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A variety of different recognition-memory models make different psychological assumptions,
but similar predictions about ROC curves in old-new recognition-memory experiments. Some
models assume that recognition responses are produced by a unitary process and other models
assume they are a binary mixture of two qualitatively different types of responses. This note
shows that despite their similar ROC predictions, the binary-mixture models make some
striking predictions that the unitary models do not make. Specifically, in any experiment that
includes conditions in which the mixture probability varies but the component distributions
do not, the binary-mixture models predict that all response time probability density functions
must intersect at the same time point (if they intersect at all). Similarly, they also all predict
that if the ROC curves intersect, they must also all intersect at the same point.
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Introduction

In old-new recognition-memory experiments, participants
are presented with a list of words and then sometime later
presented with a series of single words and asked to respond
whether each of these single words is old or new – that is,
they are asked to indicate whether each word was or was not
on the studied list. New items are typically called “lures”
and old items are called “targets”. In the language of the
YES-NO detection task, responding OLD on target trials is
analogous to a hit, and responding OLD on lure trials is anal-
ogous to a false alarm. In this way, an ROC curve can be con-
structed for this task by plotting the probability of responding
OLD on target trials on the ordinate against the probability
of responding OLD on lure trials on the abscissa – that is,
by plotting P(OLD|target) against P(OLD|lure). Empirical
ROCs estimated from confidence judgments collected in the
old-new recognition-memory task are curved, rather than lin-
ear, and when plotted in Z space, the best-fitting lines have
a slope that can vary considerably across conditions, but that
is typically less than 1.0 (e.g., Glanzer et al., 1999; Ratcliff
et al., 1992). It is commonly assumed that a representative
slope is around 0.8 (Ratcliff et al., 1992; Wixted, 2007).
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A variety of different signal-detection theory-based (SDT)
models of performance in this task have been proposed to
account for these results. Some models assume that all OLD
responses are mediated by the same psychological process,
whereas others assume that OLD responses are a binary-
mixture of two qualitatively different types of responses.
Models in the former class include the normal, unequal-
variance SDT model, whereas models in the latter class in-
clude the dual-process SDT model and the mixture SDT
model. Unitary and binary-mixture models make qualita-
tively different assumptions about the underlying psycho-
logical processes that mediate responding in the old-new
recognition-memory task, but nevertheless they make simi-
lar, albeit not identical, ROC curve predictions. The simi-
larity of these predictions has made it difficult to differen-
tiate them empirically. This note describes some striking
(untested) empirical predictions that discriminate the unitary
and binary-mixture models.

The Models

Three different SDT-based models of the old-new
recognition-memory task are popular: the normal, unequal-
variance SDT model (Wixted, 2007), the dual-process SDT
model (Yonelinas, 1994), and the mixture SDT model (De-
Carlo, 2002). The normal, unequal-variance SDT model as-
sumes that all OLD versus NEW recognition-memory re-
sponses are based on the memory strength elicited by the
presented stimulus. Specifically, the model assumes that the
participant will respond OLD if the memory strength elicited
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by the presented stimulus is large and NEW if the mem-
ory strength is small. The model further assumes that lures
and targets both generate a range of memory strengths that
are each normally distributed, but on average, targets gen-
erate larger and more variable memory strengths than lures
(Wixted, 2007). This model has three free parameters – the
mean and variance of the target distribution and the criterion
on memory strength for responding OLD. A model in which
the target standard deviation is 1.25, given a lure standard de-
viation of 1.0, predicts a linear ROC in Z space with a slope
of 0.8, which matches empirical estimates.

The normal, unequal-variance model assumes that all
OLD responses depend only on a single memory-strength
value, and therefore that all OLD responses are mediated by
the same psychological process. In contrast, dual-process
models assume that a judgment that an item is old depends
on separate recollection and familiarity processes (Yonelinas,
1994; Yonelinas et al., 1998). Specifically, Yonelinas (1994)
assumed that OLD responses in the old-new recognition-
memory task are a binary mixture. Some OLD responses
occur because the participant recollected that the item was
old and other OLD responses occurred because recollec-
tion failed but the item appeared highly familiar. Yoneli-
nas (1994) further assumed that recollection operates as in
classical threshold theory – that is, on target trials, there
is some probability p that recollection is successful and on
these trials the participant always responds OLD. If recollec-
tion fails, which occurs with probability 1 − p, it completely
fails in the sense that there is no partial recollection value
that can be used to select a response. Instead, the choice
between responding OLD versus NEW depends completely
on familiarity. In the model proposed by Yonelinas (1994),
judgments based on familiarity are modeled by the normal,
equal-variance SDT model. The dual-process model predicts
that

