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a b s t r a c t

A novel and easy-to-compute measure is proposed that compares the relative contribution of each
parameter of a mathematical model to the model’s mathematical flexibility or complexity, with respect
to accounting for the results of some specific experiment. When the data space is a two-dimensional
plot of the type used in standard state-trace analysis, then the model complexity contributed by a
single parameter equals the length of the state trace (LOST) that results when that parameter is varied
and all other parameters are held constant. For the normal, equal-variance, signal-detection model,
the average LOST when the response-criterion parameter XC is varied is about four times greater than
the average LOST when the sensitivity parameter d′ is varied. As a result, applying the signal-detection
model to random data almost always leads to the conclusion that all the points share the same value
of d′ but were generated under different values of XC . Parameters that have non-monotonic effects on
performance, such as the attention-weight parameter that is used in popular exemplar and prototype
models of categorization, tend to have large LOSTs, and therefore contribute to model flexibility more
than parameters that have monotonic effects on performance. Comparing LOSTs for exemplar and
prototype models also leads to some deep new insights into the structure of both models.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

This article describes a novel, and exceedingly simple method
or investigating the structure of a mathematical model, and
pecifically for determining how much each parameter of the
odel contributes to the model’s mathematical flexibility or
omplexity. The popular model-selection statistics AIC and BIC
ssume that all parameters contribute equally to a model’s com-
lexity, but this is far from true. For example, as the new method
ill show, in the normal, equal-variance model of signal-detection
heory, the contribution of the criterion XC to model complexity
s about four times greater than the contribution of the sensitivity
arameter d′. It is critical to understand how different parameters
ontribute to complexity when interpreting results of model
itting. For example, as data become noisier, it becomes more
nd more likely that a version of the model in which a high-
omplexity parameter is varied will fit better than a version in
hich a low-complexity parameter is varied – regardless of the
sychological structure of that data.
This article is organized as follows. The next section briefly

eviews the literature on model complexity and describes the
ew proposed measure. The third section applies the newmethod
o the standard normal, equal-variance, signal-detection model,
ection 4 considers the effects on model complexity of param-
ters that predict non-monotonic changes in performance, and
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Section 5 applies the method to exemplar and prototype models
of categorization. Finally, the last section closes with a general
discussion and conclusions.

2. Model complexity

Consider an experiment with Nt trials or observations in which
the results are described by recording Nd data values or depen-
dent variables. If each recorded value describes the outcome of
a single trial or observation then Nd = Nt , whereas if our Nd
recorded values are summary statistics then Nd < Nt . Now
consider a space with one dimension for every one of these
dependent variables. This is the experiment’s data space D, and
any point in D can be indexed by the ordered Nd-tuple d =

DV1,DV2, . . . ,DVNd ], where DVi denotes the ith of the dependent
ariables and Nd ≤ Nt . If Nd = Nt , we say that the data space is
aturated. Note that the outcome of our experiment is represented
y one single point in saturated data space, and collectively, all
he points in saturated data space represent all possible outcomes
f our experiment.
Next, consider some mathematical model of this experiment.

uppose the model includes r free parameters θ1, θ2, . . . , θr . The
pace of all possible values of these parameters, Θ, defines the
model’s parameter space, and any point in Θ can be indexed by
the ordered r-tuple θ = [θ1, θ2, . . . , θr ]. Any specific combination
f numerical values chosen for these r parameters is represented
y one single point in parameter space.
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Note that if specific numerical values for each parameter are
inserted into the model’s equations, the model will make specific
numerical predictions about the outcome of the experiment. If
the data space is saturated, then most mathematical models in
psychology will not predict the actual outcome of each of the Nt
trials or observations in the experiment, but instead will predict a
probability distribution over the possible outcomes on each trial.
For example, the model might predict that the response time
on trial i is a random sample from an ex-Gaussian distribution
with mean µi, variance σ 2

i , and rate λi. When the data space is
aturated, the set of all possible model predictions defines the
odel’s statistical manifold M.1
On the other hand, if the data space is limited to summary

tatistics, the model might predict exact values for each of the Nd
ependent variables. For example, for any given value of d′ and
C , the normal, equal-variance, signal-detection model predicts
ingle values for the observed proportion of hits and false alarms.
n this case, note that the space of all possible model predictions
as the same structure as data space – that is, for any point in
arameter space, the model predicts a single numerical value for
ach of the Nd dependent variables that define data space (rather
han a probability distribution). As a result, the model’s equations
ould be interpreted as mapping the point in parameter space
hat indexes the set of parameter values that we chose to a point
n data space. If that point in data space corresponds to exact
alues of all our recorded summary statistics, then the model
rovides a perfect fit to those statistics. Note that if we change the
umerical values of any parameters, the predictions of the model
ill change. The model’s equations therefore map different points

n parameter space to different points in the data space defined by
ur recorded summary statistics. Finally, suppose we identify all
oints in this data space that result from systematically iterating
hrough all possible values of all r parameters. This is the model’s
mage in data space and the points in this image denote the
et of all possible experimental outcomes that the model can fit
erfectly. When Nd > r; that is, when there are more summary
tatistics than free parameters, then we expect that there will be
ossible experimental outcomes that the model cannot perfectly
it. In these cases, the image of the model is a proper subset of D
nd it defines the model’s topological manifold (called the model
anifold by Ashby & Bamber, 2022).2
Many mathematical models in psychology are fit to and tested

gainst summary statistics, rather than single trial-by-trial re-
ponse data. For example, this is true in almost any application in
hich parameter estimates are obtained via the method of least
quares. More importantly for the present purposes however,
ummary statistics, rather than trial-by-trial data, are typically
sed to guide model design and development. For example, the
ormal, unequal-variance, signal-detection model was originally
eveloped because of the observation that empirical ROC curves
re skewed rather than symmetric, and not because of any con-
ideration of some possible sequence of YES and NO responses a
articipant might make in a YES-NO detection task. Similarly, a
hoice of what response-time model to adopt might depend on
hether correct mean response times are expected to be faster
r slower than incorrect mean response times, rather than on a
onsideration of specific response times that might be observed
ver some possible sequence of trials. The goal of this article is
o provide a new model-development tool (rather than a new

1 A statistical manifold is a Riemannian manifold in which the metric is the
isher information metric.
2 Technically, to be a topological manifold, the model’s equations must be
ne-to-one and continuous, and the inverse of the equations must also be
ontinuous (i.e., the mapping from the model’s image in data space back to
arameter space). However, almost all mathematical models within psychology
atisfy these conditions.
2

model-selection statistic), and for this reason, this article focuses
on applications in which each dependent variable that defines
the data space is a summary statistic. In other words, unless
specifically noted otherwise, by data space I will mean a space
in which the Nd dimensions denote the values of our Nd recorded
summary statistics, and the possible outcomes of the experiment
are the possible values of these Nd summary statistics.

If two competing models provide equally good fits to a data
set, then a basic principle of model selection is to favor the less
mathematically flexible model over the more flexible model. The
basic idea is that a rigid model makes strong predictions, whereas
a flexible model makes weak predictions. The rigid model is
stating that only a few possible outcomes of the experiment
are possible, whereas the flexible model is stating that many
outcomes are possible. So, if one of the few possible outcomes
predicted by the rigid model actually occurs, then that model
should be given credit for correctly predicting this outcome. In
the model selection literature, the mathematical flexibility of a
model is known as its complexity, so in the remainder of this
article I will use the term complexity to mean mathematical
flexibility.

