same
number of parameters are not typically associated with the same
volumes. For example, Myung, Balasubramanian, and Pitt (2000)
used this approach to show that a one-parameter power function
model is more complex than a one-parameter log function model
(i.e., because a power function is more flexible or ‘‘bendy’’ than
a log function). The important point here is that the number of
free parameters is not a perfect measure of mathematical com-
plexity, and that information geometry would not differentiate
between a one-parameter model that produces a scatter-plot
state trace versus a two-parameter model that produces the same
plot. Both models would be classified as equally complex and
the fact that one varies one parameter and the other varies two
would be considered irrelevant. So by this account, it is still
important to discriminate between a single-monotonic or single-
nonmonotonic state-trace plot versus a scatter plot, regardless of
whether the conditions of Proposition 1 are satisfied. The model
producing the single-monotonic or single-nonmonotonic plot is
less complex than the model producing the scatter plot (i.e., the
bottleneck is narrower), regardless of whether or not the models
differ in the number of varying parameters.

The remainder of this article considers the standard two-task
STA and assumes that the conditions of Proposition 1 are met.
The next result reiterates the original mathematical foundations
of STA.

Proposition 2. Suppose the conditions of Proposition 1 are met and
the number of DVs is n = 2. Let DV1 and DV2 denote the two DVs
that are recorded during performance of one or two tasks. Consider
the STA that plots DV2 on the ordinate against DV1 on the abscissa.

1. A model in which a single parameter varies across the two
conditions (i.e., r = 1) always predicts a single-monotonic state-
trace curve if performance on both tasks is monotonic with increases
in the parameter. Furthermore, any such state-trace plot could have
been produced by such a one-parameter model.

2. A model in which a single parameter varies across the two
conditions always predicts a single, nonmonotonic state-trace curve
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f performance on DV1 is monotonic and performance on DV2 is
onmonotonic with changes in the parameter, or vice versa.
3. A model in which two or more parameters are varying across

he two conditions can produce any type of state-trace plot.

roof. Parts 2 and 3 are originally due to Bamber (1979), and part
is due to Dunn and Kirsner (1988). However, for completeness,
nd because the proofs are simple, we reproduce them here.
1. Denote the single varying parameter by θ . Then there exist

ome output functions g1 and g2 such that DV1 = g1(θ ) and
V2 = g2(θ ). Because g1 is strictly monotonic in θ , g1 has an
nverse and the inverse is itself a function. Therefore,

= g−1
1 [DV1] , (7)

hich implies that

V2 = g2
{
g−1
1 [DV1]

}
. (8)

function of a function is itself a function (i.e., g2 ◦ g−1
1 is a

unction), and since g2 and g−1
1 are both monotonic in θ , then

o too is g2 ◦ g−1
1 .

If the state-trace plot is a single monotonically-increasing
urve, then there must exist a monotonic increasing function
(·) such that DV2 = M(DV1), for every point (DV1,DV2) on the
urve. A model with one varying parameter θ that is consistent
ith this curve is the model in which DV1 = g1(θ ) = θ and
V2 = g2(θ ) = M(θ ).
2. By Proposition 1, any model in which only one parameter

aries across tasks predicts a one-dimensional state-trace curve.
f DVi is nonmonotonic with the single varying parameter θ , then
here exists values θ ′ < θ ′′ < θ ′′′ all in Θ, such that either

i(θ ′) < gi(θ ′′) > gi(θ ′′′), (9)

or else

gi(θ ′) > gi(θ ′′) < gi(θ ′′′). (10)

n either case, the state-trace curve is nonmonotonic.
3. If two parameters are varying, then by Proposition 1 the

odel is capable of covering a region of positive area in data
pace. Any point in this region is a possible outcome, so by
election, one can choose points that create a plot of any type.
or example, Fig. 1d was created by simultaneously varying the
CM overall discriminability (i.e., c) and attention weight (i.e., w)

parameters in rule-based (RB) and information-integration (II)
categorization tasks (see the Appendix for a description). Every
point in the gray region is a prediction of the model with a
different (c, w) combination. Note that this region includes all
points on the curves shown in panels a – c. □

3. STA and monotonicity assumptions

Bamber’s (1979) focus was to discriminate state-trace plots
that are consistent with one varying parameter versus plots that
rule out only one varying parameter. So his interest was in de-
termining whether a state-trace plot was a single-monotonic or
single-nonmonotonic curve versus a double curve or scatter plot.
Some later applications of STA followed this approach (e.g., Loftus,
2002). In contrast, many more recent applications of STA at-
tempted to discriminate between single-monotonic curves and all
other types — in other words, single-nonmonotonic curves, dou-
ble curves, and scatter plots were all lumped together (e.g., Prince,
Brown, & Heathcote, 2012; Stephens, Matzke, & Hayes, 2019,
2020). For example, according to Prince et al. (2012) ‘‘determining
whether there is one or more than one mediating latent variable
is accomplished by determining whether the state-trace plot is
monotonic’’ (p. 81).

This approach to STA, which focuses on single-monotonic

curves, explicitly assumes the following default model.

6

Definition 4 (Monotonic State-trace Model). Consider an exper-
iment in which two DVs are each recorded under n different
experimental conditions. Then a monotonic state-trace model is
an output-specified model in which Θ is a single parameter that
is assigned value θi in experimental condition i by the input
function; and g1(·) and g2(·) are monotonic nondecreasing output
functions that generate predicted performances on DVs 1 and 2,
respectively.

These models are useful because, by Proposition 2, they make
the strong and empirically testable prediction that the state-trace
plot must be monotonic. From a statistical perspective, this im-
plies that the plot will contain no delta-discordant pairs of points.
This means that if (x, y) and (x′, y′) are two points on the state-
trace plot, then it is impossible that x > x′ but y < y′. Several
statistical tests of this hypothesis have been developed (Kalish,
Dunn, Burdakov, & Sysoev, 2016; Prince et al., 2012), and Bamber
(2019) showed how adaptive methods could be used to find
pairs (IV1, IV2) and (IV ′

1, IV
′

2) that map to delta-discordant pairs of
points, if such pairs exist and under the additional condition that
the input and output functions are all continuous. Therefore, the
advantage of focusing on single-monotonic curves – and therefore
assuming that performance on both tasks is monotonic with
changes in any parameters – is primarily statistical. In partic-
ular, since any empirical state-trace plot only includes a finite,
and usually reasonably small number of points, discriminating
between single-nonmonotonic and double state-trace plots can
be challenging (Bamber, 2019). For example, to show that a plot is
a double curve rather than a single-nonmonotonic curve requires
showing that there are no missing points that connect the two
separate curves that define a double plot. The assumption of
monotonicity greatly simplifies this problem.

Bamber (2019, Section 3) argued that, although monotonic-
ity assumptions can make it easier to test state-trace models,
such assumptions are not essential to STA. This point is formal-
ized in Proposition 1, which provides an example of a testable
type of model that does not assume monotonicity — namely,
homeomorphic-embedding models with bottlenecks.
Furthermore, Propositions 1 and 2 together, make clear that the
monotonic state-trace model, by failing to discriminate single-
nonmonotonic state-trace curves from double curves or scatter
plots, considerably reduces the applicability of STA because it
means that a state-trace plot that is consistent with a single
varying parameter can only be identified if an extra assumption
is added that is both strong and unnecessary — namely that
performance on both tasks is monotonic with increases in the
single varying parameter. This assumption is strong because there
are many highly plausible single-parameter models that violate
monotonicity. The well-known and popular generalized context
model (GCM; Nosofsky, 1986) with a freely varying attention
weight parameter w is one clear example (for other examples,
see Ashby, 2019). The assumption of monotonicity is unnecessary
because Propositions 1 and 2 make clear that models with a
single varying parameter can be identified without assuming
monotonicity.

