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A B S T R A C T

A variety of different recognition-memory models make different psychological assumptions, but similar predic-
tions about ROC curves in old–new recognition-memory experiments. Some models assume that recognition
responses are produced by a unitary process and other models assume they are a binary mixture of two
qualitatively different types of responses. This note shows that despite their similar ROC predictions, the
binary-mixture models make some striking predictions that the unitary models do not make. Specifically, in any
experiment that includes conditions in which the mixture probability varies but the component distributions
do not, the binary-mixture models predict that all response time probability density functions must intersect
at the same time point (if they intersect at all). Similarly, they also all predict that if the ROC curves intersect,
they must also all intersect at the same point.
. Introduction

In old–new recognition-memory experiments, participants are pre-
ented with a list of words and then sometime later presented with
 series of single words and asked to respond whether each of these
ingle words is old or new — that is, they are asked to indicate whether
ach word was or was not on the studied list. New items are typically
alled ‘‘lures’’ and old items are called ‘‘targets’’. In the language of the
ES–NO detection task, responding OLD on target trials is analogous
o a hit, and responding OLD on lure trials is analogous to a false
larm. In this way, an ROC curve can be constructed for this task
y plotting the probability of responding OLD on target trials on the
rdinate against the probability of responding OLD on lure trials on
he abscissa — that is, by plotting 𝑃 (OLD|target) against 𝑃 (OLD|lure).
mpirical ROCs estimated from confidence judgments collected in the
ld–new recognition-memory task are curved, rather than linear, and
hen plotted in Z space, the best-fitting lines have a slope that can
ary considerably across conditions, but that is typically less than
.0 (e.g., Glanzer et al., 1999; Ratcliff et al., 1992). It is commonly
ssumed that a representative slope is around 0.8 (Ratcliff et al.,
992; Wixted, 2007). A variety of different signal-detection theory-
ased (SDT) models of performance in this task have been proposed to
ccount for these results. Some models assume that all OLD responses
re mediated by the same psychological process, whereas others assume
hat OLD responses are a binary-mixture of two qualitatively different
ypes of responses. Models in the former class include the normal,

✩ The author thanks Michael Miller for helpful comments on an earlier draft of this article.
∗ Correspondence to: Department of Psychological & Brain Sciences, University of California, Santa Barbara 93106, USA.

E-mail address: fgashby@ucsb.edu.

unequal-variance SDT model, whereas models in the latter class include
the dual-process SDT model and the mixture SDT model. Unitary and
binary-mixture models make qualitatively different assumptions about
the underlying psychological processes that mediate responding in the
old–new recognition-memory task, but nevertheless they make similar,
albeit not identical, ROC curve predictions. The similarity of these
predictions has made it difficult to differentiate them empirically.
This note describes some striking (untested) empirical predictions that
discriminate the unitary and binary-mixture models.

2. The models

Three different SDT-based models of the old–new recognition-
memory task are popular: the normal, unequal-variance SDT model
(Wixted, 2007), the dual-process SDT model (Yonelinas, 1994), and
the mixture SDT model (DeCarlo, 2002). The normal, unequal-variance
SDT model assumes that all OLD versus NEW recognition-memory
responses are based on the memory strength elicited by the presented
stimulus. Specifically, the model assumes that the participant will
respond OLD if the memory strength elicited by the presented stimulus
is large and NEW if the memory strength is small. The model further as-
sumes that lures and targets both generate a range of memory strengths
that are each normally distributed, but on average, targets generate
larger and more variable memory strengths than lures (Wixted, 2007).
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This model has three free parameters — the mean and variance of the
target distribution and the criterion on memory strength for responding

LD. A model in which the target standard deviation is 1.25, given a
ure standard deviation of 1.0, predicts a linear ROC in Z space with a
lope of 0.8, which matches typical empirical estimates.

The normal, unequal-variance model assumes that all OLD re-
ponses depend only on a single memory-strength value, and therefore
hat all OLD responses are mediated by the same psychological process.

In contrast, dual-process models assume that a judgment that an
tem is old depends on separate recollection and familiarity processes
Yonelinas, 1994; Yonelinas et al., 1998). Specifically, Yonelinas (1994)
ssumed that OLD responses in the old–new recognition-memory task

are a binary mixture. Some OLD responses occur because the par-
icipant recollected that the item was old and other OLD responses
ccurred because recollection failed but the item appeared highly
amiliar. Yonelinas (1994) further assumed that recollection operates

as in classical threshold theory — that is, on target trials, there is
ome probability 𝑝 that recollection is successful and on these trials
he participant always responds OLD. If recollection fails, which occurs
ith probability 1 − 𝑝, it completely fails in the sense that there is no
artial recollection value that can be used to select a response. Instead,
he choice between responding OLD versus NEW depends completely
n familiarity. In the model proposed by Yonelinas (1994), judgments

based on familiarity are modeled by the normal, equal-variance SDT
model. The dual-process model predicts that

𝑃 (OLD|target) = 𝑝 + (1 − 𝑝)𝛷(𝜇T −𝑋C), (1)

where 𝛷 is the standard-normal cumulative distribution function, 𝜇T is
he mean familiarity strength of target items, and 𝑋C is the criterion on
amiliarity for responding OLD. The model also assumes that recollec-
ion is impossible on lure trials, so the probability of responding OLD
n lure trials – that is, the probability of a false alarm – is exactly the
ame as in the normal, equal variance SDT model. In other words,

𝑃 (OLD|lure) = 1 −𝛷(𝑋C) = 𝛷(−𝑋C). (2)

Note that this model has three free parameters: 𝑝, 𝜇T, and 𝑋C — the
same number as the normal, unequal variance model. It is well known
that the ROC curves predicted by this model are skewed in the same
direction as empirical ROC curves from the old–new recognition task
(that is, when 𝑝 > 0).

