


Chapter 5
An Introduction to fMRI

F. Gregory Ashby

Abstract Functional magnetic resonance imaging (fMRI) provides an opportunity
to indirectly observe neural activity noninvasively in the human brain as it changes in
near real time. Most fMRI experiments measure the blood oxygen-level dependent
(BOLD) signal, which rises to a peak several seconds after a brain area becomes
active. Several experimental designs are common in fMRI research. Block designs
alternate periods in which subjects perform some task with periods of rest, whereas
event-related designs present the subject with a set of discrete trials. After the fMRI
experiment is complete, pre-processing analyses prepare the data for task-related
analyses. The most popular task-related analysis uses the General Linear Model to
correlate a predicted BOLD response with the observed activity in each brain region.
Regions where this correlation is high are identified as task related. Connectivity
analysis then tries to identify active regions that belong to the same functional net-
work. In contrast, multivariate methods, such as independent component analysis and
multi-voxel pattern analysis identify networks of event-related regions, rather than
single regions, so they simultaneously address questions of functional connectivity.

5.1 Introduction

Functional magnetic resonance imaging (fMRI) provides researchers an opportunity
to observe neural activity noninvasively in the human brain, albeit indirectly, as it
changes in near real time. This exciting technology has revolutionized the scientific
study of the mind. For example, largely because of fMRI, there are now emerging
new fields of Social Neuroscience, Developmental Neuroscience, Neuroeconomics,
and even Neuromarketing.

This chapter provides a brief overview of fMRI and fMRI data analysis. This
is a complex topic that includes many difficult subtopics, such as (1) MR physics,
(2) a description of the complex machinery and equipment one finds in a typical
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brain-imaging center, (3) how to run this equipment effectively (e.g., set the many
parameters that control the scanner; spot and avoid artifacts that can corrupt the
data), (4) experimental design, and (5) fMRI data analysis. Obviously, covering all
this material in depth is far beyond the scope of any single chapter, or even any single
book. The reader interested in learning more about these topics is urged to consult
any of the books listed at the end of this chapter under “Further Reading.”

5.2 What Can Be Learned from fMRI?

Currently, the typical fMRI experiment records a sluggish, indirect measure of neural
activity with a temporal resolution of 1–3 s and a spatial resolution of 25–30 mm3.
Nevertheless, as the thousands of fMRI publications attest, this highly imperfect
technology has dramatically influenced the study of mind and brain. Because of
its poor temporal resolution, fMRI is not appropriate for resolving small timing
differences between different cognitive stages or processes. And although the spatial
resolution is typically good enough to localize brain activity at the level of major brain
structures, it is not good enough to localize activity, for example, at the level of the
cortical column. Partly for these reasons, the use of fMRI is not without controversy.
Although the mind sciences have been generally enthusiastic about fMRI, a smaller
group of scientists remain skeptical. For example, fMRI has been labeled by some
as “the new phrenology” [1].

Because of this controversy, before examining fMRI in more detail, it is worth con-
sidering what this relatively new technology has to contribute to the mind sciences.
Because of its limited temporal and spatial resolution, fMRI is most appropriate for
answering questions about gross neural architecture, rather than about neural pro-
cess. But it can be very effective at addressing such questions. For example, consider
the fMRI results shown in Fig. 5.1. The four panels show areas of significant activa-
tion within prefrontal cortex on four different days of training as subjects practiced a
difficult perceptual categorization task [2]. Note that as automaticity develops in this
task, prefrontal activation reduces significantly. In fact, by the 20th practice session
(i.e., after approximately 11,000 trials of practice) there is no evidence of any task-
related activity in prefrontal cortex. Therefore, these fMRI data show clearly that the
neural architecture mediating this categorization behavior changes qualitatively with
practice. This same question could be addressed without fMRI, and it seems possible
that a similar conclusion might be reached after many clever behavioral experiments.
But Fig. 5.1 paints a clear and compelling picture that one rarely sees with purely
behavioral approaches.

FMRI can be used in a similar way to test purely cognitive theories that make no
neuroscience assumptions. For example, suppose some cognitive theory predicts that
the same perceptual and cognitive processes mediate performance in two different
tasks. Then this theory should predict similar patterns of activation in an fMRI study
of the two tasks, even if the theory makes no predictions about what those activation
patterns should look like. If qualitatively different activation patterns are found in
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Fig. 5.1 Significant BOLD activation in prefrontal cortex on four different days of training on the
same categorization task [8]

the tasks, then the theory probably needs some serious re-thinking. Applications like
this are the primary reason that fMRI is popular even with cognitive scientists who
have no fundamental interest in neuroscience.

As a final illustration of the benefits of fMRI, consider the following example.
Unstructured categories are categories in which the stimuli are assigned to each
category randomly. As a result, there is no similarity-based or logical rule for de-
termining category membership. An example might be the category of numbers that
have personal meaning to you (e.g., social security number, phone number, etc.). I
had hypothesized in print that unstructured categories must be learned by explicit
memorization, even when feedback-based training is provided [3]. But then Seger
and her colleagues published several fMRI papers showing that feedback-based un-
structured category learning elicits elevated task-related activation in the striatum,
not the hippocampus [4–6]. These results suggested that unstructured category learn-
ing might be mediated by procedural memory, not declarative memory. Because of
these papers, my colleagues and I decided to look for behavioral evidence that un-
structured category learning is mediated by procedural memory. In fact, we found
that switching the locations of the response buttons interfered with the expression of
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unstructured category learning, but not with a (rule-based) version of this task that
used similar stimuli and was known to depend on declarative memory. This sensi-
tivity to response location is a hallmark of procedural memory, so our behavioral
results were in agreement with the fMRI results. The important point here is that this
behavioral experiment would not even have been run if the fMRI experiments had
not identified a neural network that previously had been associated with procedural
memory.