Stephens et al. (2019) used STA to re-analyze the results
of many studies that compared performance in rule-based (RB)
and information-integration (II) categorization tasks. In virtu-
ally all of these tasks, the stimuli varied on two dimensions
and the categories were identical except for their orientation in
stimulus space (i.e., in which the diagonal-trending II categories
were created by rotating the RB categories by 45◦ in stimulus
space). Stephens et al. (2019) concluded that in almost all cases
the resulting state-trace plots were single monotonic curves, and
they suggested that the GCM with a single varying attention
weight parameter was a viable monotonic state-trace model for
these results. Furthermore, Stephens et al. (2020) continued to
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ake this claim. Unfortunately, however, the GCM with a single
arying attention weight is not a monotonic state-trace model
ecause it violates the monotonicity assumption and therefore
redicts single-nonmonotonic curves in these applications.
Consider a state-trace analysis that plots performance in an II

ategorization task against performance in an RB task. Suppose
hat the categories are identical in the two tasks except for their
rientation in stimulus space, and that dimension 1 is the only
elevant dimension in the RB task. Define the GCM attention pa-
ameter w as the proportion of attention allocated to dimension
(i.e., so the proportion allocated to dimension 2 equals 1 − w).

Then the GCM predicts that performance in the RB task increases
monotonically with w (i.e., because stimulus dimension 1 is the
only relevant dimension), but performance in the II task increases
as w increases from 0 to .5, and then decreases as w increases
from .5 to 1 (because both dimensions are equally important in
the II task).

Fig. 2 shows predictions of four different versions of the GCM
under these conditions. The four versions are identical except
for how distance is computed (city-block versus Euclidean) and
the function that relates distance to similarity (exponential or
Gaussian). The Appendix describes all four versions of this model
in detail. Each curve in all four panels of Fig. 2 was generated
by varying only the GCM attention weight w (i.e., proportion of
ttention allocated to dimension 1) continuously from 0 to 1. The
ifferent curves in each panel are each associated with differ-
nt fixed values of other GCM parameters — specifically, overall
7

discriminability (i.e., the GCM c parameter) and the bias toward
response A (i.e., the GCM β parameter). Fig. 2 shows that all four
versions of the GCM always predict single-nonmonotonic state-
trace curves under these conditions. Therefore, the GCM with a
single varying attention parameter is not a monotonic state-trace
model and therefore, in general, is not a viable model for single-
monotonic RB versus II state-trace plots, such as those reported,
for example, by Stephens et al. (2019). The only exception occurs
if all of the discrete points on the empirical monotonic state-trace
plots fall either to the left or right of the peaks of the curves
shown in Fig. 2. In this case, the empirical state-trace plot appears
monotonic because it only samples from a restricted range of the
state-trace curve predicted by the underlying model. The peaks
of the Fig. 2 curves occur when w = .5, which is the optimal
value of w in the II task. In the RB task, the optimal value is

= 1. So for all points in an empirical state-trace plot to fall
n the same side of the peak of Fig. 2 curves, every participant
r group of participants would have to have been biased in the II
ask to allocate more attention to dimension 1 than to dimension
, and this same bias would have to exist, for example, in all
xperiments for which Stephens et al. (2019) reported monotonic
tate-trace curves. This is a straightforward prediction to test. One
imply needs to fit the GCM to each II data set that was used to
enerate a state-trace point, and then check whether ŵ > .5 in
very case. Stephens et al. (2019) did not report the results of
uch a test, nor did they mention this strong prediction of the
odel they recommended.
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Fig. 3. Four different state-trace results predicted by a dual-systems model that assumes a simple rule-based strategy is used in RB tasks and that the GCM is used
n II tasks. The single-monotonic curve in panel (a) was generated by assuming that the overall discriminability parameter c varies across tasks and participants. The
ingle-nonmonotonic curve in panel (b) was generated by assuming that the attention weight parameter w varies across tasks and participants. The double curves
n panel (c) show a possible outcome of an experiment with two groups of participants in which the parameter c varies continuously within each group, but each
roup is characterized by a different value of w. Panel (d) was generated by assuming that both c and w vary across tasks and participants.
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The more important point however, is that lumping the single-
onmonotonic curves in Fig. 2 with double curves and scatter
lots leads to the false conclusion that none of the many curves
n Fig. 2 are consistent with a single varying parameter.

. STA and the number of underlying systems or processes

Propositions 1 and 2 make no mention of the architecture
f the model that produces the state-trace plot. For example,
oth propositions make predictions about the form of the state-
race plot predicted by a model in which only one parameter is
arying, and these results hold regardless of whether that single
arying parameter is embedded in a model that postulates 1, 2,
r 27 underlying processes or systems. Nevertheless, a number of
ecent articles have attempted to use STA to identify the number
f underlying cognitive systems that are mediating performance
n the two tasks. Specifically, these articles claimed that the
umber of parameters (or latent variables) that the STA finds to
e varying across the two tasks under study places a lower bound
n the number of underlying cognitive systems, and as a result,
one-dimensional state-trace plot therefore can be interpreted
s evidence favoring single-system models over multiple-systems
odels (e.g., Dunn, 2008; Dunn, Newell, & Kalish, 2012; Newell &
unn, 2008; Newell, Dunn, & Kalish, 2011; Stephens et al., 2019,
019). In other words, the primary goal of these articles was to
se STA, not to infer whether one parameter was varying versus
ore than one, but rather in an attempt to infer whether that one
 t

8

arying parameter was embedded in a model that postulated one
ognitive system or two systems.
STA is ill suited to this task. There are methods that were de-

igned to test between alternative cognitive architectures.
ownsend and Nozawa’s (1995) elegant work on systems factorial
echnology comes immediately to mind. However, STA was not
eveloped with the goal of identifying the underlying cognitive
rchitecture. Furthermore, it has been known for some time
hat STA is incapable of identifying the number of underlying
ystems (Ashby, 2014), at least in the case, for example, of the
odels that Stephens et al. (2019) were considering. Even so, at-

empts to use STA for such purposes are still prevalent (Stephens
t al., 2020). Although Propositions 1 and 2 should be sufficient
o establish the futility of this exercise, this section makes this
oint even more clear.
The articles that have been directed at this purpose have

sed the terms ‘‘processes’’ and ‘‘systems’’ interchangeably and
ithout any formal definition. As in their dictionary definitions,
e view the term process as more general than the term system,
ecause the latter requires reference to architecture, whereas the
ormer does not. Even so, in the absence of formal definition,
oth terms are ambiguous. For example, in psychology, the word
‘system’’ is used without consensus and in a wide variety of ways.
or example, plausible arguments can be made for the seem-
ngly contradictory positions that the brain is one single giant
ystem, or that it includes many functionally distinct systems. In

he memory literature, separate systems are typically identified
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perationally – by the presence of a double dissociation. In neu-
oscience, a system is often defined based on neuroanatomical
onnections.
The term ‘‘process’’ is enveloped in similar ambiguity. To il-

ustrate this ambiguity, we will consider a thought experiment
n which a ball is fired from a cannon. We will model the well-
nderstood flight of this ball with two parameters and derive the
esulting two-dimensional state-trace plot. Next, we will describe
disagreement among three hypothetical researchers who have
iffering views about the number of processes that mediate the
light of the cannonball. Researcher I thinks there is only one
rocess. Researchers IIA and IIB believe there are two processes,
ut they disagree about the identity of those processes. We will
rgue that each of these viewpoints is reasonable, and therefore
hat the disagreement is because it is unclear what is meant by
he term ‘‘process’’.

This example illustrates that because the existing literature is
nclear about what is meant by a ‘‘process’’ or a ‘‘system’’, it is
ot meaningful to claim that the results of any STA can be used to
ake inferences about the number of active processes or systems.