Model complexity has been studied most extensively within
the statistical field of model selection. The goal here is to identify,
among a set of competing models, the one model that provides
the most parsimonious account of an existing data set. In other
words, during model selection, one begins with a single observed
point in saturated data space and a set of alternative models of
the experiment, and the goal is to identify the single model in
this set that provides the best account of that single point in
data space. The goal of this article is very different. Specifically,
the goal here is to develop an easy-to-use tool for assessing how
strong or weak a model’s a priori predictions are for the chosen
experiment, and specifically, in how much each model parameter
contributes to the complexity of these predictions. Therefore, in
contrast to model selection, no single point in data space will be
privileged and only one model at a time will be considered. As
a result, these goals require a measure of a model’s complexity
that is defined relative to the experiment, but does not depend
on any observed outcome of that experiment, and that is easy to
compute.

Within the field of model selection, many different measures
of model complexity have been proposed. These are usually ap-
plied as penalties to some goodness-of-fit statistic, such as minus
log likelihood. One option therefore, is to strip the complexity
term off of one of these goodness-of-fit measures and use this
term to examine the relative contribution of different parameters
to the model’s overall complexity. Unfortunately, this approach
fails for a variety of reasons. The most widely known statistics
that penalize for model complexity are AIC and BIC. However,
both of these define model complexity solely in terms of the
number of the model’s free parameters, and therefore they both
assume that all parameters contribute equally to complexity.
Adding more parameters to a model will almost always increase
its complexity, but it is well known that models with the same
number of free parameters are not necessarily equally complex.

A variety of other goodness-of-fit statistics – more sophis-
ticated than AIC or BIC – include complexity terms that apply
different penalties to different parameters. Furthermore, many
of these have the attractive property that they are sensitive
to experimental design (e.g., Pitt, Myung, & Zhang, 2002). This
seems promising, but there are problems here too. For example,
several of these require the model’s Fisher information matrix.
This includes, for example, stochastic complexity measures that
arise as asymptotic expansions of the complexity terms from
goodness-of-fit statistics used in normalized maximum likelihood

and Bayesian model selection (Myung, Navarro, & Pitt, 2006).
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nfortunately, the Fisher information matrix is analytically un-
vailable for most models in psychology, and as a result, appli-
ations that use these measures typically construct the matrix
rom estimates of the variance of various partial derivatives of
he log-likelihood function evaluated at the maximum likeli-
ood estimates. As a result, this approach is inappropriate for
he present purposes because it depends on the single actual
utcome that occurred in the experiment. Similarly, the com-
lexity measure in the negative free energy statistic requires
he variance–covariance matrix of the maximum likelihood es-
imates (Ashby, 2019), which also depends on the outcome of
he experiment. Other sophisticated complexity measures, which
re sensitive to experimental design and do not depend on any
ingle experimental outcome, fail to meet the easy-to-compute
riterion. For example, the complexity measure in one form of
ormalized maximum likelihood (called stochastic complexity 1
y Myung et al., 2006) is computed by taking the logarithm of
he sum of the maximum likelihood fits that would occur for all
ossible outcomes of the experiment. In other words, for every
oint in saturated data space, (1) maximum likelihood estimates
f all model parameters are computed, (2) these are used to
ompute a goodness-of-fit score if that data outcome actually
ccurred in an experiment, (3) these goodness-of-fit scores are
ll added together, and (4) model complexity is defined as the
og of this sum.

An alternative approach comes from the field of information
eometry, which defines the complexity of a model by the volume
f its statistical manifold (Amari, 2016). Recall that the points of
model’s statistical manifold are probability distributions, and

hat the distances needed to compute volume are defined by the
isher information metric, which in effect defines the distance be-
ween two probability distributions by the amount of information
ost if one distribution is replaced by the other (Amari, 2016). If
ne model tends to predict that only a few possible outcomes
f our experiment are possible, then all predicted probability
istributions will be similar, and therefore close together in the
odel’s statistical manifold according to the Fisher metric, with

he result that the volume of the model’s statistical manifold
ill be small. Information geometry judges this model to have

ow complexity. In contrast, if another model predicts that many
ifferent outcomes of the experiment are possible, then many
ifferent probability distributions will be predicted, and therefore
ome will be far apart in the statistical manifold, with the result
hat the volume of the model’s statistical manifold will be large.
nformation geometry judges this model to have high complexity.
he volume of the model’s statistical manifold will almost always
ncrease with the addition of a new parameter, but models with
he same number of parameters are not typically associated with
he same volumes. For example, a two-parameter power function
odel is more complex than a two-parameter log function model

Myung, Balasubramanian, & Pitt, 2000; i.e., because a power
unction is more flexible or ‘‘bendy’’ than a log function).

Despite its intuitive appeal, this measure of complexity has
ot become popular in psychology for at least three reasons.
irst, computing the volume of the model’s statistical manifold
or anything but the simplest possible models is an exceedingly
ifficult and tedious computational challenge. Second, statistical
anifolds are usually impossible to visualize because of their high
imensionality and because their points are probability distri-
utions. Third, the volume of a model’s statistical manifold is a
roperty of the whole model and does not allow one to examine
he contribution of individual parameters to this volume.

All three of these problems disappear when the dependent
ariables that define the data space are just a few summary
tatistics, and especially when this number is limited to Nd = 2.

In this case, the data space is two dimensional, and the model s

3

predicts a single numerical value for each dependent variable,
rather than a probability distribution. Thus, the model’s statistical
manifold reduces to a topological manifold embedded in a two-
dimensional data space and therefore is easy to visualize. In
addition, the volume is straightforward to compute since the
relevant metric is just familiar Euclidean distance. In fact, this
is exactly the model complexity measure proposed by Veksler,
Myers, and Gluck (2015). Even so, their goals were quite dif-
ferent from the goals of this article. They made no attempt to
examine how different model parameters contributed to this
volume. Instead, their focus was on computing the proportion of
the volume of data space covered by the model manifold, and
then interpreting this proportion as a type of p-value for the null
hypothesis that a good fit of the model to the data is because
of chance. Note that this use of the model’s volume requires the
extra assumption that all data outcomes (i.e., all points in data
space) are equally likely.

The present goal is instead to examine how each parameter in
a model contributes to the model’s overall complexity. As we will
shortly see, when only one of the model’s parameters are varied
and all others are held constant, then the model’s topological
manifold is a one-dimensional curve, and therefore the volume
of the manifold equals the length of that curve, which is simple
to compute. Therefore the goal here is to compare these lengths
for different model parameters as a method to understand how
each parameter contributes to model complexity.

It might seem that these conditions – namely, that there are
only two dependent variables and both are summary statistics
– are too restrictive to be of much interest. However, it turns
out that such cases are quite popular in psychology and have
been so for many decades. For example, these are exactly the
conditions required for state-trace analysis (STA; Ashby & Bamber,
2022; Bamber, 1979).