In summary, fMRI is a powerful method for studying neural and cognitive ar-
chitecture, but it is not as effective at addressing questions about process. For this
reason, it is not some magic method that will supplant all others in the scientific study
of the mind. But it does provide an important new tool for mind scientists. When
used in a converging operations approach that includes more traditional behavioral
methodologies, it has the potential to dramatically improve our understanding of the
human mind.

5.3 MR Physics and BOLD Imaging

The MR scanner uses superconducting electromagnets to produce a static, uniform
magnetic field of high strength. Ten years ago, the standard field strength used in
fMRI research was 1.5 Tesla (T), whereas the standard today is 3 T. Even so, a number
of research centers have scanners considerably stronger than this (e.g., above 10 T).
Some of these are used with human subjects, but many are only used for non-human
animal research.

The static field, by itself, does not produce an MR signal. An MR signal requires
radiofrequency coils that generate magnetic pulses. Turning a pulse on changes the
magnetization alignment of protons (typically within water molecules) within the
magnetic field. When the pulse is turned off, the protons relax to their original equi-
librium alignment, which releases energy detected by the coils as the raw MR signal.
Spatial resolution is provided by additional magnetic fields known as gradients. The
strength of each gradient changes linearly along a single spatial dimension. Thus,
three mutually orthogonal gradients are used to localize a signal in three spatial di-
mensions. The software that controls all these magnetic fields is typically called the
pulse sequence.

The pulse sequence is run on the main computer that controls the scanner. In
most fMRI experiments, a second computer creates the stimuli that are presented to
the subject and records the subject’s behavioral responses. This second computer is
synchronized with the first, so that the onset of each stimulus presentation occurs at a
precisely controlled moment during image acquisition. Visual stimuli are most often
presented by directing a computer-controlled projector at a mirror directly above the
subject’s face, and responses are collected on some device held in the subject’s hands
(e.g., that has buttons or a joystick).

Two general types of pulse sequences are common, depending on whether the goal
is structural or functional imaging. The goal of structural MR is usually to measure
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Fig. 5.2 A hypothetical
BOLD response (black curve)
to a constant 10 s neural
activation (gray curve)

the density of water molecules, which differs, for example in bone, gray matter, cere-
brospinal fluid, and tumors. The vast majority of functional MR (fMRI) experiments
measure the blood oxygen-level dependent (BOLD) signal. The physics of this pro-
cess is complex and far beyond the scope of this chapter. For our purposes, it suffices
to know that the BOLD signal is a measure of the ratio of oxygenated to deoxygenated
hemoglobin. Hemoglobin is a molecule in the blood that carries oxygen from the
lungs to all parts of the body. It has sites to bind up to four oxygen molecules. A key
discovery that led eventually to BOLD fMRI was that hemoglobin molecules fully
loaded with oxygen have different magnetic properties than hemoglobin molecules
with empty binding sites [7].

The theory, which is not yet fully worked out, is that active brain areas consume
more oxygen than inactive areas. When neural activity increases in an area, metabolic
demands rise and, as a result, the vascular system rushes oxygenated hemoglobin
into the area. An idealized example of this process is shown in Fig. 5.2. The rush of
oxygenated hemoglobin into the area causes the ratio of oxygenated to deoxygenated
hemoglobin (i.e., the BOLD signal) to rise quickly. As it happens, the vascular
system over compensates, in the sense that the BOLD signal actually rises well
above baseline to a peak at around 6 s after the end of the neural activity that elicited
these responses. Following this peak, the BOLD signal gradually decays back to
baseline over a period of 20–25 s.

5.4 The Scanning Session

An experimental session that collects fMRI data also commonly includes a variety
of other types of scans. At least four different types of scans are commonly acquired.
Typically, the first scan completed in each session is the localizer. This is a quick
structural scan (1–2 min) of low spatial resolution and is used only to locate the
subject’s brain in 3-dimensional space. This knowledge is needed to optimize the
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location of the slices that will be taken through the brain in the high-resolution
structural scan and in the functional scans that follow.

The ordering of the other scans that are commonly done is not critical. Frequently,
however, the second type of scan completed is the high-resolution structural scan.
Depending on the resolution of this scan and on the exact nature of the pulse sequence
that is used to control the scanner during acquisition, it may take 8–10 min to collect
these data. The structural scan plays a key role in the analysis of the functional data.
Because speed is a high priority in fMRI (i.e., to maximize temporal resolution),
spatial resolution is sacrificed when collecting functional data. The high-resolution
structural scan can compensate somewhat for this loss of spatial information. This is
done during preprocessing when the functional data are aligned with the structural
image. After this mapping is complete, the spatial coordinates of activation observed
during fMRI can be determined by examining the aligned coordinates in the structural
image.

The third step is often to collect the functional data. This can be done in one
long run that might take 20–30 min to complete, or it can be broken down into 2
or 3 shorter runs, with brief rests in between. There are many parameter choices to
make here, but two are especially important for the subsequent fMRI data analysis.
One choice is the time between successive whole brain scans, which is called the
repetition time and abbreviated as the TR. If the whole brain is scanned, typical TRs
range from 2–3 s, but TRs as low as 1 s are possible on many machines, especially
if some parts of the brain are excluded from the scanning.

Another important choice is voxel size, which determines the spatial resolution
of the functional data. When a subject lies in the scanner, his or her brain occupies a
certain volume. If we assign a coordinate system to the bore of the magnet, then we
could identify any point in the subject’s brain by a set of three coordinate values (x,
y, z). By convention, the z direction runs down the length of the bore (from the feet
to the head), and the x and y directions reference the plane that is created by taking a
cut perpendicular to the z axis. The brain, of course, is a continuous medium, in the
sense that neurons exist at (almost) every set of coordinate values inside the brain.
FMRI data, however, are discrete. The analog-to-digital conversion is performed by
dividing the brain into a set of cubes (or more accurately, rectangular right prisms).
These cubes are called voxels because they are three-dimensional analogues of pixels
– that is, they could be considered as volume pixels.