.1. A thought experiment

Suppose we fire a ball from a cannon that is situated at the
dge of a flat, level plain, and then record three DVs:

• ymax, the maximum altitude (measured by radar) that is
reached by the cannonball;

• tgr, the elapsed time from when the cannon is fired to when
it hits the ground;

• xgr, the horizontal distance traversed by the cannonball
when it hits the ground.

he resulting STA will plot values of these three DVs while we
anipulate the following three IVs:

• the angle, denoted θmuz, that the muzzle of the cannon is
elevated above horizontal;

• the weight of gun powder that we put in the cannon;
• the weight of the cannonball. Although we always use the

same size cannonball, we can make the ball out of sub-
stances with different densities (e.g., aluminum, iron, lead,
depleted uranium).

4.2. Calculation of the state trace

The state-trace for this thought experiment can be calculated
sing elementary physics. Assume that the effects of the Earth’s
urvature and rotation are negligible, as is air resistance and the
ecline in gravitational force with increased distance from the
enter of the Earth.
Let vmuz denote the muzzle velocity (i.e., speed) of the can-

onball as it exits the cannon. This is a monotonic increasing
unction of the weight of gun powder in the barrel and a mono-
onic decreasing function of the weight of the cannon ball. The
annonball’s muzzle velocity has a horizontal component vx

muz
nd a vertical component v

y
muz. These are given by:

x
muz = (cos θmuz) vmuz and vy

muz = (sin θmuz) vmuz. (11)

Let t denote time elapsed since the firing of the cannon. Let
x(t) denote the horizontal distance traveled by the cannonball at
time t and y(t) denote the vertical distance (i.e., altitude). Let g
denote gravitational acceleration. Then

x(t) = vx
muz t; (12)

y(t) = vy t − (g/2) t2. (13)
muz r

9

Now dy/dt = v
y
muz − gt . So, dy/dt = 0 when t = v

y
muz/g . So, y(t)

is at a maximum when t = v
y
muz/g . Thus,

ymax = y(vy
muz/g) = (vy

muz)
2/(2 g). (14)

Note that y(t) = 0 when either t = 0 or t = 2vy
muz/g . Thus,

tgr = 2vy
muz/g. (15)

Therefore,

xgr = x(tgr) = vx
muztgr = 2vx

muzv
y
muz/g. (16)

Recall that the DVs in our thought experiment are ymax, tgr, and
xgr. So, applying Eqs. (14)–(16), we see that

STthought exp (17)

=

{(
[v

y
muz]

2

2g
,
2vy

muz

g
,
2vx

muzv
y
muz

g

)
∈ R3

: vx
muz > 0 & vy

muz > 0
}

.

ere we have expressed the state trace using two parameters:
x
muz and v

y
muz. Alternatively, because vx

muz and v
y
muz are functions

f vmuz and θmuz (Eq. (11)), we could have re-expressed the
tate trace for the thought experiment using vmuz and θmuz as
parameters.

By Proposition 1, this state trace plot is two-dimensional.

4.3. How many processes?

We have analyzed our flight-of-the-cannonball thought ex-
periment using two parameters. Does that mean that there are
two processes involved in the flight of the cannonball? Not nec-
essarily. Different people with different intuitions about how to
define a process can have different opinions about the number of
processes involved in the flight of the cannonball. For example,
consider the opinions of the following three people.

Person I. The arc of the cannonball through the sky is entirely
explained by Newton’s laws. Nothing more is needed. The
cannonball’s flight is therefore just one process.

erson IIA. There are two processes involved in the cannonball’s
flight. One process, governed by the weight of gunpowder
and the weight of the cannonball, determines the initial
speed imparted to the cannonball. The other process, gov-
erned by the elevation of the cannon’s barrel, determines
the initial direction of the cannonball’s motion.

erson IIB. There are two components to the motion of the
cannonball. The vertical component is affected by gravity;
the horizontal component is not. Therefore, the flight of the
cannonball is mediated by two processes.

Although each of these people has a sensible and tenable
oint of view, their opinions differ markedly. They disagree about
he number of processes, and even the two people who agree
hat there are two processes disagree about the nature of those
rocesses. These three people have different opinions because
hey have different intuitions about what constitutes a ‘‘process’’.
he problem is that ‘‘process’’ is an intuitive term rather than a
echnical term.

In order to take seriously any claim that the number of pa-
ameters revealed by an STA is a lower bound on the number of
rocesses or underlying systems, it is necessary to formally define
‘process’’ and/or ‘‘system’’. The next two sections propose new
efinitions of single- and multiple-systems models and then show
hat STA is incapable of distinguishing between these two model
lasses.
We formally define systems, rather than processes, for two
easons. First, previous attempts to use STA for this purpose have
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ried to test between models that are widely considered to postu-
ate one versus two cognitive systems, rather than one versus two
rocesses. Second, the existence of models in which there is wide
onsensus about the number of underlying systems provides test
ases that can be used to validate our definitions. In contrast,
e know of no models in which there is wide consensus about
he number of processes they postulate. As mentioned previously,
e interpret a process to be more general than a system. There-

ore, we assume that any scenario that satisfies our definition of
ultiple systems also implies multiple processes. However, we
ave no position on the reverse inference. Specifically, we make
o claim that a scenario that satisfies our definition of a single
ystem implies a single process. For example, by the definitions
ffered in the next section, the normal equal-variance, signal
etection theory model is a single-system model. However, some
ould reasonably argue that it postulates separate perceptual and
ecisional processes.
Some may feel that our definitions can be improved upon in

way that makes it possible to show that the number of varying
arameters revealed by an STA is, in fact, a lower bound on the
umber of underlying systems that mediate the phenomenon
nder study. We welcome such attempts.

.4. Formal definitions of single-system and multiple-systems mod-
ls

To begin, note that debates about whether performance is
ediated by one or multiple systems will almost always com-
are performance across multiple tasks. For example, a multiple-
ystems model might predict that performance in two tasks is
ominated by two different systems, whereas a single-system
odel must predict that the same system mediates performance

n both tasks. In an STA where two different DVs are compared
rom the same task, all models predict that the same cogni-
ive system or systems generated behavior on every trial, which
reatly complicates any attempt to identify the number of under-
ying systems. As a result, in this and the next section we assume
hat the STA compares performance on two separate tasks T1 and
2. For example, Figs. 1–3 show state-trace plots in which overall
ccuracy is computed for two different categorization tasks, and
hese are exactly the types of state-trace plots that Stephens
t al. (2019) used in their attempts to test between single- and
ultiple-systems models.
As noted above, our first problem is to define formally what

e mean by multiple systems. Unfortunately, although a variety
f researchers have attempted to use STA to identify the number
f underlying systems, none of them has defined what they mean
y system. This alone makes it difficult to interpret any claims
bout the ability of STA to identify the number of systems. We
re skeptical that any mathematical definition of single- versus
ultiple-systems would accurately convey the many uses of the

erm ‘‘system’’ that are currently prevalent in the psychological
iterature. Instead, some restrictive assumptions are required.
or example, note that even the successful efforts of Townsend
nd Nozawa (1995) to discriminate between alternative cognitive
rchitectures was restricted to a small and well-defined set of
ompeting models.
Current and prior attempts to use STA to identify the number

f systems have been loosely based on the notion of a ‘‘sys-
em’’ as the term is used in the memory literature. The double-
issociation test of multiple systems that is commonly used in
his literature is derived from a black-box architecture in which
ingle-system models assume one black box (or series of black
oxes) with the property that destroying any part of the archi-
ecture – for example, via lesion – must affect predictions of the
odel that describes performance of that system in all tasks.
 p

10
According to this account, multiple-systems models assume at
least two separate black boxes that are arranged in a way that
destroying one has no effect on the performance of the other. This
is the type of experiment that motivated initial proposals that hu-
mans have multiple memory systems. For example, lesioning the
hippocampus impairs episodic memory but not procedural mem-
ory, whereas lesions to the striatum impair procedural memory
but not episodic memory (e.g., Packard & McGaugh, 1992).