STA is a method for determining the complexity of a set of
data in which one or more independent variables are manipu-
lated across experiments or conditions and, most typically, two
separate dependent variables are measured (e.g., performance in
two tasks). A state-trace plot is a graph that plots performance on
two dependent variables against each other as some independent
variable(s) or model parameter(s) changes. The dependent vari-
ables may come from the same or different tasks. For example,
an STA could be performed on an ROC curve, which plots the
probability of a hit against the probability of a false alarm from a
YES-NO detection task. Alternatively, the STA could be performed
on data collected from two different categorization tasks, where
the two dependent variables are the proportion of correct re-
sponses in each task. In other words, a state-trace plot is a data
space with multiple points in which the number of dimensions
Nd = 2.

Ashby and Bamber (2022) showed that when the dimension-
ality of data space is at least as large as the number of free
parameters (i.e., Nd ≥ r) then the model’s topological manifold
is r-dimensional. Therefore, a model in which a single parameter
varies always predicts a one-dimensional state-trace plot (Bam-
ber, 1979). As a result, the volume of the model’s topological
manifold in this case equals the length of its state trace (LOST).
This volume – that is, the LOST – does not suffer from any of the
problems associated with the information geometric complexity
measure (i.e., the volume of the model’s statistical manifold),
because the LOST is easy to compute, state traces are simple to
visualize, and it is straightforward to compute LOSTs separately
for each parameter of a model.

The LOST associated with the parameter θi can be quickly com-
puted as follows. Suppose our state-trace curve plots values of
DV1 against values of DV2, where DV1 and DV2 are two summary

tatistics that describe the outcome of our experiment. The first
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tep is to compute the state-trace curve predicted by the model
hen θi varies and all other parameters are held constant at some

fixed values. In practice, all such state-traces are computed by
selecting an ordered set of M different values of θi, denoted by
i,1, θi,2, . . . , θi,M , and then computing the M predicted ordered
airs [DV1(θi,j),DV2(θi,j)] for j = 1...M that result when each of

these values of θi are used to generate model predictions. Given
this discrete state-trace curve, the LOST for θi is approximately

LOST (θi)

.
=

M−1∑
j=1

√[
DV1(θi,j+1) − DV1(θi,j)

]2
+

[
DV2(θi,j+1) − DV2(θi,j)

]2
,

(1)

and the approximation improves as M increases. In other words,
to compute the LOST, we compute the Euclidean distance be-
tween each successive pair of points that define the state trace,
and then add all these distances together.

This article explores the benefits of comparing LOSTs for dif-
ferent parameters of the same model. We will see that even the
most common models include parameters that differ greatly in
their LOSTs, and that these disparities have profound implications
for the results of fitting the model to noisy data. In particular, the
version of the model in which the free parameter is the one with
the greatest LOSTs is highly likely to fit noisy data better than ver-
sions of the model in which the free parameter has smaller LOSTs,
regardless of the psychological structure of the data. As a result,
knowing the relative LOSTs of the various model parameters can
greatly benefit the interpretation of goodness-of-fit analyses.

3. Signal-detection theory

We begin with one of the most widely used models in all of
psychology – namely, the standard normal, equal-variance model
from signal-detection theory. In this case, the obvious state-trace
plots are the standard ROC curves that plot the probability of a hit
[P(H)] against the probability of a false alarm [P(FA)]. It is well
known that the normal, equal-variance, signal-detection model
can fit any single observed combination of P(H) and P(FA) values
perfectly (e.g., Ashby & Wenger, 2023). As a result, an exceedingly
common analysis, used in scores of studies dating back at least
to the seminal work of Green and Swets (1966), is to attempt to
account for a scatter plot of [P(FA), P(H)] pairs by assuming that
all pairs were generated by a version of the model in which one of
the two model parameters varies – either the response criterion
XC or the sensitivity d′ – and the other parameter remains fixed
at some constant value. The most common version of the curves
that result from this approach is the isosensitivity curve, in which
XC is varied while d′ is held constant. The less common alternative
is an isobias curve that is generated by varying d′ while holding
XC at some fixed constant value. Examples of both types of curves
are shown in Fig. 1, along with the lengths of each state-trace and
the means of these lengths.

Note that the lengths of the iso-sensitivity curves are, on
average, almost four times longer than the lengths of the iso-
bias curves. As a result, most of the complexity of the normal,
equal-variance model of signal-detection theory comes from the
criterion parameter XC – much more so than from d′.

Fig. 1 shows that varying XC contributes to the complexity of
the signal-detection model much more than varying d′ because
all isosensitivity curves vary between the points (0,0) (when XC =

∞) and (1,1) (when XC = −∞). The shortest path between these
two points, which occurs when d′

= 0, has a length of
√
2 and

he longest path, which occurs when d′
= ∞ has a length of 2. In

ontrast, all isobias curves are vertical line segments that begin
n the major diagonal (when d′

= 0) and end at P(H) = 1 (when
 n

4

Table 1
Simulation results (i.e., proportion of 100,000 simulations in which each model
provided the better fit).
Model 5 Data points 10 Data points

XC varies across conditions .857 .971
d′ varies across conditions .143 .029

d′
= ∞). So note that the shortest isobias curve has length 0

and the longest has length 1. As a result, isosensitivity curves are
substantially longer than isobias curves.

The fact that isosensitivity curves are longer than isobias
curves suggests that a set of randomly generated points are
collectively all more likely to fall near some single isosensitivity
curve than near some single isobias curve. For example, consider
an empirical ROC with multiple points that were generated un-
der different experimental conditions, or perhaps by different
participants. Suppose that we fit two different versions of the
normal, equal-variance, signal detection model to these data. In
one version, XC varies across points but d′ remains constant,
whereas in the second version d′ varies across points but XC
remains constant. In other words, in both cases, we are fitting
a model with one free parameter to the data. If the points were
randomly generated, or if they are characterized by high levels
of noise, then the much longer LOSTs associated with XC predict
that the version with the free XC parameter should be much more
likely to provide the better fit than the version with the free d′

parameter.
To test this prediction, I simulated 100,000 replications of two

different experiments – one with 5 separate conditions (or partic-
ipants) and one with 10. In both experiments, the data from each
condition were an ordered pair [P̂(FA), P̂(H)] that was generated
by randomly sampling a point (from a uniform distribution) in
the upper left-half region of ROC space – that is, in the region
corresponding to d′

≥ 0. The random sampling produced a scatter
plot of either 5 or 10 points (in simulated Experiments 1 and 2,
respectively), all that fell on or above and to the left of the main
diagonal in ROC space. Next, I fit two normal, equal-variance,
signal-detection models to each scatter plot. Both models had one
free parameter. One model assumed that all conditions shared the
same d′ but differed in their value of XC . So to fit this model, I
estimated the single value of d′ that produced the isosensitivity
curve that best fit the data. The second model assumed that all
conditions shared the same value of XC but differed in the value
of d′. To fit this model, I estimated the single value of XC that
produced the isobias curve that best fit the data.