P(OLD|target) = p + (1 − p)Φ(µT − XC), (1)

whereΦ is the standard-normal cumulative distribution func-
tion, µT is the mean familiarity strength of target items, and
XC is the criterion on familiarity for responding OLD. The
model also assumes that recollection is impossible on lure
trials, so the probability of responding OLD on lure trials –
that is, the probability of a false alarm – is exactly the same
as in the normal, equal variance SDT model. In other words,

P(OLD|lure) = 1 − Φ(XC) = Φ(−XC). (2)

Note that this model has three free parameters: p, µT, and XC
– the same number as the normal, unequal variance model. It
is well known that the ROC curves predicted by this model
are skewed in the same direction as empirical ROC curves
from the old-new recognition task (that is, when p > 0).

The mixture SDT model of recognition memory is simi-
lar to the dual-process model, in the sense that both models
assume target trials include a mixture of responses that have

different statistical properties (DeCarlo, 2002, 2010; Koen et
al., 2017). The mixture SDT model assumes the two types
of OLD responses on target trials are due to different levels
of attention during the encoding of the target item at the time
of initial study (DeCarlo, 2002). The idea is that as the study
items are initially presented, the participant’s attention waxes
and wanes. The target items presented when attention is high
will elicit a large memory strength when later presented dur-
ing the testing phase, whereas target items initially presented
when attention was low will elicit a weak memory strength
during test.

The mixture SDT model (DeCarlo, 2002) models the
memory strengths elicited by lures exactly as the noise distri-
bution is modeled in the normal, equal-variance SDT model.
As a result,

P(OLD|lure) = Φ(−XC). (3)

In contrast, the model assumes that the memory strengths
elicited by targets are a binary mixture of large and small
memory strengths, each normally distributed with variance
1, but with different means. More specifically, the model
assumes that

P(OLD|target) = pΦ(d1 − XC) + (1 − p)Φ(d2 − XC), (4)

where p is the probability that a target item received a high
level of attention during study. So d1 is the mean memory
strength when attention was high and d2 is the mean mem-
ory strength when attention was low. In many applications,
it is common to assume d2 = 0, or in other words, that the
mean memory strength during low attention is the same as
for lures. According to this version of the model, with prob-
ability 1 − p the participant completely ignores the target
item during study. One advantage of this simplifying as-
sumption is that it reduces the number of free parameters
in the model from 4 to 3 (i.e., p, d1, and XC), and as a re-
sult, this version of the mixture model has the same number
of free parameters as the unequal-variance and dual-process
SDT models. The mixture model predicts ROC curves that
are similar to the ROC curves predicted by the dual-process
SDT model. This is not a surprise because both models make
identical predictions for P(OLD|lure) and similar predictions
for P(OLD|target) (i.e., compare Eqs. 1 and 4).

The Fixed-Point Property of Binary Mixtures

The normal, unequal-variance model, the dual-process
model, and the mixture model all make similar, but not iden-
tical predictions about ROC curves in old-new recognition-
memory experiments. For example, all of these models pre-
dict, or can predict, skewed ROC curves that generally have
a slope in Z-ROC space that is less than 1.0 – properties that
are present in virtually all empirical ROCs estimated from the
old-new recognition task. The most striking difference is that
the unequal-variance model predicts that all Z-ROC curves
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must be linear, whereas the mixture models predict that the
Z-ROC curves become progressively more curved (i.e., more
nonlinear) as the mixture probability p increases. Despite
these similar predictions, the models make fundamentally
different assumptions about the nature of processing on target
trials. The normal, unequal-variance model predicts this is a
unitary process in the sense that responding on every trial
is mediated by the same psychological processes. In con-
trast, both the dual-process and mixture models assume that
responding on target trials is a mixture of two qualitatively
different types of trials. It turns out that this prediction that
responding to targets is a mixture of two types of trials has a
distinct empirical signature that, to my knowledge, has never
been investigated. That signature is described in this section.

Mixture models have been proposed in a variety of dif-
ferent domains. For example, the fast-guess model of the
speed-accuracy tradeoff accounts for fast error responses by
proposing that observable response times (RTs) are a proba-
bility mixture of two types of responding (Yellott Jr, 1971).
With some probability p, the participant ignores the stimulus
and just randomly guesses a response. The lack of percep-
tual or cognitive processing on these trials causes accuracy
to be low and RT to be fast. With probability 1 − p, the par-
ticipant fully processes the stimulus, causing responding to
be accurate and slow. Although better models of the speed-
accuracy tradeoff were subsequently developed (e.g., see van
Maanen, 2016), the fast-guess model is highlighted here be-
cause it remains one of the most conceptually simple and
widely known mixture models.