The COVIS model of category learning evolved from the mem-
ory literature, so characterizing COVIS as a multiple-systems
model assumes this same black-box definition of system. In
particular, COVIS postulates separate rule-based and procedural-
learning black boxes that are each capable of generating a cat-
egorization response on their own. So for example, COVIS pre-
dicts that a simultaneous dual-task should impair RB learning
more than II learning, whereas a feedback delay should impair
II learning more than RB learning (e.g., Ashby & Valentin, 2017).
Therefore, this is the definition of system that Stephens et al.
(2019) implicitly had in mind when they characterized the GCM
as a single-system model and COVIS as a dual-systems model and
then concluded that ‘‘these state-trace analyses show that the
evidence for two distinct category learning systems is much more
limited and inconsistent than is implied by the impressive list of
dissociations presented by Ashby and Valentin (2017)’’ (p. 14).

For these reasons, we chose to define single- and multiple-
systems models in a way that is consistent with how the term
‘‘system’’ is used in the memory literature – namely, that an
experimental intervention that affects any part of a single-system
model should affect the predictions of that model in all tasks,
whereas in a multiple-systems model there should exist some
interventions that affect predicted performance in some tasks,
but not others. We show that these definitions define different
classes of models, in the sense that the two classes make different
predictions in some experiments and under certain conditions.
Then, in Propositions 3 and 4, we show that this reasonable class
of single-system and multiple-systems models are essentially
nonidentifiable via STA.

Propositions 3 and 4 do not rule out the possibility that single-
system and multiple-systems models might be defined in some
different way that offers some hope that STA might contribute
to discriminating between the two classes, at least under some
conditions. Even so, they cast serious doubt on any possible use
of STA for this purpose, and at the minimum they show that there
is no mathematical basis for the current practice of applying STA
to this problem.

Our next definition formalizes this notion of a system. Then
we define single- and multiple-systems models.

Definition 5 (System). Suppose

θ = (θ1, . . . , θr ); (18)

θ′
= (θ ′

1, . . . , θ
′

r ). (19)

uppose ε > 0. We say that θ and θ′ are ε-close axially if, for some
m, θk = θ ′

k for all k ̸= m and if |θm − θ ′
m| < ε.

Consider two real-valued functions g1(·) and g2(·) defined on a
subset Θ of Rr . We say that g1(·) and g2(·) move alike locally on Θ

if they have the following property: For every θ ∈ Θ, there exists
an ε > 0 such that, for every θ′

∈ Θ that is ε-close axially to θ,

• either g1(θ) = g1(θ′) and g2(θ) = g2(θ′),
• or g1(θ) ̸= g1(θ′) and g2(θ) ̸= g2(θ′).

Furthermore, we say that the pair [g1(·), g2(·)] constitutes a sys-
em if g1(·) and g2(·) move alike locally.

Our application of this definition will be to an STA that com-
ares performance in two tasks, T and T . In this case, a system
1 2
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s a pair of functions that depend on a set of common parameters
nd have the property that changing any one of those parameters
hanges performance in both tasks (or in neither task). Given this
efinition, we now define single- and multiple-systems models.

efinition 6 (Single- and Multiple-systems Models). Consider an
xperiment in which performance is compared in two tasks, T1

and T2. Let P(T1) and P(T2) denote numeric measures of perfor-
mance on the relevant DVs in tasks T1 and T2, respectively. A
single-system model is a mathematical model with parameter
space Θ ⊆ Rr that assumes performance in both tasks depends
on the same output function gS(Ti, θ) (the subscript S is for single),
here i = 1, 2 and θ ∈ Θ. The output function might depend
n characteristics of the DV being recorded, the task (e.g., which
timuli are used), and on one or more parameters indexed in θ.
ven so, the same core equations are used to derive predictions
n both tasks. Specifically,

(T1) = gS(T1, θ) and P(T2) = gS(T2, θ), where θ ∈ Θ. (20)

f the pair of functions [gS(T1, ·), gS(T2, ·)] constitute a system as
efined in Definition 5 (i.e., they move alike locally), then we say
hat Eq. (20) is a single-system model for the tasks T1 and T2.

A model with parameter space Θ ⊆ Rr that assumes NS ≥ 2
nderlying cognitive systems is a mathematical model in which
erformance in all tasks depends on NS different functions, gM,1,

M,2, . . . , gM,NS , and again, each may depend on characteristics of
he DV being recorded, the task, and on one or more parameters
ndexed in θ (the subscript M is for multiple). Suppose that each
of the function pairs

[gM,j(T1, ·), gM,j(T2, ·)], j = 1, . . . ,NS (21)

s a system as defined in Definition 5 (i.e., they move alike locally).
hese systems may be quite different from one another, and we
ssume that at least one parameter in θ affects some systems but
ot others. Specifically, we assume there exists i ̸= j for which

gM,i(T1, ·), gM,j(T2, ·)], (22)

do not move alike locally. In addition, some real-valued supervi-
sory function h determines how each subsystem contributes to
performance. Specifically, for i = 1, 2,

P(Ti) = h[gM,1(Ti, θ), gM,2(Ti, θ), . . . , gM,NS (Ti, θ)], θ ∈ Θ. (23)

uch a model is called a multiple-systems model with NS separate
systems.

Note that this definition formalizes the criteria used in the
memory literature that any intervention that affects a single-
system model should affect the predictions of that model in all
tasks, whereas in a multiple-systems model there should exist
some interventions that affect predicted performance in some
tasks, but not others. By definition, single-system models assume
that the same cognitive system is used in all tasks. Therefore,
the predictions of a single-system model on the same DV in
two different tasks will be closely related because such models
will use the same equations in both tasks and the same param-
eters. The predictions could differ because the tasks differ. For
example, the two tasks might use different stimuli. Nevertheless,
because the same equations and parameters are used in both
tasks, Definition 6 assumes that changes in any parameter that
cause predictions to change in one task will also cause predictions
to change in the other task. In contrast, multiple-systems models
assume that there are multiple cognitive systems that are each
capable of performing at least some tasks, and that different
cognitive systems may be used in different tasks and conditions.
In any multiple-systems model, different equations are used to
derive predictions for each cognitive system. Furthermore, each
 i
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system could have its own unique parameters that do not affect
predictions of any other system. Therefore, with multiple sys-
tems, it is possible that task T1 recruits a certain cognitive system
but task T2 does not. Note that in this case, changing a parameter
that affects the predictions of that system will cause predictions
to change in task T1 but not in task T2, which is impossible in a
single-system model.7

More formally, consider the r + 1 dimensional space that
has a dimension for every parameter in θ plus P(Ti). Note that
any output function defines a manifold in this space with the
property that any point on the manifold gives the predicted
performance in task Ti for any possible combination of parameter
values. We call this the output function’s Ti model manifold. In a
single-system model, there is only one output function for each
task, so there is only one Ti model manifold. As a result, for
any fixed set of parameter values there is only one predicted
value P(Ti). In a multiple-systems model however, there are NS
output functions for each task and therefore NS different Ti model
manifolds that all lie in the same r + 1 dimensional space. So for
any fixed set of parameter values there are NS predicted values of
P(Ti). The supervisory function h determines how these NS values
contribute to the observed performance in task Ti. Furthermore,
note that any manifold that is flat on one dimension predicts the
same value of P(Ti) for all values of the parameter that defines
that dimension. As a result, in a multiple-systems model, one or
more manifolds could be flat on some dimension, whereas this
is not allowed in a single-system model. Therefore, in addition
to differing in the number of their Ti model manifolds, single-
and multiple-systems models also differ in the nature of those
manifolds.