I used the method of least squares for parameter estimation
and sum of squared errors (SSEs) to evaluate goodness-of-fit. The
SSEs can be directly compared since both models have the same
number of free parameters (i.e., one), so the best model is the one
with the smallest SSE. The whole process was repeated 100,000
times for each experiment. The results are shown in Table 1. Note
that, as predicted, the model that assumed all conditions shared
the same d′ but had different values of XC was the clear winner,
and its dominance increased with the number of data points.
With 10 randomly generated data points, this model fit better
than the model that assumed all conditions shared the same XC
but had different values of d′ more than 97% of the time.3

The results summarized in Table 1 assume no limits on the
estimated values of either XC or d′. In practice, extreme values of
XC are rarely questioned, whereas extreme values of d′ are often

3 As the number of random data points increases, it becomes less and less
ikely that they will all have an approximate vertical alignment of the type
eeded for the d′-varying model to outperform the X -varying model.
C
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Fig. 1. The top two panels show ROC curves predicted by the normal, equal-variance, signal-detection model. The top left panel shows 27 isosensitivity curves that
esult from varying XC (from −8 to +8, in increments of 0.1). Each curve has a different fixed value of d′ (from 0 to 4, in increments of 0.15). The top right panel
hows isobias curves that result from varying d′ (from 0 to 8, in increments of 0.1) for 28 different fixed values of XC (from −∞ to +∞, chosen to partition the
tandard normal distribution into equal areas). The bottom panel plots the lengths of the various ROCs from each panel and the X shows the mean length for each
arameter.
t
m
T
i

iewed skeptically. For example, in most applications of signal-
etection theory, experimental conditions are arranged so that
rrors are expected. As a result, any analysis of data collected
rom such an experiment that reported d′ estimates greater than
or 4 would be viewed suspiciously. In contrast, any estimated
alue of XC could be plausible. A Bayesian approach would im-
lement these beliefs by placing a narrower prior distribution on
he d′ parameter than on XC . The Discussion section describes a
ormal method of incorporating prior distributions into the LOST
omputation.
Limiting the upper value of d′ reduces the mean LOSTs of both

sosensitivity and isobias curves. Even so, the effect is greater on
sobias curves than on isosensitivity curves. Fig. 2 plots the ratio

mean(LOSTisosensitivity)
mean(LOSTisobias)

(2)

for different upper limits on the allowable value of d′. Note that
this ratio drops sharply as the maximum allowable value of d′
5

increases. The limit as the maximum d′ approaches 0 is infinity,
and the curve asymptotes at 4 for large values of the maximum.4

Table 1 assumes no upper limit on d′. Fig. 2 suggests that if an
upper limit much less than 2 is placed on d′ then the results of
Table 1 would be even more extreme, in the sense that, under
the same conditions, the conclusion that XC was varying across
conditions, rather than d′, would be even more likely.5

These results suggest that a conclusion that the response cri-
erion varies across conditions while sensitivity remains constant
ust be interpreted cautiously if based solely on goodness-of-fit.
his section showed that such a conclusion is virtually inevitable
n randomly generated data.

4 When d′
= 0, the LOSTisosensitivity =

√
2, whereas LOSTisobias = 0. In contrast,

when d′
= ∞, the LOSTisosensitivity = 2, and meanLOSTisobias = .5.

5 Thanks to Donald Bamber for pointing out this consequence of limiting the
range of d′ .
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Fig. 2. The ratio of mean LOSTs as a function of the maximum possible value of d′ [i.e., mean(LOSTisosensitivity)/mean(LOSTisobias)].
4. Parameters that predict non-monotonic changes in perfor-
mance

The parameter XC contributes to the complexity of the signal-
detection model much more than the d′ parameter because isosen-
sitivity curves fill more of the ROC space than isobias curves
(i.e., the former are longer than the latter). Note that the ROC
space is constrained to the unit square since the values on
each dimension are constrained to the interval [0,1]. In such
constrained spaces, curved state traces will tend to be longer than
linear state traces. In fact, for any two state traces that begin and
end at the same two points, the one with more curvature will
tend to be longer.

Technically, it is possible for a state trace produced by vary-
ing a single parameter to have enough curvature to fill an en-
tire two-dimensional state-trace space (Ashby & Bamber, 2022).
With more common models, such as the normal, equal-variance,
signal-detection model, this requires two free parameters that
simultaneously vary (Ashby & Bamber, 2022). For example, as
previously noted, by allowing both XC and d′ to vary, the signal-
detection model can perfectly fit any observed [P(FA), P(H)] pair.
According to information geometry, a model with a single free
parameter that fills the entire state-trace space has the same
complexity as a two-parameter model that also fills the whole
space.

Although I know of no current models in the psychological
literature that include any single parameter that allows the model
to fit any point in a two-dimensional state-trace plot perfectly,
such models are mathematically possible. In particular, as noted
by Ashby and Bamber (2022), it is possible to construct single-
parameter, well-behaved models6 that produce state-trace curves
that, in practice, would be statistically impossible to distinguish
from a two-parameter model that fills the whole space. Most
space-filling curves that have been proposed are constructed
by taking the limit of a sequence of simpler curves, each of
which is a one-to-one mapping from the unit interval to the

6 By well behaved, I mean models in which the mapping from parameter
pace to data space is one-to-one and continuous and with a continuous inverse
apping (Ashby & Bamber, 2022).
6

unit square, with the property that each successive curve in the
sequence more closely approximates the area-filling limit. So a
model in which varying one parameter produces a curve that is
late in such a sequence, but before the limit, will fill much of
the state-trace plot. Most importantly, because of statistical error
(measurement, perceptual, cognitive, or individual difference),
such a model would be impossible to discriminate from a model
that fills the whole space.

Although no current models include any single parameter
that produces space-filling predictions, there are many models,
besides the normal, equal-variance, signal-detection model, with
parameters that predict curved state traces, and as we have seen,
the more curvature they predict, the longer the resulting state
traces, and therefore, the more model complexity added by that
parameter. One way to produce high levels of curvature is via
parameters that when increased, have non-monotonic effects on
predicted performance. If increases in a parameter always cause
the model to predict monotonic changes in performance, then
the state-trace plot is guaranteed to be monotonic (Ashby &
Bamber, 2022; Dunn & Kirsner, 1988). Such a plot is limited in its
maximum length by the limits on each dependent measure. On
the other hand, if increases in a parameter cause the model to
predict non-monotonic changes in performance (e.g., increasing
then decreasing) in one of the two dependent variables used
to construct the state-trace plot, but not both, then the result-
ing state-trace plot is guaranteed to be a single, non-monotonic
curve (Ashby & Bamber, 2022; Bamber, 1979). In general, non-
monotonic state trace curves will display more curvature than
monotonic curves, and therefore tend to have greater length.