The mixture SDT model of recognition memory is similar to the
dual-process model, in the sense that both models assume target trials
include a mixture of responses that have different statistical properties
(DeCarlo, 2002, 2010; Koen et al., 2017). The mixture SDT model
assumes the two types of OLD responses on target trials are due to
different levels of attention during the encoding of the target item at the
time of initial study (DeCarlo, 2002). The idea is that as the study items
are initially presented, the participant’s attention waxes and wanes. The
target items presented when attention is high will elicit a large memory
strength when later presented during the testing phase, whereas target
items initially presented when attention was low will elicit a weak
memory strength during test.

The mixture SDT model (DeCarlo, 2002) models the memory
trengths elicited by lures exactly as the noise distribution is modeled
n the normal, equal-variance SDT model. As a result,

𝑃 (OLD|lure) = 𝛷(−𝑋C). (3)

In contrast, the model assumes that the memory strengths elicited by
targets are a binary mixture of large and small memory strengths, each
normally distributed with variance 1, but with different means. More
specifically, the model assumes that

𝑃 (OLD|target) = 𝑝𝛷(𝑑1 −𝑋C) + (1 − 𝑝)𝛷(𝑑2 −𝑋C), (4)

where 𝑝 is the probability that a target item received a high level of
attention during study. So 𝑑1 is the mean memory strength when atten-
tion was high and 𝑑 is the mean memory strength when attention was
2

2 
low. In many applications, it is common to assume 𝑑2 = 0, or in other
words, that the mean memory strength during low attention is the same
as for lures. According to this version of the model, with probability 1 −𝑝
the participant completely ignores the target item during study. One
advantage of this simplifying assumption is that it reduces the number
of free parameters in the model from 4 to 3 (i.e., 𝑝, 𝑑1, and 𝑋C), and
as a result, this version of the mixture model has the same number of
free parameters as the unequal-variance and dual-process SDT models.
The mixture model predicts ROC curves that are similar to the ROC
curves predicted by the dual-process SDT model. This is not a surprise
because both models make identical predictions for 𝑃 (OLD|lure) and
similar predictions for 𝑃 (OLD|target) (i.e., compare Eqs. (1) and (4)).

3. The fixed-point property of binary mixtures

The normal, unequal-variance model, the dual-process model, and
the mixture model all make similar, but not identical predictions about
ROC curves in old–new recognition-memory experiments. For example,
ll of these models predict, or can predict, skewed ROC curves that
enerally have a slope in Z-ROC space that is less than 1.0 — properties
hat are present in virtually all empirical ROCs estimated from the
ld–new recognition task. The most striking difference is that the
nequal-variance model predicts that all Z-ROC curves must be linear,
hereas the mixture models predict that the Z-ROC curves become
rogressively more curved (i.e., more nonlinear) as the mixture proba-
ility 𝑝 increases. Despite these similar predictions, the models make

fundamentally different assumptions about the nature of processing
on target trials. The normal, unequal-variance model predicts this is a
unitary process in the sense that responding on every trial is mediated
y the same psychological processes. In contrast, both the dual-process
nd mixture models assume that responding on target trials is a mixture
f two qualitatively different types of trials. It turns out that this
rediction that responding to targets is a mixture of two types of trials
as a distinct empirical signature that, to my knowledge, has never
een investigated. That signature is described in this section.

Mixture models have been proposed in a variety of different do-
mains. For example, the fast-guess model of the speed-accuracy tradeoff
accounts for fast error responses by proposing that observable response
times (RTs) are a probability mixture of two types of responding
(Yellott, 1971). With some probability 𝑝, the participant ignores the
timulus and just randomly guesses a response. The lack of perceptual
r cognitive processing on these trials causes accuracy to be low and

RT to be fast. With probability 1 − 𝑝, the participant fully processes the
stimulus, causing responding to be accurate and slow. Although better
models of the speed-accuracy tradeoff were subsequently developed
(e.g., see van Maanen, 2016), the fast-guess model is highlighted here
because it remains one of the most conceptually simple and widely
nown mixture models.

All binary-mixture models have a unique empirical signature that
as discovered by Falmagne (1968), which he called the fixed-point

property. Specifically, consider a set of experimental conditions in which
the mixture probability varies but the component distributions do not.
For example, in the case of the fast-guess model, the conditions might
vary speed stress. The fast-guess model predicts that the more that
speed is emphasized, the more likely it is that the participant will ignore
the stimulus and make a quick guess. So the model predicts that the
primary effect of increasing speed stress will be to increase the guessing
probability 𝑝. Falmagne (1968) showed that in any experiment with
different conditions that affect the mixture probability 𝑝, but not the
omponent distributions, all binary-mixture models predict that the

probability density functions (pdfs) predicted for each experimental
condition must all intersect at exactly the same point. This property
is described more formally in the following result.