Although this definition of single- versus multiple-systems
models is an attempt to formalize the definition of system that
is assumed implicitly in the memory literature, it is important to
note that Definition 6 says nothing about double dissociations. A
double dissociation describes a possible experimental outcome,
and says nothing directly about the underlying model that pro-
duced that data. In contrast, Definition 6 states conditions that a
mathematical model must satisfy to be classified as postulating
a single system or multiple systems. In fact, it has been known
for many years that models seemingly constructed from a sin-
gle black box can predict double dissociations (Plaut, 1995). In
agreement with this, it is straightforward to show that models
classified as single system by Definition 6 can predict double
dissociations. And of course, a model meeting the Definition 6
criteria for multiple systems will not predict a double dissociation
in all experiments. For this reason, Definition 6 focuses on the
structure of the model rather than the appearance of the data.

Note that almost all current models that are widely regarded
as single-system or multiple-systems models would be correctly
classified by this definition. For example, consider the single-
system GCM and the dual-systems COVIS models of categoriza-
tion, which are the same models that Stephens et al. (2019)
had in mind when they were trying to identify the number
of underlying systems. In the single-system GCM, the function
gS is described by Eq. (40)–(42) in the Appendix. These same
quations are used to predict performance (i.e., accuracy) in all
asks. This is the model used to generate Figs. 1 and 2. The model
akes different predictions in the RB and II tasks that define the
tate-trace plots in those figures, even with the same parameter
alues, because the stimuli are different. However, changing any
f its parameter values changes its predictions in both tasks.
n fact, this is true even when the two tasks are qualitatively
ifferent. In Figs. 1 and 2, both tasks are categorization and they

7 This definition of single- and multiple-systems models agrees with the more
nformal definitions proposed by Ashby (2014).
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iffer only in the stimuli that define the two contrasting cate-
ories. The GCM though, also has been used to account for results
rom recognition-memory experiments (e.g., Nosofsky, 1988). Al-
hough the ways that Eq. (40)–(42) are combined to predict a
ecognition-memory response versus a categorization response
re different, note that these different composite GCM functions
till move alike locally, and therefore Definition 6 would classify
he GCM as a single-system model, even when it is applied to two
uch different tasks. In particular, changing any GCM parameter
auses the model to change predictions in both tasks.
The dual-systems model COVIS includes parameters that affect

redicted performance in II tasks, but these same parameters
ave no effect on predicted performance in RB tasks. In the dual-
ystems model used to generate Fig. 3, which is a simplified
ersion of COVIS, gM1 = gS from the GCM, whereas gM2 is

described by Eq. (43)–(45) in the Appendix. In this model, the
parameter X1 only affects predicted RB performance, whereas the
parameters γ and β only affect predicted II performance (see the
Appendix for a description of these parameters). Among multiple-
systems models currently in the literature, common choices for
the supervisory function h are to choose the single most accurate
ystem, the most confident system on each trial (Ashby, Alfonso-
eese, Turken, & Waldron, 1998), or to blend the outputs of the
ultiple systems, for example, in a manner proportional to each
ystem’s accuracy (Erickson & Kruschke, 1998).
It is important to note that Definition 6 identifies two separate

lasses of models that make different predictions under certain
onditions. For example, note that these definitions show im-
ediately that a state-trace plot that is a horizontal or vertical

ine is possible for a multiple-systems model, but is inconsis-
ent with all single-system models. For example, a horizontal
tate-trace plot shows that the experimenter-manipulated IVs
hanged performance on task T1 (by changing some underlying
arameter) but had no effect on performance in task T2. This
uggests that qualitatively different models were used in the two
asks, and thereby supports a multiple-systems account over a
ingle system. Note that a horizontal- or vertical-line state-trace
lot means that a perfect dissociation occurred, in which the
anipulated IV caused performance to change in one task, but
ot the other. Therefore, any perfect dissociation is also compat-
ble with a multiple-systems account and incompatible with all
ingle-system models.
On the other hand, using these different predictions as an

mpirical test of single versus multiple systems presents a signif-
cant statistical challenge. For example, discriminating between
horizontal state-trace plot that falsifies single-system accounts
nd a plot with a minuscule positive slope that does not rule
ut single-system models would require large sample sizes. Fur-
hermore, note that the null hypothesis in such tests would be
hat the multiple-systems model is correct (e.g., that the state-
race plot is horizontal). This is opposite current practice in which
he null hypothesis is that the single-system model is correct
e.g., Stephens et al., 2019). Therefore, although these differential
redictions are important to establish that the model classes are
ifferent, they are only of limited empirical usefulness. In light of
his, an obvious question is whether there are any other outcomes
f an STA that could provide evidence about the number of
nderlying systems. The next section answers this question.

.5. STA is unable to identify the number of systems

The next result shows that, except for state traces that include
orizontal- or vertical-line segments, the set of all possible state
races predicted by Definition 6 single- and multiple-systems
odels are identical. In other words, any state-trace plot pro-
uced by any single-system model can be reproduced exactly by
 {
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some multiple-systems model, and any such state-trace plot pro-
duced by any multiple-systems model can be reproduced exactly
by some single-system model.

Proposition 3. Let P(T1) and P(T2) denote numeric measures of
erformance in two tasks T1 and T2, respectively. Consider a state-
race plot that includes no horizontal or vertical line segments. Then,
a) any state-trace plot produced by any single-system model can be
eproduced exactly by some multiple-systems model. Conversely, (b)
ny state-trace plot produced by any multiple-systems model can be
eproduced exactly by some single-system model.

roof. Part (a). Suppose that [gS(T1, ·), gS(T2, ·)] is a single-system
model with parameter space Θ ⊆ Rr . In other words, Eq. (20) of
Definition 6 holds.

We will now construct a multiple-systems model with the pair
of systems

[gM,1(T1, ·), gM,1(T2, ·)] and [gM,2(T1, ·), gM,2(T2, ·)], (24)

which has the same parameter space and predicts the same state
trace as this single-systemmodel. There are many ways to do this.
We will do it in such a way that the two systems are substantially
different from each other. Define

gM,1(T1, θ) = − gS (T1, θ) & gM,1(T2, θ) = gS (T2, θ)3 + gS (T2, θ) ;(25)
gM,2(T1, θ) = gS (T1, θ)3 + gS (T1, θ) & gM,2(T2, θ) = − gS (T2, θ). (26)

Note that the function that maps any real z to z3+z is monotonic
increasing. Therefore, because gS(T1, ·) and gS(T2, ·) move alike
locally, it follows that the same applies to the two functions in
(25) and the two functions in (26). Thus, each of the two function
pairs in (24) is a system.

Finally, we define a supervisory function h for this multiple-
systems model. For any real x and y, let

(x, y) = (x + y)1/3. (27)

hen note that Eq. (23) of Definition 6 holds, so this is a multiple-
ystems model in which the number of systems is NS = 2. This
odel predicts the state trace

(Ti) = h[ gM,1(Ti, θ), gM,2(Ti, θ) ]

=
(
[ gS(Ti, θ)3 + gS(Ti, θ) ] + [ −gS(Ti, θ) ]

)1/3
= gS(Ti, θ), (28)

for i = 1, 2, and therefore it predicts the same state trace as the
single-system model.

Part (b). Consider a multiple-systems model that generates a
state trace M ⊆ R2. We will construct a single-system model
that predicts the same state trace. Let the parameter space of the
single-system model be

Θ = {(x + y, x − y) ∈ R2
: (x, y) ∈ M}. (29)

For θ = (θ1, θ2) ∈ Θ, consider the model that predicts

P(T1) = gS(T1, θ) = (θ1 + θ2)/2 and
P(T2) = gS(T2, θ) = (θ1 − θ2)/2.