A typical voxel size in functional imaging might be 3 mm × 3 mm × 3.5 mm.
In this case, in a typical human brain, 33 separate slices might be acquired each
containing a 64 × 64 array of voxels for a whole brain total of 135,168 voxels. In
each fMRI run, a BOLD response is recorded every TR seconds in each voxel. Thus,
for example, in a 30 min run with a TR of 2 s, 135,168 BOLD responses could
be recorded 900 separate times (i.e., 30 times per minute × 30 min), for a total of
121,651,200 BOLD values. This is an immense amount of data, and its sheer volume
greatly contributes to the difficulties in data analysis.

Many studies stop when the functional data acquisition is complete, but some
other types of scans are also common. A fourth common type of scan is the field
map. The ideal scanner has a completely uniform magnetic field across its entire
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bore. Even if this were true, placing a human subject inside the bore distorts this
field to some extent. After the subject is inside the scanner, all inhomogeneities in
the magnetic field are corrected via a process known as shimming. If shimming is
successful, the magnetic field will be uniform at the start of scanning. Sometimes,
however, especially in less reliable machines, distortions in the magnetic field will
appear in the middle of the session. The field map, which takes only a minute or two
to collect, measures the homogeneity of the magnetic field at the moment when the
map is created. Thus, the field map can be used during later data analysis to correct
for possible nonlinear distortions in the strength of the magnetic field that develop
during the course of the scanning session.

5.5 Experimental Design

Almost all fMRI experiments use a block design, an event-related design, or a free-
running design. In a block design, the functional run consists of a series of blocks,
each of which may last for somewhere between 30 s to a couple of minutes. Within
each block, subjects are instructed to perform the same cognitive, perceptual, or
motor task continuously from the beginning of the block until the end. In almost all
block-design experiments, subjects will simply rest on some blocks. For example,
a researcher interested in studying the neural network that mediates rhythmic finger
tapping might use a block design in which blocks where the subject is resting alternate
with blocks in which the subject taps his or her finger according to some certain
rhythm.

Event-related designs are run more like standard psychological experiments, in
the sense that the functional run is broken down into a set of discrete trials. Usually
each trial is one of several types, and each type is repeated at least 20 times over
the course of the experiment. As in a standard experiment, however, the presenta-
tion order of the trial types within each run is often random. When analyzing data
from an event-related design, it is critical to know exactly when the presentation of
each stimulus occurred, relative to TR onset. A common practice is to synchronize
stimulus presentation with TR onset. The first event-related designs included long
rests between each pair of successive trials. In these slow event-related designs, rests
of 30 s are typical. These are included so that the BOLD response in brain regions
that participate in event processing can decay back to baseline before the presen-
tation of the next stimulus. This makes statistical sense, but it is expensive since it
greatly reduces the number of trials a subject can complete in any given functional
run. Another problem is that because subjects have so much time with nothing to do,
they might think about something during these long rests, and any such uncontrolled
cognition would generate an unwanted BOLD response that might contaminate the
stimulus-induced BOLD response.

Most current event-related designs use much shorter delays. These rapid event-
related designs became possible because statistical methods were developed for
dealing with the overlapping BOLD responses that will occur anytime the BOLD
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response in a brain region has not decayed to baseline by the time another stimulus is
presented. It is important to realize however, that even in rapid event-related designs
the delay between trials is still significantly longer than in standard laboratory exper-
iments. For example, a typical rapid event-related design might use random delays
between successive trials that cover a range between 2 and 16 s. There are several
reasons for this. First, because of the need to synchronize stimulus presentation with
the TR, it is often necessary to delay stimulus presentation until the onset of the next
TR. Second, in order to get unique estimates of the parameters of the standard statis-
tical models that are used to analyze fMRI data, delays of random duration must be
used. The process of adding such random delays between events is called jittering.

Finally, in free-running designs, events are presented to the subject continuously
in time and typically discrete events are impossible to define. For example, subjects
might watch a movie in the scanner, or simply lay there passively. The activities
that subjects perform in free-running designs are often more natural than is possible
with more structured designs, but this increased freedom comes at a cost because the
data that result are more challenging to analyze than the data collected from block
or event-related designs.

5.6 Data Analyses

A number of features of fMRI data greatly complicate its analysis. First, as mentioned
above, a typical scanning session generates a huge amount of data. Second, fMRI
data are characterized by substantial spatial and temporal correlations. For example,
the sluggish nature of the BOLD response means that if the BOLD response in some
voxel is greater than average on one TR then it is also likely to be greater than
average on the ensuing TR. Similarly, because brain tissue in neighboring voxels
will be supplied by a similar vasculature, a large response in one voxel increases
the likelihood that a large response will also be observed at neighboring voxels. A
third significant challenge to fMRI data analysis is the noisy nature of fMRI data.
Typically the signal that the data analysis techniques are trying to find is less than 2
or 3 % of the total BOLD response.

The analysis of fMRI BOLD data is broken down into two general stages—
preprocessing and task-related analysis. Preprocessing includes a number of steps
that are required to prepare the data for task-related analysis. This includes, for
example, aligning the functional and structural scans, correcting for any possible
head movements that might have occurred during the functional run, and various
types of smoothing (to reduce noise). Typically, the same preprocessing steps are
always completed, regardless of the particular research questions that the study was
designed to address. In contrast, the task-related analyses include all analyses that
are directed at these questions.