The Fixed-Point Property of Binary Mixtures. Consider a model
that predicts that some relevant pdf in experimental condition 𝑖, denoted
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𝑓𝑖(𝑥), is a binary mixture of two component pdfs 𝑔1(𝑥) and 𝑔2(𝑥), with
ixture probability 𝑝𝑖. More specifically, suppose that

𝑓𝑖(𝑥) = 𝑝𝑖 𝑔1(𝑥) + (1 − 𝑝𝑖) 𝑔2(𝑥). (5)

Consider a set of conditions in which the mixture probability 𝑝𝑖 varies,
but 𝑔1(𝑥) and 𝑔2(𝑥) do not. Then if the pdfs predicted for each condition
intersect, they must all intersect at the same fixed point.

Proof. The proof, which is straightforward, is due to Falmagne (1968).
For convenience, it is reproduced here. Suppose there exists some value
∗ where 𝑔1(𝑥) and 𝑔2(𝑥) intersect — that is, for which 𝑔1(𝑥∗) = 𝑔2(𝑥∗).
ow let 𝑝𝑖 and 𝑝𝑗 be any two mixture probabilities. Then note that

(𝑝𝑖 − 𝑝𝑗 ) 𝑔1(𝑥∗) = (𝑝𝑖 − 𝑝𝑗 ) 𝑔2(𝑥∗)

= [(1 − 𝑝𝑗 ) − (1 − 𝑝𝑖)] 𝑔2(𝑥∗), (6)

and therefore

𝑝𝑖 𝑔1(𝑥∗) − 𝑝𝑗 𝑔1(𝑥∗) = (1 − 𝑝𝑗 ) 𝑔2(𝑥∗) − (1 − 𝑝𝑖) 𝑔2(𝑥∗). (7)

Rearranging both sides produces

𝑝𝑖 𝑔1(𝑥∗) + (1 − 𝑝𝑖) 𝑔2(𝑥∗) = 𝑝𝑗 𝑔1(𝑥∗) + (1 − 𝑝𝑗 ) 𝑔2(𝑥∗), (8)

and therefore 𝑓𝑖(𝑥∗) = 𝑓𝑗 (𝑥∗) for any values of 𝑝𝑖 and 𝑝𝑗 . □

The fixed-point property holds for any random variable that is
a binary mixture. As we saw, the mixture SDT model predicts that
n target trials, the decision variable that drives old–new recognition
udgments is a binary mixture of two normal distributions (i.e., see
Eq. (4)). As a result, it predicts that across a set of conditions in which
the mixture probabilities vary but the component pdfs do not, the
set of all target distributions predicted by the mixture model must
ll intersect at the same point. The dual-process SDT model is also

a binary mixture model but its predicted familiarity distributions are
not constrained by the fixed-point property because there is no 𝑔1(𝑥)
pdf that intersects with 𝑔2(𝑥). The big-picture question here though is
why any of this should matter since memory-strength distributions are
not observable. The fixed-point property is useful only if the mixture
variable is some observable dependent measure. If it was observable,
then a strong test of the model would be to estimate the mixture
distributions and check whether they all intersect at the same point. Al-
though memory strength is not an observable variable, there are several
dependent measures that should depend directly on memory strength
and therefore are candidates for tests of the fixed-point property. Two
dependent variables come immediately to mind — RTs and ROC curves.
The next two sections consider each of these possibilities in turn.

4. Response time tests of the fixed-point property

By themselves, none of the recognition-memory models considered
above make any assumptions or predictions about the RTs that might
be expected in the old–new recognition-memory task. Even so, there
are generalizations of SDT that do make RT predictions. Among the
oldest and simplest methods for deriving RT predictions from SDT is
to add a straightforward assumption to SDT, called the RT-distance
hypothesis, that simply assumes that RT decreases with the distance
between the percept and the response criterion. The idea is that if
decisions are made by comparing a percept or memory strength to a
criterion, then the greater the distance between the two, the easier,
and hence the faster the decision. Theoretical predictions of the gen-
eralized SDT model that includes this assumption were worked out by
Murdock (1985). Empirical support for the RT-distance hypothesis was
irst reported by Emmerich et al. (1972) and Gescheider et al. (1969)
nd later, within the multidimensional context of general recognition
heory, by Ashby et al. (1994). Furthermore, Murdock (1985) showed

that this generalized SDT model gives good accounts of the RTs that
are observed in recognition-memory experiments.
3 
In addition, it is important to note that virtually all current pro-
ess interpretations of SDT that make RT predictions are in general
greement with the RT-distance hypothesis, including for example, the
rift–diffusion model (Ratcliff, 1978). The drift–diffusion model is a

special case of a more general class of sequential-sampling models,
which assume that the observer repeatedly samples the stimulus on
each trial and then converts the sampled percepts into evidence favor-
ing one of the two responses. Evidence is typically not defined explicitly
n these models, but in a task where the two response alternatives are A

and B, a natural definition of the strength of evidence associated with
the percept x is