All binary-mixture models have a unique empirical sig-
nature that was discovered by Falmagne (1968), which he
called the fixed-point property. Specifically, consider a set
of experimental conditions in which the mixture probability
varies but the component distributions do not. For example,
in the case of the fast-guess model, the conditions might vary
speed stress. The fast-guess model predicts that the more
that speed is emphasized, the more likely it is that the par-
ticipant will ignore the stimulus and make a quick guess.
So the model predicts that the primary effect of increasing
speed stress will be to increase the guessing probability p.
Falmagne (1968) showed that in any experiment with differ-
ent conditions that affect the mixture probability p, but not
the component distributions, all binary-mixture models pre-
dict that the probability density functions (pdfs) predicted for
each experimental condition must all intersect at exactly the
same point. This property is described more formally in the
following result.

The Fixed-Point Property of Binary Mixtures. Consider
a model that predicts that some relevant pdf in experimental
condition i, denoted fi(x), is a binary mixture of two compo-
nent pdfs g1(x) and g2(x), with mixture probability pi. More

specifically, suppose that

fi(x) = pi g1(x) + (1 − pi) g2(x). (5)

Consider a set of conditions in which the mixture probability
pi varies, but g1(x) and g2(x) do not. Then if the pdfs pre-
dicted for each condition intersect, they must all intersect at
the same fixed point.

Proof. The proof, which is straightforward, is due to Fal-
magne (1968). For convenience, it is reproduced here. Sup-
pose there exists some value x∗ where g1(x) and g2(x) inter-
sect – that is, for which g1(x∗) = g2(x∗). Now let pi and p j

be any two mixture probabilities. Then note that

(pi − p j) g1(x∗) = (pi − p j) g2(x∗)
= [(1 − p j) − (1 − pi)] g2(x∗), (6)

and therefore

pi g1(x∗) − p j g1(x∗) = (1 − p j) g2(x∗) − (1 − pi) g2(x∗). (7)

Rearranging both sides produces

pi g1(x∗) + (1 − pi) g2(x∗) = p j g1(x∗) + (1 − p j) g2(x∗), (8)

and therefore fi(x∗) = f j(x∗) for any values of pi and p j. □

The fixed-point property holds for any random variable
that is a binary mixture. As we saw, the mixture SDT model
predicts that on target trials, the decision variable that drives
old-new recognition judgments is a binary mixture of two
normal distributions (i.e., see Eq. 4). As a result, it predicts
that across a set of conditions in which the mixture prob-
abilities vary but the component pdfs do not, the set of all
target distributions predicted by the mixture model must all
intersect at the same point. The dual-process SDT model
is also a binary mixture model but its predicted familiarity
distributions are not constrained by the fixed-point property
because there is no g1(x) pdf that intersects with g2(x). The
big-picture question here though is why any of this should
matter since memory-strength distributions are not observ-
able. The fixed-point property is useful only if the mixture
variable is some observable dependent measure. If it was
observable, then a strong test of the model would be to es-
timate the mixture distributions and check whether they all
intersect at the same point. Although memory strength is not
an observable variable, there are several dependent measures
that should depend directly on memory strength and there-
fore are candidates for tests of the fixed-point property. Two
dependent variables come immediately to mind – RTs and
ROC curves. The next two sections consider each of these
possibilities in turn.
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Response Time Tests of the Fixed-Point Property

By themselves, none of the recognition-memory models
considered above make any assumptions or predictions about
the RTs that might be expected in the old-new recognition-
memory task. Even so, there are generalizations of SDT that
do make RT predictions. Among the oldest and simplest
methods for deriving RT predictions from SDT is to add a
straightforward assumption to SDT, called the RT-distance
hypothesis, that simply assumes that RT decreases with the
distance between the percept and the response criterion. The
idea is that if decisions are made by comparing a percept or
memory strength to a criterion, then the greater the distance
between the two, the easier, and hence the faster the deci-
sion. Theoretical predictions of the generalized SDT model
that includes this assumption were worked out by Murdock
(1985). Empirical support for the RT-distance hypothesis
was first reported by Emmerich et al. (1972) and Geschei-
der et al. (1969) and later, within the multidimensional con-
text of general recognition theory, by Ashby et al. (1994).
Furthermore, Murdock (1985) showed that this generalized
SDT model gives good accounts of the RTs that are observed
in recognition-memory experiments.