A wide variety of software packages are available for fMRI data analysis. Many
of these are free, and they each have their own advantages and disadvantages. The
most widely used package is SPM (Statistical Parametric Mapping), which is written
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and maintained by the Wellcome Trust Centre for Neuroimaging at the University
College London. SPM is freely available at http://www.fil.ion.ucl.ac.uk/spm/. SPM
is a collection of Matlab functions and routines with some externally compiled C
code that is included to increase processing speed. A thorough description of the
statistical foundations of SPM was provided by Friston, Ashburner, Kiebel, Nichols,
and Penny [8].

Another widely used fMRI data analysis software package is called FSL, which
is an acronym for the FMRIB Software Library. FSL is produced and maintained
by the FMRIB Analysis Group at the University of Oxford in England. FSL is also
freely available and can be downloaded at http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL.
Descriptions of the statistical foundations of the FSL routines were provided by
Smith et al. [9] and by Woolrich et al. [10].

5.6.1 Modeling the BOLD Response

The goal of almost all fMRI experiments is to learn something about neural activity.
Unfortunately however, the BOLD response measured in most fMRI experiments
provides only an indirect measure of neural activation [11, 12]. Although it is com-
monly assumed that the BOLD signal increases with neural activation, it is known
that the BOLD response is much more sluggish than the neural activation that is
presumed to drive it. As a result, for example, the peak of the BOLD signal lags
considerably behind the peak neural activation (e.g., see Fig. 5.2).

Logothetis and colleagues have presented evidence that the BOLD response is
more closely related to local field potentials than to the spiking output of individual
neurons [13, 14]. Local field potentials integrate the field potentials produced by
small populations of cells over a sub-millimeter range, and they vary continuously
over time. Most applications of fMRI make no attempt to model neural activation
at such a detailed biophysical level. Rather, neural activation is typically treated as
a rather abstract latent (i.e., unobservable) variable. It is assumed to increase when
a brain region is active and to decrease during periods of inactivity. As with any
latent variable, however, to make inferences about neural activation from observable
BOLD responses requires a model of how these two variables are related.

Almost all current applications of fMRI assume that the transformation from neu-
ral activation to BOLD response can be modeled as a linear, time-invariant system.
Although it is becoming increasingly clear that the transformation is, in fact, nonlin-
ear (e.g., [15–17]), it also appears that these departures from linearity are not severe
so long as events are well separated in time (e.g., at least a few seconds apart) and
brief exposure durations are avoided [17]. These two conditions are commonly met
in fMRI studies of high-level cognition.

In the linear systems approach, one can conceive of the vascular system that
responds to a sudden oxygen debt as a black box. The input is neural activation
and the output is the BOLD response. Suppose we present a stimulus event Ei to
a subject at time 0. Let Ni(t) denote the neural activation induced by this event at
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time t and let Bi(t) denote the corresponding BOLD response. Then from the systems
theory perspective, the box represents the set of all mathematical transformations that
convert the neural activation Ni(t) into the BOLD response Bi(t). For convenience,
we will express this mathematical relationship as

Bi(t) = f [Ni(t)]

where the operator f symbolizes the workings of the black box.
A system of this type is said to be linear and time-invariant if and only if it satisfies

the superposition principle, which is stated as follows:
If f [N1(t)] = B1(t) and f [N2(t)] = B2(t), then it must be true that
f [a1N1(t) + a2N2(t)] = a1B1(t) + a2B2(t), for any constants a1 and a2.
In other words, if we know what the BOLD response is to neural activation

N1(t) and to neural activation N2(t), then we can determine exactly what the BOLD
response will be to any weighted sum of these two neural activations by computing
the same weighted sum of the component BOLD responses.

If the superposition principle holds then there is a straightforward way to deter-
mine the BOLD response to any neural activation from the results of one simple
experiment. All we need to do is to measure the BOLD response that occurs when
the neural activation is an impulse—that is, when it instantly increases from zero
to some large value then instantly drops back to zero. Denote the BOLD response
in this idealized experiment by h(t). In linear systems theory the function h(t) is
called the impulse response function because it describes the response of the system
to an impulse. In the fMRI literature, however, h(t) is known as the hemodynamic
response function, often abbreviated as the hrf. Note that “hemodynamic response
function” is not a synonym for “BOLD response”. Rather the hrf is the hypothetical
BOLD response to an idealized impulse of neural activation.

If the relationship between neural activation and the BOLD response satisfies
superposition, then once we know the hrf, the BOLD response to any neural acti-
vation N (t), no matter how complex, can be computed exactly from the so-called
convolution integral:

B(t) =
∫ t

0
N (τ )h(t − τ )dτ (5.1)

The convolution integral massively simplifies the analysis of fMRI data, and as a
result it forms the basis for the most popular methods of fMRI data analysis.

Given that the hrf plays such a critical role in analyzing fMRI data, the natural
next question to ask is: how can we determine numerical values of the hrf? The most
obvious method for determining the hrf, which is suggested by the name “impulse
response function”, is simply to input an impulse to the system and record the output.
If the system is linear and time-invariant, then the output will exactly equal h(t). With
traditional fMRI experiments, of course, we cannot directly input a neural activation,
so using this method to estimate the hrf is highly problematic. Even so, this method
has been used to estimate the hrf in primary visual cortex (e.g., [18, 19]).
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Fig. 5.3 Two popular models
of the hrf

A much more popular method is to select a specific mathematical function for
the hrf based on our knowledge of what we think this function should look like. For
example, we know the hrf should peak at roughly 6 s and then slowly decay back
to baseline. So we could select a mathematical function with these properties and
then just assume that this is a good model of the hrf. In fact, this is, by far, the most
popular method for determining the hrf in fMRI data analysis. The most popular
choices are a gamma function or the difference of two gamma functions. Examples
of both of these models are shown in Fig. 5.3.