𝑒(x) = |

|

|

log 𝐿(x)||
|

=
|

|

|

|

|

log
𝑓A(x)
𝑓B(x)

|

|

|

|

|

= |

|

|

log 𝑓A(x) − log 𝑓B(x)
|

|

|

. (9)

According to this definition, there is no evidence that favors one
response over the other when the likelihood ratio equals 1. Both
responses are equally likely to be correct. As the likelihood ratio moves
away from 1 – in either direction – the evidence about which response
is correct increases. This definition is especially relevant to recognition
memory because of the important role that likelihood ratio plays in
recognition memory models (e.g., Glanzer et al., 2009). According to
the reasonable Eq. (9) definition of evidence, note that if the like-
ihood ratio is monotonic with increases in sensory magnitude (or
emory strength), then evidence increases with the distance from the
ercept to the response criterion 𝑋C. So the RT predictions of any
uch sequential sampling model are in general agreement with the RT-
istance hypothesis. As a result, adding the RT-distance hypothesis to
ny of the recognition-memory models considered above represents a
heoretically minimal approach to extending these models to the RT
omain.

The following result shows that adding the RT-distance hypothesis
o any model that predicts memory strengths on target trials are a
inary mixture causes that model to also predict that the RT pdfs on
arget trials must satisfy the fixed-point property.

Theorem 1. Consider any recognition-memory model that assumes OLD
responses in the old–new recognition task are a binary mixture — that is,
any model described by Eq. (5) (e.g., including the dual-process and mixture
SDT models). Suppose we extend this class of models to the RT domain by
assuming that

𝑅𝑇 = 𝑇 + 𝑇0, (10)

where 𝑇 is the decision time that is computed by adding the RT-distance
hypothesis to the memory model and 𝑇0 is any motor time that is statis-
tically independent of 𝑇 . Now consider an old–new recognition-memory
experiment that includes a set of conditions in which the mixture probability
𝑝𝑖 varies across conditions, but the component distributions do not. Then
ll RT pdfs predicted by these models on target trials when the participant
esponds correctly must satisfy the fixed-point property — that is, if the RT
dfs predicted for each condition intersect, they must all intersect at the same
ixed point.

Proof. The RT-distance hypothesis assumes that decision time 𝑇 =
ℎ(𝐷), where ℎ is a differentiable, strictly-decreasing function and 𝐷
s the distance from the current percept to the response criterion 𝑋C.
ll binary mixture models assume that the distribution of memory
trengths on target trials equals

𝑓 (𝑥|target) = 𝑝𝑔1(𝑥) + (1 − 𝑝)𝑔2(𝑥), (11)

for some component pdfs 𝑔1 and 𝑔2. This model predicts that a cor-
rect OLD response occurs on trials when a random sample from this
mixture distribution is greater than the criterion 𝑋C. Let 𝐷 denote the
distance from this sample to the criterion. Then these distances will
have one distribution on trials when the random sample comes from
component distribution 𝑔1 and a different distribution on trials when
the random sample comes from component distribution 𝑔 . Murdock
2
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(1985) showed that if the component distribution is normal, then the
istribution of distances to the criterion on correct response trials has a
runcated normal distribution. However, the present theorem requires
o distributional assumptions about 𝑔1 or 𝑔2, or about the specific
unction ℎ that converts each distance to a decision time — that is, the
heorem holds for any distributions 𝑔1 and 𝑔2 and any differentiable,
trictly-decreasing function ℎ.

If we denote the two distance distributions by 𝑔1𝐷 and 𝑔2𝐷, respec-
tively, then the distribution of distances across all correct OLD response
trials equals

𝑓𝐷(𝑥|target) = 𝑝 𝑔1𝐷(𝑥) + (1 − 𝑝) 𝑔2𝐷(𝑥). (12)

The RT-distance hypothesis assumes decision time 𝑇 = ℎ(𝐷), where ℎ is
 differentiable strictly decreasing function. By the change-of-variable
heorem of probability theory, the decision time pdf on target trials,
enoted 𝑓𝑇 (𝑡), equals

𝑓𝑇 (𝑡) = 𝑓𝐷
[

ℎ−1(𝑡)
]

|

|

|

|

|

𝑑 ℎ−1(𝑡)
𝑑 𝑡

|

|

|

|

|

=
{

𝑝 𝑔1𝐷
[

ℎ−1(𝑡)
]

+ (1 − 𝑝) 𝑔2𝐷
[

ℎ−1(𝑡)
]}

|

|

|

|

|

𝑑 ℎ−1(𝑡)
𝑑 𝑡

|

|

|

|

|

= 𝑝

{

𝑔1𝐷
[

ℎ−1(𝑡)
]

|

|

|

|

|

𝑑 ℎ−1(𝑡)
𝑑 𝑡

|

|

|

|

|

}

+ (1 − 𝑝)

{

𝑔2𝐷
[

ℎ−1(𝑡)
]

|

|

|

|

|

𝑑 ℎ−1(𝑡)
𝑑 𝑡

|

|

|

|

|

}

= 𝑝 𝑔1𝑇 (𝑡) + (1 − 𝑝) 𝑔2𝑇 (𝑡), (13)

where 𝑔1𝑇 (𝑡) and 𝑔2𝑇 (𝑡) are the decision time pdfs on trials when the
percept is a random sample from 𝑔1(𝑥) and 𝑔2(𝑥), respectively. As a
result, 𝑓𝑇 (𝑡) is a binary mixture and therefore satisfies the fixed-point
property.