In addition, it is important to note that virtually all cur-
rent process interpretations of SDT that make RT predic-
tions are in general agreement with the RT-distance hypothe-
sis, including for example, the drift-diffusion model (Ratcliff,
1978). The drift-diffusion model is a special case of a more
general class of sequential-sampling models, which assume
that the observer repeatedly samples the stimulus on each
trial and then converts the sampled percepts into evidence
favoring one of the two responses. Evidence is typically not
defined explicitly in these models, but in a task where the two
response alternatives are A and B, a natural definition of the
strength of evidence associated with the percept x is

e(x) =
∣∣∣log L(x)

∣∣∣ = ∣∣∣∣∣∣log
fA(x)
fB(x)

∣∣∣∣∣∣ = ∣∣∣log fA(x) − log fB(x)
∣∣∣.
(9)

According to this definition, there is no evidence that favors
one response over the other when the likelihood ratio equals
1. Both responses are equally likely to be correct. As the
likelihood ratio moves away from 1 – in either direction – the
evidence about which response is correct increases. This def-
inition is especially relevant to recognition memory because
of the important role that likelihood ratio plays in recognition
memory models (e.g., Glanzer et al., 2009). According to the
reasonable Eq. 9 definition of evidence, note that if the like-
lihood ratio is monotonic with increases in sensory magni-
tude (or memory strength), then evidence increases with the
distance from the percept to the response criterion XC. So
the RT predictions of any such sequential sampling model
are in general agreement with the RT-distance hypothesis.
As a result, adding the RT-distance hypothesis to any of the

recognition-memory models considered above represents a
theoretically minimal approach to extending these models to
the RT domain.

The following result shows that adding the RT-distance
hypothesis to any model that predicts memory strengths on
target trials are a binary mixture causes that model to also
predict that the RT pdfs on target trials must satisfy the fixed-
point property.

Theorem 1. Consider any recognition-memory model that
assumes OLD responses in the old-new recognition task are
a binary mixture – that is, any model described by Eq. 5
(e.g., including the dual-process and mixture SDT models).
Suppose we extend this class of models to the RT domain by
assuming that

RT = T + T0, (10)

where T is the decision time that is computed by adding
the RT-distance hypothesis to the memory model and T0 is
any motor time that is statistically independent of T . Now
consider an old-new recognition-memory experiment that in-
cludes a set of conditions in which the mixture probability pi

varies across conditions, but the component distributions do
not. Then all RT pdfs predicted by these models on target
trials when the participant responds correctly must satisfy
the fixed-point property – that is, if the RT pdfs predicted for
each condition intersect, they must all intersect at the same
fixed point.

Proof. The RT-distance hypothesis assumes that decision
time T = h(D), where h is a differentiable, strictly-decreasing
function and D is the distance from the current percept to
the response criterion XC. All binary mixture models as-
sume that the distribution of memory strengths on target trials
equals

f (x|target) = pg1(x) + (1 − p)g2(x), (11)

for some component pdfs g1 and g2. This model predicts
that a correct OLD response occurs on trials when a random
sample from this mixture distribution is greater than the cri-
terion XC. Let D denote the distance from this sample to
the criterion. Then these distances will have one distribu-
tion on trials when the random sample comes from compo-
nent distribution g1 and a different distribution on trials when
the random sample comes from component distribution g2.
Murdock (1985) showed that if the component distribution is
normal, then the distribution of distances to the criterion on
correct response trials has a truncated normal distribution.
However, the present theorem requires no distributional as-
sumptions about g1 or g2, or about the specific function h
that converts each distance to a decision time – that is, the
theorem holds for any distributions g1 and g2 and any differ-
entiable, strictly-decreasing function h.

If we denote the two distance distributions by g1D and g2D,
respectively, then the distribution of distances across all cor-
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rect OLD response trials equals

fD(x|target) = p g1D(x) + (1 − p) g2D(x). (12)

The RT-distance hypothesis assumes decision time T =

h(D), where h is a differentiable strictly decreasing function.
By the change-of-variable theorem of probability theory, the
decision time pdf on target trials, denoted fT (t), equals

fT (t) = fD

[
h−1(t)

] ∣∣∣∣∣∣dh−1(t)
dt

∣∣∣∣∣∣
=
{
p g1D

[
h−1(t)

]
+ (1 − p) g2D

[
h−1(t)

]} ∣∣∣∣∣∣dh−1(t)
dt

∣∣∣∣∣∣
= p
{

g1D

[
h−1(t)

] ∣∣∣∣∣∣dh−1(t)
dt

∣∣∣∣∣∣
}

+ (1 − p)
{

g2D

[
h−1(t)

] ∣∣∣∣∣∣dh−1(t)
dt

∣∣∣∣∣∣
}

= p g1T (t) + (1 − p) g2T (t), (13)

where g1T (t) and g2T (t) are the decision time pdfs on trials
when the percept is a random sample from g1(x) and g2(x),
respectively. As a result, fT (t) is a binary mixture and there-
fore satisfies the fixed-point property.