5.6.1.1 Preprocessing

The most common goal of fMRI research is to identify brain areas activated by the
task under study. The data that come directly out of the scanner, however, are poorly
suited to this goal. The preprocessing of fMRI data includes all transformations
that are needed to prepare the data for the more interesting task-related analyses.
Preprocessing steps typically are the same for all experiments, so any analyses that
do not depend on the specific hypotheses that the experiment was designed to test
are typically called preprocessing.

The variability in raw fMRI data is so great that it easily can swamp out the
small changes in the BOLD response induced by most cognitive tasks. Some of this
variability is unavoidable in the sense that it is due to factors that we cannot control
or even measure (e.g., thermal and system noise). But other sources of variability
are systematic. For example, when a subject moves his or her head, the BOLD
response sampled from each spatial position within the scanner suddenly changes in
a predictable manner. The analyses done during preprocessing remove as many of
these systematic non-task-related sources of variability as possible.
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Typically the first preprocessing step is slice-time correction. Almost all fMRI
data are collected in slices. If the TR is 2.5 s, then the time between the acquisition
of the first and last slice will be almost this long. Slice-time correction corrects for
these differences in the time when the slices are acquired.

The second step is to correct for variability due to head movement. Arguably, this
is probably the most important preprocessing step. Even small, almost imperceptible
head movements can badly corrupt fMRI data. Huettel et al. [20] give an example
where a head movement of 5 mm increases activation values in a voxel by a factor of 5.
When a subject moves his or her head, brain regions will move to new spatial locations
within the scanner, and as a result, activation in those regions will be recorded
in different voxels than they were before the movement occurred. Mathematical
methods for correcting for head movements depend heavily on the assumption that
when a subject moves his or her head, the brain does not change shape or size and
therefore can be treated as a rigid body. Head movement correction then becomes a
problem of rigid body registration (e.g., [21]). The BOLD responses from one TR
are taken as the standard and then rigid body movements are performed separately
on the data from every other TR until each of these data sets agrees as closely as
possible with the data from the standard.

The third step, called coregistration, is to align the structural and functional data.
This is critical because the spatial resolution of the functional data is poor. For
example, with functional data a voxel size of 3 × 3 × 3.5 mm is common. With
structural images, however, the voxel size might be .86 × .86 × .89 mm, which is
an improvement in resolution by a factor of almost 50.

The fourth step, normalization, warps the subject’s structural image to a standard
brain atlas. There are huge individual differences in the sizes and shapes of individ-
ual brains, and these differences extend to virtually every identifiable brain region.
These differences make it difficult to assign a task-related activation observed in
some cluster of voxels to a specific neuroanatomical brain structure. A researcher
particularly skilled in neuroanatomy could coregister the functional activation onto
the structural image and then look for landmarks in the structural scan that would
allow the neuroanatomical locus of the cluster to be identified. An alternative is to
register the structural scan of each subject separately to some standard brain where
the coordinates of all major brain structures have already been identified and pub-
lished in an atlas. Then we could determine the coordinates of a significant cluster
within this standard brain, look these coordinates up in the atlas, and thereby deter-
mine which brain region the cluster is in. The process of registering a structural scan
to the structural scan from some standard brain is called normalization [22].

Among the earliest and still most widely used brain atlases is the Talairach atlas
[23], which is based entirely on the detailed dissection of one hemisphere of the brain
of a 60-year old French woman. The atlas is essentially a look-up table containing
major brain areas and their anatomical (x, y, z) coordinates. For many years, the
Talairach atlas was almost universally used in neuroimaging, primarily because of
the lack of any reasonable alternatives. But there has always been widespread dis-
satisfaction with this atlas because it is based on one hemisphere of a single, rather
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unrepresentative brain. More recently, an atlas produced by the Montreal Neurologi-
cal Institute (MNI) has become popular. The MNI atlas was created by averaging the
results of high resolution structural scans that were taken from 152 different brains.
The coordinate system was constructed to match the Talairach system, in the sense
that it uses the same axes and origin. Whichever atlas is used, it is important to note
that the registration problem in normalization is considerably more complex than
in head motion correction or coregistration. This is because normalization requires
more than rigid body registration. Not only will there be rigid body differences be-
tween the standard brain and the brain of typical subjects, but there will also be size
and shape differences. Size differences can be accommodated via a linear transfor-
mation, but a nonlinear transformation is almost always required to alter the shape
of a subject’s brain to match either the Talairach or MNI standards.

Step five spatially smoothes the data with the goal of reducing nonsystematic
high frequency spatial noise. In this step, the BOLD value in each voxel is replaced
by a weighted average of the BOLD responses in neighboring voxels. The weight
is greatest at the voxel being smoothed and decreases with distance. There are a
number of advantages to spatially smoothing fMRI data. Most of these are due to
the effects of the smoothing process on noise in the data. First, because smoothing is
essentially an averaging operation, it makes the distribution of the BOLD responses
more normal (i.e., because of the central limit theorem). Because the statistical mod-
els that dominate fMRI data analysis assume normally distributed noise, smoothing
therefore transforms the data in a way that makes it more likely to satisfy the as-
sumptions of our statistical models. A second benefit is that smoothing is required
by a number of popular methods for solving the multiple comparisons problem (i.e.,
those that depend on Gaussian random field theory). A third benefit of smoothing,
which is the most important of all, is that it can reduce noise and therefore increase
signal-to-noise ratio.

Finally, in step six, temporal filtering is done primarily to reduce the effects of
slow fluctuations in the local magnetic field properties of the scanner.

5.6.1.2 Task-Related Data Analyses

After pre-processing is complete, the next step is to try to identify brain regions that
were activated by the task under study. The most popular approach to this problem is
a correlation-based technique that is the foundation of most fMRI software packages
[24, 25]. The idea is to first predict as accurately as possible what the BOLD response
should look like in task-sensitive voxels. Next, the observed BOLD response in each
voxel is correlated with this predicted signal. Voxels where this correlation is high
are then identified as task related.