Note that Eq. (13) also holds for the dual-process model, except
n this case 𝑔1𝑇 (𝑡) is the decision-time pdf on trials when recollection
ucceeds. This pdf does not depend on distance-to-criterion, and instead
s the same on all target trials and in all conditions. The key point
hough is that the dual-process model also predicts that the decision
imes on correct target trials are a binary mixture. With probability
, decision time is a random sample from the recollection successful
istribution [i.e., from 𝑔1𝑇 (𝑡)] and with probability 1 − 𝑝, decision
ime is a random sample from the 𝑔2𝑇 (𝑡) distribution. Therefore, the
ual-process model also predicts that decision times must satisfy the
ixed-point property.

Suppose now that a random motor time 𝑇0 is added to each decision
time, so the observable RT equals 𝑅𝑇 = 𝑇 +𝑇0. Suppose also that 𝑇 and
𝑇0 are statistically independent and let 𝑓0(𝑡) denote the pdf of 𝑇0. Then
the RT pdf equals

𝑓RT(𝑡) = 𝑓𝑇 (𝑡) ∗ 𝑓0(𝑡)

=
[

𝑝 𝑔1𝑇 (𝑡) + (1 − 𝑝) 𝑔2𝑇 (𝑡)
]

∗ 𝑓0(𝑡)

= 𝑝 [𝑔1𝑇 (𝑡) ∗ 𝑓0(𝑡)] + (1 − 𝑝) [𝑔2𝑇 (𝑡) ∗ 𝑓0(𝑡)], (14)

where ∗ denotes convolution. The last equality holds because convolu-
ion is a linear operation and therefore satisfies distributivity. Since the
onvolution of two pdfs is a pdf, it therefore follows that the fixed-point
roperty still holds if an independent base time or motor time is added
o the decision time on each trial. □

A test of this strong prediction of all binary-mixture models requires
an old–new recognition-memory experiment that includes at least three
onditions that the model predicts should all be identical, except for
he numerical value of the mixture probability 𝑝𝑖. The exact design
f this experiment might depend on which model is being tested.
he dual-process model assumes that 𝑝 is the probability that rec-
llection is successful, so a candidate experiment would manipulate
ome independent variable that selectively influences the probability of
ecollection. In contrast, the mixture model assumes 𝑝 is the probability
hat the item was attended to during study, so in this case, a candidate
xperiment would manipulate an independent variable that selectively
nfluences attention. There are likely a variety of ways to design such an
4 
experiment, but in the case of the mixture model, one possibility might
be as follows. The goal is to manipulate an independent variable that
causes the amount of attention available to the participant for encoding
the target list during initial study to vary across conditions. An obvious
possibility is to require the participant to perform a simultaneous dual
task during encoding that varies across conditions in memory load.
For example, the experiment might include four conditions in which
the participant is required to study the target items while holding in
working memory a list of 0, 2, 4, or 6 digits, respectively. Previous
research suggests that this design should cause reduced encoding of
the target items with increased memory load of the dual task (e.g.,
Jolicoeur, 1999).

Theorem 1 is illustrated in Fig. 1, which shows RT pdfs predicted by
he dual-process SDT model [panel (a)], the mixture SDT model [panel
b)], and the normal, unequal-variance SDT model [panels (c) and (d)]
n a hypothetical experiment of this type. In all cases, predicted RT
dfs are shown for correct OLD responses in four different hypothetical
xperimental conditions. In all cases where the decision was based
n an SDT model in which the memory strength was compared to a

response criterion 𝑋C, RT was computed from an RT-distance model in
which decision time was a power function of the distance between the
memory strength and 𝑋C. Specifically, in all cases

𝑅𝑇 = 𝑇0 + 450𝐷−0.35, (15)

where 𝑇0 was a normally distributed motor time with mean 100 ms and
standard deviation 10 ms.

Consider first the dual-process SDT model with predictions shown
in panel (a). These predictions were generated by setting 𝜇T = 1.5
(i.e., see Eq. (1)). On trials when the OLD response was determined by
recollection, I assumed that RT had an exGaussian distribution (Hohle,
1965; Ratcliff, 1978), which is among the most popular current models
of RT pdfs. The exGaussian distribution is the distribution that results
when independent random samples from a normal distribution and an
exponential distribution are added together. In this case, I assumed
the normal distribution mean and standard deviation were 350 ms and
10 ms, respectively, and that the mean of the exponential distribution
was 125 ms. As a result, the mean on all recollection trials was 475 ms
(350 + 125), regardless of familiarity. Fig. 1a shows predictions of the

odel for four different values of 𝑝𝑖 (i.e., the probability of successful
ecollection). Note that, as the theorem requires, all four pdfs intersect
t the same fixed point.