Many popular models include parameters that when increased
have non-monotonic effects on predicted performance. First,
many models include a selective-attention parameter that is
defined as the proportion of attention allocated to one of two
stimulus dimensions. In tasks where both dimensions carry di-
agnostic information, such models predict improvements in per-
formance with increases in the parameter up until attention is
divided optimally between the two dimensions and then de-
creases in performance as the parameter increases beyond this
point. In contrast, in tasks where only one dimension is relevant,

the models predict monotonic changes in performance as the
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arameter is increased. For example, prototype, exemplar, and
ecision-bound models of categorization all include such a pa-
ameter (e.g., see Ashby & Maddox, 1993). Second, decision bound
odels predict that accuracy is maximized in any categorization

ask when the decision bound has some specific intermediate
ntercept and curvature. Thus, decision bound models predict
hat accuracy will increase to some peak value and then de-
rease as the intercept increases from −∞ to ∞. A similar
rediction occurs for the amount that the decision bound curves
e.g., from negative to positive). Third, the COVIS rule-learning
odel predicts that accuracy will increase with the parameter

hat is sensitive to brain dopamine levels and then decrease when
hese levels pass an optimal value (Ashby, Paul, & Maddox, 2011).
ourth, all connectionist and neural network models predict that
or any given amount of training, accuracy increases with the
alue of the learning-rate parameter up to a point, and then
erformance will deteriorate if the learning rate becomes too
arge. Thus, if any one of these parameters vary across one of the
asks or conditions, then the resulting state-trace plot could be a
ingle, non-monotonic curve.
In summary, many models include parameters that when

ncreased, predict non-monotonic changes in performance, and
uch models will often predict non-monotonic state-trace curves.
on-monotonic state-trace curves tend to be longer than mono-
onic curves. Therefore, in this class of models, the parameter
redicting non-monotonic changes in performance should con-
ribute to model complexity more than parameters predicting
onotonic changes.

. Exemplar and prototype models of categorization

To test the prediction that parameters predicting non-
onotonic changes in performance should contribute more to
odel complexity than parameters predicting monotonic changes

n performance, I computed the LOSTs for the three most com-
only used parameters of the popular generalized context model
f categorization (GCM; Nosofsky, 1986) and for a prototype
odel that had the identical mathematical structure (e.g., Homa,
terling, & Trepel, 1981; Smith, 2002; Smith & Minda, 2001).
Both models were applied to the two categorization tasks

hown in Fig. 3. In the rule-based (RB) task, perfect performance
equires deciding whether the value of the stimulus on dimension
is small or large, while the value of the stimulus on dimension 2

s irrelevant. In the information-integration (II) task, both dimen-
ions are equally important to the categorization decision. The
tate-trace analysis from these tasks plots the predicted probabil-
ty of responding correctly on the II task (on the ordinate) against
he predicted probability correct on the RB task (on the abscissa).
any studies have examined state-trace plots of exactly this type,
nd the goal was typically to decide whether the resulting plot
as consistent with a model in which only one parameter was
arying (e.g., Ashby, 2014, 2019; Ashby & Bamber, 2022; Dunn,
ewell, & Kalish, 2012; Newell, Dunn, & Kalish, 2010; Stephens,
atzke, & Hayes, 2019).
The GCM is an exemplar model because it assumes that stored

epresentations of all category exemplars contribute to the cat-
gorization decision. In a task with two categories, A and B, the
CM assumes that the probability of responding A on a trial when
timulus k is presented equals

(A|k) =
β

∑
i∈CA

ηik

β
∑

i∈CA
ηik + (1 − β)

∑
i∈CB

ηik
, (3)

where CA and CB are sets containing the stimuli in categories A
and B, respectively, ηik is the similarity between stimuli i and k,
and β is a parameter that reflects the participant’s bias toward
responding A. Similarity is assumed to be inversely related to the
 G

7

weighted Euclidean distance between the perceptual representa-
tions of the stimuli. More specifically, the distance between the
perceptual representations of stimuli i and k, denoted δik, equals:

δik =

√
w(xi1 − xk1)2 + (1 − w)(xi2 − xk2)2, (4)

where w is the proportion of attention allocated to dimension 1,
and xij is the coordinate value of stimulus i on the jth perceptual
dimension. Similarity is inversely related to distance via:

ηik = exp(−cδ2ik) (5)

where c is a parameter that increases with the overall discrim-
inability of the stimuli.7

The GCM predicts that accuracy is maximized in the Fig. 3
RB task if the proportion of attention allocated to dimension 1
– that is w – equals 1. As a result, it predicts that accuracy will
increase monotonically as w increases from 0 to 1. In contrast, in
the II task, the GCM predicts that accuracy is maximized when
w = .5. As w increases from 0, predicted accuracy increases to
a maximum at w = .5 and then continuously decreases until
w = 1. In fact, the GCM predicts that accuracy will be a non-
monotonic function of w in all tasks, except those in which only
one of the two stimulus dimensions is relevant. If dimension 1 is
relevant and dimension 2 is irrelevant (as in the Fig. 3 RB task),
then predicted accuracy increases monotonically with w, whereas
if the only relevant dimension is dimension 2, then accuracy will
monotonically decrease with w.

The left column of Fig. 4 shows the LOST results for the three
parameters of the GCM in the state-trace curves that result when
II accuracy is plotted against RB accuracy (ignore the right column
for now). The top three panels show state-trace plots predicted
by the GCM for these two tasks and the bottom panel shows
the LOSTs. Each curve in the top row is a state-trace generated
by varying w. The different curves show predictions for different
fixed values of c and β . The second row shows the same thing,
except these curves were generated by varying c , while holding
w and β constant, and the state traces in the third row were
generated by varying β , while holding c and w constant. In all
cases, w varied from 0 to 1, c varied from 400 to 3600, and
β varied from .05 to .5. Values of c below 400 were excluded
because both models predict that performance on both tasks is
near chance for all c < 400. Similarly, values of β above .5 were
excluded because both models make identical predictions in both
tasks when β = p and β = 1− p, for all values of p. Note that, as
expected, the state traces that are generated by varying w are all
non-monotonic, whereas the state traces that result from varying
either c or β are all monotonic.

The bottom row of Fig. 4 plots the lengths of the various state
traces from each panel and the X shows the mean length for each
parameter. Note that the LOSTs for the w parameter are more
than twice as great as the LOSTs for the c and β parameters.
In fact, given how much curvature the w state traces display
and that the values on each dimension are constrained to the
interval [.5, 1], it is difficult to imagine how one could construct
another model of these tasks that could include a parameter with
significantly greater LOSTs than the w parameter of the GCM.
Therefore, as predicted, the non-monotonicity effects that w have
on II accuracy cause changes in w to increase the complexity of
the model much more than the other model parameters. As a

7 Other versions of the GCM are common. For example, sometimes city-block
istance is used rather than Euclidean, and sometimes an exponential similarity
unction is used rather than a Gaussian. However, Ashby and Bamber (2022)
howed that the four different versions of the GCM created by taking all possible
ombinations of city-block versus Euclidean distance and exponential versus
aussian similarity function produce highly similar state-trace plots.
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Fig. 3. Two categorization tasks. RB = rule based, II = information integration.
t
e
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result, if different versions of the GCM are fit to a set of noisy or
random points in a state-trace plot of II versus RB categorization
accuracy, or if the points were generated by a model that is qual-
itatively different from the GCM, then the most likely conclusion
will be that w varies across the points, but both c and β are
constant.