The first step in predicting the BOLD response to each stimulus event is to make
an assumption about how long the neural activation will last in brain regions that
process this event. A common assumption is that the neural activation induced by the
event onset will persist for as long as the stimulus is visible to the subject. Another
possibility is that the neural activation persists until the subject responds (so the

ashby@psych.ucsb.edu



104 F. G. Ashby

Fig. 5.4 A hypothetical
example of the standard
correlation-based analysis of
fMRI data. The top panel
shows the boxcar function
that models the presumed
neural activation elicited by
the presentation of 20
separate stimuli. The middle
panel depicts the hypothetical
BOLD response in this
experiment in a voxel with
task-related activity. The
bottom panel shows the
best-fitting predicted BOLD
response that is generated by
convolving an hrf with the
boxcar function shown in the
top panel and then adding a
constant baseline activation
level

duration of neural activation equals the subject’s response time). The second step
is to model all presumed neural activations via a boxcar function. This is simply a
function that persists for the duration of fMRI data acquisition and equals 1 when
neural activation is assumed to be present and 0 when neural activation is absent. The
top panel of Fig. 5.4 shows a hypothetical example of a boxcar function that describes
the presumed neural response to the presentation of 20 separate stimuli. The stimulus
presentations were spaced irregularly in time (i.e., jittered) to improve the statistical
properties of the analysis. The middle panel of Fig. 5.4 shows the hypothetical
BOLD response recorded in this experiment from one task-related voxel. Note that
from visual inspection alone, it is not at all obvious that this is a task-related voxel.

The correlation method assumes linearity, so the third step in the analysis is to
choose a model of the hrf. As mentioned earlier, the most popular choice is to select
a specific mathematical function for the hrf that has no free parameters (e.g., either
function shown in Fig. 5.3). Step four is to compute the predicted BOLD response
by convolving the neural boxcar function with the hrf (using Eq. 5.1). Because there
are no free parameters in either the boxcar function or the hrf, this integral can be
evaluated numerically. In other words, for every TR in the experiment, a numerical
value of the predicted BOLD response can be computed from Eq. 5.1. The bottom
panel in Fig. 5.4 shows the predicted BOLD response that results when the boxcar
function in the top panel is convolved with a gamma function hrf (and an estimated
baseline activation is added).

The final step is to correlate these predicted BOLD values with the observed
BOLD response in every voxel. Voxels where this correlation is high are presumed
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to show task-related activity. The correlation is typically done within the context of
the familiar General Linear Model (GLM) that is the basis of both multiple regression
and analysis-of-variance. The outcome of this analysis in each voxel is the value of
a statistic—most often a z or t value—that tests the null hypothesis that activation in
that voxel is not correlated with the predicted BOLD response, or in other words, that
activity in the voxel is not task related. Extreme values of the statistic are therefore
evidence for task-related activity. In Fig. 5.4, the t statistic that results from this
correlation has a numerical value of 7.78.

The correlation method applies to data from a single voxel at a time. Thus, if an
experiment collects data from the whole brain, this analysis could easily be repeated
more than 100,000 times to analyze all of the data collected in the experiment. The
result of all these analyses is a value of the test statistic in every voxel that was
analyzed. The resulting collection of statistics is often called a statistical parametric
map, which motivated the name of the well-known fMRI data analysis software
package, SPM.

A more recent variant of this correlation-based approach, called model-based
fMRI, uses an independent computational model of the behavior under study to
improve and refine the predicted BOLD signal [26]. In typical applications, the
model is first fit to the behavioral data collected during the functional run separately
for each subject. Next, parameter estimates from the model fits are used to build
a model of the neural activation that is unique for every subject. From here, the
analysis proceeds exactly as in the standard correlation-based method—that is, the
predicted neural activation is convolved with an hrf to generate a predicted BOLD
signal and then the GLM is used to generate a statistical parametric map. Model-
based fMRI can be used to account for individual differences in fMRI data, but if the
computational model is good, it can also be used to identify brain regions that respond
selectively to components or sub-processes of the task. In particular, if the model
has different parameters that describe different perceptual or cognitive processes that
are presumed to mediate the behavior under study, then different regressors can be
created that make specific predictions about each of these processes. For example,
O’Doherty et al. [27] used this approach to identify separate brain regions associated
with the actor versus the critic in actor-critic models of reinforcement learning.

Once a statistical map is constructed, the next problem is to determine which
voxels show task-related activity. Of course if we only ask this question about a
single voxel, then the answer is taught in every introductory statistics course. We
simply decide what type 1 error rate we are willing to accept, find the threshold
value of the statistic (e.g., the z or t value) that yields this error rate, and then decide
that the voxel shows task-related activity if the value of this statistic exceeds this
threshold. However, if the type 1 error rate equals 0.05 for each test, then with
100,000 independent tests, we would expect 5000 false positives if none of these
voxels were task sensitive. This is clearly unacceptable. As a result, the criterion
for significance must somehow be adjusted on each test to reduce the total number
of false positives to some acceptable value. In statistics, this is called the multiple
comparisons problem.
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If the tests are all statistically independent then it is well known that the exact
solution to this problem is to apply the Sidak or Bonferroni corrections. For example,
if we want to limit the probability of a type 1 error to 0.05 in an overall collection
of 100,000 z-tests (i.e., so that 95 % of the time there are no false positives in
the 100,000 tests), then the Bonferroni correction sets the critical value on each
test to approximately 0.0000005, which translates to a z-threshold for determining
significance of 4.89. In the Fig. 5.4 example, the t value (i.e., 7.78) is so large that it
would (correctly) be judged as significant, even if the Bonferroni correction is used,
but in general the Bonferroni correction is so conservative that its use will typically
cause us to miss true task-related activity in many voxels. The good news is that
for fMRI data, the Bonferroni correction is much too conservative. The Bonferroni
correction is exact when all the tests are statistically independent. With fMRI data,
however, spatial correlations guarantee a positive correlation between test statistics in
neighboring voxels. Thus, if significance is found in one voxel then the probability
of obtaining significance in neighboring voxels is above chance. As a result, the
critical value specified by the Bonferroni correction is too extreme. The bad news is
that no exact solution to this problem is known. Even so, many different solutions to
this problem have been proposed. Different methods are popular because they make
different assumptions and have different goals. Most of the parametric methods rely
on the theory of Gaussian random fields [28, 29]. Included in this list are all of the most
popular cluster-based methods. These methods all require that spatial smoothing is
performed during preprocessing. The most popular nonparametric methods include
permutation methods [30] and methods that attempt to control the false discovery rate
(FDR), rather than the false positive rate. The idea behind the FDR approach is that
with many tests, a few false positives should not be feared [31]. So instead of trying to
control the experiment-wise probability of a false positive, the FDR approach argues
that a more important goal should be to limit the proportion of significant results
that are false positives. In other words, consider the set of all voxels for which the
null hypothesis of no signal is rejected. The goal of the FDR approach is to limit the
proportion of these voxels for which the null hypothesis was incorrectly rejected.