Fig. 1b shows similar predictions for the mixture SDT model. The
arameters were all set to the same values as in panel (a), except the
eans of the two component target distributions were set to 0.5 and 2.0

i.e., 𝑑1 and 𝑑2 in Eq. (4)). Note again that, as required by the theorem,
all four distributions pass through the same fixed point.

Panels (c) and (d) of Fig. 1 show that this fixed-point property is
ot a feature that should be expected to hold in models that are not
onstructed from a binary mixture. Figs. 1c and d show predictions of

the normal, unequal-variance model for this same hypothetical exper-
iment. In panel (c), the mean of the target distribution is assumed to
change across conditions, whereas panel (d) was produced under the
assumption that the variance of the target distribution changed. Note
that these pdfs all intersect, but each pair intersect at a different time
point, and therefore do not satisfy the fixed-point property.

In Fig. 1 application, the normal, unequal-variance model has 3
free parameters for each pdf (i.e., the mean and variance of the target
distribution, and the response criterion). Therefore, for the 4 pdfs
shown in Figs. 1c and 1d, a total of 12 free parameters could be

anipulated. In other words, the parameter space for the normal,
unequal-variance model in this application is 12 dimensional. Each
point in this 12-dimensional space generates a different set of 4 pdfs.
There is little doubt that at least some points in this space would cause
the model to generate pdfs that all intersect at the same point. Consider
any one of such points. Now suppose we move in the 12-dimensional

parameter space in any direction from this point. Any such movement
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Fig. 1. RT pdfs predicted by recognition-memory models on target trials of an old–new recognition-memory task on which the participant responds correctly. (a) Predictions
of the dual-process model when the only change across conditions is in the value of 𝑝. (b) Predictions of the mixture model when the only change across conditions is in the
value of 𝑝. (c) Predictions of the normal, unequal-variance model when the only change across conditions is in the mean of the target distribution. (c) Predictions of the normal,
unequal-variance model when the only change across conditions is in the variance of the target distribution.
will cause the model to predict a change in one or more of the pdfs.
Because the model predicts that the fixed-point property occurs because
of coincidence, rather than because of any structural property of the
model, moving in any direction from our hypothetical point should
cause the fixed-point property to fail. As a result, we expect that
the normal, unequal-variance model can account for fixed-point pdfs
only at some set of discrete points in its 12-dimensional parameter
space. Such a set has measure 0, regardless of how many points it
contains, and therefore if the prior distributions on the 12 parameters
are continuous, then the probability that the model predicts fixed-point
pdfs a priori equals 0. In contrast, the dual-process and mixture models
predict that the 4 pdfs will all cross at the same point for every point
in their parameter spaces, and therefore the models predict that the
a priori probability of finding a fixed point equals 1 (i.e., assuming
the parameter space is restricted to regions where the pdfs intersect
at least once). A well-established model selection criterion is to favor a
model that predicts an observed result a priori over a model that makes
no such prediction, but in which some set of parameter values can be
found that allow the model to account for the result post hoc. Even
so, of course, no single psychological experiment is definitive, so any
finding of a fixed point should be replicated and generalized to other
experimental conditions.

It should be stressed that this test of mixture models is parameter
free. By this I mean that the test is valid for any version of the
models — no matter how the models are parameterized and for a given
parameterization, no matter how many parameters are allowed to be
free. For example, consider the mixture model. As mentioned earlier,
to reduce the number of free parameters in this model, it is common to
assume that one component target distribution is normal with mean 𝑑1
and variance 1, whereas the other is normal with mean 0 and variance
1. This version of the model has three free parameters (i.e., 𝑝, 𝑋 , and
C

5 
𝑑1), which is the same number as the normal, unequal variance model.
As a result, the goodness-of-fit of the two models to empirical ROC data
can be compared directly. But Theorem 1 holds for any version of the
mixture model. So a generalized version in which one component target
distribution is normal with mean 𝑑1 and variance 𝜎21 and the other is
normal with mean 𝑑2 and variance 𝜎22 still predicts that all RT pdfs
from the experiment described in Theorem 1 must intersect at the same
time point, even though the three extra parameters in this version of
the model (i.e., 𝑑2, 𝜎21 , and 𝜎22) would allow it to provide good fits to a
much more diverse set of empirical ROC data.

To my knowledge, this differential prediction of the dual-process
and mixture models versus the normal, unequal-variance model has
never been empirically investigated. It seems worthy of empirical test
however, because it is such a strong prediction. A finding that all em-
pirical RT pdfs cross at the same time point seems like strong evidence
that OLD responses are a binary mixture of two different trial types
because it seems unlikely that a model postulating a unitary process
would coincidentally predict a set of pdfs that satisfy this condition.
Furthermore, note that the dual-process and mixture SDT models also
make the strong prediction that this fixed-point prediction should fail
on lure trials, since both models predict that memory strengths elicited
by lures are not binary mixtures (i.e., see Eqs. (2) and (3)). Fortunately,
a statistical test of the fixed-point property has been developed, as
well as an R package that implements this test (van Maanen et al.,
2014). On the other hand, the fixed-point property could fail for a
variety of different reasons, even if OLD responses are a binary mixture
(van Maanen et al., 2016). The most likely scenario is probably that
the experimental manipulations caused one or both of the component
distributions to change across conditions. For these reasons, a failure
of the fixed-point property should be interpreted with caution.
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5. ROC curve tests of the fixed-point property

A qualitatively different possibility is that a binary-mixture target
istribution will leave an empirical signature in the ROC curves that
t produces. An advantage of an ROC-curve test of mixture models

is that no extra assumptions about processing time are needed. For
xample, there is no need to assume the RT-distance hypothesis. As this
ubsection shows, a large class of mixture models do make a striking
OC curve prediction. This prediction is described in the next result.