Note that Eq. 13 also holds for the dual-process model,
except in this case g1T (t) is the decision-time pdf on trials
when recollection succeeds. This pdf does not depend on
distance-to-criterion, and instead is the same on all target tri-
als and in all conditions. The key point though is that the
dual-process model also predicts that the decision times on
correct target trials are a binary mixture. With probability
p, decision time is a random sample from the recollection
successful distribution [i.e., from g1T (t)] and with probabil-
ity 1 − p, decision time is a random sample from the g2T (t)
distribution. Therefore, the dual-process model also predicts
that decision times must satisfy the fixed-point property.

Suppose now that a random motor time T0 is added to each
decision time, so the observable RT equals RT = T + T0.
Suppose also that T and T0 are statistically independent and
let f0(t) denote the pdf of T0. Then the RT pdf equals

fRT(t) = fT (t) ∗ f0(t)
=
[
p g1T (t) + (1 − p) g2T (t)

]
∗ f0(t)

= p [g1T (t) ∗ f0(t)] + (1 − p) [g2T (t) ∗ f0(t)], (14)

where ∗ denotes convolution. The last equality holds be-
cause convolution is a linear operation and therefore satisfies
distributivity. Since the convolution of two pdfs is a pdf, it
therefore follows that the fixed-point property still holds if an
independent base time or motor time is added to the decision
time on each trial. □

A test of this strong prediction of all binary-mixture mod-
els requires an old-new recognition-memory experiment that

includes at least three conditions that the model predicts
should all be identical, except for the numerical value of the
mixture probability pi. The exact design of this experiment
might depend on which model is being tested. The dual-
process model assumes that p is the probability that recollec-
tion is successful, so a candidate experiment would manipu-
late some independent variable that selectively influences the
probability of recollection. In contrast, the mixture model as-
sumes p is the probability that the item was attended to dur-
ing study, so in this case, a candidate experiment would ma-
nipulate an independent variable that selectively influences
attention. There are likely a variety of ways to design such
an experiment, but in the case of the mixture model, one
possibility might be as follows. The goal is to manipulate
an independent variable that causes the amount of attention
available to the participant for encoding the target list during
initial study to vary across conditions. An obvious possibility
is to require the participant to perform a simultaneous dual
task during encoding that varies across conditions in mem-
ory load. For example, the experiment might include four
conditions in which the participant is required to study the
target items while holding in working memory a list of 0,
2, 4, or 6 digits, respectively. Previous research suggests that
this design should cause reduced encoding of the target items
with increased memory load of the dual task (e.g., Jolicoeur,
1999).

Theorem 1 is illustrated in Figure 1, which shows RT pdfs
predicted by the dual-process SDT model [panel (a)], the
mixture SDT model [panel (b)], and the normal, unequal-
variance SDT model [panels (c) and (d)] in a hypothetical
experiment of this type. In all cases, predicted RT pdfs are
shown for correct OLD responses in four different hypothet-
ical experimental conditions. In all cases where the decision
was based on an SDT model in which the memory strength
was compared to a response criterion XC, RT was computed
from an RT-distance model in which decision time was a
power function of the distance between the memory strength
and XC. Specifically, in all cases

RT = T0 + 450 D−0.35, (15)

where T0 was a normally distributed motor time with mean
100 ms and standard deviation 10 ms.

Consider first the dual-process SDT model with predic-
tions shown in panel (a). These predictions were generated
by setting µT = 1.5 (i.e., see Eq. 1). On trials when the OLD
response was determined by recollection, I assumed that RT
had an exGaussian distribution (Hohle, 1965; Ratcliff, 1978),
which is among the most popular current models of RT pdfs.
The exGaussian distribution is the distribution that results
when independent random samples from a normal distribu-
tion and an exponential distribution are added together. In
this case, I assumed the normal distribution mean and stan-
dard deviation were 350 ms and 10 ms, respectively, and that
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Figure 1

RT pdfs predicted by recognition-memory models on target trials of an old-new recognition-memory task and the participant
responds correctly. (a) Predictions of the dual-process model when the only change across conditions is in the value of p. (b)
Predictions of the mixture model when the only change across conditions is in the value of p. (c) Predictions of the normal,
unequal-variance model when the only change across conditions is in the mean of the target distribution. (c) Predictions of
the normal, unequal-variance model when the only change across conditions is in the variance of the target distribution.

the mean of the exponential distribution was 125 ms. As a
result, the mean on all recollection trials was 475 ms (350 +
125), regardless of familiarity. Figure 1a shows predictions
of the model for four different values of pi (i.e., the proba-
bility of successful recollection). Note that, as the theorem
requires, all four pdfs intersect at the same fixed point.