In the standard correlation analysis so far considered, the GLM is applied sep-
arately to every voxel in the whole brain or region of interest. After the multiple
comparisons problem is solved, a considerable challenge still remains to interpret
the results of all these analyses. For example, suppose the analysis reveals strong
task-related activation in the dorsolateral prefrontal cortex and in the dorsal striatum.
Because these two significance decisions were based on independent applications of
the GLM, we have no basis to conclude that these areas are functionally connected
in the task we are studying. It could be that they are both part of independent neural
networks that just happened to both be activated at similar times. So an important
next step in the data analysis process is to identify functionally connected neural
networks that are mediating performance in the task under study. This phase of the
data analysis is known as connectivity analysis.

The idea underlying connectivity analysis is that a standard GLM analysis iden-
tifies clusters (or voxels) that show task-related activation, but it does not specify
whether any pair of these clusters is part of the same or different neural networks.
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If two clusters are part of the same network then they should be functionally con-
nected in the sense that activation in one might cause activation in the other, or at
least the separate activations in the two clusters should be correlated. If instead, the
clusters are in separate neural networks then we would not expect either of these two
conditions to hold. Connectivity analysis then, is done after a GLM analysis, with
the goal of determining which brain regions in the task-related activation map are
functionally connected.

An obvious method for testing whether two brain regions are functionally con-
nected in a particular cognitive task is to measure the correlation between the BOLD
responses in the two regions across TRs in an experiment where the task is per-
formed. Regions that work together to mediate performance in the task should have
correlated neural activations – that is, they should both be active while the task is
being performed and they should both be inactive during rest periods. So one ap-
proach to connectivity analysis is to look for voxels or groups of voxels in different
brain regions that show correlated BOLD responses (i.e., correlated across TRs).
A simple solution to this problem is to compute the standard Pearson correlation
between voxels or regions. A more sophisticated, yet similar approach uses Granger
causality, which is a conceptually simple method that originated in the economics
literature [32]. The idea is that if activation in region X causes activation in region Y,
then knowledge of earlier activations in region X should improve our prediction of
the current activation in region Y. Granger causality tests for such prediction using
autoregressive models that are applied via the GLM [33].

One weakness of both Pearson correlation and Granger causality is that they both
can fail because of high-frequency noise and/or because the hrf in the two brain
regions might be different. A popular alternative is to compute correlations in the
frequency domain using coherence analysis, rather than in the time domain, as is done
with the Pearson correlation and with Granger causality [34]. Coherence analysis
has an advantage over methods that compute correlations in the time domain because
the coherence between BOLD responses in two brain regions is unaffected by hrf
differences across the regions or by high-frequency noise.

The GLM-based methods of data analysis that compute correlations between
predicted and observed BOLD responses require that we specify exactly when neural
activation turns on and off. With free-running designs, this is often impossible. For
this reason, data analysis choices are severely limited with free-running designs.
Perhaps the most popular approach is to compute inter-subject correlations (ISCs;
[35]). This method assumes that every subject experiences the same stimulation
during the functional imaging. For example, if subjects are watching a movie, then
every subject must see the same movie and the onset of the movie must begin at
the same time for every subject. Under these conditions, the idea is to correlate the
BOLD responses across TRs for every pair of subjects. If a brain region is responding
to the movie then its activity should modulate up and down as the movie unfolds
in similar ways in different subjects. So the ISC method identifies as task relevant,
those voxels where the mean correlation across subjects is high.

Correlation-based analyses that use the GLM are univariate. This means that they
analyze the data one voxel at a time. Univariate methods assign completely separate
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parameters to every voxel, which means they assume that the data in neighboring
voxels have no relationship to each other. Post hoc methods are then applied to try
to overcome this obviously incorrect assumption. Included in this list are methods
for correcting for the multiple comparisons problem that arises from this univariate
approach, and the various connectivity analyses that attempt to recover information
about spatial correlations from the many independent tests. An alternative approach
is to perform multivariate data analyses that attempt to answer the significance and
functional connectivity questions at the same time while also completely avoiding
the multiple comparisons problem. The trick is that multivariate approaches identify
task-related networks, rather than task-related clusters.