Theorem 2. Consider an old–new recognition-memory experiment with a
ariety of different conditions. Now consider a model that assumes a single
ure distribution and that the target distribution is a binary mixture, that is,
in which

𝑓L(𝑥) = 𝑔0(𝑥), (16)

and

𝑓T(𝑥) = 𝑝𝑖 𝑔1(𝑥) + (1 − 𝑝𝑖) 𝑔2(𝑥), (17)

where 𝑝𝑖 is the mixture probability in condition 𝑖. Suppose this model satisfies
the following conditions:

(1) The mixture probability 𝑝𝑖 varies across conditions, but the lure
distribution and the two component target distributions do not.

(2) The cumulative distribution functions 𝐺1 and 𝐺2 of the two compo-
nent target distributions cross — that is, there exists some value 𝑥∗

for which 𝐺1(𝑥∗) = 𝐺2(𝑥∗).
Then all ROC curves predicted by this model must intersect at the same point
in ROC space.

Proof. Let 𝑃𝑖(OLD|target) and 𝑃𝑖(OLD|lure) denote the probabilities of
esponding OLD on target and lure trials in condition 𝑖, respectively.
irst, note that under the conditions specified in the theorem, when
he criterion to respond OLD equals 𝑋C = 𝑥∗ then

𝑃𝑖(OLD|lure) = 1 − 𝐹L(𝑥∗) = 𝐾∗, (18)

for some constant 𝐾∗, and where 𝐹L is the cumulative distribution
unction of the lure distribution. In other words, when 𝑋C = 𝑥∗, the

probability of a false alarm is the same in all conditions. Second, note
hat Eq. (17) implies that the target cumulative distribution function is

also a binary mixture. Specifically, note that integrating both sides of
Eq. (17) leads to
𝐹T(𝑥) = 𝑝𝑖 𝐺1(𝑥) + (1 − 𝑝𝑖)𝐺2(𝑥). (19)

Third, it is well known and straightforward to show that the fixed-point
property also holds for cumulative distribution functions.1 Specifically,
if the two component cumulative distribution functions cross at some
oint 𝑥∗, then all cumulative target distribution functions predicted by
his model also cross at 𝑥∗. As a result,

𝐹T(𝑥∗|condition 𝑖) = 𝐹T(𝑥∗|condition 𝑗) = 1 − 𝐶∗, (20)

for any conditions 𝑖 and 𝑗, and for some constant 𝐶∗. Therefore, note
hat

𝑃𝑖(OLD|target) = 1 − 𝐹T(𝑥∗|condition 𝑖) = 𝐶∗, (21)

for all 𝑖. In other words, when 𝑋C = 𝑥∗, 𝑃 (OLD|target) is also the same
in all conditions. As a result, the ROC curve must pass through the point
(𝐾∗, 𝐶∗) in all conditions. □

1 To see this, simply recreate the proof of the fixed-point property, except
substitute the cumulative distribution functions 𝐺1 and 𝐺2 for the pdfs 𝑔1 and
𝑔 .
2 t

6 
Theorem 2 says that if the component cumulative distribution func-
ions of a mixture model cross, then the ROC curves predicted by that
odel must also all cross at the same point in ROC space.

Theorem 2 is illustrated in Fig. 2. Panels (a) and (b) show ROC
urves for two different mixture models, and panels (c) and (d) show
he same two curves, except plotted in Z space. In all cases, the lure
istribution is normal with mean 0 and variance 1, the means of
he two component target distributions are 𝑑1 = 1.5 and 𝑑2 = 1,
nd the standard deviation of component distribution 2 is 𝜎2 = 1.1.
n panels (a) and (c), the first component distribution has standard
eviation 𝜎1 = 1.4, whereas 𝜎1 = 1.7 in panels (b) and (d). Within each
anel, the different curves were generated from different values of the
ixture probability 𝑝 (i.e., 𝑝 = .1, .4, .65, and .9). Because 𝜎1 ≠ 𝜎2,

this model predicts that the cumulative distribution functions of the
target component distributions cross, and therefore the conditions of
Theorem 2 are met, and as a result, the ROCs must cross.