Figure 1b shows similar predictions for the mixture SDT
model. The parameters were all set to the same values as
in panel (a), except the means of the two component target
distributions were set to 0.5 and 2.0 (i.e., d1 and d2 in Eq. 4).
Note again that, as required by the theorem, all four distribu-
tions pass through the same fixed point.

Panels (c) and (d) of Figure 1 show that this fixed-point
property is not a feature that should be expected to hold
in models that are not constructed from a binary mixture.
Figures 1c and d show predictions of the normal, unequal-
variance model for this same hypothetical experiment. In
panel (c), the mean of the target distribution is assumed to

change across conditions, whereas panel (d) was produced
under the assumption that the variance of the target distribu-
tion changed. Note that these pdfs all intersect, but each pair
intersect at a different time point, and therefore do not satisfy
the fixed-point property.

In the Figure 1 application, the normal, unequal-variance
model has 3 free parameters for each pdf (i.e., the mean and
variance of the target distribution, and the response crite-
rion). Therefore, for the 4 pdfs shown in Figures 1c and 1d,
a total of 12 free parameters could be manipulated. In other
words, the parameter space for the normal, unequal-variance
model in this application is 12 dimensional. Each point in
this 12-dimensional space generates a different set of 4 pdfs.
There is little doubt that at least some points in this space
would cause the model to generate pdfs that all intersect at
the same point. Consider any one of such points. Now sup-
pose we move in the 12-dimensional parameter space in any
direction from this point. Any such movement will cause the
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model to predict a change in one or more of the pdfs. Be-
cause the model predicts that the fixed-point property occurs
because of coincidence, rather than because of any structural
property of the model, moving in any direction from our
hypothetical point should cause the fixed-point property to
fail. As a result, we expect that the normal, unequal-variance
model can account for fixed-point pdfs only at some set of
discrete points in its 12-dimensional parameter space. Such
a set has measure 0, regardless of how many points it con-
tains, and therefore if the prior distributions on the 12 pa-
rameters are continuous, then the probability that the model
predicts fixed-point pdfs a priori equals 0. In contrast, the
dual-process and mixture models predict that the 4 pdfs will
all cross at the same point for every point in their parame-
ter spaces, and therefore the models predict that the a priori
probability of finding a fixed point equals 1 (i.e., assuming
the parameter space is restricted to regions where the pdfs
intersect at least once). A well-established model selection
criterion is to favor a model that predicts an observed result
a priori over a model that makes no such prediction, but in
which some set of parameter values can be found that allow
the model to account for the result post hoc. Even so, of
course, no single psychological experiment is definitive, so
any finding of a fixed point should be replicated and general-
ized to other experimental conditions.

It should be stressed that this test of mixture models is
parameter free. By this I mean that the test is valid for any
version of the models – no matter how the models are pa-
rameterized and for a given parameterization, no matter how
many parameters are allowed to be free. For example, con-
sider the mixture model. As mentioned earlier, to reduce the
number of free parameters in this model, it is common to as-
sume that one component target distribution is normal with
mean d1 and variance 1, whereas the other is normal with
mean 0 and variance 1. This version of the model has three
free parameters (i.e., p, XC, and d1), which is the same num-
ber as the normal, unequal variance model. As a result, the
goodness-of-fit of the two models to empirical ROC data can
be compared directly. But Theorem 1 holds for any version
of the mixture model. So a generalized version in which one
component target distribution is normal with mean d1 and
variance σ2

1 and the other is normal with mean d2 and vari-
ance σ2

2 still predicts that all RT pdfs from the experiment
described in Theorem 1 must intersect at the same time point,
even though the three extra parameters in this version of the
model (i.e., d2, σ2

1, and σ2
2) would allow it to provide good

fits to a much more diverse set of empirical ROC data.
To my knowledge, this differential prediction of the dual-

process and mixture models versus the normal, unequal-
variance model has never been empirically investigated. It
seems worthy of empirical test however, because it is such a
strong prediction. A finding that all empirical RT pdfs cross
at the same time point seems like strong evidence that OLD

responses are a binary mixture of two different trial types
because it seems unlikely that a model postulating a unitary
process would coincidentally predict a set of pdfs that satisfy
this condition. Fortunately, a statistical test of the fixed-point
property has been developed, as well as an R package that
implements this test (van Maanen et al., 2014). On the other
hand, the fixed-point property could fail for a variety of dif-
ferent reasons, even if OLD responses are a binary mixture
(van Maanen et al., 2016). The most likely scenario is prob-
ably that the experimental manipulations caused one or both
of the component distributions to change across conditions.
For these reasons, a failure of the fixed-point property should
be interpreted with caution.