The GCM assumes that categorization decisions are made by
computing the similarity of the current stimulus to stored repre-
sentations of all previously seen exemplars from each category,
adding all similarities to exemplars from the same category to-
gether, and then inserting these summed similarities into the
Eq. (3) Luce-Shepard choice model (Luce, 1963; Shepard, 1957) to
determine the various response probabilities. A natural question
to ask is to what extent the contributions that w, c , and β make
to model complexity depend on the psychological assumptions
the model makes about how categorization decisions depend on
accessing memory traces of previously seen exemplars versus the
mathematical assumptions the model makes – specifically, about
how distance and similarity are computed and that the Luce-
Shepard choice model is used to compute response probabilities
(which are not considered core assumptions of the theory).

To answer this question, I repeated the LOST analysis de-
scribed in Fig. 4 exactly, except swapping out the psychological
assumptions the GCM makes about individual exemplars for a
prototype model. Specifically, the prototype model was identical
to the model described in Eqs. (3) - (5), except the summed
similarities in Eq. (3) were replaced by the similarity of the
current stimulus (i.e., stimulus k) to the category prototypes. So,
for example,

∑
i∈CA

ηik in the numerator of Eq. (3) was replaced
with ηiAp , where Ap is the prototype (i.e., the mean) of category A.
A large literature confirms that this model makes very different
psychological assumptions than the GCM (e.g., Homa et al., 1981;
Smith, 2002; Smith & Minda, 2001). So the two models have ex-
actly the same three parameters and use the exact same distance,
similarity, and Luce-Shepard choice model equations to compute
response probabilities (i.e., Eqs. (3)–(5)). They differ only in their
assumptions about the nature of the stored category-relevant
representations that are used to make categorization decisions.

Results are shown in the right column of Fig. 4. Each panel
in this column can be compared directly to the analogous panel
in the left column since both state traces from the two models
were generated using the exact same values of all three model
parameters (i.e., w, c , and β). Note that the state traces for the
two models are quite different, but that the LOSTs are all highly
similar. The most important point here is that in both models,
the mean LOSTs for w are more than twice as large as the mean
 .

8

LOSTs for either other parameter. Therefore, the much greater
relative contribution to complexity provided by w is due to its
role in Eqs. (3)–(5), and not because of the GCM assumption
that categorization decisions depend on accessing the memory
representations of all previously seen exemplars.

Although the parameters of the GCM and prototype model
have similar LOSTs, Fig. 4 shows that the state traces for the
prototype model are restricted to a much smaller region of state-
trace space than the traces for the GCM. For example, note that
none of the one-parameter versions of the prototype model can
account for II accuracy below about 0.6 or for the combination
of high II accuracy and low RB accuracy. In contrast, all three
versions of the GCM can account for either of these outcomes.
These results suggest that overall, the GCM might be more com-
plex than the prototype model that is based on the exact same
Eqs. (3)–(5) (e.g., according to the model complexity measure
proposed by Veksler et al., 2015). To investigate this possibility,
I computed the GCM and prototype model manifolds for the RB
and II tasks of Fig. 3. Specifically, for both models I simultaneously
varied c from 0.1 to 4,500, w from 0 to 1, and β from 0 to .5.8
For each combination of these three parameters, I then plotted
the predicted accuracy in the two tasks. Results are shown in
Fig. 5. The shaded regions include all experimental outcomes that
each model can fit perfectly by simultaneously varying all of its
three parameters – that is, the shaded regions denote the model
manifolds for these two tasks.

Note that the GCM has a substantially larger model manifold
than the prototype model, and therefore is considerably more
complex than the prototype model for these two tasks. The proto-
type model predicts a positive correlation between performance
on the two tasks, whereas the GCM can account for almost any
possible experimental outcome. In fact, the model manifold of
the prototype model is contained completely within the model
manifold of the GCM. As a result, there is no possible experi-
mental outcome that the prototype model could account for that
the GCM could not also fit perfectly. In contrast, there are many
outcomes that the GCM could fit perfectly that are incompatible
with all versions of the prototype model. The prototype model
makes strong a priori predictions about the outcomes of these
tasks – specifically, it predicts that performance on the two tasks
should be similar. In contrast, the GCM makes almost no a priori

8 Note that the ranges for c and β here are slightly greater than the ranges
hat were used to generate the state traces shown in Fig. 4. This had virtually no
ffect on any GCM predictions, but the small values of c allowed the prototype
odel to account for some slightly smaller accuracies on the II task (i.e., below

63).
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Fig. 4. State traces and LOSTs predicted by the GCM (left column) and the prototype model (right column) for the RB and II categorization tasks described in Fig. 3.
Each curve in the first three rows is a state-trace generated by varying the single parameter indicated on the right. The bottom row plots the lengths of the various
state traces from each panel and the X shows the mean LOST for each parameter.
predictions. According to the GCM, almost any outcome is possi-
ble. In consequence, there are many actual outcomes that could
falsify the prototype model and almost no outcomes that could
falsify the GCM. Furthermore, this GCM complexity advantage
occurs despite the fact that the two models both have the same
three free parameters, make the same assumptions about how
distance and similarity are computed, and use the same Luce-
Shepard choice model to convert the model-relevant similarities
to response probabilities.
9

What causes the GCM to be more complex than the prototype
model? As a first step in addressing this question, consider Fig. 6,
which shows the regions of data space that are compatible with
some version of the GCM and incompatible with all versions of
the prototype model. Note that there are two such regions –
a lower region in which accuracy is worse in the II task than
predicted by the prototype model, and an upper region where
accuracy on the II task is better than predicted by any proto-
type model. These two regions are associated with qualitatively
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Fig. 5. The model manifolds of the GCM and the prototype model for the RB and II tasks shown in Fig. 3.
Fig. 6. The shaded regions show areas of data space that denote possible ex-
perimental outcomes that can be fit perfectly by the GCM, but are incompatible
with all versions of the prototype model (for the RB and II tasks shown in Fig. 3).

different sets of GCM parameter values. GCM predictions fall in
the lower region when the attention weight is large (i.e., w >
95), whereas GCM predictions fall in the upper region when w is
small [i.e., w ∈ (.09, .5)] and the discriminability parameter c is
large (i.e., c > 900). The psychological assumptions made by the
GCM are very different in these two regions, so the predictions of
the model in these two regions need to be examined separately.

First, consider the lower region. In this case, the attention
weight w is large. Recall that in the RB task, the optimal strategy
is to allocate all attention to the single relevant dimension – that
is, to dimension 1, in which case w = 1. In contrast, in the II task,
the optimal strategy is to set w = .5, because both dimensions
re equally important in this task. When w = 1, stimulus values
n dimension 2 are ignored, which is equivalent to collapsing
oth category structures onto dimension 1. The resulting category
epresentations are shown in Fig. 7. Note that there is consider-
ble overlap of the category A and B exemplars in the II task,

hereas the A and B exemplars are perfectly partitioned and

10
widely separated in the RB task. As a result, the GCM predicts
poor performance in the II task and good performance in the
RB task. On the other hand, the bottom row of Fig. 7 shows
that the category prototypes are approximately the same in the
two tasks, so the prototype model predicts roughly equal RB
and II performance. The lower region of Fig. 6 conforms to our
common understanding of the GCM – performance depends on
all exemplars and when exemplars from contrasting categories
overlap, performance suffers.