There are several points of note here. First, as comparison, note that
the equal-variance mixture model (see DeCarlo, 2002) and the dual-
rocess model (see Yonelinas, 1994) both predict Z-ROC curves that
re nonlinear and ordered by the value of the mixture probability 𝑝
and therefore do not intersect). Second, the unequal variances in the
wo component distributions of the mixture model used to generate

Fig. 2 are consistent with the expectation that in nature, variance
ncreases with mean. In Fig. 2, the lure, target component 2, and

target component 1 distributions have means equal to 0, 1, and 1.5,
respectively and standard deviations equal to 1, 1.1, and either 1.4 or
.7, respectively. So in all cases, the variance increases with the mean.
s a result, the model illustrated in Fig. 2 can be seen as a melding of

the (equal-variance) mixture model (DeCarlo, 2002) and the normal,
nequal-variance SDT model in which familiarity and recollection have
dditive effects on memory strength (Rotello et al., 2004; Wixted &

Stretch, 2004).
Third, it is important to note that although Theorem 2 guarantees

that the ROC curves will all intersect at the same point if the component
distributions have different variances, this prediction may have limited
mpirical utility if the variance difference is small. This is because the
ntersection will occur so many standard deviations out in Z space that
t will essentially be impossible to test empirically. As a result, a failure
o find that a set of ROC curves all intersect at the same point says little
bout whether the target distribution is a binary mixture. On the other

hand though, if the ROC curves do all intersect at the same point, then a
mixture model might be strongly suspected because this is not a feature
of ROC curves that is predicted by non-mixture models.

Theorem 2 does not depend on any processing-time assumptions,
but it does not hold for all mixture models. Specifically, it does not hold
or any model in which the likelihood ratio 𝑔2(𝑥)∕𝑔1(𝑥) is monotonic in
. For all such models, Condition 2 of Theorem 2 is violated. This is
ecause a monotonic likelihood ratio guarantees that the cumulative

distribution functions are ordered (Townsend & Ashby, 1983, p. 281).
s a result, Condition 2 can only be met if the 𝑔2∕𝑔1 likelihood ratio is
onmonotonic. Note that this implies that the mixture model proposed
y DeCarlo (2002) (described by Eqs. (3) and (4)) in which 𝑔1 and 𝑔2

are both normal with equal variance does not predict intersecting ROC
curves (because the likelihood ratio of two normal distributions with
equal variance is monotonic). Even so, more general versions of the
mixture model have been proposed in which the two component target
distributions have different variances (Koen et al., 2017). Theorem 2
applies to these models.

It is also important to note that Theorem 2 makes no assumption
about the lure distribution. Specifically, it does not require nonmono-
tonicity of the target-to-lure likelihood ratio 𝑓𝑇 (𝑥)∕𝑓𝐿(𝑥). Therefore,
it does not assume that extremely low familiarities are more likely
n target trials than on lure trials, as predicted for example, by the
nequal-variance SDT model. It is also worth noting though, that al-
hough the unequal-variance SDT model does make this prediction, the
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Fig. 2. ROC curves predicted by the unequal-variance mixture SDT model of recognition memory. In all cases, 𝑑1 = 1.5, 𝑑2 = 1, and 𝜎2 = 1.1. The curves differ only in the value
of the mixture probability (i.e., 𝑝 = .1, .4, .65, and .9). (a) ROC curves predicted by the model when 𝜎2 = 1.4. (b) ROC curves predicted by the model when 𝜎2 = 1.7. (c) Same
curves as in panel (a), except plotted in Z space. (d) Same curves as in panel (b), except plotted in Z space.
model also predicts that in typical experiments these low familiarities
are essentially impossible on target trials. As mentioned earlier, a
representative value for the slope of the Z-ROC in recognition memory
experiments is about 0.8, which is consistent with an unequal-variance
SDT model in which the target standard deviation is 1.25, given a lure
standard deviation of 1.0. Assuming a target mean of 1.5, then given
these standard deviations, a low familiarity is more likely from the
target distribution only when its strength is less than −6.3. According
to this model, familiarities of target items are this low only with a
probability of less than 0.000001, and therefore the model predicts that
this outcome is essentially impossible.

6. Conclusions

The normal, unequal-variance model, the dual-process model, and
the mixture model all make similar predictions about ROC curves in
old–new recognition-memory experiments. This has made them diffi-
cult to discriminate empirically. This note showed that despite their
similar ROC predictions, the dual-process and mixture models make
some striking predictions that the normal, unequal-variance model does
not make. Specifically, in any experiment that includes conditions in
which the mixture probability varies but the component distributions
do not, the dual-process and mixture models predict that all RT pdfs
(and cdfs) must intersect at the same time point (if they intersect at
all). And similarly, both models predict that if the ROC curves from
this experiment intersect, they must also all intersect at the same
point. Note that this RT prediction is more general than the ROC curve
prediction because the prediction of a fixed point in the ROC curves
7 
requires the extra assumption that the cumulative distribution functions
of the two component target distributions cross, whereas all binary-
mixture models predict a fixed point in the RT pdfs (assuming the
RT-distance hypothesis is valid).

It is important to note that empirical tests of these predictions
that yield positive results are much more informative than tests that
yield negative results (although care must be taken to guard against
false positives; Couto et al., 2024). This is because all binary-mixture
models predict that there are a variety of different ways that the
fixed-point prediction could fail. The most obvious example is that
the independent variable that was manipulated to create the various
experimental conditions affects the component distributions in some
way, causing one or both of them to vary across conditions. On the
other hand, a positive result seems like strong evidence in favor of some
binary-mixture model. Although it is logically possible that some single-
process model could coincidentally produce RT pdfs or ROC curves that
all cross at the same point, such an outcome would be just that — a
coincidence, and a rather large one at that.
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