ROC Curve Tests of the Fixed-Point Property

A qualitatively different possibility is that a binary-
mixture target distribution will leave an empirical signature
in the ROC curves that it produces. An advantage of an
ROC-curve test of mixture models is that no extra assump-
tions about processing time are needed. For example, there
is no need to assume the RT-distance hypothesis. As this
subsection shows, a large class of mixture models do make a
striking ROC curve prediction. This prediction is described
in the next result.

Theorem 2. Consider an old-new recognition-memory ex-
periment with a variety of different conditions. Now consider
a model that assumes a single lure distribution and that the
target distribution is a binary mixture, that is, in which

fL(x) = g0(x), (16)

and
fT(x) = pi g1(x) + (1 − pi) g2(x), (17)

where pi is the mixture probability in condition i. Suppose
this model satisfies the following conditions:

1. The mixture probability pi varies across conditions,
but the lure distribution and the two component target
distributions do not.

2. The cumulative distribution functions G1 and G2 of
the two component target distributions cross – that is,
there exists some value x∗ for which G1(x∗) = G2(x∗).

Then all ROC curves predicted by this model must intersect
at the same point in ROC space.

Proof. Let Pi(OLD|target) and Pi(OLD|lure) denote the
probabilities of responding OLD on target and lure trials in
condition i, respectively. First, note that under the conditions
specified in the theorem, when the criterion to respond OLD
equals XC = x∗ then

Pi(OLD|lure) = 1 − FL(x∗) = K∗, (18)
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for some constant K∗, and where FL is the cumulative distri-
bution function of the lure distribution. In other words, when
XC = x∗, the probability of a false alarm is the same in all
conditions. Second, note that Eq. 17 implies that the tar-
get cumulative distribution function is also a binary mixture.
Specifically, note that integrating both sides of Eq. 17 leads
to

FT(x) = pi G1(x) + (1 − pi) G2(x). (19)

Third, it is well known and straightforward to show that the
fixed-point property also holds for cumulative distribution
functions.1 Specifically, if the two component cumulative
distribution functions cross at some point x∗, then all cumu-
lative target distribution functions predicted by this model
also cross at x∗. As a result,

FT(x∗|condition i) = FT(x∗|condition j) = 1 −C∗, (20)

for any conditions i and j, and for some constant C∗. There-
fore, note that

Pi(OLD|target) = 1 − FT(x∗|condition i) = C∗, (21)

for all i. In other words, when XC = x∗, P(OLD|target) is
also the same in all conditions. As a result, the ROC curve
must pass through the point (K∗,C∗) in all conditions. □

Theorem 2 says that if the component cumulative distribu-
tion functions of a mixture model cross, then the ROC curves
predicted by that model must also all cross at the same point
in ROC space.

Theorem 2 is illustrated in Figure 2. Panels (a) and (b)
show ROC curves for two different mixture models, and pan-
els (c) and (d) show the same two curves, except plotted in
Z space. In all cases, the lure distribution is normal with
mean 0 and variance 1, the means of the two component
target distributions are d1 = 1.5 and d2 = 1, and the stan-
dard deviation of component distribution 2 is σ2 = 1.1. In
panels (a) and (c), the first component distribution has stan-
dard deviation σ1 = 1.4, whereas σ1 = 1.7 in panels (b) and
(d). Within each panel, the different curves were generated
from different values of the mixture probability p (i.e., p =
.1, .4, .65, and .9). Because σ1 , σ2, this model predicts that
the cumulative distribution functions of the target component
distributions cross, and therefore the conditions of Theorem
2 are met, and as a result, the ROCs must cross.

There are several points of note here. First, as comparison,
note that the equal-variance mixture model (see DeCarlo,
2002) and the dual-process model (see Yonelinas, 1994) both
predict Z-ROC curves that are nonlinear and ordered by the
value of the mixture probability p (and therefore do not inter-
sect). Second, the unequal variances in the two component
distributions of the mixture model used to generate Figure
2 are consistent with the expectation that in nature, variance
increases with mean. In Figure 2, the lure, target component

2, and target component 1 distributions have means equal to
0, 1, and 1.5, respectively and standard deviations equal to
1, 1.1, and either 1.4 or 1.7, respectively. So in all cases,
the variance increases with the mean. As a result, the model
illustrated in Figure 2 can be seen as a melding of the (equal-
variance) mixture model (DeCarlo, 2002) and the normal,
unequal-variance SDT model in which familiarity and rec-
ollection have additive effects on memory strength (Rotello
et al., 2004; Wixted & Stretch, 2004).