(30)

Note that, if either θ1 or θ2 is varied while the other is held
constant, then gS(T1, θ) and gS(T2, θ) will both vary. Thus, the
functions gS(T1, ·) and gS(T2, ·) move alike locally and, thus, the
air define a single-system model. This model generates the state
race:

[(θ + θ )/2, (θ − θ )/2] : (θ , θ ) ∈ Θ}. (31)
1 2 1 2 1 2
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B
ut (θ1, θ2) ∈ Θ if and only if θ1 = x+ y and θ2 = x− y for some
(x, y) ∈ M. As a result, this model predicts the state trace

P(T1) =
(x + y) + (x − y)

2
= x, (32)

and

P(T2) =
(x + y) − (x − y)

2
= y, (33)

and therefore it predicts the same state trace as the multiple-
systems model. □

Proposition 3 shows that if a state trace is consistent with a
single-system model, it is necessarily also consistent with some
multiple-systems model, and conversely if the plot is consis-
tent with a multiple-systems model and contains no horizontal-
or vertical-line segments, then it necessarily is also consistent
with some single-system model. This result establishes the fu-
tility of using STA to test between single- and multiple-systems
models, at least for all single- and multiple-systems models de-
fined as in Definition 6. The only ambiguity it leaves is whether
the single-system models that mimic predictions of a multiple-
systems model would be widely recognized as postulating a
single processing system (and vice versa). The proposition guar-
antees that such mimicking single-system models exist, but it
says nothing about the psychological assumptions made by these
mimicking models. The next result shows that the mimicking
models, in both classes, need not be exotic. In particular, widely
popular single-system and multiple-systems models can both
account for all four types of state-trace plots.

Proposition 4. Consider the class of models that are universally
recognized as postulating a single system and the class of models that
are universally recognized as postulating multiple systems. Then the
following results hold.

1. A single-system model can produce any type of state-trace plot.
The conditions under which it predicts each of the four types are
exactly as described in Proposition 2.

2. A multiple-systems model can produce any type of state-trace
plot. The conditions under which it predicts each of the four types
are exactly as described in Proposition 2.

Proof. Both of these results were established by Ashby (2014).
Note that they can both be established by construction – that is,
it suffices to identify single- and multiple-systems models that
predict state-trace plots of each possible type.

1. All four panels of Fig. 1 were generated from the GCM,
which is universally accepted as a single-system model (e.g.,
Stephens et al., 2019). Panel (a) was generated by assuming that
the GCM overall discriminability parameter c varies continuously.
In the GCM, performance increases monotonically with c in all
tasks, so panel (a) follows from part 1 of Proposition 2. Panel
(b) was generated by assuming that the GCM attention weight
parameter w varies continuously. As described in Section 3, GCM
performance in the RB task increases monotonically with w, but
performance in the II task increases to a maximum when w = .5
and then decreases. Therefore, panel (b) follows from part 2 of
Proposition 2. Panel (d) was generated by assuming that both c
and w vary continuously. Every point in the gray region denotes
a different possible outcome of the two tasks. The black dots
represent a random sample of these possible outcomes. Panel (c)
denotes one possible subset of the panel (d) points in gray.

2. All four panels of Fig. 3 were generated from a simplified
version of the COVIS model, which is universally accepted as
a dual-systems model (e.g., Stephens et al., 2019). The model
assumed that in the RB task, participants used a simple rule-
based strategy that investigated only two possible rules – a
13
one-dimensional rule on dimension 1 and a one-dimensional
rule on dimension 2. In the II task, the model assumed partic-
ipants used the GCM. See the Appendix for details. The single-
monotonic curve in panel (a) was generated by assuming that
the discriminability parameter c varies continuously. The single-
nonmonotonic curve in panel (b) was generated by assuming that
the attention weight w varies continuously. The double curves
in panel (c) show a possible outcome of an experiment with
two groups of participants. Each group was characterized by a
different value of w. Within each group, c varied continuously.
Panel (d) was generated by assuming that both c and w vary
continuously. The black dots denote a random sample of possible
outcomes. □

Propositions 3 and 4 establish that, except for horizontal or
vertical lines, single-system and multiple-systems models can
both produce any type of state-trace plot, and furthermore, that
if a plot was generated by a model of one type, then it necessarily
also could have been generated by a model of the opposite
type. Thus, STA cannot be used to make any inferences about
the number of systems that mediated performance in the tasks
under study. Single-system and multiple-systems models predict
exactly the same state-trace plots. Therefore, an STA is useful for
concluding that a single parameter is varying across the two tasks
under study, or equivalently, that an appropriate model of the
tasks under study should only vary one parameter, but it can
provide no information about the number of cognitive systems
postulated by the model in which that one varying parameter is
embedded.

Our results do not rule out the possibility that single- and
multiple-systems models could be defined in some different way
that brings STA into play. However, Proposition 4 shows that,
even in this best case scenario, STA could provide useful input
about the number of underlying systems only in certain, rather
unusual models, or only if the field somehow universally changed
its mind that the GCM is a single-system model and COVIS is a
dual-systems model. At the minimum, the results in this section
require that any future claim that STA has anything to contribute
to a discussion about the number of underlying systems must
include a formal definition of system that is qualitatively different
from Proposition 4, and a careful justification that STA has a pos-
itive role to play in discriminating between these newly defined
single-system and multiple-systems models.

5. Using STA to test dissociations

One recent and increasingly common application of STA, is
to test for empirical dissociations. Newell and Dunn (2008) even
argued that STA ‘‘overcomes all of the flaws of dissociation logic’’
(p. 285). For example, Stephens et al. (2019) used STA to re-
analyze data from 28 different studies that each reported some
type of dissociation between RB and II categorization. Their in-
terpretation of the results of these analyses was that ‘‘we show
that many of the dissociations thought to reflect the operation of
distinct processes disappear against the stricter criteria of state-
trace analysis’’ (p. 3). This section examines the mathematical
basis for such conclusions.

Dissociations are almost always defined by comparing perfor-
mance on two tasks. Therefore, this section considers the case
in which each of two tasks T1 and T2 are run under n different
experimental conditions. For example, T1 and T2 might be RB and
II categorization tasks, respectively, and the n conditions could
represent n different memory loads of some simultaneous dual
task.

Let Pi(T1) and Pi(T2) denote performance in tasks T1 and T2,
respectively, in condition i. Then the possible outcomes of a disso-
ciation experiment that includes conditions i and j are illustrated
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Fig. 4. Four possible outcomes of a dissociation experiment that compares performance on tasks T1 and T2 under different experimental conditions i and j.
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n Fig. 4. Formally, the possible outcomes of this experiment are
efined as follows.

efinition 7 (Types of Dissociations). Consider a dissociation
experiment in which two tasks T1 and T2 are run under exper-
imental conditions i and j. Then the possible outcomes of this
experiment are as follows.

• An association of type A(i, j) occurs if Pi(T1) > Pj(T1) and
Pi(T2) > Pj(T2);

• A simple dissociation of type SD(i, j, T1) occurs if Pi(T1) >

Pj(T1) and Pi(T2) = Pj(T2);
• A simple dissociation of type SD(i, j, T2) occurs if Pi(T2) >

Pj(T2) and Pi(T1) = Pj(T1);
• A double dissociation of type DD(i, j) occurs if Pi(T1) > Pj(T1)

and Pi(T2) < Pj(T2);
• A null effect of type NE(i, j) occurs if Pi(T1) = Pj(T1) and

Pi(T2) = Pj(T2).

ssociations, dissociations, and null effects will all be called ef-
ects.