Two multivariate methods for analyzing fMRI data are especially popular. One
is independent components analysis (ICA; [36, 37]). ICA, like its relative, principal
components analysis, decomposes the observed BOLD data into a set of independent
components. It operates on data from the whole brain at once, so the components
it identifies are functionally independent neural networks that are simultaneously
active during some fMRI experiment. For example, one network might mediate the
processing of task-relevant stimulus information, one might mediate processing of
any feedback provided during the course of the experiment, one might monitor the
auditory stimulation provided by the scanning environment, and one could be the
so-called default mode network, which can be seen when subjects lie quietly in the
scanner with no task to perform (e.g., [38]). Each network defines a spatial pattern
of activation across all voxels in the brain. When the network is active, voxels in
brain regions that are part of the network will be active, and voxels that are not part
of the network will be inactive. On any TR, ICA assumes that the observable BOLD
response is a mixture of the activation patterns associated with each of these networks
plus (perhaps) some noise. As the TRs change, the amount that each network is
activated could change. For example, the network that processes the stimulus should
become more active on TRs during and immediately after stimulus presentation and
become less active during rest periods. So, on every TR, ICA estimates a weight for
each neural network that measures how active that network is on that TR.

ICA has some significant advantages over standard, univariate GLM-based meth-
ods of data analysis. First, because it operates on all data simultaneously, ICA largely
avoids the intractable multiple comparisons problem that plagues univariate analyses.
Second, ICA identifies networks of event-related voxels, rather than single voxels,
so it simultaneously addresses questions of functional connectivity. Third, GLM ap-
proaches assume that every time an event occurs during an experimental session, it
elicits exactly the same BOLD response. In contrast, ICA allows the weights to differ
on every TR so it allows the gradual ramping up or down of a network across TRs that
might be seen during learning or habituation. Fourth, ICA makes no assumptions
about the hrf or the nature of the BOLD response. In particular, it does not assume
linearity between neural activation and the BOLD response. On the other hand, ICA
does have weaknesses. First, it is time and resource consuming to run. Second, it is
a purely exploratory data-analytic technique in the sense that it provides no straight-
forward method of testing specific a priori hypotheses about any of the components.
Finally, it provides no foolproof method of identifying task-related components. In
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many cases, an ICA analysis might identify several hundred components, only a few
of which are likely related to the task under study. Finding these few components of
interest among the hundreds identified can be a difficult challenge.

Recently, another multivariate method for analyzing fMRI data has become pop-
ular. This method, called multi-voxel pattern analysis (MVPA), applies machine
learning classification methods to BOLD response data [39–41]. The idea is that if
some brain region is responding differently to two different event types then it should
be possible to find a classification scheme that can look at the responses of all voxels
in that region and correctly identify which event triggered the response. This is the
technique that is used in all of the well publicized claims that fMRI can be used
to read one’s mind. The first step in MVPA is to create a vector that represents the
BOLD response to a specific event in a region of interest. In the simplest case, for
every voxel in the region, the vector might have one entry that measures the BOLD
response in that voxel to a single specific event [42]. For example, suppose we are
interested in whether a region in ventral temporal cortex that includes 2000 voxels
responds differently to pictures of shoes versus chairs [43]. For each picture pre-
sented to the subject, we estimate the BOLD response in every voxel in this region.
Now imagine a 2000 dimensional space with a coordinate axis for each of the 2000
voxels. Each vector specifies a numerical value on each of these dimensions, and
therefore we could plot the entries in each vector as a single point in this high di-
mensional space. The idea is that vectors from trials when a shoe is presented should
cluster in a different part of the space compared to vectors from trials when a chair is
presented if this brain region responds differently to these two stimulus classes. On
the other hand, if this region does not discriminate between shoes and chairs then
the points should all fall in the same region. Of course, it would be impossible to
decide whether the points fall in the same or different regions by visual inspection.
Instead, machine learning classification techniques are used (e.g., the support vector
machine or the naı̈ve Bayes classifier).

5.7 The Future

Despite its limitations, the future for fMRI is bright. It is likely to play an enduring
role in psychology, cognitive neuroscience, and the mind sciences in general—at
least until it is replaced by some similar, but more powerful technology (e.g., just
as fMRI has now largely replaced PET scanning). There are several reasons for this
optimism. Perhaps the most obvious is that fMRI allows scientists to investigate
questions that before seemed unapproachable. But another reason that fMRI is likely
to maintain its popularity is that it is rapidly improving on almost all fronts. New
scanners and head coils are more reliable and produce cleaner data with higher
signal-to-noise ratio. New pulse sequences allow for innovative types of scanning
(e.g., as when diffusion spectrum imaging was developed as a superior alternative to
diffusion tensor imaging). New methods of data analysis allow researchers to draw
unique conclusions even from data collected using common pulse sequences on older
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established machines. All these improvements also increase the flexibility of fMRI.
Researchers continue to have more choices than ever when designing and running
fMRI experiments and when analyzing the resulting data. As a result, potential
applications of fMRI are largely limited by the creativity of fMRI researchers.

Exercises

1. Think of an experiment that is best addressed using fMRI instead of EEG or
MEG. What are the key advantages of fMRI?

2. In an fMRI experiment with a TR of 2 s, the temporal resolution is considerably
better than 2 s. How can the temporal resolution in fMRI be better than the TR?

3. Suppose we measure the height of 15 subjects, and then run each of them in
an fMRI experiment. During data analysis we compute a whole-brain t-map for
each subject. Next, for every voxel, suppose we correlate (across subjects) subject
height with the value of the t statistic in that voxel. What would you conclude,
if after correcting for multiple comparisons, we find a set of voxels where the
correlation is significant? Does this outcome seem likely? Did the experiment
identify a network that thinks about the subject’s height?

Further Reading

Several books provide overviews of the whole fMRI field [20, 44], while others pro-
vide more depth on certain subtopics. For example, Hashemi, Bradley, and Lisanti
[45] give a mostly nontechnical description of MR physics, whereas Haacke, Brown,
Thompson, and Venkatesan [46] provide a much more rigorous treatment. In con-
trast, Ashby [33] and Poldrack, Mumford, and Nichols [47] focus exclusively on
experimental design and fMRI data analysis.
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