Third, it is important to note that although Theorem 2
guarantees that the ROC curves will all intersect at the same
point if the component distributions have different variances,
this prediction may have limited empirical utility if the vari-
ance difference is small. This is because the intersection will
occur so many standard deviations out in Z space that it will
essentially be impossible to test empirically. As a result, a
failure to find that a set of ROC curves all intersect at the
same point says little about whether the target distribution
is a binary mixture. On the other hand though, if the ROC
curves do all intersect at the same point, then a mixture model
might be strongly suspected because this is not a feature of
ROC curves that is predicted by non-mixture models.

Theorem 2 does not depend on any processing-time as-
sumptions, but it does not hold for all mixture models.
Specifically, it does not hold for any model in which the
likelihood ratio g2(x)/g1(x) is monotonic in x. For all such
models, Condition 2 of Theorem 2 is violated. This is be-
cause a monotonic likelihood ratio guarantees that the cumu-
lative distribution functions are ordered (Townsend & Ashby,
1983, p. 281). As a result, Condition 2 can only be met if
the g2/g1 likelihood ratio is nonmonotonic. Note that this
implies that the mixture model proposed by DeCarlo (2002)
(described by Eqs. 3 and 4) in which g1 and g2 are both nor-
mal with equal variance does not predict intersecting ROC
curves (because the likelihood ratio of two normal distribu-
tions with equal variance is monotonic). Even so, more gen-
eral versions of the mixture model have been proposed in
which the two component target distributions have different
variances (Koen et al., 2017). Theorem 2 applies to these
models.

It is also important to note that Theorem 2 makes no as-
sumption about the lure distribution. Specifically, it does not
require nonmonotonicity of the target-to-lure likelihood ra-
tio fT (x)/ fL(x). Therefore, it does not assume that extremely
low familiarities are more likely on target trials than on lure
trials, as predicted for example, by the unequal-variance SDT
model. It is also worth noting though, that although the
unequal-variance SDT model does make this prediction, the
model also predicts that in typical experiments these low fa-
miliarities are essentially impossible on target trials. As men-

1To see this, simply recreate the proof of the fixed-point prop-
erty, except substitute the cumulative distribution functions G1 and
G2 for the pdfs g1 and g2.
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Figure 2

ROC curves predicted by the unequal-variance mixture SDT model of recognition memory. In all cases, d1 = 1.5, d2 = 1, and
σ2 = 1.1. The curves differ only in the value of the mixture probability (i.e., p = .1, .4, .65, and .9). (a) ROC curves predicted
by the model when σ2 = 1.4. (b) ROC curves predicted by the model when σ2 = 1.7. (c) Same curves as in panel (a), except
plotted in Z space. (d) Same curves as in panel (b), except plotted in Z space.

tioned earlier, a representative value for the slope of the Z-
ROC in recognition memory experiments is about 0.8, which
is consistent with an unequal-variance SDT model in which
the target standard deviation is 1.25, given a lure standard
deviation of 1.0. Assuming a target mean of 1.5, then given
these standard deviations, a low familiarity is more likely
from the target distribution only when its strength is less than
-6.3. Familiarities of target items are this low only with a
probability of less than 0.000001, and therefore the model
predicts that this outcome is essentially impossible.

Conclusions

The normal, unequal-variance model, the dual-process
model, and the mixture model all make similar predictions
about ROC curves in old-new recognition-memory experi-
ments. This has made them difficult to discriminate empiri-

cally. This note showed that despite their similar ROC pre-
dictions, the dual-process and mixture models make some
striking predictions that the normal, unequal-variance model
does not make. Specifically, in any experiment that includes
conditions in which the mixture probability varies but the
component distributions do not, the dual-process and mix-
ture models predict that all RT pdfs (and cdfs) must intersect
at the same time point (if they intersect at all). And simi-
larly, both models predict that if the ROC curves from this
experiment intersect, they must also all intersect at the same
point. Note that this RT prediction is more general than the
ROC curve prediction because the prediction of a fixed point
in the ROC curves requires the extra assumption that the cu-
mulative distribution functions of the two component target
distributions cross, whereas all binary-mixture models pre-
dict a fixed point in the RT pdfs (assuming the RT-distance



10 ASHBY, F. G.

hypothesis is valid).
It is important to note that empirical tests of these predic-

tions that yield positive results are much more informative
than tests that yield negative results (although care must be
taken to guard against false positives; Couto et al., 2024).
This is because all binary-mixture models predict that there
are a variety of different ways that the fixed-point prediction
could fail. The most obvious example is that the indepen-
dent variable that was manipulated to create the various ex-
perimental conditions affects the component distributions in
some way, causing one or both of them to vary across condi-
tions. On the other hand, a positive result seems like strong
evidence in favor of some binary-mixture model. Although
it is logically possible that some single-process model could
coincidentally produce RT pdfs or ROC curves that all cross
at the same point, such an outcome would be just that – a
coincidence, and a rather large one at that.
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