The rationale behind the GCM predictions in the upper region
is very different – primarily because of the large value of c.
First, however, note that because w < .5 in this region, the
allocation of attention is suboptimal for both tasks, but much
worse (i.e., further from optimal) for the RB task than for the
II task. As a result, we expect predicted performance to suffer
from these suboptimal values more in the RB task than in the II
task, and as this analysis predicts, all points in this upper region
are associated with higher II than RB accuracy. Second, and more
importantly, what is the effect of such large values of c? This
question is answered in Fig. 8, which shows the GCM predicted
similarities between the bottom-most stimulus in category B and
all individual exemplars in both categories. The similarities were
computed from Eq. (5) with w = .2 and c = 1000. These values
cause the GCM to predict accuracies in the two tasks denoted by
the black dot in Fig. 6. Points above this dot tend to be associated
with even larger values of c , so these parameter values are less
extreme than many in this upper region.

As required by Eq. (5), the GCM always predicts that all self-
similarities equal 1 and all other similarities are less than 1. This
is true for all values of c. The interesting result is that because c is
so large in this upper region of data space, the model predicts that
almost all other similarities are effectively 0 (i.e., all similarities
denoted as 0 in Fig. 8 are less than .001). Recall that the GCM
response probabilities are computed by comparing the sum of all
these similarities to category A and category B exemplars. In the
II task this sum equals 1.0067 for category B and 0 for category
A, whereas in the RB task the sums are 1 and .3355 for categories
A and B, respectively. Because the difference between the sums
is considerably larger in the II condition, the GCM predicts that
II performance will be much better than RB performance, given
these parameter values.

Fig. 8 illustrates why the GCM is able to account for exper-
imental outcomes that fall in this upper region of data space,
but note that the psychological interpretation of this performance
strongly violates the tenets of exemplar theory – namely, that
all exemplars contribute to the categorization decision. In this

portion of data space, the GCM is operating as a nearest-neighbor
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Fig. 7. Representations of the exemplars and prototypes of the RB and II categories shown in Fig. 3 when all attention is allocated to dimension 1.
Fig. 8. The RB and II categories shown in Fig. 3 along with the similarities of the lowermost stimulus in category B to all exemplars from both categories. All
similarities were computed from the GCM with w = .2 and c = 1000.
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lassifier. Categorization decisions depend almost exclusively on
he category membership of the stored exemplar that is most
imilar to the presented stimulus. This property of the GCM was
irst noted by Smith and Minda (2001), who reported that best-
itting versions of the GCM to real data frequently mimic this
ype of nearest-neighbor classifier. Note that in this region of data
pace, the GCM could be interpreted as being more consistent
ith prototype theory than with exemplar theory, in the sense
hat, like prototype theory, the GCM assumes that categoriza-
ion decisions are based on a single stored representation. The
CM and prototype models only disagree about the nature of
his single stored representation. Prototype models assume the
ingle critical stored representation is of the category prototype,
hereas the GCM assumes the single critical representation is of
he nearest neighbor.

When c is small, all similarities are greater than 0 and the
CM is a true exemplar model, in the sense that all exemplars
ontribute to the categorization decision. As c increases, the sim-
larities of the most distant exemplars drop to 0 (or effectively
o 0) and these distant exemplars no longer contribute to the
ecision. Finally, for large values of c , categorization decisions
re based exclusively on the category membership of the single
earest neighbor. So by varying c , the GCM can toggle among a
ariety of qualitatively different decision strategies. In contrast,
n the prototype model, categorization decisions always depend
n the similarity of the presented stimulus to the two stored
rototypes, regardless of the value of c. This observation suggests
hat the GCM’s greater flexibility in selecting a decision strategy
s the primary reason it is so much more complex than the
rototype model.
In fact, this analysis also suggests that a strong argument can

e made that calling the GCM an exemplar model is a misnomer.
11
Within the machine-learning literature, the GCM would more
accurately be labeled as a k-nearest-neighbor classifier, in which
categorization decisions are based on the category membership of
the k nearest neighbors of the presented stimulus. If we denote
the total number of exemplars in categories A and B by NA and NB,
espectively, then the GCM is a complex model because it allows
to take any value from 1 to NA + NB. The specific value that k

akes in any application is controlled almost completely by the
umerical value assigned to the parameter c (i.e., k is inversely
elated to c).

Ashby and Rosedahl (2017) showed that the GCM also has
nother, completely different interpretation. Specifically, they
howed that the GCM is mathematically equivalent to a model
n which categorization training does not create any memory
epresentations, but instead alters the synaptic strengths between
nput and output units in a feedforward neural network. In this
ccount, categorization decisions are made without ever activat-
ng memory representations of any category exemplars. Instead,
uring training, the summed similarities of Eq. (3) are encoded as
ynaptic strengths.
So the GCM has three very different psychological interpreta-

ions: (1) as an exemplar model in which categorization decisions
epend on all stored exemplar representations; (2) as a k-nearest
eighbor classifier in which categorization decisions depend only
n the k nearest stored exemplar representations, where k can
ake any value from 1 to NA +NB; and (3) as a feedforward neural
etwork in which summed similarities are encoded as synaptic
trengths and no memory representations of any exemplars are
ver activated. Of these three interpretations, the first dominates
he literature, but is the least accurate since the GCM mimics a
earest-neighbor classifier over much of its parameter space.
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. Discussion

Information geometry defines the complexity of a mathemat-
cal model as the volume of its statistical manifold. The greater
his volume, the more different data patterns the model predicts,
nd so the greater the model complexity. Despite its intuitive
ppeal, this measure of model complexity is rarely used in the
sychological literature because (1) computing the volume of a
odel’s statistical manifold for anything but the simplest possi-
le models is a difficult computational challenge, (2) statistical
anifolds are usually impossible to visualize because of their high
imensionality and because their points are probability distribu-
ions, and (3) the volume of a model’s statistical manifold is a
roperty of the whole model and does not allow one to examine
he contribution of individual parameters to this volume. All of
hese problems disappear when the data space is a regular two-
ask state-trace plot. First, because the state-trace is a plot of
ne summary statistic against another, for any set of parameter
alues, a model predicts one point in this data space, rather
han a probability distribution. Second, when the state traces are
enerated from a model by varying a single parameter, then the
olume of the model’s topological manifold in data space equals
he LOST, which is easy to compute, the resulting state traces
re simple to visualize, and the LOST can easily be computed
eparately for each of the model’s parameters.
For signal-detection models, the obvious data space for a LOST

nalysis is the ROC curve. In the case of the normal, equal-
ariance model, the average LOST when XC is varied is much

greater than the average LOST when d′ is varied (i.e., see Figs. 1
and 2). Therefore, the XC parameter grants the model much more
complexity than the d′ parameter. Simulations show that this
difference has profound effects on the results of fitting the model
to random data. Applying the signal-detection model to random
data almost always leads to the conclusion that all the points
share the same value of d′ but were generated under different
alues of XC .
The LOSTs associated with a parameter will tend to be greater