Almost all of the dissociations examined by Stephens et al.
2019) were single dissociations that were predicted a priori
y the COVIS theory of category learning (Ashby et al., 1998).
or example, one of the dissociations they examined was the
rediction by COVIS that a simultaneous dual task would impair
B learning more than II learning.
To begin, it is important to note that using STA to examine

issociations requires stronger assumptions than a traditional
issociation analysis. In an STA, the experimenter plots ordered
airs [P (T ), P (T )] for different conditions i. But this requires
i 1 i 2 c

14
Table 1
All possible outcomes of an experiment in which two tasks T1 and T2 are
completed in two conditions i and j.

Pi(T2) > Pj(T2) Pi(T2) = Pj(T2) Pi(T2) < Pj(T2)

Pi(T1) > Pj(T1) A(i, j) SD(i, j, T1) DD(i, j)
Pi(T1) = Pj(T1) SD(i, j, T2) NE(i, j) SD(j, i, T2)
Pi(T1) < Pj(T1) DD(j, i) SD(j, i, T1) A(j, i)

that Pi(T1) and Pi(T2) are paired in some way – for example,
perhaps because they were completed by the same participant
or group of participants. This pairing is not a requirement of
traditional dissociation analysis. For example, the points plotted
in Fig. 4 could have all been estimated from different groups of
participants run in different labs at different times. So obviously,
for this reason, the remainder of this section is restricted to disso-
ciation experiments that satisfy the pairing assumption required
by STA.

Table 1 shows the effects associated with every possible out-
come of a dissociation experiment. We shall be focusing on dis-
sociations, particularly double dissociations. Note that there are
n(n − 1) types of double dissociations, where n is the number of
onditions under which the two tasks were run:

D(i, j) : i = 1, . . . , n; j = 1, . . . , n; i ̸= j. (34)

ome of these double dissociations are incompatible with each
ther. Thus, DD(i, j) and DD(j, i) cannot both occur in the same
xperiment. Consequently, the number of double dissociations in
n experiment can range from zero to a maximum of n(n− 1)/2.
Our next result establishes the ability of STA to identify disso-

iations.
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roposition 5. The results of a dissociation experiment are consis-
tent with a monotonic state-trace model if and only if the experiment
contains no double dissociations.

Proof. If Consider a dissociation experiment that contains no
double dissociations. We will construct a monotonic state-trace
model for this experiment. We begin by defining a varying pa-
rameter θ by setting

θi = Pi(T1) + Pi(T2), for i = 1, 2, . . . , n. (35)

e will also need to define two output functions: one for T1 and
ne for T2. We begin with the output function for T1. We set

1(θi) = Pi(T1), for i = 1, 2, . . . , n. (36)

or this to be a legitimate definition of the function g1(·), we must
how that, for any i and j, if

i(T1) + Pi(T2) = θi = θj = Pj(T1) + Pj(T2), (37)

then

Pi(T1) = g1(θi) = g1(θj) = Pj(T1). (38)

Assume that the definition is not legitimate. Then, for some i
and j, (37) holds but Pi(T1) ̸= Pj(T1). Without loss of generality,
suppose that Pi(T1) > Pj(T1). Then (37) implies that Pi(T2) <

Pj(T2). This, in turn, implies that, contrary to supposition, there
is a double dissociation in the experiment. Thus, our definition of
the function g1(·) is legitimate.

Next, we show that g1(·) is monotonic nondecreasing. Consider
any i and j for which θi = Pi(T1) + Pi(T2) < Pj(T1) + Pj(T2) =

θj. Then note that the definition of g1(·) requires that g1(θi) =

i(T1) ≤ Pj(T1) = g1(θj). This must be the case, because if
Pi(T1) > Pj(T1) then it would have to be true that Pi(T2) <

j(T2). But if this were true then contrary to supposition, the
xperiment contains a double dissociation. Thus the function g1(·)
s monotonic nondecreasing.

Now, define an output function for T2 by setting

2(θi) = Pi(T2), for i = 1, 2, . . . , n. (39)

sing the same type of argument as above, it is seen that Eq. (39)
s a legitimate definition and that the function g2(·) is monotonic
ondecreasing.
To summarize so far: [θ, g1(·), g2(·)] is a monotonic state-trace

odel, and because of how it was constructed, it perfectly fits
he state-trace plot that results from the dissociation experiment.
herefore, if an experiment has no double dissociations, then it is
onsistent with a monotonic state-trace model.
(Only if ). Suppose the results of a dissociation experiment are

onsistent with the monotonic state-trace model [θ, g1(·), g2(·)].
onsider any two experimental conditions i and j. Note that there
re three possibilities for the relative values of θi and θj

• θi > θj, which implies Pi(T1) ≥ Pj(T1) and Pi(T2) ≥ Pj(T2);
• θi = θj, which implies Pi(T1) = Pj(T1) and Pi(T2) = Pj(T2);
• θi < θj, which implies Pi(T1) ≤ Pj(T1) and Pi(T2) ≤ Pj(T2).

Table 2 describes these possible outcomes of the dissociation
xperiment (indicated by

√
) according to the monotonic state-

race model, along with the impossible outcomes (indicated by
).
Comparing Table 2 to Table 1 shows that the double dissocia-

ions DD(i, j) and DD(j, i) are both impossible in the monotonic
tate-trace model. Therefore, the monotonic state-trace model
redicts that the dissociation experiment will have no double
issociations. In other words, if an experiment is consistent
ith a monotonic state-trace model, then it contains no double
issociations. □
15
Table 2
Possible (

√
) and impossible (⊗) outcomes of a dissociation experiment

according to the monotonic state-trace model.
Pi(T2) > Pj(T2) Pi(T2) = Pj(T2) Pi(T2) < Pj(T2)

Pi(T1) > Pj(T1)
√ √

⊗

Pi(T1) = Pj(T1)
√ √ √

Pi(T1) < Pj(T1) ⊗
√ √

Therefore, a single-monotonic state-trace curve rules out a
double dissociation. Even so, Proposition 5 has the following
immediate and important corollary.

Corollary 5.1. A single-monotonic state-trace curve is consistent
with either no dissociations or with one or more single dissociations.
Therefore, the conclusion that a state-trace plot is a single-monotonic
curve provides no information about whether or not the data include
a single dissociation.

As described earlier, Stephens et al. (2019) used STA to re-
analyze data from 28 different studies that each reported some
type of dissociation between RB and II categorization. All 28
studies were run to test an a priori prediction of COVIS about
some single dissociation between RB and II learning or perfor-
mance. Stephens et al. (2019) concluded that almost all of the
resulting state-trace plots were single-monotonic curves, and
they concluded from this result that ‘‘we show that many of the
dissociations thought to reflect the operation of distinct processes
disappear against the stricter criteria of state-trace analysis’’ (p.
3). Proposition 5 shows that this conclusion has no logical or
mathematical basis. The finding that almost all of the state-trace
plots from the 28 studies were single-monotonic curves provides
no information about the presence or absence of the predicted
dissociations.

Proposition 5 establishes the validity of using STA to test
for double dissociations. And, as previously mentioned, double
dissociations are often used, especially in the memory and cog-
nitive neuroscience literatures, as operational tests of multiple
systems. So at first glance, Proposition 5 might seem to provide
support for the use of STA to identify the number of systems.
However, it has long been known that single-system models
can also account for double dissociations (Plaut, 1995). For ex-
ample, Fig. 1d shows that the GCM can account for virtually
any state-trace plot, even one consistent with a double disso-
ciation. Furthermore, multiple-systems models do not predict
double dissociations in all experiments. For example, in the many
experiments re-analyzed by Stephens et al. (2019), the multiple-
systems model COVIS always predicted single dissociations, and
never predicted a double dissociation. So the presence or absence
of a double dissociation allows no general inferences to be drawn
about the number of underlying systems, even though the pres-
ence or absence of a double dissociation could be theoretically
valuable (e.g., because it could confirm or disconfirm predictions
of some specific model).