he more curved its state traces. For example, the state traces gen-
rated by varying the signal-detection parameter XC (i.e., isosen-
itivity curves) are more curved than the traces generated by
arying d′ (i.e., isobias curves). A logical inference that follows
rom this principle is that parameters that have non-monotonic
ffects on performance will tend to have large LOSTs, and there-
ore contribute to model complexity more than parameters that
ave monotonic effects on performance. As examples of this
ffect, we saw that in both the GCM and prototype models, the
OSTs for the attention-weight parameter w, which predicts non-
onotonic effects on II accuracy, are much greater than the LOSTs

or the parameters c and β , which predict monotonic effects on
ccuracy.
Computing LOSTs for the popular normal, equal-variance,

ignal-detection model, for the GCM, and for the prototype model
hows that a large discrepancy in LOSTs (e.g., of more than
-to-1) among parameters of the same model should not be
onsidered unusual. In hindsight, this should not be too surpris-
ng. If all parameters contributed equally to model complexity,
hen model-selection statistics that define the complexity of a
odel simply by the number of its free parameters (such as
IC and BIC) would always agree with statistics that depend
n more sophisticated complexity measures, such as normalized
aximum likelihood and free energy.
Furthermore, as Table 1 shows, a significant disparity in LOSTs

an have profound effects on conclusions derived from fitting
hat model to noisy data. In fact, Table 1 shows that in extreme
ases, almost nothing can be learned from such a model-fitting
xercise because the outcome is preordained – the version of the
12
model in which the single parameter that varies across points is
the one with the largest LOSTs is virtually guaranteed to provide
the best fit. This lesson reinforces cautions that model selection
should not be based solely on goodness-of-fit (e.g., Myung, 2000).
Especially in cases when the best-fitting version of a model is the
one in which the free parameter has the greatest LOSTs, some
other independent evidence should be sought before concluding
that this model provides insight into the underlying psychological
processes. On the other hand, if the best-fitting version of a
model happens to be one in which the single varying parameter
has small LOSTs, then knowledge that the LOSTs associated with
that parameter are smaller than the LOSTs associated with other
model parameters should raise confidence in the validity of the
model-fitting outcome.

Finally, our examination of the complexity contribution of the
parameters of the GCM and prototype models revealed another,
somewhat unexpected benefit of a LOST analysis. While comput-
ing the various LOSTs associated with the two models, we noticed
that the state traces for the GCM enclosed a larger region of
data space than the corresponding state traces for the prototype
model. The resulting follow-up analysis showed that the GCM
is in fact, more complex than the prototype model for the two
tasks we studied, even though both models are characterized by
the same three free parameters and make predictions using the
same base equations. A more detailed study then showed that the
GCM is more complex because it can mimic a variety of different
decision strategies (i.e., by varying the numerical value of the
parameter c). In fact, this analysis indicated that calling the GCM
an exemplar model could be interpreted as a misnomer. Rather, it
might be more accurate to label the GCM as a k-nearest neighbor
classifier, where k can be set to any value. Thus, in addition to
showing that the attention-weight parameter w contributes to
the complexity of both models far more than either of the other
two parameters, our LOST analysis also led to some deep new
insights into the structure of the GCM.

One possible limitation of the results described here is that
our analyses ignored the variability inherent in any real data. For
example, any empirical ROC curve must estimate P(H) and P(FA)
ith the proportion of observed hits and false alarms, respec-
ively, and the standard error of these estimates will be inversely
elated to the sample size. However, note that the variability
ntroduced by this sampling error will only exacerbate the prob-
ems identified here. Variability in the summary statistics adds
oise to data space, which as we have seen, favors parameters
ith greater LOSTs. For example, consider an ROC curve in which
he true underlying model is the standard normal, equal-variance,
ignal-detection model in which d′ varies but XC is constant.
s a result, the true ROC curve is an isobias curve of the type
hown in the top right panel of Fig. 1. However, note that any
ariability in the proportions that estimate P(H) and P(FA) will

produce a scatter plot of points that no longer fall on a vertical
line. The smaller the sample size that was used to estimate these
probabilities, the greater the deviations we should expect from
points that are aligned vertically. Table 1 shows that one result
of this variability is to make it more likely that the best-fitting
version of the signal-detection model will be the one that varies
XC and holds d′ constant, even though this is not the model that
generated the data. In other words, sampling variability of the
type inherent to all empirical data will increase the odds that
the best-fitting version of the model will be the one in which the
single varying parameter is the one with the greatest LOSTs, and
this will be true regardless of the psychological structure of the
data.

There are also many questions that would be interesting to
pursue in future research. For example, the present article fo-
cused exclusively on the case where the data space is two di-
mensional (i.e., N = 2). Although three-dimensional state traces
d
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re somewhat more difficult to visualize, computing LOSTs when
d = 3 is not really more difficult than when Nd = 2. As a result,
t would be interesting to examine how a parameter’s contribu-
ion to model complexity changes as the number of dependent
ariables is increased.
Another future research direction might be to generalize the

OST analysis described here to include the Bayesian notion of
rior distributions on each of the model’s parameters. For ex-
mple, it was mentioned earlier that large values of the signal-
etection parameter d′ are often viewed skeptically because ex-

perimental conditions are commonly arranged to expect small
d′’s. A Bayesian approach would incorporate this belief into the
data analysis by placing a prior distribution on d′ that assigns
low likelihoods to large values. It seems straightforward to in-
corporate prior beliefs of this type into a LOST analysis. Let fi(θi)
enote the prior probability density function on parameter θi.
hen the Eq. (1) LOST measure can be generalized to include this
rior distribution via

OST (θi)

=

∑M−1
j=1 fi(θi,j)

√[
DV1(θi,j+1) − DV1(θi,j)

]2
+

[
DV2(θi,j+1) − DV2(θi,j)

]2∑M−1
k=1 fi(θi,k)

.

(6)

In other words, each distance segment is weighted by the prior
likelihood associated with the value of θi used to generate the
tate-trace points that define that segment. The denominator
s just a normalizing term that ensures the sum of all weights
quals 1. Therefore, if a prior distribution on d′ assumes that
alues of d′ above 4 (for example) are impossible, then Eq. (6)
ould assign a weight of 0 to all distance segments associated
ith values of d′ > 4, and so they would not contribute to the
OST. Note that Eq. (1), which was used to compute all LOSTs
eported in this article, is equivalent to assuming uniform (or
oninformative) prior distributions on all parameters. As with
ll Bayesian approaches, the challenge with Eq. (6) would be to
efine nonuniform prior distributions that would be accepted as
oncontroversial by the broad research community.
Despite all of these benefits of a LOST analysis, it is important

o note that computing the volume of a model’s statistical man-
fold should always be viewed as a superior measure of model
omplexity. For example, the volume of a model’s statistical man-
fold computes complexity relative to a saturated data space,
ather than to a space defined by summary statistics. In general,
ollapsing trial-by-trial data into a few summary statistics should
e expected to provide only a limited view of a model’s com-
lexity landscape. Despite this limitation, the analyses presented
ere revealed striking differences in LOSTs for parameters of
ome of the most popular mathematical models in psychology,
nd the results described in Table 1 show that these differences
an have profound consequences on results of routine model
itting. Coupling these facts with the enormous computational
dvantage that computing LOSTs has relative to computing the
olume of a model’s statistical manifold, suggests that there could
e significant benefit to adding a LOST analysis to one’s standard
odeling toolbox.
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