6. Conclusions

STA is arguably the best available method for determining
the number of underlying parameters or latent variables that
are varying across two or more tasks or conditions – that is,
for measuring the width of the bottleneck between IVs and DVs.
STA is based on the fact that under very weak conditions, any
model in which r parameters are varying across r or more DVs
or tasks predicts an r-dimensional state-trace plot (i.e., or model
manifold). Thus, in the standard two-task STA, a model with one
varying parameter predicts a one-dimensional state-trace plot –



F.G. Ashby and D. Bamber Journal of Mathematical Psychology 108 (2022) 102655

t
w
s
r
n
t
c
(
c
t
a
i
a
a
b
a
a
e
b
w

t
u
a
m
e
l
o
t
p
t
i
m
e

d
b
s
n
d

A

a
s
s
u
t
c
a
A
d
v
r
r
c
l
r

(
t
a
d
a
v

w
a
k
r
p
1
i
t
t
a

δ

w
x
m
c
E

η

w
i
p
s
t
p
a
c

u
f
e

w
d
t

e
c
e

P

w
t
i
T
s

P

T
t
t

hat is, either a single-monotonic or single-nonmonotonic curve,
hereas models with two or more varying parameters predict a
catter plot or a double plot. Note that this application does not
equire any monotonicity assumptions. Specifically, there is no
eed to assume that performance in any task is a monotonic func-
ion of whichever parameters are varying. Since many popular
ognitive models include parameters that violate monotonicity
e.g., see Fig. 2), the practice of lumping single-nonmonotonic
urves, double curves, and scatter plots together seriously reduces
he ability of STA to identify phenomena that are mediated by
single varying parameter. Monotonicity is typically assumed

n an attempt to increase statistical power. However, in many
pplications, the possible increase in statistical power comes at
high cost. For example, in the categorization tasks examined
y Stephens et al. (2019), optimal performance required selective
ttention to one stimulus dimension in the RB tasks and equal
ttention to both dimensions in the II tasks. Even so, the Stephens
t al. (2019) monotonicity assumption made it virtually impossi-
le for them to identify data sets in which only a single attention
eight was varying across the two tasks.
Whereas STA is among the best available methods for iden-

ifying the number of parameters that vary or the number of
nderlying latent variables, it provides virtually no information
bout the number of systems that characterize the underlying
odel or mechanisms that relate the IVs and DVs. The only
xception is that a state trace that includes horizontal or vertical
ine segments rules out all single-system models. In the absence
f this result, however, an STA might be used to conclude that
he data are not complex enough to rule out a single varying
arameter, but there is no possible outcome of any other STA
hat could be used to learn whether that single parameter varies
n a model or architecture constructed from a single system or
ultiple systems. Single- and multiple-systems models predict
xactly the same state-trace plots.
Similarly, STA is a poor choice if the goal is to examine

issociations. STA can be used to test for double dissociations,
ut not for single dissociations. In particular, a single-monotonic
tate-trace curve rules out a double dissociation but provides
o information about whether or not the data contain a single
issociation.

ppendix. Description of the dual-systems model

The two tasks used to generate Figs. 1–3 were rule-based (RB)
nd information-integration (II) categorization tasks that used
timuli that varied on two stimulus dimensions. Therefore, each
timulus can be described by a point in a two-dimensional stim-
lus space, and each category is defined by a cluster of points in
his space. In the RB task, each of the two equally-likely categories
ontained 10 stimuli, which were equally spaced on dimension 2
nd shared the same value on dimension 1 (i.e., 0.6 for category
and 0.4 for category B). Thus, the optimal strategy is to ignore
imension 2 and respond A or B depending on whether the
alue of the presented stimulus on dimension 1 is large or small,
espectively. The II task was identical, except the clusters were
otated 45◦ clockwise in stimulus space. In this condition, the
ategory A and B clusters are perfectly partitioned by a diagonal
ine with slope 1. Therefore, the optimal strategy in the II task
equires equal attention to both dimensions.

The dual-systems model was a simplified version of COVIS
Ashby et al., 1998). This model assumed that performance in
he II task is mediated by the standard GCM (Nosofsky, 1986),
ugmented with the γ parameter introduced by Ashby and Mad-
ox (1993). Ashby and Rosedahl (2017) showed that the GCM is
special case of the COVIS procedural system. Specifically, this
ersion of the GCM assumes that the probability of responding A
 S

16
on a trial when stimulus k is presented equals

P(A|k) =

β

(∑
i∈CA

ηik

)γ

β

(∑
i∈CA

ηik

)γ

+ (1 − β)
(∑

i∈CB
ηik

)γ , (40)

here CA and CB are sets containing the stimuli in categories A
nd B, respectively, ηik is the similarity between stimuli i and
, β is a parameter that reflects the participant’s bias toward
esponding A, and γ is a parameter that determines whether the
articipant probability matches (γ = 1), over-matches (γ >

), or under-matches (γ < 1). Similarity is assumed to be
nversely related to the weighted Minkowski distance between
he perceptual representations of the stimuli. More specifically,
he distance between the perceptual representations of stimuli i
nd k, denoted δik, equals:

ik =

(
w|xi1 − xk1|r + (1 − w)|xi2 − xk2|r

)1/r
, (41)

here w is the proportion of attention allocated to dimension 1,
ij is the coordinate value of stimulus i on the jth perceptual di-
ension, and r is chosen to be 1 or 2 to produce city-block or Eu-
lidean distance, respectively. The dual-systems model assumes
uclidean distance. Similarity is inversely related to distance via:

ik = exp(−cδα
ik) (42)

here c is a parameter that increases with the overall discrim-
nability of the stimuli, and α is 1 or 2, which produces the ex-
onential or Gaussian similarity function, respectively. The dual-
ystems model assumes a Gaussian similarity function. This is
he same model used to produce Fig. 1. Note that there are four
ossible versions of the model (depending on whether r = 1 or 2
nd α = 1 or 2) and each has four free parameters (β , γ , w and
).
In the RB task, the dual-systems model assumed participants

se a completely different rule-based system, which is a simpli-
ication of the COVIS explicit system. The model assumed that on
ach trial, the participant used one of two decision rules:

R1: ‘‘Respond A if xi1 > X1; otherwise respond B’’
or

R2: ‘‘Respond A if xi2 > X2; otherwise respond B’’,

here xi1 and xi2 are the values of the current stimulus on
imensions 1 and 2, respectively, and X1 and X2 are parameters
hat represent the response criteria.

The former of these rules is optimal for the RB tasks consid-
red in this article. If there is normally distributed perceptual or
riterial noise, then the predicted probability correct for this rule
quals (e.g., Ashby & Valentin, 2018)

(C |R1) = .5
[
1 − Φ

(
X1 − .6

σ

)]
+ .5Φ

(
X1 − .4

σ

)
, (43)

here Φ is the cumulative Z distribution function and σ 2 is
he noise variance. Ashby and Maddox (1993) showed that σ is
nversely related to the discriminability parameter c of the GCM.
herefore, we can eliminate a parameter by setting σ = 1/c , and
o

(C |R1) = .5
{
1 − Φ

[
c(X1 − .6)

]}
+ .5Φ

[
c(X1 − .4)

]
. (44)

he incorrect rule predicts that P(C |R2) = .5. The model assumes
hat use of the correct rule increases with w – that is, with
he proportion of attention allocated to the relevant dimension.

pecifically, the model assumes that
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(C) = wP(C |R1) + (1 − w)P(C |R2)

= wP(C |R1) + .5(1 − w). (45)

All four panels of Fig. 3 were generated with β = .5, γ = 1,
nd X1 set to its optimal value. In panel (a), w was set to .6, and
varied from 1 to 40. In panel (b), c was set to 60, and w varied

rom 0 to 1. In panel (c), c varied from 1 to 40 in both groups.
n one group, w was set to .47 and in the other it was set to .82.
inally, in panel (d), w varied from 0 to 1, and c varied from 5 to

105.
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